Publications (peer-reviewed papers + preprints). More information can be found in Google Scholar


Papers (published or accpeted):
  1. J. Chu and Z.A. Wang, Global dynamics of an SIS epidemic model with cross-diffusion: applications to quarantine measures, Nonlinearity, 28, 055010, 28 pages, 2025. (15305824 & 1-WZ03).
  2. W. Tao and Z.A. Wang, Global boundedness and Turing-Hopf bifurcation of prey-taxis systems with hunting cooperation, European J. Appl. Math., 2025. (JRS N_PolyU509/22 & 1-WZ03).
  3. J. Li and Z.A. Wang, Multiple stable traveling wave profiles of a system of conservation laws arising from chemotaxis, CSIAM Trans. Life Sci., 1(1): 153-178, 2025. (15304720 & 15305824).
  4. X. Deng, Q. Huang and Z.A. Wang, Spatiotemporal model for the effects of toxicants on the competitive dynamics of aquatic species, Math. Biosci., 379, 108341, 2025 (JRS N_PolyU509/22 & PolyU 15305824).
  5. J. Carrillo, G. Hong and Z.A. Wang, Convergence of boundary layers of chemotaxis models with physical boundary conditions~I: degenerate initial data, SIAM J. Math. Anal, 56(6): 7576-7643, 2024 (15306121 & ZZPY).
  6. D. Tang and Z.A. Wang, Coexistence of heterogenous predator-prey systems with prey-dependent dispersal, J. Differential Equations, 409:461-497, 2024 (JRS N_PolyU509/22).
  7. W.R. Tao, Z.A. Wang and W. Yang, Global dynamics of a two-species clustering model with Lotka-Volterra competition, Nonlinear Differential Equations and Applications NoDEA, 31, Article No 47, 42 pages, 2024 (15307222 & W15F).
  8. Q. Liu, H. Peng and Z.A. Wang, The relaxation limit of a quasi-linear hyperbolic-parabolic chemotaxis system modeling vasculogenesis, Commun. Math. Anal. Appl., 3(1):1-18, 2024 (15304720).
  9. C. Mu, W. Tao and Z.A. Wang, Global dynamics and spatiotemporal heterogeneity of a preytaxis model with prey-induced acceleration, European J. Appl. Math., 35:601-633,2024 (15307222 & W15F).
  10. H. Tang and Z.A. Wang, Strong solutions to nonlinear aggregation-diffusion equations with random birth-death dynamics, Comm. Contemp. Math., 26(2), 2250073, 39 pages, 2024. (153055/18P).
  11. R. Hou, Z.A. Wang, W.-B. Xu, Z. Zhang, The uniform spreading speed in cooperative systems with non-uniform initial data, Discrete Contin. Dyn. Syst.-S, 17(2): 585-601, 2024 (special issue for Professor Yihong Du's 60th birthday), (15307222 & 1-WZ03).
  12. R. Peng, Z.A. Wang, G. Zhang and M. Zhou, Novel spatial profiles of some diffusive SIS epidemic models, J. Math. Biol., 82, Paper No. 81, 36 pages, 2023 (15307222 & ZZRC).
  13. X. Deng, Q. Huang and Z.A. Wang, Global dynamics and pattern formation in a diffusive population-toxicant model with negative toxicant-taxis, SIAM J. Appl. Math., 83(6): 2212-2236, 2023 (15306121 & W18M).
  14. Z.A. Wang, A. Yang and Kun Zhao, Wave propagation and stabilization in the Boussinesq-Burgers system, Phys. D, 447, 133687, 13 pp, 2023. (15304720).
  15. H.Y. Jin, Z.A. Wang and L. Wu, Global solvability and stability of an alarm-taxis system, SIAM J. Math. Anal., 55(4): 2838-2876, 2023. (15306121 & 2020 HK Scholars).
  16. D. Tang and Z.A. Wang, Population dynamics with resource-dependent dispersal: single- and two-species models, J. Math. Biol., 86, no. 2, Paper No. 23, 42 pp, 2023. (15303019 &UAH0).
  17. L. Wu and Z.A. Wang, Lotka-Volterra diffusion-advection competition system with dynamical resources, Discrete Contin. Dyn. Syst. - B, 28(6): 3322-3348, 2023. (HK Scholars).
  18. W.B. Lyu and Z.A. Wang, Global boundedness and asymptotics of a class of prey-taxis models with singular response, Math. Meth. Appl. Sci., 46:6705-6721, 2023. (15304720 & UAH0).
  19. Z.A. Wang and W.-B. Xu, Acceleration of propagation in a chemotaxis-growth system with slowly decaying initial data, Bull. London Math. Soc., 55:447-469, 2023. (153055/18P & UAH0).
  20. W. Lyu and Z.A. Wang, Logistic damping effect in chemotaxis models with density-suppressed motility, Adv. Nonlinear Anal., 12: 336-355, 2023. (15303019 & UAH0).
  21. L. Battaglia, A. Jevnikar, Z.A. Wang, and W. Yang, Prescribing Gaussian curvature on surfaces with conical singularities and geodesic boundary, Annali di Matematica Pura ed Applicata, 202:1173-1185, 2023. (15306121).
  22. H.Y. Jin, Z.A. Wang and L. Wu, Global dynamics of a three-species spatial food chain model, J. Differential Equations, 333:144-183, 2022. (15306121 & HK Scholars) .
  23. T. Li and Z.A. Wang, Traveling wave solutions to the singular Keller-Segel system with logistic source, Math. Biosci. Eng., 19(8): 8107-8131, 2022. .
  24. W. Tao and Z.A. Wang, On a new type of chemotaxis model with acceleration, Commun. Math. Anal. Appl., 1(2): 319-344, 2022. .
  25. H.Y. Peng, Z.A. Wang and C.J. Zhu, Global weak solutions and asymptotics of a singular PDE-ODE chemotaxis system with discontinuous data, Sci. China Math., 65:269-290, 2022. .
  26. Q.Q. Liu, H.Y. Peng and Z.A. Wang, Convergence to nonlinear diffusion waves for a hyperbolic-parabolic chemotaxis system modelling vasculogenesis, J. Differential Equations, 413:251-286, 2022 .
  27. W. Lyu and Z.A. Wang, Global classical solutions for a class of reaction-diffusion system with density-suppressed motility, Electronic Research Archive, 30(3): 995-1015, 2022. .
  28. Z.A. Wang and X. Xu, Radial spiky steady states of a flux-limited Keller-Segel model: existence, asymptotics and stability, Stud. Appl. Math.,148: 1251-1273, 2022.
  29. Z.A. Wang, A kinetic chemotaxis model with internal states and temporal sensing, Kinet. Relat. Models, 15(1): 27-48, 2022.
  30. Q.Q. Liu, H.Y. Peng and Z.A. Wang, Asymptotic stability of diffusion waves of a quasi-linear hyperbolic-parabolic model for vasculogenesis, SIAM J. Math. Anal, 54(1): 1313-1346, 2022.
  31. Z.A. Wang and L. Wu, Global solvability of a class of reaction-diffusion systems with cross-diffusion, Appl. Math. Lett., 124, Paper No. 107699, 8 pp, 2022.
  32. Y. Cai, Q. Cao and Z.A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Applicable Analysis, 101:81-99, 2022..
  33. J. Li and Z.A. Wang, Traveling wave solutions to the density-suppressed motility model , J. Differential Equations, 301:1-36,2021..
  34. S. Ji, Z.A. Wang, T. Xu and J. Yin, A reducing mechanism on wave speed for chemotaxis systems with degenerate diffusion, Calc. Var. Partial Differential Equations, Vol. 60, Paper No. 178, 19 pp, 2021.
  35. G. Hong and Z.A. Wang, Asymptotic stability of exogenous chemotaxis systems with physical boundary conditions, Quart. Appl. Math., 79:717-743,2021.
  36. Z.A. Wang, On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states, Math. Methods Appl. Sci., 44:10881-10898, 2021. (supported by UAH0).
  37. Z.A. Wang and X. Xu, Steady states and pattern formation of the density-suppressed motility model, IMA J. Appl. Math., 86:577-603, 2021.
  38. Z.A. Wang and J. Zheng, Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities, Acta Appl Math., Vol. 171, no. 25, Paper No. 25, 19 pp, 2021. (supported by no. UAH0 ).
  39. Z.A. Wang and J. Xu, On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion, J. Math. Biol., Vol. 82, no. 1-2, Paper No. 7, 37 pp, 2021. .
  40. G. Hong, H. Peng, Z.A. Wang and C. Zhu, Nonlinear stability of phase transition steady states to a hyperbolic-parabolic system modelling vascular networks, J. London Math. Soc., 103:1480-1514, 2021.
  41. D. Wang, Z.A. Wang and K. Zhao, Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model in multi-dimensions, Indiana Univ. Math. J., 70(1):1-47, 2021.
  42. T. Li, D. Wang, F. Wang, Z.A. Wang and K. Zhao, Large time behavior and diffusion limit for a system of balance laws from chemotaxis in multi-dimensions, Comm. Math. Sci., 19:229-272, 2021.
  43. J.A. Carrillo, J. Li and Z.A. Wang, Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability, Proc. London Math. Soc., 122:42-68, 2021..
  44. H.Y. Jin and Z.A. Wang, Global stability and spatio-temporal patterns of predator-prey systems with density-dependent motion, European J. Appl. Math., 32:652-682, 2021.
  45. H.Y. Jin and Z.A. Wang, The Keller-Segel system with logistic growth and signal-dependent motility, Disc. Cont. Dyn. Syst.-B, 26(6): 3023-3041, 2021. .
  46. Q. Hou, T.-C. Lin and Z.A. Wang, On a singularly perturbed semi-linear problem with Robin boundary conditions , Disc. Cont. Dyn. Syst.-B, 26(1): 401-414, 2021. .
  47. H.Y. Jin, S. Shi and Z.A. Wang, Boundedness and asymptotics of a reaction-diffusion system with density-dependent motility, J. Differential Equations, 269:6758-6793, 2020..
  48. C.C. Lee, Z.A. Wang and W. Yang, Boundary-layer profile of a singularly perturbed non-local semi-linear problem arising in chemotaxis , Nonlinearity, 33:5111-5141, 2020.
  49. H.Y. Jin and Z.A. Wang, Critical mass on the Keller-Segel system with signal-dependent motility, Proc. Amer. Math. Soc., 148:4855-4873,2020.
  50. B. Perthame, N. Vauchelet and Z.A. Wang, The flux limited Keller-Segel system: properties and derivation from kinetic equations, Rev. Mat. Iberoam., 36: 357-386, 2020..
  51. J.Y. Li and Z.A. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differential Equations, 268:6940-6970, 2020.
  52. M. Ma, R. Peng and Z. Wang, Stationary and non-stationary patterns of the density-suppressed motility model, Phys. D, 402, 132259, 2020.
  53. H.Y. Peng and Z. Wang, On a parabolic-hyperbolic chemotaxis system with discontinuous data: well-posedness, stability and regularity, J. Differential Equations, 268: 4374-4415, 2020.
  54. J.A. Carrillo, X. Chen, Q. Wang, Z. Wang and L. Zhang, Phase transitions and bump solutions of the Keller-Segel model with volume exclusion , SIAM J. Appl. Math., 80:232-261, 2020.
  55. H.Y. Jin and Z. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Disc. Cont. Dyn. Syst., 40:3509-3527,2020.
  56. J. Wang, Z. Wang and W. Yang, Uniqueness and convergence on equilibria of the Keller-Segel system with subcritical mass, Comm. Partial Differential Equations, 44:545-572, 2019.
  57. L.G. Rebholz, D. Wang. Z. Wang, K. Zhao and C. Zerfas, Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions, Disc. Cont. Dyn. Syst., 39:3789-3838, 2019.
  58. Q. Hou and Z.A. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures Appl., 130:251-287, 2019.
  59. C. Li, R. Peng and Z.A. Wang, On a diffusive SIS epidemic model with mass action mechanism and birth-death effect: analysis, simulations and comparison with other mechanisms, SIAM J. Appl. Math., 78:2129-2153, 2018.
  60. H.Y. Jin, Y.-J. Kim and Z.A. Wang, Boundedness, stabilization and pattern formation driven by density-suppressed motility, SIAM J. Appl. Math., 78:1632-1657, 2018.
  61. Q.Q. Hou, C.J. Liu, Y.G. Wang and Z.A. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50:3058-3091, 2018.
  62. V. Martinez, Z.A. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67:1383-1424, 2018.
  63. H.Y. Peng and Z.A. Wang, Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations, J. Differential Equations, 265: 2577-2613, 2018.
  64. H.Y. Jin and Z.A. Wang, A dual-gradient chemotaxis system modeling the spontaneous aggregation of microglia in Alzheimer's disease, Analysis and Applications, 16:307-338, 2018.
  65. H. Peng, Z.A. Wang, K. Zhao and C.J. Zhu, Boundary layers and stabilization of the singular Keller-Segel system, Kinetic and Related Models, 11: 1085-1123, 2018.
  66. H.Y. Jin and Z.A. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262:1257-1290, 2017.
  67. M. Ma and Z.A. Wang, Patterns in a generalized volume-filling chemotaxis model with cell proliferation, Analysis and Applications, 15:83-106, 2017. .
  68. Q.Q. Hou, Z.A. Wang and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261:5035-5070, 2016.
  69. Z.A. Wang, Z. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260:2225-2258, 2016.
  70. H. Jin and Z.A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260:162-196, 2016.
  71. M. Ma and Z.A. Wang, Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect, Nonlinearity, 28: 2639-2660, 2015.
  72. M. Mei, H. Peng and Z.A. Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259: 5168-5191, 2015.
  73. W. Ding and Z.A. Wang, Global existence and asymptotic behavior of the Boussinesq-Burgers system, J. Math. Anal. Appl., 424: 584-597, 2015.
  74. S.B. Ai and Z.A. Wang, Traveling bands for the Keller-Segel model with population growth, Mathematical Biosciences and Engineering, 12:717-737, 2015.
  75. S.B. Ai, W.Z. Huang and Z.A. Wang, Reaction, diffusion and chemotaxis in wave propagation, Discrete Contin. Dyn. Syst.-Series B, 21(1):1-21, 2015.
  76. H.Y. Jin, Z.A. Wang and L. Xiong, Cauchy problem of the Magnetohydrodynamic Burgers (MHD-Burgers) system, Commu. Math. Sci., 13(1): 127-151, 2015.
  77. H.Y. Jin and Z.A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38:444-457, 2015 .
  78. J. Li. T. Li and Z.A. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24(14): 2819-2849, 2014.
  79. T.C. Lin and Z.A. Wang, Development of traveling waves in an interacting two-species chemotaxis model, Discrete Contin. Dyn. Syst., 34(7):2907-2927, 2014.
  80. P. Liu, J.P. Shi and Z.A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B, 18(10): 2597-2625, 2013.
  81. H.Y. Jin, J. Li and Z.A. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255:193-219, 2013 .
  82. Z.A. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model, Comm. Pure Appl. Anal., 12(6): 3027-3046, 2013.
  83. Z.A. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst-Series B.,18(3): 601-641, 2013.
  84. Y.S. Tao, L.H. Wang and Z.A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst-Series B., 18(3): 821-845, 2013.
  85. Y.S. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23: 1-36, 2013.
  86. Z.A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume filling effect and degenerate diffusion, SIAM J. Math. Anal., 44: 3502-3525, 2012.
  87. T. Li and Z.A. Wang, Steadily propagating waves of a chemotaxis model, Mathematical Biosciences, 240: 161-168, 2012
  88. M.J. Ma, C.H. Ou and Z.A. Wang, Stationary solutions of a volume filling chemotaxis model with logistic growth and their stability, SIAM J. Appl. Math., 72: 740-766, 2012.
  89. Z.A. Wang, Wavefront of an angiogenesis model, Discrete Contin. Dyn. Syst-Series B., 17(8): 2849-2860, 2012.
  90. Z.A. Wang, M. Winkler and D. Wrzosek, Singularity formation in chemotaxis systems with volume-filling effect, Nonlinearity, 24: 3279-3297, 2011.
  91. J. Liu and Z.A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis model in one dimension, J. Biol. Dyn, 6: 31-41, 2012 .
  92. T. Li and Z.A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250: 1310-1333, 2011.
  93. T. Li and Z.A. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods. Appl. Sci., 20: 1967-1998, 2010.
  94. Z.A. Wang, On chemotaxis models with cell population interactions, Math. Model Nat. Phenom.,5:173-190, 2010
  95. R. Lui and Z.A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, J. Math. Biol, 61: 739-761, 2010.
  96. T. Hillen, P. Hinow and Z.A. Wang, Mathematical analysis of a kinetic model for cell movement in network tissues, Discrete Contin. Dyn. Syst-Series B, 14:1055-1080, 2010.
  97. Y.S. Choi and Z.A. Wang, Prevention of blow up in chemotaxis by fast diffusion, J. Math. Anal. Appl., 362: 553-564, 2010.
  98. T. Li and Z.A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70: 1522-1541, 2009.
  99. Z.A. Wang, T. Hillen and M. Li, Mesenchymal motion models in one dimension, SIAM J. Appl. Math., 69: 375-397, 2008
  100. Z.H. Guo, M.N. Jiang, Z.A. Wang and G.F. Zheng, Existence of global weak solutions to the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 21: 883-906, 2008.
  101. Z.A. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31: 45-70, 2008.
  102. Z.A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos 17, 037108, 2007.
  103. Z.A. Wang and H. Sang, Asymptotic profile to the nonlinear dissipative evolution equations with conservation form , Math. Methods. Appl. Sci., 20): 977-994, 2007.
  104. Z.A. Wang, Optimal convergence rates toward diffusion wave of solutions to non-linear evolution equations with conservational form, J. Math. Anal. Appl., 319: 740-763, 2006.
  105. Z.A. Wang, Optimal decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 57: 399-418, 2006.
  106. Z.A. Wang, Large time behaviors of solutions for a dissipative nonlinear evolution system with conservation form, J. Phys. A: Math. Gen., 38: 10955-10969, 2005.
  107. C.J. Zhu and Z.A. Wang, Decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 55: 994-1014, 2004.
  108. Z.A. Wang, C.J. Zhu, Stability of the rarefaction wave for the generalized KdV-Burgers equation, Acta Math Scientia., 22B(3): 319-328, 2002.

Preprints (available upon request):
  1. Y. Lou, W. Tao and Z.A. Wang, Effects and biological consequences of the predator-mediated apparent competition I: ODE models , Submitted, 2024.
  2. Z. Li and Z.A. Wang, Population dynamics in closed polluted aquatic ecosystems with time-periodic input of toxicants , Submitted, 2024.
  3. Z. Du, Y. Hua, J. Liu and Z.A. Wang, Traveling wave solutions of a generalized boussinesq system via a geometric approach , Submitted, 2024.
  4. J.A. Carrillo, J. Li, Z.A. Wang and W. Yang, Boundary spike-layer solutions of the singular Keller-Segel system: existence, profiles and stability , Submitted, 2024.
  5. K.-Y. Lam, D. Tang and Z.A. Wang, Existence of positive solutions to the SKT competition system with cross-diffusion , Submitted, 2024.
  6. G. Hong and Z.A. Wang Convergence of boundary layers of chemotaxis models with physical boundary conditions~II: non-degenerate initial data, Submitted, 2024.
  7. K.-Y. Lam, H. Jin and Z.A. Wang, Global dynamics of the toxicant-taxis model with Robin boundary conditions , Submitted, 2024.
  8. Y. Lou, W. Tao and Z.A. Wang, Effects and biological consequences of the predator-mediated apparent competition II: PDE models , Submitted, 2025.
  9. T. Nguyen, Z.A. Wang and K. Zhang, Infinitely many self-similar blow-up profiles for the Keller-Segel system in dimensions 3 to 9 ,Submitted, 2025.
  10. C.C. Lee, S.H. Moon, Z.A. Wang and W. Yang, Geometry effects on the boundary-layer profiles of the Keller-Segel system ,Submitted, 2025.
  11. Z. Li, W.-M. Ni and Z.A. Wang, Global dynamics of a periodic diffusive consumer-resource model: classification and asymptotics ,Submitted, 2025.