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Abstract

In this paper, we prove the global boundedness and stability of the predator–prey system with prey-taxis 
in a two-dimensional bounded domain with Neumann boundary conditions. By deriving an entropy-like 
equality and a boundedness criterion, we show that the intrinsic interaction between predators and preys is 
sufficient to prevent the population overcrowding even the prey-taxis is included and strong. Furthermore, 
by constructing appropriate Lyapunov functionals, we show that prey-only steady state is globally asymp-
totically stable if the predation is weak, and the co-existence steady state is globally asymptotically stable 
under some conditions (like the prey-taxis is weak or the prey diffuses fast) if the predation is strong. The 
convergence rates of solutions to the steady states are derived in the paper.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Prey-taxis, the movement of predators towards the area with higher density of prey popula-
tion, plays important roles in biological control and ecological balance such as regulating prey 
(pest) population or incipient outbreaks of prey or forming large-scale aggregation for survival, 
cf. [11,25,31]. It was first observed in the field experiment by Karevia and Odell reported in the 
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paper [15] where a PDE prey-taxis model was derived to interpret the heterogeneous aggregative 
patterns due to the interactions between individual ladybugs (predators) and aphids (prey) subject 
to the so-called area-restricted search strategy. In order to put the detailed individual field obser-
vations into a meaningful and tractable population-level model, Karevia and Odell [15] treated 
the prey-taxis as biased random walks which can incorporate micro-scale observations of indi-
viduals. Then passing to the continuum limit, they derived a PDE model which, augmented with 
the predator–prey interaction, can be formulated as:

{
ut = �u − ∇ · (uρ(u, v)∇v) + G1(u, v),

vt = D�v + G2(u, v),
(1.1)

where u = u(x, t) denotes the predator density at position x and time t > 0 and v = v(x, t) the 
prey population density; the term −∇ · (uρ(u, v)∇v) stands for the prey-taxis with a coefficient 
ρ(u, v) which may depend on the predator or prey density and D is the prey diffusion rate. The 
functions G1(u, v) and G2(u, v) describe the population interactions between the predator and 
the prey.

Ecological/biological population interactions can be defined as either intra-specific or inter-
specific. The former occurs between individuals of the same species, while the later between 
different species. The predator–prey population interaction, including both intra-specific or inter-
specific interactions, possesses the following prototypical form

G1(u, v) = γ uF(v) − uh(u), G2(u, v) = f (v) − uF(v)

where uF(v) represents the inter-specific interaction, uh(u) and f (v) accounts for the intra-
specific interaction. Specifically F(v) is the so-called functional response function accounting 
for the intake rate of predators as a function of prey density, h(u) is the predator mortality rate 
function and f (v) is the prey growth function; the parameters γ > 0 denotes the intrinsic preda-
tion rate. The most widely used forms of F(v) in the literature are:

F(v) = v (Lotka–Volterra type or Holling type I);

F(v) = v

λ + v
(Holling type II); F(v) = vm

λm + vm
(Holling type III)

(1.2)

with constants λ > 0 and m > 1. The predator mortality rate function h(u) is typically of the 
form

h(u) = θ + αu (1.3)

where θ > 0 accounts for the natural death rate and α ≥ 0 denotes the rate of death resulting 
from the intra-specific competition (also called density-dependent death, e.g. see [20]). The prey 
growth function f (v) is usually assumed to be negative for large v due to the limitation of 
resource (or crowding effect) and typical forms are

f (v) = μv(1 − v/K) (Logistic type);
f (v) = μv(1 − v/K)(v/k − 1) (Bistable or Allee effect type)

(1.4)
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where μ > 0 is the intrinsic growth rate of prey and K > 0 is called the carrying capacity and 
0 < k < K . Other type of functional response functions and predator–prey interactions can be 
found in the excellent surveys [7,24,38].

Without prey-taxis (i.e. the term ∇ · (uρ(u, v)∇v) is ignored), the model (1.1) becomes the 
well-known diffusive predator–prey system which has been widely studied from numerous per-
spectives over many years (see [8,39] and references therein). If prey-taxis is included, the system 
(1.1) becomes a cross-diffusion system which is much more difficult to handle and not many re-
sults are available. If ρ(u, v) = 1

(1+v)σ
(σ = 1, 2) or ρ(u, v) = χ is a constant, the traveling wave 

solutions of (1.1) in x ∈ R have been investigated by Lee et al. [19] for a variety of functional 
forms F(v), h(u) and f (v). They showed that the incorporation of prey-taxis to the diffusive 
predator–prey model reduces the effect of the predator on controlling prey spread. In a sub-
sequent work [20] they studied the pattern formation of prey-taxis system (1.1) in a bounded 
interval with zero Neumann boundary condition. When the prey-taxis model (1.1) is considered 
in a multi-dimensional bounded domain 
 ⊂R

n(n ≥ 2) with Neumann boundary condition, the 
first interesting question would be whether the solution blows up, which is interpreted as over-
crowding (or outbreak) of populations, since the prototypical taxis model such as Keller–Segel 
model may blow up in two or higher dimensions (e.g. see [14,45]). Up to date there are a few 
results available to the prey-taxis model in this direction and we shall recall them below. First if 
the following Rosenzweig–MacArthur predator–prey model (e.g. see [30])

F(v) = v

λ + v
, h(u) = θ, and f (v) = μv(1 − v/K), (1.5)

is considered and the prey-tactic coefficient ρ(u, v) = ρ1(u) depends only upon u but is truncated 
at some number um > 0 (i.e. ρ1(um) = 0 and ρ1(u) > 0 for 0 ≤ u < um), Ainseba et al. [1] ob-
tained the global weak solutions of (1.1) with (1.5) for n ≥ 1 by the Schauder fixed point theorem 
and duality technique, which was later extended to the global classical solutions by Tao in [34]
for n ≤ 3 via Lp-estimates and Schauder estimates, where the solution bound depends on time. 
Recently He and Zheng [12] has improved the result of [34] by obtaining the uniform-in-time 
boundedness of solutions. Note that the truncation assumption used in [1,12,34] for ρ1(u) is an 
analogy of the volume-filling effect used in chemotaxis (see [28,41]). Second if ρ(u, v) = χ > 0
is a constant, the existence of non-constant steady states of (1.1) with (1.5) was studied in [21,
40] by Hopf bifurcation theorem and index degree theory. Furthermore the numerical solutions 
of (1.1) with (1.5) were examined in [6] illustrating that the initial condition and the form of 
F(v) play important roles in the pattern formation of prey-taxis. Recently Wu et al. [46] consid-
ered various functional forms of F(v), h(u) and f (v), and showed that the solution is globally 
bounded if χ is small. The asymptotic behavior of solutions is derived for some particularized 
predator–prey interactions under certain conditions.

In the existing works as recalled above, either the technical truncation assumption (see [1,
12,34]) or smallness assumption (see [46]) was imposed for the prey-taxis coefficient to ensure 
the global boundedness of solutions. To preclude the population overcrowding (outbreak), these 
assumptions are often used for the Keller–Segel chemotaxis models which resemble the prey-
taxis system in the absence of the predator–prey interaction (see [13,14]). The present situation 
is somewhat different: the ecologically intrinsic predator–prey interaction has dampening effects. 
Then a natural question is whether this intrinsic predator–prey interaction itself is sufficient to 
preclude the population overcrowding without imposing additional conditions like truncation or 
smallness assumption ? To explore this question, we consider (1.1) with the predator–prey in-
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teraction in a two dimensional bounded domain with Neumann boundary conditions. That is we 
consider the following initial-boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = �u − ∇ · (χu∇v) + γ uF(v) − uh(u), x ∈ 
, t > 0,

vt = D�v − uF(v) + f (v), x ∈ 
, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂
, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ 
,

(1.6)

where χ > 0 is referred to as the prey-tactic coefficient measuring the strength of prey-taxis and 
ν denotes the outward normal vector of ∂
. Though the functional forms of F(v), h(u) and f (v)

given in (1.2)–(1.4) are typical forms for the predator–prey system, our results in the paper indeed 
are allowed to cover a wider class of these functions. Specifically in the sequel, we assume that 
F(v), h(u) and f (v) satisfy the following hypotheses that are fulfilled by the typical examples 
given in (1.2), (1.3) and (1.4):

(H1) F(v) ∈ C2([0, ∞)), F (0) = 0, F (v) > 0 in (0, ∞) and F ′(v) > 0, F ′′(v) ≤ 0 on [0, ∞).
(H2) The function h : [0, ∞) → (0, ∞) is continuously differentiable and there exist two con-

stants θ > 0 and α ≥ 0 such that h(u) ≥ θ and h′(u) ≥ α for any u ≥ 0.
(H3) The function f : [0, ∞) → R is continuously differentiable satisfying f (0) = 0, and there 

exist two constants μ, K > 0 such that f (v) ≤ μv for any v ≥ 0, f (K) = 0 and f (v) < 0
for all v > K . Moreover the ratio f (v)

F (v)
is continuous on (0, ∞) and lim

v→0

f (v)
F (v)

exists.

The first goal of this paper is to show that the solution of the prey-taxis system (1.6) with the 
predator–prey interaction in two dimensions is globally bounded for any χ > 0. In particular the 
boundedness results do not require the truncation assumption imposed in [1,12,34] to cut off 
the prey-taxis or the smallness assumption in [46] to weaken the prey-taxis. This implies that 
the intrinsic predator–prey interaction is sufficient to preclude the population overcrowding in 
spite of the aggregation effect of the prey-taxis. The boundedness of solutions is established by 
first deriving an entropy-like equality based on which the L2-estimate of u is obtained and the 
boundedness criterion (see Lemma 3.1) then follows to get L∞-bound of u. The results are given 
in the following theorem.

Theorem 1.1 (Boundedness-prevention of overcrowding). Let 
 ⊂ R
2 be a bounded domain 

with smooth boundary and the hypotheses (H1)–(H3) hold. Assume (u0, v0) ∈ [W 1,p(
)]2 with 
u0, v0 ≥ 0(�≡ 0) and p > 2. Then the problem (1.6) has a unique global classical solution (u, v) ∈
C(
̄ × [0, ∞)) ∩ C2,1(
̄ × (0, ∞)) satisfying

‖u(·, t)‖L∞(
) + ‖v(·, t)‖W 1,∞(
) ≤ C,

where C > 0 is a constant independent of t , and in particular 0 < v ≤ K0 where

K0 := max{‖v0‖L∞,K}. (1.7)

Remark 1.2. In [46], the global existence of solutions of (1.6) with χ > 0 small was obtained 
under the condition F(v) ≤ C for some constant C > 0 (see hypothesis (H ∗

2 ) in [46]) in any di-
mension. Based on the idea in [36,44], we improve the results of [46] by removing the smallness 
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assumption on χ and covering more general response function F(v) in the two dimensional case. 
However whether the same results hold true for three or higher dimensions remains unknown in 
the present paper.

In addition to the population overcrowding, another relevant question is whether the interact-
ing predator–prey population will arrive at the coexistence, exclusion or extinction eventually, 
which is always a central question in population dynamics. It is straightforward to check that the 
system (1.6) has three homogeneous steady states (us, vs):

(us, vs) =
{

(0,0) or (0,K), if γF(K) ≤ θ,

(0,0) or (0,K) or (u∗, v∗), if γF(K) > θ
(1.8)

with u∗, v∗ > 0 determined by the following algebraic equations:

u∗ = f (v∗)
F (v∗)

, γ F (v∗) = h

(
f (v∗)
F (v∗)

)
, (1.9)

where (0, 0) is the extinction steady state, (0, K) is the prey-only steady state and (u∗, v∗) is 
the coexistence steady state. The coexistence steady state (u∗, v∗) is determined as follows: first 
solve for v∗ from the second equation of (1.9) and then substitute it into the first equation to get 
u∗. Given arbitrary functions F(v), h(u) and f (v), the second equation of (1.9) does not guar-
antee to generate a positive solution v∗, but it usually does for biologically meaningful forms 
like those given in (1.2)–(1.4). In particular, if F(v), h(u) and f (v) are explicitly given, (u∗, v∗)
can often be explicitly found. For example, if F(v) is of Holling type II, f (v) is of logistic type 

and h(u) is given by (1.3), then one can get (u∗, v∗) =
(

γ λμ[(γ−θ)K−θλ]
(γ−θ)2K

, θλ
γ−θ

)
. Next we shall 

explore the question: which of the above three homogeneous steady states will be eventually at-
tained. This amounts to find the global asymptotical stability of the homogeneous steady states 
of (1.6). In general, global stability of the cross-diffusion system like chemotaxis or prey-taxis 
system is difficult and not many approaches are available. Here we manage to use Lyapunov func-
tionals to get the global stability of the homogeneous steady states under certain conditions. Our 
plan is to first present the global stability results for general functions F(v), h(u) and f (v), and 
then apply them to some frequently used explicit forms as applications presented in two propo-
sitions (see Proposition 1.4 and Proposition 1.6). For the global stability, except the hypotheses 
(H1)–(H3), we need another hypothesis for the following compound function:

φ(v) = f (v)

F (v)
(1.10)

as follows:

(H4) The function φ(v) is continuously differentiable on (0, ∞), φ(0) = lim
v→0

φ(v) > 0 and 

φ′(v) < 0 for any v ≥ 0.

We remark that the hypothesis (H4) is not stringent, and can be satisfied by many forms given 
in (1.2) and (1.4) by imposing some conditions on the parameters if needed. For example, if 
f (v) is of logistic type given in (1.4), then (H4) is automatically satisfied if F(v) is of Holling 
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Type I and satisfied with λ > K if F(v) is of Holling Type II given in (1.2). But (H4) may not be 
fulfilled by bistable function f (v) or the Holling type III functional response function F(v). In 
general, if (H4) is not satisfied, pattern formations such as periodic orbits or non-constant steady 
state may arise (see [47]).

Then our global stability theorem is given as follows:

Theorem 1.3 (Global stability). Let the hypotheses (H1)–(H4) and assumptions in Theorem 1.1
hold, and let (u, v) be the solution obtained in Theorem 1.1. Then the following results hold:

1. If the parameters θ, γ, K satisfy

γF(K) ≤ θ (weak predation),

where “=” holds in the case of α > 0, then the steady state (0, K) is globally asymptotically 
stable. Furthermore, one can find some constants λi > 0 and Ci > 0(i = 1, 2) and t0 > 0
such that for all t > t0 it holds that

‖u‖L∞ + ‖v − K‖L∞ ≤ C1e
−λ1t , if γF(K) < θ,

and

‖u‖L∞ + ‖v − K‖L∞ ≤ C2(1 + t)−λ2 , if γF(K) = θ and α > 0.

2. If the parameters χ, θ, γ, K satisfy

γF(K) > θ (strong predation),

and the co-existence steady state (u∗, v∗) exists, then (u∗, v∗) is globally asymptotically 
stable provided that

D

χ2
≥ Dc = u∗F 2(K)

4γF(v∗)F ′(K)
(1.11)

where u∗ and v∗ are determined by (1.9) and do not depend on D and χ , and “=” holds in 
the case of ‖v0‖L∞ ≤ K . Furthermore, if α > 0, one can find a T0 > 0 such that the following 
decay holds for all t > T0

‖u − u∗‖L∞ + ‖v − v∗‖L∞ ≤ C3e
−λ3t ,

for some positive constants C3 and λ3.

We have the several remarks concerning the global stability theorem.
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Remark.

• Since the growth of the predator comes from predation, the quantity γF(K) becomes the 
predation rate of the predator. Hence the results of Theorem 1.3 tell us that if the predation 
is weak, in the sense of γF(K) ≤ θ , the prey-only steady state (0, K) will be attained and 
the predator will go extinct. In this case, the prey-taxis does not play a role in stability. 
Whilst if the predation is strong, namely γF(K) > θ , the coexistence steady state (u∗, v∗)
can be reached if the ratio of prey diffusion to the square of prey-taxis coefficient (namely the 
quantity D

χ2 ) is suitably large. This implies that predation rate, prey diffusion and prey-taxis 
strength all play a part to reach a coexistence steady state (u∗, v∗) in the predator–prey 
system with prey-taxis.

• Since u∗ and v∗ are independent of D and χ , the condition (1.11) in Theorem 1.3 is always 
achievable by letting D be suitably large or χ be suitably small. Since in the case of weak 
predation, the global stability of (0, K) is unconditional, Theorem 1.3 implies that global 
stability of constant steady states will always be achieved and hence no pattern formation 
arises if the prey diffuses fast or prey-taxis is weak (including no prey-taxis χ = 0). This 
raises an interesting question as whether the coexistence steady state is stable, or in a further 
step whether pattern formation (non-constant steady states) is possible, if γF(K) > θ and 
D/χ2 < Dc.

• In the second part of Theorem 1.3, the value of (u∗, v∗) is not explicitly given because the 
functional forms of F(v), h(u) and f (v) are not specified. Once they are given, the values of 
(u∗, v∗) and Dc can be explicitly found and hence condition (1.11) can be identified. Below 
we shall present the applications of Theorem 1.3 to some well-known functional forms in the 
predator–prey system by specifying (u∗, v∗) and hence the condition (1.11). But we should 
underline that our results are quite general and applications are not restricted to the examples 
presented below.

The first example for the application of our results is a widely used class of predator–prey 
system: the Rosenzweig–MacArthur type given in (1.5).

Proposition 1.4 (Stability of the Rosenzweig–MacArthur predator–prey system with prey-taxis). 
Let F(v), h(u) and f (v) be given by (1.5) and assume (u0, v0) ∈ [W 1,p(
)]2 with u0, v0 ≥
0(�≡ 0) and p > 2. Then the initial-boundary value problem (1.6) has a unique global classical 
solution in 
 ⊂R

2 with the following stability results:

• If the predation is weak, namely γK
λ+K

< θ , then the steady state (0, K) is globally asymptot-
ically stable, and there exists a t0 > 0 such that for all t > t0

‖u‖L∞ + ‖v − K‖L∞ ≤ C1e
−λ1t , for all t > t0

holds for some constants λ1 > 0 and C1 > 0.
• If the predation is strong, namely γK

λ+K
> θ , then the system (1.6) has a unique coexistence 

steady state (u∗, v∗):

(u∗, v∗) =
(

γ λμ[(γ − θ)K − θλ]
2

,
θλ

)
,

(γ − θ) K γ − θ
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which is globally asymptotically stable provided that λ > K and

D

χ2
≥ μKγ (λ + K)

4θ(γ − θ)2

(
γK

λ + K
− θ

)
,

where “=” holds in the case of ‖v0‖L∞ ≤ K .

Remark 1.5. The global stability for the case of weak predation γK
λ+K

< θ has been proved in 
[46, Corollary 5.2]. Here we not only get this result as a consequence of our general theorem, 
but also derive the exponential convergence rate. Furthermore we obtain the global stability for 
the case of strong predation: γK

λ+K
> θ , which was not considered in [46]. We underline that by 

the general hypothesis (H4), the condition λ > K should be imposed in Proposition 1.4 to ensure 
φ′(v) < 0 for all v ≥ 0. But from the proof of Lemma 4.2, it is easy to see that in the case of weak 
predation γF(K) < θ , the condition φ′ < 0 for any v ≥ 0 can be relaxed to φ′(K) < 0 which is 
naturally satisfied by the function forms in (1.5) (see also [46, Corollary 5.2]). This is why we 
only give the requirement λ > K for the case of strong predation in Proposition 1.4.

The second example to be discussed is when the functional response function is of a Lotka–
Volterra (or Holling type I) type, reading as

F(v) = v, h(u) = θ + αu, and f (v) = μv(1 − v

K
). (1.12)

For this case, we will have the following results on the global stability of the system with con-
vergence rates.

Proposition 1.6 (Stability of the Lotka–Volterra predator–prey system with prey-taxis). Let 
F(v), h(u) and f (v) be given by (1.12) and assume (u0, v0) ∈ [W 1,p(
)]2 with u0, v0 ≥ 0(�≡ 0)

and p > 2. Then the initial-boundary value problem (1.6) has a unique global classical solution 
in 
 ⊂R

2 subject to the following stability results:

• If the predation is weak, i.e. γK ≤ θ , where “=” holds in the case of α > 0, then the steady 
state (0, K) is globally asymptotically stable. Furthermore, there exists a number t0 > 0 such 
that

‖u‖L∞ + ‖v − K‖L∞ ≤
{

C2e
−λ1t , if γK < θ

C2(1 + t)−λ2 , if γK = θ and α > 0

holds for all t > t0 and some constants C2 > 0, λi > 0(i = 1, 2).
• If the predation is strong, i.e. γK > θ , then the system (1.6) has a unique coexistence steady 

state (u∗, v∗):

(u∗, v∗) =
(

μ(γK − θ)

γK + μα
,
K(μα + θ)

γK + μα

)
,

which is globally asymptotically stable if
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D

χ2
≥ μK(γK − θ)

4γ (αμ + θ)
,

where “=” holds in the case of ‖v0‖L∞ ≤ K . Furthermore, if α > 0, there is a T0 > 0 so 
that the following decay holds for all t > T0 and some positive constants C3 and λ3:

‖u − u∗‖L∞ + ‖v − v∗‖L∞ ≤ C3e
−λ3t .

2. Preliminaries

In what follows, without confusion, we shall abbreviate 
∫



f dx as 
∫



f for simplicity. More-
over, we shall use ci for Ci (i = 1, 2, 3, · · · ) to denote a generic constant which may vary in the 
context. We first give the existence of local solutions of (1.6), which can be readily proved by the 
Amann’s theorem [3,4] (cf. also [41, Lemma 2.6]).

Lemma 2.1 (Local existence). Let 
 ⊂ R
n(n ≥ 2) be a bounded domain with smooth boundary 

and the hypotheses (H1)–(H3) hold. Assume (u0, v0) ∈ [W 1,p(
)]2 with u0, v0 ≥ 0(�≡ 0) and 
p > n. Then there exists Tmax > 0 such that the problem (1.6) has a unique classical solution 
(u, v) ∈ C(
̄ × [0, Tmax)) ∩ C2,1(
̄ × (0, Tmax)) satisfying u, v > 0 for all t > 0. Moreover

if Tmax < ∞, then ‖u(·, t)‖L∞ → ∞ as t ↗ Tmax.

Lemma 2.2. Under the conditions in Theorem 1.1, the solution (u, v) of (1.6) satisfies

0 < v(x, t) ≤ K0, for all x ∈ 
, t > 0, (2.1)

where K0 is defined by (1.7), and it further holds that

lim sup
t→∞

v(x, t) ≤ K for all x ∈ 
̄. (2.2)

Moreover, there is a constant C > 0 independent of t such that

‖u(·, t)‖L1 ≤ C, for all t > 0. (2.3)

Proof. Using the facts that u, v and F(v) are non-negative, then we have

⎧⎪⎨
⎪⎩

vt − �v = −uF(v) + f (v) ≤ f (v), x ∈ 
, t > 0,
∂v
∂ν

= 0, x ∈ ∂
, t > 0,

v(x,0) = v0(x), x ∈ 
.

(2.4)

Let v∗(t) be the solution of the following ODE problem

⎧⎨
⎩

dv∗(t)
dt

= f (v∗(t)), t > 0,

v∗(0) = ‖v ‖ ∞ .
(2.5)
0 L
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Then the hypothesis (H3) yields that v∗(t) ≤ K0 = max{‖v0‖L∞ , K}. It is clear that v∗(t) is a 
super-solution of the following PDE problem

⎧⎪⎨
⎪⎩

Vt − �V = f (V ), x ∈ 
, t > 0,
∂V
∂ν

= 0, x ∈ ∂
, t > 0,

V (x,0) = v0(x), x ∈ 
,

(2.6)

and hence it holds that

0 < V (x, t) ≤ v∗(t) for all (x, t) ∈ 
̄ × (0,∞), (2.7)

where V > 0 results from the strong maximum principle with the fact f (0) = 0. Combining 
(2.4), (2.6) and (2.7), and using the comparison principle, one has

0 < v(x, t) ≤ V (x, t) ≤ v∗(t) ≤ K0 for all (x, t) ∈ 
̄ × (0,∞), (2.8)

which gives (2.1). Noting that f (v) < 0 for all v > K by hypothesis (H3), we further have from 
(2.5) that lim sup

t→∞
v∗(t) ≤ K , which along with (2.8) gives (2.2).

Multiplying the second equation (1.6) by γ and adding the resulting equation into the first 
equation of (1.6), then integrating the result over 
 × (0, t), one has

d

dt

⎛
⎝∫




u + γ

∫



v

⎞
⎠ +

∫



uh(u) = γ

∫



f (v) ≤ γμ

∫



v,

which together with the hypotheses (H2) and (H3) and the fact that 0 < v ≤ K0 gives

d

dt

⎛
⎝∫




u + γ

∫



v

⎞
⎠ + θ

⎛
⎝∫




u + γ

∫



v

⎞
⎠ ≤ (γμ + θγ )

∫



v ≤ (γμ + θγ )K0|
|. (2.9)

With the Gronwall’s inequality applied to (2.9), we obtain (2.3) and complete the proof of 
Lemma 2.2. �

Next, we present some basic inequalities which will be used later.

Lemma 2.3 (Gagliardo–Nirenberg inequality). Let 
 be a bounded domain in Rn with smooth 
boundary. Let 1 ≤ p, q ≤ ∞ satisfying (n − kq)p < nq for some k > 0 and r ∈ (0, p). Then, for 
any w ∈ Wk,q(
) ∩ Lr(
), there exist two constants c1 and c2 depending only on 
, q, k, r and 
n such that

‖w‖Lp ≤ c1‖Dkw‖a
Lq ‖w‖1−a

Lr + c2‖w‖Lr ,

where a ∈ (0, 1) fulfilling
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1

p
= a

(
1

q
− k

n

)
+ (1 − a)

1

r
.

We should remark the original Gagliardo–Nirenberg inequality (e.g. see [27]) is stated only 
for r ≥ 1, but this condition can be readily relaxed to r ∈ (0, p) by using the Hölder’s inequality 
(cf. [42, Lemma 3.2] ).

Lemma 2.4 ([26]). Let 
 be a bounded domain in R2 with smooth boundary and w ∈ W 1,2(
). 
Then for any ε > 0, there exists a constant Cε > 0 such that

‖w‖3
L3 ≤ ε‖∇w‖2

L2‖w ln |w|‖L1 + Cε(‖w‖2
L1‖w ln |w|‖L1 + ‖w‖L1).

Lemma 2.5 ([44]). The following two statements hold:

(i) Suppose that g ∈ C2(R). Then for all ψ ∈ C2(
̄) fulfilling ∂ψ
∂ν

= 0 on ∂
, it follows that

3

2

∫



g′(ψ)|∇ψ |2�ψ = −
∫



g(ψ)|�ψ |2 +
∫



g(ψ)|D2ψ |2

− 1

2

∫



g′′(ψ)|∇ψ |4 − 1

2

∫
∂


g(ψ)
∂|∇ψ |2

∂ν
.

(ii) Let g ∈ C1((0, +∞)) be positive and let G(s) =: ∫ s

1
dσ

g(σ )
for s > 0. Then for all positive 

ψ ∈ C2(
̄) fulfilling ∂ψ
∂ν

= 0 on ∂
, the following inequality holds:

∫



g′(ψ)

g3(ψ)
|∇ψ |4 ≤ (2 + √

n)2
∫



g(ψ)

g′(ψ)
|D2G(ψ)|2.

3. Prevention of overcrowding

In this section, we are devoted to proving Theorem 1.1 by deriving some a priori estimate. 
Motivated by the ideas in [5, lemma 3.2], we first show that the L∞-boundedness of preda-
tor density u can be reduced to proving its Lp-boundedness for p > n

2 (see Lemma 3.1 for 
details). Hence in two-dimensional spaces (n = 2), we can immediately obtain the uniform 
boundedness of solutions provided that there exists a constant C > 0 independent of t such 
that ‖u(·, t)‖L2 ≤ C. To this end, we first derive an entropy-like equality to show the uniform 
boundedness of ‖u lnu‖L1 and ‖∇v‖L2 (see Lemma 3.2 and Lemma 3.3), which leads to the 
boundedness of ‖u(·, t)‖L2 in two dimensions based on the argument in [5, Lemma 3.3]. Below 
we first show the boundedness criterion of solutions of (1.6) below, which is an extension of [5, 
lemma 3.2] where the growth term in the first equation is uniformly bounded for any u, v ≥ 0, 
whereas this is not the case in our model. But the idea of our proof is essentially inspired by [5, 
lemma 3.2] and we present necessary details of the proof below for clarity.

Lemma 3.1 (Boundedness criterion). Suppose the conditions in Lemma 2.1 hold. Let (u, v) be 
the solution of (1.6) defined on its maximal existence time interval [0, Tmax). If there exists p > n

2
and
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sup
t∈(0,Tmax)

‖u(·, t)‖Lp ≤ M0, (3.1)

then one can find a constant C > 0 independent of t such that

‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞ ≤ C for all t ∈ (0, Tmax). (3.2)

Proof. By ‖u(·, t)‖Lp ≤ M0, we claim that

‖∇v(·, t)‖Lr ≤ c1, for all t ∈ (0, Tmax) (3.3)

with

r ∈
{

[1,
np

n−p
), if p ≤ n,

[1,∞], if p > n.
(3.4)

In fact, from the second equation of system (1.6), we know that v solves the following problem

vt = D�v − v + g(u, v) in 
,
∂v

∂ν
= 0, (3.5)

where g(u, v) := v − uF(v) + f (v). By the properties of F(v), f (v) and the fact that 0 <
v(x, t) ≤ K0 in (2.1), one have

‖g(u, v)‖Lp ≤ c2(‖u‖Lp + 1) ≤ c2(M0 + 1) := c3. (3.6)

Then applying the results of [16, Lemma 1] (see also [35, Lemma 1.2]) to the problem (3.5)
with (3.6), we obtain (3.3) with (3.4). Without loss of generality, we assume that n

2 < p ≤ n

which entails np
n−p

> n. Then we can find n < r <
np

n−p
such that (3.3) holds. Now, for each 

T ∈ (0, Tmax), we define

M(T ) := sup
t∈(0,T )

‖u(·, t)‖L∞ , (3.7)

which is finite due to the local existence results in Lemma 2.1. Next, we will estimate M(T ). Fix 
t ∈ (0, T ) and let t0 = (t − 1)+. Then using the variation-of-constants formula and noting that 
uh(u) ≥ 0, we get

u(·, t) ≤e(t−t0)�u(·, t0) − χ

t∫
t0

e(t−s)�∇ · (u(·, s)∇v(·, s))ds + γ

t∫
t0

e(t−s)�u(·, s)F (v(·, s))ds,

which implies
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‖u(·, t)‖L∞ ≤ ‖e(t−t0)�u(·, t0)‖L∞ + χ

t∫
t0

‖e(t−s)�∇ · (u(·, s)∇v(·, s))‖L∞ds

+ γ

t∫
t0

‖e(t−s)�u(·, s)F (v(·, s))‖L∞ds

= I1 + I2 + I3.

(3.8)

The argument in [5, Lemma 3.2] has shown that there is a constant c4 > 0 such that

I1 = ‖e(t−t0)�u(·, t0)‖L∞ ≤ c4. (3.9)

Moreover, since r > n, we can fix a number q > n satisfying q ∈ ( r
r+1 , r). Then by the Hölder 

inequality, interpolation inequality, (2.3), (3.3) and (3.7), we can find δ = r(q−1)+q
rq

∈ (0, 1) such 
that

‖u(·, s)∇v(·, s)‖Lq ≤ ‖u(·, s)‖
L

rq
r−q

‖∇v(·, s)‖Lr

≤ ‖u(·, s)‖1− r−q
rq

L∞ ‖u(·, s)‖
r−q
rq

L1 ‖∇v(·, s)‖Lr

≤ c5M
δ(T ).

Since t − t0 ≤ 1, we have 
∫ t

t0
(t − s)

− 1
2 − n

2q ds = ∫ t−t0
0 σ

− 1
2 − n

2q dσ ≤ ∫ 1
0 σ

− 1
2 − n

2q dσ = 2q
q−n

thanks 

to q > n. Then by the smoothing properties of (eτ�)τ≥0 (see [9, Lemma 3.3] or [43, Lemma 
1.3]), we can estimate I2 as follows

I2 ≤ c6χ

t∫
t0

(t − s)
− 1

2 − n
2q ‖u(·, s)∇v(·, s)‖Lq ds

≤ c5c6χMδ(T )

t∫
t0

(t − s)
− 1

2 − n
2q ds

≤ 2qc5c6χ

q − n
Mδ(T ) := c7M

δ(T ).

(3.10)

Now it remains to estimate the term I3. Letting uF(v) = 1
|
|

∫



uF(v), using (2.1), (2.3) and the 

properties of F(v), we obtain uF(v) ≤ 1
|
|F(K) 

∫



u ≤ c8. Using the smoothing properties of 

(eτ�)τ≥0 ([43, Lemma 1.3]) again and noting t − t0 ≤ 1, we obtain
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I3 = γ

t∫
t0

‖e(t−s)�(uF(v) − uF(v)) + e(t−s)�uF(v)‖L∞ds

≤ γ

t∫
t0

‖e(t−s)�(uF(v) − uF(v))‖L∞ds + γ

t∫
t0

‖e(t−s)�uF(v)‖L∞ds

≤ γ c9

t∫
t0

(t − s)
− n

2p ‖uF(v) − uF(v)‖Lpds + γ

t∫
t0

c8ds

≤ 2γ c9F(K)

t∫
t0

(t − s)
− n

2p ‖u‖Lpds + γ c8

≤ c10,

(3.11)

where we have used (3.1) and the fact that 
∫ t

t0
(t − s)

− n
2p ds = 2p

2p−n
due to p > n

2 . Substituting 
(3.9), (3.10) and (3.11) into (3.8), we can find a constant c11 > 0 such that

‖u(·, t)‖L∞ ≤ c7M
δ(T ) + c11, for all t ∈ (0, T ),

which implies

M(T ) ≤ c7M
δ(T ) + c11, for all T ∈ (0, Tmax). (3.12)

Since 0 < δ < 1, from (3.12) one has

M(T ) ≤ max
{(

c11

c7

) 1
δ

, (2c7)
1

1−δ

}
, for all T ∈ (0, Tmax),

which implies ‖u(·, t)‖L∞ ≤ c14 for all t ∈ (0, Tmax). Furthermore (3.3) with (3.4) yields (3.2). 
Then the proof of Lemma 3.1 is completed. �
3.1. Entropy energy estimate

We first derive an entropy-like equality which will be essentially used to derive the bound-
edness of ‖u lnu‖L1 and ‖∇v‖L2 . The basic framework of such entropy-like equality was first 
established by Winkler in [44, Lemma 3.2]. The difference is that the model (1.6) considered in 
the present paper has some new terms γ uF(v) − uh(u) and f (v) and the model in [44] include 
the fluid into the model. To make our results convincing and clarified, we present a proof for our 
results with some necessary details to show the new estimates compared to the results of [44, 
Lemma 3.2].

Lemma 3.2. Let F(s) = ∫ s

1
dσ

F(σ )
. Suppose that the assumptions of Theorem 1.1 hold, then the 

solution (u, v) of (1.6) satisfies following identity
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d

dt

⎛
⎝ 1

χ

∫



u lnu + 1

2

∫



|∇v|2
F(v)

⎞
⎠ + 1

χ

∫



|∇u|2
u

+ D

∫



F(v)|D2F(v)|2

= 1

χ

∫



(γF(v) − h(u))u lnu + 1

χ

∫



[
γ uF(v) − uh(u)

] + D

2

∫
∂


1

F(v)
· ∂|∇v|2

∂ν

− 1

2

∫



u
F ′(v)

F (v)
|∇v|2 + D

2

∫



F ′′(v)

F 2(v)
· |∇v|4 +

∫



|∇v|2
F(v)

f ′(v) − 1

2

∫



F ′(v)

F 2(v)
|∇v|2f (v)

(3.13)

where D2F denotes the second-order derivative of F .

Proof. Multiplying the first equation of (1.6) by 1 + lnu and integrating the result yields

d

dt

∫



u lnu +
∫



|∇u|2
u

= χ

∫



∇u · ∇v +
∫



(γF(v) − h(u))u lnu +
∫



[
γ uF(v) − uh(u)

]
.

(3.14)

Integrating by parts and using the second equation of (1.6), we have the following identity

1

2

d

dt

∫



|∇v|2
F(v)

= −1

2

∫



F ′(v)

F 2(v)
|∇v|2vt +

∫



∇v · ∇vt

F (v)

= 1

2

∫



F ′(v)

F 2(v)
|∇v|2vt −

∫



�v

F(v)
vt

= D

2

∫



F ′(v)

F 2(v)
|∇v|2�v − 1

2

∫



F ′(v)

F (v)
|∇v|2u + 1

2

∫



F ′(v)

F 2(v)
|∇v|2f (v)

− D

∫



|�v|2
F(v)

−
∫



∇u · ∇v −
∫



f (v)

F (v)
�v.

(3.15)

Next, we will estimate the terms on the right hand of (3.15). Choosing ψ = v and g(ψ) = 1
F(v)

in Lemma 2.5 (i), one has

−3

2

∫



F ′(v)

F 2(v)
|∇v|2�v = −

∫



|�v|2
F(v)

+
∫



|D2v|2
F(v)

+ 1

2

∫



F ′′(v)

F 2(v)
|∇v|4

−
∫ |F ′(v)|2

F 3(v)
|∇v|4 − 1

2

∫
1

F(v)
· ∂|∇v|2

∂ν
.

(3.16)

 ∂
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Letting F(v) = ∫ v

1
dσ

F(σ )
, then one has F ′(v) = 1

F(v)
and F ′′(v) = − F ′(v)

F 2(v)
, which gives

∫



F(v)|D2F(v)|2 =
∫



F(v)|F ′(v)|2|D2v|2 + 2
∫



F(v)F ′(v)F ′′(v)(D2v · ∇v) · ∇v

+
∫



F(v)|F ′′(v)|2|∇v|4

=
∫



|D2v|2
F(v)

− 2
∫



F ′(v)

F 2(v)
(D2v · ∇v) · ∇v +

∫



|F ′(v)|2
F 3(v)

|∇v|4.

(3.17)

By the integration by parts, we have

−2
∫



F ′(v)

F 2(v)
(D2v · ∇v) · ∇v = −

∫



F ′(v)

F 2(v)
∇(|∇v|2) · ∇v

=
∫



F ′(v)

F 2(v)
|∇v|2�v +

∫



(
F ′′(v)

F 2(v)
− 2

|F ′(v)|2
F 3(v)

)
|∇v|4.

Then it follow from (3.17) that

∫



F(v)|D2F(v)|2 =
∫



|D2v|2
F(v)

−
∫



|F ′(v)|2
F 3(v)

|∇v|4

+
∫



F ′(v)

F 2(v)
|∇v|2�v +

∫



F ′′(v)

F 2(v)
|∇v|4.

(3.18)

The combination of (3.16) and (3.18) thus leads to

1

2

∫



F ′(v)

F 2(v)
|∇v|2�v =

∫



|�v|2
F(v)

+ 1

2

∫



F ′′(v)

F 2(v)
|∇v|4 + 1

2

∫
∂


1

F(v)
· ∂|∇v|2

∂ν

−
∫



F(v)|D2F(v)|2.
(3.19)

The integration by parts applied to the last term on the right hand of (3.15) gives us that

−
∫



f (v)

F (v)
�v =

∫



f ′(v)F (v) − F ′(v)f (v)

F 2(v)
|∇v|2. (3.20)

Substituting (3.19) and (3.20) into (3.15), one has
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1

2

d

dt

∫



|∇v|2
F(v)

+ D

∫



F(v)|D2F(v)|2

= D

2

∫



F ′′(v)

F 2(v)
|∇v|4 + D

2

∫
∂


1

F(v)
· ∂|∇v|2

∂ν
− 1

2

∫



F ′(v)

F (v)
|∇v|2u

+ 1

2

∫



F ′(v)

F 2(v)
|∇v|2f (v) −

∫



∇u · ∇v +
∫



f ′(v)F (v) − F ′(v)f (v)

F 2(v)
|∇v|2.

(3.21)

The combination of (3.14) and (3.21) yields (3.13). Then the proof is completed. �
Based on the Lemma 3.2, we can obtain the following estimates.

Lemma 3.3. Assume the conditions in Theorem 1.1 are satisfied. Then there is a constant C > 0
such that the solution of (1.6) satisfies

‖u lnu‖L1 + ‖∇v‖L2 ≤ C.

Proof. By the hypotheses (H1), (H2) and the fact 0 < v ≤ K0, we have

1

χ

∫



(γF(v) − h(u))u lnu + 1

χ

∫



[
γ uF(v) − uh(u)

]

≤ γF(K)

χ

⎛
⎝∫




|u lnu| +
∫



u

⎞
⎠ − 1

χ

∫
{0<u<1}

uh(u) lnu.

This, together with the identity (3.13) and the fact that F ′′(v) ≤ 0 for v ≥ 0, gives

d

dt

⎛
⎝ 1

χ

∫



u lnu + 1

2

∫



|∇v|2
F(v)

⎞
⎠ + 1

χ

∫



|∇u|2
u

+ D

∫



F(v)|D2F(v)|2

≤ γF(K)

χ

⎛
⎝∫




|u lnu| +
∫



u

⎞
⎠ − 1

χ

∫
{0<u<1}

uh(u) lnu + D

2

∫
∂


1

F(v)
· ∂|∇v|2

∂ν

+
∫



|∇v|2
F(v)

f ′(v) − 1

2

∫



|∇v|2
F 2(v)

f (v)F ′(v).

(3.22)

From hypothesis (H3), one can show that f (v)
F (v)

is bounded for 0 < v ≤ K0. This, along with the 
facts h(u), f (v), f ′(v) and F ′(v) are continuous in [0, ∞) (see hypotheses (H1)–(H3)), yields a 
constant c1 > 0 to update (3.22) as
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d

dt

⎛
⎝ 1

χ

∫



u lnu + 1

2

∫



|∇v|2
F(v)

⎞
⎠ + 1

χ

∫



|∇u|2
u

+ D

∫



F(v)|D2F(v)|2

≤ D

2

∫
∂


1

F(v)
· ∂|∇v|2

∂ν
+ c1

∫



|u lnu| + c1

∫



|∇v|2
F(v)

+ c1

(3.23)

where the inequality (2.3) has been used. Next, we will estimate the terms on the right hand of 
(3.23). First, we claim that there exists a constant c2 > 0 such that

c2

⎛
⎝∫




|D2v|2
F(v)

+
∫



|∇v|4
F 3(v)

⎞
⎠ ≤ D

∫



F(v)|D2F(v)|2. (3.24)

Indeed choosing ψ = v and g(ψ) = F(v) in Lemma 2.5 (ii), one has G(v) =F(v) and

∫



F ′(v)

F 3(v)
|∇v|4 ≤ (2 + √

2)2
∫



F(v)

F ′(v)
|D2F(v)|2, for all t > 0. (3.25)

Since F ′(v) > 0, F ′′(v) ≤ 0 and 0 < v ≤ K0, then 0 < F ′(K0) = c3 ≤ F ′(v) ≤ c4 = F ′(0). Thus
(3.25) gives us that

∫



|∇v|4
F 3(v)

≤ (2 + √
2)2

c2
3

∫



F(v)|D2F(v)|2 for all t > 0. (3.26)

Furthermore, noting that (a − b)2 ≥ 1
2a2 − b2 for all a, b ∈R, we see that

∫



F(v)|D2F(v)|2 =
∫



F(v) ·
2∑

k,l=1

∣∣∣∣ 1

F(v)
· ∂2v

∂xk∂xl

− F ′(v)

F 2(v)
· ∂v

∂xk

· ∂v

∂xl

∣∣∣∣
2

≥
∫



1

2
F(v) ·

2∑
k,l=1

∣∣∣∣ 1

F(v)
· ∂2v

∂xk∂xl

∣∣∣∣
2

−
∫



F(v) ·
2∑

k,l=1

∣∣∣∣ F ′(v)

F 2(v)
· ∂v

∂xk

· ∂v

∂xl

∣∣∣∣2

= 1

2

∫



|D2v|2
F(v)

−
∫



|F ′(v)|2|∇v|4
F 3(v)

,

which together with (3.26) gives
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∫



|D2v|2
F(v)

≤ 2

⎛
⎝∫




F(v)|D2F(v)|2 + c2
4

∫



|∇v|4
F 3(v)

⎞
⎠

≤ 2(2 + √
2)2c2

4 + 2c2
3

c2
3

∫



F(v)|D2F(v)|2.
(3.27)

The combination of (3.26) and (3.27) gives (3.24). Moreover, noting that |u lnu| ≤ c5u
3
2 + c5 for 

some constant c5 > 0, then using the Gagliardo–Nirenberg inequality (see Lemma 2.3) and the 
inequality (2.3), one can derive that

1

χ

∫



u lnu + c1

∫



|u lnu| ≤ 1 + c1χ

χ
‖u lnu‖L1 ≤ 1

χ

∫



|∇u|2
u

+ c6. (3.28)

Then substituting (3.24) and (3.28) into (3.23) gives

d

dt

⎛
⎝ 1

χ

∫



u lnu + 1

2

∫



|∇v|2
F(v)

⎞
⎠ + 1

χ

∫



u lnu + c2

⎛
⎝∫




|D2v|2
F(v)

+
∫



|∇v|4
F 3(v)

⎞
⎠

≤ D

2

∫
∂


1

F(v)
· ∂|∇v|2

∂ν
+ c1

∫



|∇v|2
F(v)

+ c7.

(3.29)

Next, we shall estimate the first term on the right hand of (3.29). For convenience, we let ϕ(v) =
|∇v|

F
1
2 (v)

=
( |∇v|2

F(v)

) 1
2
. Then by the boundedness of F ′(v), it follows that

|∇ϕ(v)|2 = F(v)

4|∇v|2 · |2F(v)D2v · ∇v − F ′(v)|∇v|2∇v|2
F 4(v)

≤ 2|D2v|2
F(v)

+ |F ′(v)|2|∇v|4
2F 3(v)

≤ c8

( |D2v|2
F(v)

+ |∇v|4
F 3(v)

)
.

(3.30)

To proceed, we recall the following trace inequality [33, Remark 52.9] for any ε > 0:

‖ϕ‖L2(∂
) ≤ ε‖∇ϕ‖L2(
) + Cε‖ϕ‖L2(
). (3.31)

Then by the inequality ∂|∇v|2
∂ν

≤ 2κ|∇v|2 on ∂
 for some constant κ > 0 (see [23, Lemma 4.2]), 
(3.30) and above trace inequality, we have
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D

2

∫
∂


1

F(v)
· ∂|∇v|2

∂ν
≤ κD

∫
∂


(
|∇v|

F
1
2 (v)

)2

= κD‖ϕ‖2
L2(∂
)

≤ c2

2

∫



( |D2v|2
F(v)

+ |∇v|4
F 3(v)

)
+ c9

∫



|∇v|2
F(v)

.

(3.32)

In virtue of the boundedness of F(v), it follows from the Cauchy–Schwarz inequality that

(
1

2
+ c1 + c9

)∫



|∇v|2
F(v)

=
(

1

2
+ c1 + c9

)∫



|∇v|2
F

3
2 (v)

F
1
2 (v) ≤ c2

2

∫



|∇v|4
F 3(v)

+ c10. (3.33)

Then adding 1
2

∫



|∇v|2
F(v)

on both sides of (3.29) and substituting (3.32)–(3.33) into the resulting 
inequality gives us that

d

dt

⎛
⎝ 1

χ

∫



u lnu + 1

2

∫



|∇v|2
F(v)

⎞
⎠ +

⎛
⎝ 1

χ

∫



u lnu + 1

2

∫



|∇v|2
F(v)

⎞
⎠ ≤ c11,

which, upon the application of Gronwall’s inequality, implies

1

χ

∫



u lnu + 1

2

∫



|∇v|2
F(v)

≤ c12.

This completes the proof by the fact that −u lnu ≤ 1
e

for all u > 0 and 1
F(v)

≥ 1
F(K0)

> 0. �
Lemma 3.4. There exists a constant c1 > 0 such that for all t ∈ (0, Tmax), the solution of (1.6)
satisfies

d

dt

∫



|∇v|4 + D

∫



|∇|∇v|2|2 + 2D

∫



|∇v|2|D2v|2 ≤ c1

∫



u2|∇v|2 + c1. (3.34)

Proof. We differentiate the second equation of system (1.6) and multiply the result by 2∇v. 
Then using the identity �|∇v|2 = 2∇v · ∇�v + 2|D2v|2, we obtain

(|∇v|2)t = 2D∇v · ∇�v − 2∇v · ∇(uF (v)) + 2|∇v|2f ′(v)

= D�|∇v|2 − 2D|D2v|2 − 2∇v · ∇(uF (v)) + 2|∇v|2f ′(v).

Then multiplying above equation by 2|∇v|2 and using the integration by parts, we have



H.-Y. Jin, Z.-A. Wang / J. Differential Equations 262 (2017) 1257–1290 1277
d

dt

∫



|∇v|4 + 2D

∫



|∇|∇v|2|2 + 4D

∫



|∇v|2|D2v|2

= 2D

∫
∂


|∇v|2 ∂|∇v|2
∂ν

dS − 4
∫



|∇v|2∇v · ∇(uF (v)) + 4
∫



|∇v|4f ′(v)

= 2D

∫
∂


|∇v|2 ∂|∇v|2
∂ν

dS + 4
∫



|∇v|4f ′(v)

+ 4
∫



uF(v)�v|∇v|2 + 4
∫

uF(v)∇(|∇v|2) · ∇v

≤ 2D

∫
∂


|∇v|2 ∂|∇v|2
∂ν

dS + c2‖|∇v|2‖2
L2 + c2

∫



u
(
|�v||∇v|2 + |∇|∇v|2||∇v|

)
.

(3.35)

With the inequality ∂|∇v|2
∂ν

≤ 2κ|∇v|2 on ∂
 and (3.31) again, we get

2D

∫
∂


|∇v|2 ∂|∇v|2
∂ν

dS ≤ 4κD‖|∇v|2‖2
L2(∂
)

≤ D

2

∫



|∇|∇v|2|2 + c3‖|∇v|2‖2
L2 . (3.36)

By the Gagliardo–Nirenberg inequality and the fact ‖|∇v|2‖L1 = ‖∇v‖2
L2 ≤ C in Lemma 3.3, 

we can find a constant θ1 = 1
1+ 2

n

∈ (0, 1) such that

(c2 + c3)‖|∇v|2‖2
L2 ≤ c4‖∇|∇v|2‖2θ1

L2 ‖|∇v|2‖2(1−θ1)

L1 + c4‖|∇v|2‖2
L1 ≤ D

2

∫



|∇|∇v|2|2 + c5.

Substituting above inequality into (3.36) gives

2D

∫
∂


|∇v|2 ∂|∇v|2
∂ν

dS + c2‖|∇v|2‖2
L2 ≤ D

∫



|∇|∇v|2|2 + c5. (3.37)

Next, we will estimate the last term on the right of (3.35). Note |�v| ≤ √
n|D2v| and ∇|∇v|2 =

2D2v · ∇v. Then using the Young’s inequality, one has
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c2

∫



u
(
|�v||∇v|2 +

∣∣∣∇|∇v|2
∣∣∣|∇v|

)

≤ c2
√

n

∫



u|∇v|2|D2v| + 2c2

∫



u|∇v|2|D2v|

≤ (
√

n + 2)c2

∫



u|∇v|2|D2v|

≤ 2D

∫



|∇v|2|D2v|2 + (2 + √
n)2c2

2

8D

∫



u2|∇v|2.

(3.38)

Substituting (3.37) and (3.38) into (3.35) yields (3.34) and finished the proof. �
By Lemma 3.3, the boundedness of ‖u(·, t)‖L2 can be obtained.

Lemma 3.5. Let the conditions in Theorem 1.1 hold. Then the solution of (1.6) satisfies

‖u(·, t)‖L2 ≤ C, (3.39)

where C > 0 is a constant independent of t .

Proof. Multiplying the first equation of (1.6) by 2u, integrating the result with respect to x over 

 and using the facts that 0 < F(v) ≤ F(K0) and h(u) ≥ θ , one has

d

dt

∫



u2 + 2
∫



|∇u|2 = 2χ

∫



u∇u · ∇v + 2γ

∫



u2F(v) − 2
∫



u2h(u)

≤
∫



|∇u|2 + χ2
∫



u2|∇v|2 + 2(γ F (K) − θ)

∫



u2.

(3.40)

Noticing that the Gagliardo–Nirenberg inequality and Young’s inequality, together with
Lemma 2.2, can give us that

2(γ F (K) − θ)

∫



u2 ≤ c1(‖∇u‖L2‖u‖L1 + ‖u‖2
L1) ≤ 1

2
‖∇u‖2

L2 + c2,

one has from (3.40) that

d

dt

∫



u2 + 1

2

∫



|∇u|2 ≤ χ2
∫



u2|∇v|2 + c2,

which, combined with Lemma 3.4, yields
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d

dt

⎛
⎝∫




u2 +
∫



|∇v|4
⎞
⎠ + 1

2

∫



|∇u|2 + D

∫



|∇|∇v|2|2 ≤ c3

∫



u2|∇v|2 + c4. (3.41)

Based on (3.41), using Lemma 2.4, one can readily derive the following inequality (we omit the 
details for brevity and refer readers to the proof of [5, Lemma 3.3])

z′(t) + z(t) ≤ c5,

where z(t) = ∫



u2 + ∫



|∇v|4. This gives (3.39) by the Gronwall’s inequality and concludes the 
proof. �
3.2. Proof of Theorem 1.1

Proof of Theorem 1.1. The fact 0 < v ≤ K0 is proved in Lemma 2.2. From Lemma 3.5, we have 
‖u(·, t)‖L2 ≤ c1. Then we can apply Lemma 3.1 with p = 2 to find a constant c2 > 0 independent 
of t such that ‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞ ≤ c2 for all t ∈ (0, Tmax) in two dimensions (n = 2). 
This along with Lemma 2.1 finishes the proof of Theorem 1.1. �
4. Global stability

In this section, we are devoted to proving the global stability results in Theorem 1.3 via Lya-
punov stability and LaSalle’s invariant principle under the hypotheses (H1)–(H4). At first we 
prove a basic result that will be often used in what follows.

4.1. A basic lemma

Lemma 4.1. Let F satisfy the conditions in (H1) and (u, v) be a solution of (1.6). Define a 
function for some constant ω > 0:

ζ(v) =
v∫

ω

F(s) − F(ω)

F (s)
ds.

Then ζ(v) is a convex function such that ζ(v) ≥ 0. If we further assume that v → ω as t → ∞, 
then there is a constant T0 > 0 such that for all t ≥ T0 it holds that

F ′(ω)

4F(ω)
(v − ω)2 ≤ ζ(v) =

v∫
ω

F(s) − F(ω)

F (s)
ds ≤ F ′(ω)

F (ω)
(v − ω)2. (4.1)

Proof. It is clear that ζ(ω) = ζ ′(ω) = 0 and ζ ′′(v) = F(ω)
F ′(v)

F 2(v)
≥ 0 thanks to the hypothesis 

(H1). Then the Taylor’s formula applied to ζ(v) at v = ω gives

ζ(v) = 1
ζ ′′(ṽ)(v − ω)2 ≥ 0
2
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where ṽ is between ω and v. Thus the first part of the lemma is proved. Furthermore it follow 
from the fact v → ω as t → ∞ that

lim
t→∞

ζ(v)

(v − ω)2
= 1

2
lim
v→ω

ζ ′′(ṽ) = 1

2
lim
v→ω

F(ω)
F ′(v)

F 2(v)
= F ′(ω)

2F(ω)

which yields a constant T0 > 0 such that for all t ≥ T0 it holds that

F ′(ω)

4F(ω)
(v − ω)2 ≤ ζ(v) ≤ F ′(ω)

F (ω)
(v − ω)2. (4.2)

This concludes the proof of Lemma 4.1. �
4.2. Global stability of the prey-only steady state

In this subsection, we consider the case of weak predation γF(K) ≤ θ for which the system 
(1.6) has two homogeneous steady states (0, 0) and (0, K) (see also (1.8)). We shall show that 
the prey-only steady state (0, K) is globally asymptotically stable in this case. Furthermore we 
shall prove that the exponential stability of the homogeneous steady state (0, K) can be attained 
if γF(K) < θ , and algebraic decay can be obtained if γF(K) = θ and α > 0. To this end, we 
employ the following Lyapunov functional:

V1(u(t), v(t)) =: V1(t) = 1

γ

∫



u(x, t) +
∫



( v∫
K

F(s) − F(K)

F(s)
ds

)
(4.3)

which is the same as the one in [47] for the case χ = 0. Then the following results can be proved.

Lemma 4.2. Let the conditions in Theorem 1.3 hold. Assume (u, v) is the solution of (1.6) ob-
tained in Theorem 1.1. Then if γF(K) ≤ θ where “=” holds in the case of α > 0, the prey-only 
steady states (0, K) is globally asymptotically stable. Furthermore if γF(K) < θ , there exist two 
positive constants λ1 and C1 and t0 > 0 such that

‖u‖L∞ + ‖v − K‖L∞ ≤ C1e
−λ1t , for all t > t0. (4.4)

If γF(K) = θ and α > 0, one can find two constants λ2 > 0 and C2 > 0 such that

‖u‖L∞ + ‖v − K‖L∞ ≤ C2

(1 + t)λ2
, for all t > t0. (4.5)

Proof. We first use the LaSalle’s invariant principle (e.g. see [32, pp. 198–199, Theorem 5.24]
or [18, Theorem 3]) to show the global stability of (0, K). To this end, given initial date w0 =
(u0, v0), we let w(t; w0) = (u, v)(t) denote the unique global classical solution of (1.6) for t ≥ 0, 
which defines a semi-flow (or trajectory) on X = [W 1,p(
̄)]2 with p > 2 (e.g. see [2]). It is clear 
from the fact F ′(v) > 0 for all v ≥ 0 and (4.1) that V1(w) = 0 if w = (0, K) and V1(w) > 0 for 
all w �= (0, K). That is V1(w) is a positive definite function. Furthermore, from the definition 
of V1 and results of Theorem 1.1, we have V1(w) ≤ C for some constant C > 0 independent of 
t > 0 for any solution w = (u, v) ∈ X.
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Next, we shall show d
dt

V1(w) = d
dt

V1(t) ≤ 0 for all w ∈ X where “=” iff w = (0, K). Differ-
entiating the functional (4.3) with respect to t , one has

d

dt
V1(t) = 1

γ

∫



ut +
∫



F(v) − F(K)

F(v)
vt

= 1

γ

∫



(γ uF(v) − uh(u)) +
∫



(
1 − F(K)

F(v)

)
(D�v − uF(v) + f (v)).

(4.6)

Applying the integration by parts to the second term on the right hand side of (4.6), after some 
simple calculations and cancellations, we get

d

dt
V1(t) = 1

γ

∫



u(γF(K) − h(u)) − DF(K)

∫



F ′(v)

∣∣∣∣ ∇v

F(v)

∣∣∣∣2

+
∫



f (v)

F (v)
(F (v) − F(K)).

(4.7)

From assumptions (H3) and (H4), one can easily derive that φ(v)(v − K) < 0 for all v �= K . 
Hence by the assumption F ′(v) > 0, we have f (v)

F (v)
(F (v) − F(K)) ≤ 0. By the hypothesis 

(H2), we can derive h(u) ≥ θ + αu for any u ≥ 0 and hence u(γF(K) − h(u)) ≤ u(γF(K) −
θ − αu) ≤ 0. This, along with the fact that F(K) > 0 and F ′(v) > 0 yields from (4.7) that 
d
dt

V1(w) = d
dt

V1(t) ≤ 0 for all w ∈ X, where d
dt

V1(w) = 0 iff w = (0, K) by the hypothesis (H4) 
and conditions in Lemma 4.2. Then by the LaSalle’s invariant principle (see [32, pp. 198–199, 
Theorem 5.24] or [18, Theorem 3]), the trajectory w(t; w0) = (u, v) → (0, K) as t → ∞. This 
shows that (0, K) is globally asymptotically stable.

We proceed to derive the convergence rate of solutions. Let us first consider the case 
γF(K) < θ . With the fact that φ(K) = f (K)

F (K)
= 0, we use the Taylor’s formula to rewrite the 

third term on the right hand side of (4.7) as

∫



f (v)

F (v)
(F (v) − F(K)) =

∫



φ(v)(F (v) − F(K)) =
∫



φ′(η1)F
′(η2)(v − K)2

where η1 and η2 are between v and K . Noticing that v → K as t → ∞ and

lim
v→K

φ′(η1) = φ′(K) < 0, lim
v→K

F ′(η2) = F ′(K) > 0

we can find a time t1 > 0 such that for all t > t1 it holds that: 2φ′(K) < φ′(η1) < 1
2φ′(K) < 0

and 0 < 1F ′(K) < F ′(η2) < 2F ′(K). This, along with (4.7), gives that
2
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d

dt
V1(t) ≤ 1

γ
(γF (K) − θ)

∫



u − α

γ

∫



u2

− DF(K)

∫



F ′(v)

∣∣∣∣ ∇v

F(v)

∣∣∣∣2

+
∫



φ′(η1)F
′(η2)(v − K)2.

(4.8)

Therefore there exists a constant c1 > 0 such that

d

dt
V1(t) ≤ −c1V1(t) for all t > t1 (4.9)

where

V1(t) :=
∫



u + DF(K)

∫



F ′(v)

∣∣∣∣ ∇v

F(v)

∣∣∣∣2

+
∫



(v − K)2.

Next we apply Lemma 4.1 with ω = K and find a constant t2 > 0 such that

c2(v − K)2 ≤
v∫

K

F(s) − F(K)

F(s)
ds ≤ c3(v − K)2, for all t ≥ t2 (4.10)

holds for some constants c2, c3 > 0. Then using the definitions of V1(t) and V1(t) with (4.10), 
one can find a constant c4 > 0 such that c4V1(t) ≤ V1(t) for all t > t2, which together with (4.9)
and the non-negativity of V1(t) yields

d

dt
V1(t) ≤ −c1V1(t) ≤ −c1c4V1(t), for all t > t0

where t0 = max{t1, t2}. This gives rise to V1(t) ≤ c5e
−c6t for all t > t0, which, along with (4.3)

and (4.10), yields

‖u‖L1 + ‖v − K‖L2 ≤ c7e
−c6t , for all t > t0. (4.11)

Next proceed to derive the decay rates of L∞-norm. From Theorem 1.1, we know that χu∇v and 
γ uF(v) −uh(u) is bounded in L∞(
 ×(0, ∞)). Then applying the standard parabolic regularity 
theory (e.g. see [29, Theorem 1.3] and [37, Lemma 3.2]), from the first equation of system (1.6), 
we can find a constant β ∈ (0, 1) such that

‖u‖
C

β,
β
2 (
̄×[t,t+1])

≤ c8 for all t > 1. (4.12)

Moreover, from the second equation of system (1.6), we can use the standard parabolic Schauder 
theory [17] to obtain

‖v‖
2+β,1+ β ≤ c9 for all t > 1. (4.13)
C 2 (
̄×[t,t+1])
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Based on (4.12) and (4.13), one can readily get a constant c10 > 0 (e.g. see [37, Lemma 3.14]) 
such that

‖u‖W 1,∞ ≤ c10, for all t > 1.

This, along with (4.11) and the Gagliardo–Nirenberg inequality, yields for all t > t0 that

‖u‖L∞ ≤ c11(‖∇u‖
2
3
L∞‖u‖

1
3
L1 + ‖u‖L1) ≤ c12(‖u‖

1
3
L1 + ‖u‖L1) ≤ c13e

−c14t . (4.14)

Furthermore, from Theorem 1.1, we can derive v − K ∈ W 1,∞(
) due to v ∈ W 1,∞(
). Hence 
it follows from the Gagliardo–Nirenberg inequality and (4.11) that

‖v − K‖L∞ ≤ c15(‖∇(v − K)‖
1
2
L∞‖v − K‖

1
2
L2 + ‖v − K‖L2) ≤ c16e

−c17t . (4.15)

Then the combination of (4.14) and (4.15) gives (4.4) by choosing λ1 = min{c14, c17}.
Next, we derive the decay rate for the case γF(K) = θ and α > 0. For this, we define

W(t) := DF(K)

∫



F ′(v)

∣∣∣∣ ∇v

F(v)

∣∣∣∣2

+
∫



(v − K)2 +
∫



u2.

Then from (4.8), we can find a constant c18 > 0 such that

d

dt
V1(t) ≤ −c18W(t). (4.16)

Using the definitions of V1(t), W(t) and (4.10), we have for all t > t0

V1(t) ≤ c19

⎛
⎝∫




u +
∫



(v − K)2

⎞
⎠ ≤ c20

⎛
⎝∫




u2

⎞
⎠

1
2

+ c20

⎛
⎝∫




(v − K)2

⎞
⎠

1
2

≤ c21W
1
2 (t),

(4.17)

where we have used the Hölder inequality and boundedness of v. The combination of (4.16) and
(4.17) then gives

d

dt
V1(t) ≤ −c22V

2
1 (t),

which immediately yields a constant c23 > 0 such that V1(t) ≤ c23(1 + t)−1 for all t > t0. This, 
along with the definition of V1(t), gives

‖u‖L1 + ‖v − K‖2
L2 ≤ c24(1 + t)−1, for all t > t0. (4.18)

Similar to the derivation of (4.14) and (4.15), by using the Gagliardo–Nirenberg inequality and 
(4.18), we can find a constant λ2 > 0 such that
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‖u‖L∞ + ‖v − K‖L∞ ≤ c25(1 + t)−λ2 , for all t > t0

which gives (4.5) and completes the proof. �
4.3. Global stability of the co-existence steady state

Now we consider the global stability of solutions for the case γF(K) > θ . In this scenario, the 
system (1.6) has three homogeneous steady states: (0, 0), (0, K) and (u∗, v∗), where u∗, v∗ > 0
and satisfy (1.9). We shall prove the coexistence steady state (u∗, v∗) is globally asymptotically 
stable under certain conditions by using the following Lyapunov functional:

V2(u(t), v(t)) =: V2(t) = 1

γ

∫



(
u − u∗ − u∗ ln

u

u∗

)
+

∫



( v∫
v∗

F(s) − F(v∗)
F (s)

ds

)
. (4.19)

The above Lyapunov functional has been used in [48] for the predator–prey system without 
prey-taxis.

Lemma 4.3. Let the conditions in Theorem 1.3 hold. Assume (u, v) is the solution of (1.6) ob-
tained in Theorem 1.1. Then if γF(K) > θ , the coexistence steady state (u∗, v∗) is globally 
asymptotically stable if

D

χ2
≥ u∗F 2(K)

4γF(v∗)F ′(K)

where u∗ and v∗ are determined by (1.9) and independent of D and χ , and “=” holds in the 
case of ‖v0‖L∞ ≤ K . Furthermore, if α > 0, there exist two positive constants C3 and λ3 and 
t0 > 0 such that

‖u − u∗‖L∞ + ‖v − v∗‖L∞ ≤ C3e
−λ3t , for all t > t0. (4.20)

Proof. We first show the non-negativity of V2(t). For this, we define ψ(z) = z − u∗ ln z. Then 
by the Taylor’s formula, we have

u − u∗ − u∗ ln
u

u∗
= ψ(u) − ψ(u∗) = ψ ′′(ξ)

2
(u − u∗)2 = u∗

2ξ2
(u − u∗)2 (4.21)

where ξ ≥ 0 is between u and u∗. This asserts that u − u∗ − u∗ ln u
u∗ ≥ 0 due to u∗ > 0. Further-

more the non-negativity of the second term on the right hand side of (4.19) is guaranteed by the 
result of Lemma 4.1. This shows that V2(t) ≥ 0 for all u, v > 0. Next we differentiate V2(t) with 
respect to t and use the equations of (1.6) to obtain that
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d

dt
V2(t) = 1

γ

∫



(
1 − u∗

u

)
ut +

∫



F(v) − F(v∗)
F (v)

vt

= −u∗
γ

∫



∣∣∣∣∇u

u

∣∣∣∣2

− DF(v∗)
∫



F ′(v)

∣∣∣∣ ∇v

F(v)

∣∣∣∣2

+ χu∗
γ

∫



∇u · ∇v

u︸ ︷︷ ︸
I1

+ 1

γ

∫



(
1 − u∗

u

)
(γ uF(v) − uh(u)) +

∫



(F(v) − F(v∗))
(

f (v)

F (v)
− u

)
︸ ︷︷ ︸

I2

.

(4.22)

For I1, we can rewrite it as

I1 = −
∫



�T A�, � =
[∇u

∇v

]
, A =

[ u∗
γ u2 −χu∗

2γ u

−χu∗
2γ u

DF(v∗)F ′(v)

|F(v)|2

]
,

where �T denotes the transpose of �. The basic algebra tells us that the matrix A is non-negative 
definite and hence I1 ≤ 0 if and only if

DF(v∗)F ′(v)u∗
γ |F(v)|2u2

≥ χ2u2∗
4γ 2u2

or
D

χ2
≥ u∗|F(v)|2

4γF(v∗)F ′(v)
, (4.23)

where u∗ and v∗ do not depend on D and χ , see (1.9).
If ‖v0‖L∞ ≤ K , then from Lemma 2.2 one has 0 < v(x, t) ≤ K . Since F ′(v) > 0 and F ′′(v) ≤

0 in (H1), the condition (4.23) is guaranteed if

D

χ2
≥ u∗F 2(K)

4γF(v∗)F ′(K)
. (4.24)

Next, we consider the case ‖v0‖L∞ > K . Supposing that D and χ satisfy D

χ2 >
u∗F 2(K)

4γF(v∗)F ′(K)
, 

then there exists a small ε0 > 0 such that

D

χ2
≥ u∗F 2(K)

4γF(v∗)F ′(K)
+ ε0. (4.25)

Let H(v) = |F(v)|2
F ′(v)

. Then from the hypothesis (H1), it follows that H(v) ∈ C1([0, ∞)) and 
H′(v) > 0, which together with (2.2) gives

lim sup
t→∞

u∗|F(v)|2
4γF(v∗)F ′(v)

= u∗
4γF(v∗)

lim sup
t→∞

H(v) ≤ u∗H(K)

4γF(v∗)
= u∗F 2(K)

4γF(v∗)F ′(K)
. (4.26)

Therefore for the ε0 > 0 chosen in (4.25), there exists T∗ > 0 such that

u∗|F(v)|2
′ ≤ u∗F 2(K)

′ + ε0 for (x, t) ∈ 
̄ × [T∗,∞). (4.27)

4γF(v∗)F (v) 4γF(v∗)F (K)
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The combination of (4.25) and (4.27) gives

u∗|F(v)|2
4γF(v∗)F ′(v)

≤ D

χ2
, for (x, t) ∈ 
̄ × [T∗,∞).

In summary, we have shown that if (4.24) is fulfilled where “=” holds in the case of ‖v0‖L∞ ≤ K , 
then I1 ≤ 0 for t ≥ T∗. Next we estimate I2 which can be regrouped as

I2 = 1

γ

∫



(u − u∗)
(

γF(v) − h(u)

)
+

∫



(F(v) − F(v∗))
(

f (v)

F (v)
− u

)

=
∫



(u − u∗)(F (v) − F(v∗)) + 1

γ

∫



(u − u∗)(γ F (v∗) − h(u))

+
∫



(F(v) − F(v∗))
(

f (v)

F (v)
− u

)

= 1

γ

∫



(u − u∗)(γ F (v∗) − h(u)) +
∫



(F(v) − F(v∗))
(

f (v)

F (v)
− u∗

)

=: M1 + M2.

(4.28)

By (1.9), we have γF(v∗) = h(u∗) which, along with hypothesis (H2), gives

M1 = − 1

γ

∫



(u − u∗)(h(u) − h(u∗))

= − 1

γ

∫



(u − u∗)(h(u) − h(u∗))

= − 1

γ

∫



h′(ξ1)(u − u∗)2

≤ −α

γ

∫



(u − u∗)2 ≤ 0,

(4.29)

where ξ1 is between u and u∗. Similarly by the hypotheses (H1) and (H4) with (1.10), we have

M2 =
∫



(F(v) − F(v∗))
(

f (v)

F (v)
− f (v∗)

F (v∗)

)

=
∫



(F(v) − F(v∗))(φ(v) − φ(v∗))

=
∫

F ′(ξ2)φ
′(ξ3)(v − v∗)2 ≤ 0,
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where ξ2 and ξ3 are between v and v∗. This, combined with (4.29) and (4.28), yields that I2 ≤ 0. 
Now (4.22) can be updated as

d

dt
V2(t) = I1 + I2 = −

∫



�T A� − α

γ

∫



(u − u∗)2 +
∫



F ′(ξ2)φ
′(ξ3)(v − v∗)2.

Hence if (4.24) is satisfied where “=” holds in the case of ‖v0‖L∞ ≤ K , then d
dt

V2(t) ≤ 0 for 
t ≥ T∗. Noticing that d

dt
V2(t) = 0 iff (u, v) = (u∗, v∗) and (u, v) is bounded for all 0 < t < T∗, 

then (u∗, v∗) is globally asymptotically stable by the LaSalle’s invariant principle following the 
similar argument as in the proof of Lemma 4.2. Thus the first part of Lemma 4.3 is proved.

Next we proceed to show the decay rate (4.20). Since u → u∗ and v → v∗ as t → ∞, by the 
hypotheses (H1) and (H4), we can find a T1 > 0 such that for all t > T1 it holds that

0 <
1

2
F ′(v∗) ≤ F ′(ξ2) ≤ 2F ′(v∗), φ′(v∗) ≤ φ′(ξ3) ≤ 1

2
φ′(v∗) < 0.

This, together with the facts that the matrix A is non-negative definite and α > 0, yields a constant 
C > 0 such that

d

dt
V2(t) ≤ −C

∫



[(u − u∗)2 + (v − v∗)2], for all t > T1. (4.30)

Applying (4.21) with the fact u → u∗ and hence ξ → u∗ as t → ∞, one can find a T2 > 0 so that 
for all t > T2 the following inequality holds:

1

4u∗

∫



(u − u∗)2 ≤
∫



(
u − u∗ − u∗ ln

u

u∗

)
≤ 1

u∗

∫



(u − u∗)2. (4.31)

Furthermore, we employ Lemma 4.1 with ω = v∗ to find a T3 > 0 so that for all t > T3

c1(v − v∗)2 ≤
v∫

v∗

F(s) − F(v∗)
F (s)

ds ≤ c2(v − v∗)2 (4.32)

holds for some constants c1, c2 > 0. Thus by the definition of V2(t) and the estimates
(4.31)–(4.32), we can find two positive constants c3 and c4 such that for all t > t0 =
max{T1, T2, T3}

c3(‖u − u∗‖2
L2 + ‖v − v∗‖2

L2) ≤ V2(t) ≤ c4(‖u − u∗‖2
L2 + ‖v − v∗‖2

L2).

This, along with (4.30), gives a constant c3 > 0 such that

d

dt
V2(t) ≤ −c5V2(t), for all t > t0

which, upon the application of Gronwall’s inequality, yields the following decay with constants 
c6, c7 > 0
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‖u − u∗‖2
L2 + ‖v − v∗‖2

L2 ≤ c6e
−c7t .

Then by the same argument as deriving (4.14) and (4.15), we get (4.20) and complete the proof 
of Lemma 4.3. �
4.4. Proof of Theorem 1.3

Theorem 1.3 is clearly a direct consequence of Lemma 4.2 and Lemma 4.3.

5. Summary

In this paper, we consider the prey-taxis model with a class of predator–prey population in-
teractions which covers many existing well-known examples like those in (1.2)–(1.4). Our main 
results consist of two parts: global boundedness (see Theorem 1.1) and global stability (see The-
orem 1.3). In the first part, we show that the global solutions of the prey-taxis system subject to 
zero Neumann boundary conditions in two dimensional domain are uniformly bounded in time 
for any prey-tactic coefficient χ > 0 thanks to the intrinsic predator–prey population interaction. 
This result improves the previous one obtained in [1,12,34,46] where either the truncation con-
dition or smallness assumption was imposed on χ to preclude the blow-up of solutions. Our first 
result implies that the intrinsic (or density-dependent) predator–prey interaction suffices to avoid 
population overcrowding in spite of the aggregation effect of prey-taxis. But whether the results 
hold true in three or higher dimensions remains unknown in our work. In the second part, we 
show that the predator will go extinction and the prey will survive if the predator’s predation 
capability is weak (like the ill or wounded predator) in the sense that γF(K) ≤ θ . Whereas if 
the predator’s predation capability is strong in the sense that γF(K) > θ , then the population 
will reach a co-existence steady state provided that the prey-taxis is weak (i.e. χ is small) or 
the prey’s diffusion rate is large (i.e. D is large), see the condition (1.11). These results are all 
well aligned with biological intuitions and reveal the conditions needed for the system to reach 
a desirable asymptotic state. Furthermore our results indicate that the prey-taxis play a role only 
in the case of strong predation for the global stability, whilst it does not affect the global stability 
if the predation is weak.

There are many interesting questions arising from our work. The first question is whether the 
co-existence steady state (u∗, v∗) is globally asymptotically stable if the condition (1.11) is not 
met in the case of strong predation. A more broader question is whether the prey-taxis system 
has non-constant steady state (i.e. pattern formation) if (1.11) is not satisfied. Although the pos-
sibility of pattern formation of prey-taxis systems has been studied by the linear stability analysis 
for numerous predator–prey population interactions, the rigorous proof of the existence of non-
constant steady states is still missing. In particular, the results of [20] have shown for a wide 
range of F(v), h(u) and f (v), the prey-taxis model (1.6) does not have pattern formation. By 
this, we may conjecture that our global stability is also true for many forms of F(v), h(u) and 
f (v) even if the condition (1.11) is not satisfied. Our results along with those in [20] indicate for 
a large set of F(v), h(u) and f (v), the prey-taxis system has no non-constant solution and hence 
no pattern formation. But the non-homogeneity of population distribution (pattern formation) 
in the prey-taxis system has been an observed phenomenon in the filed (see [15]). Then what 
can we do with the model so that pattern formation can be generated become a very interesting 
question. It is well-known that the non-homogeneous environment may induce non-constant sta-
tionary solutions (e.g. see [10,22]). Naturally we are motivated to ask if the non-homogeneity 
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of environment in the prey-taxis system (e.g. changing f (v) in (1.6) to f (x, v)) can lead to the 
existence of non-constant steady states. Furthermore in an open wild landscape, animals are not 
confined within a closed (or isolated) area, and hence a non-Neumann boundary conditions may 
be more suitable. Therefore the study of prey-taxis systems with Dirichlet or Robin boundary 
conditions would be a very inspiring question to explore.
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