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Abstract. In the first part of this paper, we investigate the qualitative behav-

ior of classical solutions for a one-dimensional parabolic system derived from

a repulsive chemotaxis model on bounded domains. It is shown that classical
solutions to the initial-boundary value problem exist globally in time for large

data and converge to constant equilibrium states exponentially in time. The

results indicate that repulsive chemotaxis exhibits a strong tendency against
pattern formation. In the second part, we study diffusion limit and conver-

gence rate of the model toward a non-diffusive problem studied in [11]. It is

shown that when the chemical diffusion coefficient ε tends to zero, the solution
is convergent in L∞-norm with respect to ε at order O(ε).

1. Introduction. In contrast to diffusion (random diffusion without orientation),
chemotaxis is the biased movement of cells/particles toward the region that contains
higher concentration of beneficial or lower concentration of unfavorable chemicals.
The former often refers to the attractive chemotaxis and latter to the repulsive
chemotaxis. Well known examples of biological species experiencing chemotaxis
include the slime mold amoebae Dictyostelium discoideum, the flagellated bacteria
Escherichia coli and Salmonella typhimurium, and the human endothelial cells [17].

The prototype of the population-based chemotaxis model was proposed by Keller
and Segel in the 1970s [7] to describe the aggregation of cellular slime molds Dic-
tyostelium discoideum in response to the chemical cyclic adenosine monophosphate
(cAMP). In its general form, Keller-Segel model reads{

ut = ∇ · (D∇u− χu∇φ(v)),
vt = ε∆v + g(u, v)

(1.1)

where u and v denote the cell density and chemical concentration, respectively.
D > 0 and ε ≥ 0 are cell and chemical diffusion coefficients, respectively. The
chemotaxis is called to be attractive if χ > 0 and repulsive if χ < 0, where |χ|
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measures the strength of the chemical signal. Here φ(v) is referred to as the chemo-
tactic potential function describing the signal detection mechanism and g(u, v) is a
function characterizing the chemical growth and degradation.

The typical examples of chemotactic potential function φ includes φ(v) = kv
(linear law), φ(v) = k log v (logarithmic law), or φ(v) = kvm/(1 + vm) (receptor
law), where k > 0 and m ∈ N. The system with linear law φ(v) = kv and g(u, v) =
u− v was called the minimum chemotaxis model following the nomenclature of [3],
see a review article [6] for the mathematical results of the minimum model. The
logarithmic sensitivity φ(v) = k log v adapted the Weber-Fechner law to describe
cell chemotactic response and had prominent specific applications [8, 2, 1]. The
steady states of (1.1) with logarithmic sensitivity and g(u, v) = u − v was studied
in [16] and existence of global solutions was recently obtained in [24]. The receptor
sensitivity law has been derived and applied in numerous models for chemotaxis,
e.g. see [19, 20] and references therein.

In this paper, we shall consider the model (1.1) with logarithmic chemotactic
potential function and g(u, v) = uv − µv. The resulting model reads{

ut = ∇ · (D∇u− χu∇ ln(v)),
vt = ε∆v + uv − µv (1.2)

where µ > 0 is a constant accounting for the degradation rate of the chemical.
When the chemical diffusion is neglected (i.e. ε = 0), the model (1.2) was the same
to the one proposed in [9, 18] as an example of reinforced random walks describing
the interaction of particle with a non-diffusive chemical. Based on special choices
of initial date and by the asymptotic analysis, a detailed qualitative and numerical
analysis was provided in [9] where explicit solutions about aggregation, blow up and
collapse were constructed in one-dimensional space. The local and global existence
of solutions was subsequently studied in [25].

If χ < 0, with a Hopf-Cole type transformation

q =
∇v
v

= ∇ ln(v) (1.3)

and scalings t̃ = −χt/D, x̃ =
√
−χx, q̃ = q/

√
−χ, (1.2) can be converted into a

system of conservation laws as follows{
pt −∇ · (pq) = ∆p,
qt −∇(εq2 + p) = ε∆q

(1.4)

where q = u. The existence and nonlinear stability of traveling wave solutions of
(1.4) in one-dimensional domain R were established in [23, 12, 13] first for ε = 0
and then in [14] for ε > 0, where the wave strength is allowed to be arbitrary large.
When ε = 0, global existence of classical solutions for the initial-boundary value
problem of (1.4) in one dimension was established in [26] and the Cauchy problem
of (1.4) was studied in [5]. Furthermore the Cauchy problem of (1.4) with ε = 0 in
multi-dimensional spaces was investigated in [10]. Recently the large-time behavior
of classical solutions for the initial-boundary value problem of (1.4) with ε = 0
in one space dimension with large initial data and in multi-dimensional spaces for
small initial data were established in [11].
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In the present paper, we shall consider the initial-boundary value problem of
(1.4) in one dimension space with ε > 0, namely

pt − (pq)x = pxx, x ∈ (0, 1), t > 0,
qt − (εq2 + p)x = εqxx, x ∈ (0, 1), t > 0,
(p, q)(x, 0) = (p0, q0)(x), x ∈ [0, 1],
px|x=0,x=1 = q|x=0,x=1 = 0, t > 0.

(1.5)

We shall develop the estimates in [11] to establish the large-time behavior of classical
solutions for ε > 0 in one space dimension with large initial data and the diffusion
limits of solutions as ε → 0. We note that the diffusion limit of traveling wave
solutions was previously obtained in [15]. To present our main results, we introduce
some notations.

Notation. Throughout this paper, ‖ · ‖, ‖ · ‖∞ and ‖ · ‖Hs denote the norms of
the usual Lebesgue measurable function spaces L2, L∞ and the usual Hilbert space
Hs, respectively. The function spaces under consideration are C([0, T ];Hs) and

L2([0, T ];Hs), equipped with norms sup0≤t≤T ‖f(·, t)‖Hs and (
∫ T

0
‖f(·, t)‖2Hs)1/2,

respectively. Unless specified, C and Ci will denote generic constants which are
independent of the unknown functions and time. The values of the constants may
vary line by line according to the context.

Our first result is concerned with the asymptotic behavior of classical solutions
to (1.5) with large data.

Theorem 1.1 (Global dynamics of large solutions). Consider the initial-boundary

value problem (1.5). Suppose that the initial data satisfy p0(x) ≥ 0, p̄ =
∫ 1

0
p0(x)dx >

0 and the compatibility conditions: ∂xp0|x=0,x=1 = q0|x=0,x=1 = 0. If (p0, q0) ∈
H2([0, 1]) and ε > 0 is small, then there exists a unique global classical solution
(p, q) to (1.5) such that

‖(p−p̄)(t)‖2H2+‖q(t)‖2H2+

∫ t

0

(
‖(p−p̄)(τ)‖2H3+‖q(τ)‖2H2+ε‖q(τ)‖2H3

)
dτ ≤ C, ∀ t ≥ 0,

for some constant C > 0 which is independent of t and ε. Moreover, there exist
constants α, β > 0 which are independent of t and ε such that

‖(p− p̄)(t)‖2H2 + ‖q(t)‖2H2 ≤ α
(
‖p0 − p̄‖2H2 + ‖q0‖2H2

)
e−βt, ∀ t ≥ 0.

Remark 1. It is generally believed that diffusion has a stabilization/regularization
effect. So we expect that the results for ε = 0 can be extended to the case ε >
0. However, the appearance of the convection-like term (q2)x brings additional
difficulty to the asymptotic analysis. In general, such kind of nonlinearity does not
cause any trouble for small solutions, while the scenario is totally different for large
amplitude solutions. Indeed, when ε is large, the nonlinear convection can no longer
be dominated by the linear diffusion, and the resulting energy estimates are time-
dependent which yield no information about the long-time behavior of the solution.
This is the main reason that we require ε to be small. Within this regime of the
parameter, by adopting the idea in [11] we can establish the uniform-in-time and
ε-independent energy estimates which lead to the long-time asymptotic behavior
of large amplitude solutions, and the uniform convergence rate of the solutions of
(1.5) toward those of the non-diffusive problem.

In [11], global well-posedness and long-time behavior of classical solutions to
the non-diffusive problem is established. Our next theorem is concerned with the



3030 ZHI-AN WANG AND KUN ZHAO

diffusion limit of the solution of (1.5) when ε → 0, and convergence rate of (1.5)
toward the non-diffusive problem.

Theorem 1.2 (Diffusion limit and convergence rate). Let the conditions of Theorem
1.1 hold. Let (pε, qε) and (p, q) be the unique classical solutions to (1.5) with ε > 0
and ε = 0, respectively, with the same initial data. Then there exists a constant
C > 0 which is independent of t and ε such that for any t > 0

‖(pε−p)(t)‖2H1 +‖(qε−q)(t)‖2H1 +

∫ t

0

(
‖(pε − p)(τ)‖2H2 + ‖(qε − q)(τ)‖2H1

)
dτ ≤ Cε,

and

‖(pε − p)(t)‖2L∞ + ‖(qε − q)(t)‖2L∞ ≤ Cε.

Then applying Theorems 1.1 and 1.2, we have the following results for the original
chemotaxis model (1.2).

Corollary 1 (Long-time dynamics). Consider the following initial-boundary value
problem for the one-dimensional chemotaxis model (1.2)

ut = (Dux − χu ln(v)x)x, x ∈ (0, 1), t > 0,

vt = εvxx + uv − µv, x ∈ (0, 1), t > 0,

(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, 1],

ux|x=0,x=1 = vx|x=0,x=1 = 0, t > 0,

(1.6)

where χ < 0, µ ≥ 0 and ε > 0 are constants. Suppose that the initial da-
ta satisfy u0(x) ≥ 0, ū = 1

|Ω|
∫

Ω
u0(x)dx > 0, v0(x) > 0 and the compatibility

conditions: ∂xu0|x=0,x=1 = ∂xv0|x=0,x=1 = 0. Assume further that (u0 − ū) ∈
H2([0, 1]), ln(v0) ∈ H3([0, 1]) and ε is small. Then there exists a unique global-in-
time classical solution (u, v) to (1.6) such that as t→∞:

‖u(t)− ū‖L∞ → 0,

and

‖v(t)‖L∞ →
{

0, if ū < µ

+∞, if ū > µ,

where the convergence rates are exponential in time.

Remark 2. Corollary 1 indicates that in the process of repulsive chemotaxis, the
cell population collapses to its initial average over the domain, while the chemical
concentration will vanish if the initial average of the cell population is below the
chemical decay rate µ, or it will aggregate if the average exceeds this rate number, as
time goes to infinity. The results indicate that repulsive chemotaxis exhibits a strong
tendency against pattern formation, which is consistent with general results for the
classical repulsive chemotaxis models where the chemotactic potential function is
linear with respect to chemical concentration, see [4, 22].

Corollary 2 (Diffusion limit). Let the conditions of Corollary 1 hold. Let (uε, vε)
and (u, v) be the unique classical solutions to (1.6) with ε > 0 and ε = 0, respectively,
with the same initial data. Then it holds that for any t > 0

‖(uε − u)(t)‖2L∞ ≤ C1ε

and

‖(vε − v)(t)‖2L∞ ≤ C2(t)ε,
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where the constant C1 > 0 is independent of t and ε and C2(t) > 0 is independent
of ε.

The rest of the paper is organized as follows. We give the proof of Theorem 1.1
in Section 2 and study the diffusion limit and convergence rate of (1.5) in Section
3. Corollary 1 and Corollary 2 will be proved in Section 4. Section 5 is devoted to
the numerical illustrations of the analytical results obtained in previous sections.

2. Long-time dynamics of large solutions (proof of Theorem 1.1). In this
section we study the long-time dynamics of classical solutions to (1.5) with large
data. We will adopt the energy framework developed in [11] by employing the free
energy formulation associated with (1.5) and accurate energy estimates. Let us
consider the initial-boundary value problem:{

pt = pxx + (pq)x,

qt = εqxx + ε(q2)x + px;
(2.1)

and 
(p, q)(x, 0) = (p0, q0)(x) ∈ H2((0, 1)),

px|x=0,1 = q|x=0,1 = 0,

p0(x) ≥ 0, p̄ =

∫ 1

0

p0(x)dx > 0,

(2.2)

where q = [ln(eµtv)]x.
First of all, using standard arguments, such as fixed point argument, one can

show that there exists a unique local solution (p, q) to (1.5) such that (p − p̄, q) ∈
C([0, t0);H2) ∩ L2([0, t0);H3), and p(x, t) ≥ 0 for (x, t) ∈ (0, 1) × [0, t0) for some
finite t0 > 0 under the assumption (p0, q0) ∈ H2. The precise and detailed proof
has been given in [21] and we omit the proof here for brevity. Next, we show the
a priori estimates of the local solution in order to extend it to a global one. We
remark that the a priori estimates presented below involve a logarithmic function
of p. In [11], a regularization procedure (lifting the initial datum p0 by a small
parameter ε) was applied to overcome the singularity at p = 0 in order to employ
the free energy formulation associated with the system. It was further shown in
[11] that the a priori estimates are completely independent of the regularization
parameter ε. Then by taking the ε limit the solution to the original equations was
obtained. We remark that the same procedure applies here. It will become clear
that, as the proof proceeds, the a priori estimates are independent of the lower
bound of the function p. This will allow us to take the limit of the sequence of
approximate solutions in order to obtain the one for the original problem (1.5).
However, to simplify the presentation, we shall not go through the details of the
regularization procedure in this paper.

We now recall an elementary lemma (see e.g. [11]) which will play an important
role in getting the lower order estimate of the solution.

Lemma 2.1. Let ρ ≥ 0 and 0 < a ≤ ρ∗ < ∞ for some constant a. Then there
exists a constant d > 0 depending on ρ∗ such that

0 ≤ [ρ ln(ρ)− ρ]− [ρ∗ ln(ρ∗)− ρ∗]− (ρ− ρ∗) ln(ρ∗) ≤ d(ρ− ρ∗)2.

We are now in a position to prove Theorem 1.1.
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Proof of Theorem 1.1. The proof is split into several steps of careful energy
estimates.

Step 1. Free energy dissipation. Due to the conservation of total mass, after
taking L2 inner product of (2.1)1 with ln(p)− ln(p̄), we have

d

dt

(∫ 1

0

η(p)− η(p̄)− η′(p̄)(p− p̄)dx
)

+

∫ 1

0

(
pxq +

(px)2

p

)
dx = 0, (2.3)

where η(z) = z ln(z) − z which is a convex function. Taking L2 inner product of
(2.1)2 with q, we have

1

2

d

dt
‖q‖2 −

∫ 1

0

pxqdx+ ε‖qx‖2 = 0. (2.4)

Adding (2.4) to (2.3), we get

d

dt

(∫ 1

0

η(p)− η(p̄)− η′(p̄)(p− p̄)dx+
1

2
‖q‖2

)
+

∫ 1

0

(px)2

p
dx+ ε‖qx‖2 = 0.

(2.5)

Integrating (2.5) over [0, t], we have(∫ 1

0

η(p)−η(p̄)−η′(p̄)(p−p̄)dx+
1

2
‖q‖2

)
(t)+

∫ t

0

(∫ 1

0

(px)2

p
dx+ ε‖qx‖2

)
dτ

=

(∫ 1

0

η(p0)− η(p̄)− η′(p̄)(p0 − p̄)dx+
1

2
‖q0‖2

)
.

(2.6)
Due to the convexity of η(·) and the positivity of p, we have∫ 1

0

η(p)− η(p̄)− η′(p̄)(p− p̄)dx ≥ 0.

On the other hand, since 0 < p̄ < +∞ and p0 ≥ 0, by Lemma 2.1 we have∫ 1

0

η(p0)− η(p̄)− η′(p̄)(p0 − p̄)dx ≤ d1‖p0 − p̄‖2,

where the constant d1 depends only on p̄. Thus, (2.6) implies that

1

2
‖q(·, t)‖2 +

∫ t

0

(∫ 1

0

(px)2

p
dx+ ε‖qx‖2

)
dτ ≤ 1

2
‖q0‖2 + d1‖p0 − p̄‖2. (2.7)

Step 2. L2 estimate. To carry out further energy estimates and the asymptotic
analysis, we first reformulate the problem (2.1). Let p̃ = p− p̄. Substituting p̃ into
(2.1), we have {

p̃t − (p̃q)x − p̄qx = p̃xx,

qt − p̃x = εqxx + ε(q2)x.
(2.8)
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Taking L2 inner products of (2.8)1 with p̃ and (2.8)2 with p̄q and adding the
results, we have

d

dt

(
1

2
‖p̃‖2+

p̄

2
‖q‖2

)
+ ‖p̃x‖2 + εp̄‖qx‖2 = −

∫ 1

0

p̃qp̃xdx

≤ 1

2
‖p̃x‖2 +

1

2
‖p̃q‖2

≤ 1

2
‖p̃x‖2 +

1

2
‖p̃‖2∞‖q‖2

≤ 1

2
‖p̃x‖2 +

(
1

2
‖q0‖2 + d1‖p0 − p̄‖2

)
‖p̃‖2∞,

(2.9)

where we have used (2.7) for ‖q(·, t)‖2.
For the estimate of ‖p̃‖2∞, we observe that

|p̃| = |p− p̄| =
∣∣∣∣ ∫ x

x∗t

p̃xdx

∣∣∣∣ ≤ (∫ 1

0

pdx

) 1
2
(∫ 1

0

(p̃x)2

p
dx

) 1
2

=
√
p̄

(∫ 1

0

(p̃x)2

p
dx

) 1
2

,

where x∗t ∈ [0, 1] such that p(x∗t , t) = p̄ for any t ≥ 0. Then we have

‖p̃‖2∞ ≤ p̄
(∫ 1

0

(p̃x)2

p
dx

)
. (2.10)

Substituting (2.10) into (2.9), we have

d

dt

(
1

2
‖p̃‖2 +

p̄

2
‖q‖2

)
+

1

2
‖p̃x‖2 + εp̄‖qx‖2 ≤ C1

(∫ 1

0

(p̃x)2

p
dx

)
, (2.11)

where

C1 =

(
p̄

2
‖q0‖2 + d1p̄‖p0 − p̄‖2

)
.

Then the operation (2.5)× 2C1 + (2.11) gives

d

dt
G(t) +K(t) ≤ 0, (2.12)

where

G(t) = 2C1

(∫ 1

0

η(p)− η(p̄)− η′(p̄)(p− p̄)dx+
1

2
‖q‖2

)
+

(
1

2
‖p̃‖2 +

p̄

2
‖q‖2

)
,

K(t) = C1

(∫ 1

0

(p̃x)2

p
dx

)
+

1

2
‖p̃x‖2 + ε(p̄+ 2C1)‖qx‖2.

Upon integrating (2.12) in time, we have

‖p̃(·, t)‖2 +

∫ t

0

‖p̃x(·, τ)‖2 + ε‖qx(·, τ)‖2dτ ≤ C2. (2.13)

We remark that the constant C2 depends only on p̄ and initial data, but not on ε.
Taking spatial derivative of (2.8)2 and using equation (2.8)1, we have

qxt = −(p̃q)x − p̄qx + p̃t + εqxxx + ε(q2)xx. (2.14)
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Taking L2 inner product of (2.14) with qx, we have

d

dt

(
1

2
‖qx‖2

)
+ p̄‖qx‖2 + ε‖qxx‖2

=−
∫ 1

0

(p̃q)xqxdx+

∫ 1

0

p̃tqxdx+ ε

∫ 1

0

(q2)xxqxdx

=−
∫ 1

0

(p̃q)xqxdx+
d

dt

∫ 1

0

p̃qxdx−
∫ 1

0

p̃qxtdx− ε
∫ 1

0

(q2)xqxxdx

=−
∫ 1

0

(p̃q)xqxdx+
d

dt

∫ 1

0

p̃qxdx+‖p̃x‖2+ε

∫ 1

0

[qxx+(q2)x]p̃xdx−2ε

∫ 1

0

qqxqxxdx,

where we have used the relationship qxt = p̃xx + εqxxx + ε(q2)xx. After rearranging
terms, we have

d

dt

(
1

2
‖qx‖2 −

∫ 1

0

p̃qxdx

)
+ p̄‖qx‖2 + ε‖qxx‖2

=−
∫ 1

0

(p̃q)xqxdx+ ε

∫ 1

0

[qxx + 2qqx]p̃xdx− 2ε

∫ 1

0

qqxqxxdx+ ‖p̃x‖2.

Next we estimate the first three terms on the right hand side of the above equation
as follows

−
∫ 1

0

(p̃q)xqxdx ≤
p̄

2
‖qx‖2 +

1

p̄

(
‖p̃qx‖2 + ‖qp̃x‖2

)
,

ε

∫ 1

0

[qxx + 2qqx]p̃xdx ≤
ε

8
‖qxx‖2 + 2ε‖p̃x‖2 + ε‖q‖2‖qx‖2∞ + ε‖p̃x‖2

≤ ε

8
‖qxx‖2 + 3ε‖p̃x‖2 + 2ε(‖q0‖2 + d1‖p0 − p̄‖2)‖qx‖‖qxx‖

≤ ε

4
‖qxx‖2 + 3ε‖p̃x‖2 + 8ε(‖q0‖2 + d1‖p0 − p̄‖2)2‖qx‖2,

and

−2ε

∫ 1

0

qqxqxxdx ≤
ε

8
‖qxx‖2 + 8ε‖q‖2‖qx‖2∞

≤ ε

4
‖qxx‖2 + 512ε(‖q0‖2 + d1‖p0 − p̄‖2)2‖qx‖2,

where we have used (2.7) for the estimate of ‖q‖2, the fact that ‖qx‖2∞ ≤ 2‖qx‖‖qxx‖
due to

∫ 1

0
qxdx = 0, and the Cauchy-Schwarz inequality at various places. Therefore

we have

d

dt

(
1

2
‖qx‖2 −

∫ 1

0

p̃qxdx

)
+
p̄

2
‖qx‖2 +

ε

2
‖qxx‖2

≤1

p̄

(
‖p̃qx‖2 + ‖qp̃x‖2

)
+ (3ε+ 1)‖p̃x‖2 + 520ε(‖q0‖2 + d1‖p0 − p̄‖2)2‖qx‖2.

When ε ≤ min
{

1/12, p̄
(
2080(‖q0‖2 + d1‖p0 − p̄‖2)2

)−1
}

, it holds that

d

dt

(
1

2
‖qx‖2 −

∫ 1

0

p̃qxdx

)
+
p̄

4
‖qx‖2 +

ε

2
‖qxx‖2 ≤

1

p̄

(
‖p̃qx‖2 + ‖qp̃x‖2

)
+

5

4
‖p̃x‖2.

(2.15)
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We notice that by multiplying (2.12) by 4 and adding the result to (2.15), it holds
that

d

dt
L(t) +M(t) ≤ 1

p̄

(
‖p̃qx‖2 + ‖qp̃x‖2

)
, (2.16)

where

L(t) = 4G(t) +

(
1

2
‖qx‖2 −

∫ 1

0

p̃qxdx

)
= 8C1

(∫ 1

0

η(p)− η(p̄)− η′(p̄)(p− p̄)dx+
1

2
‖q‖2

)
+

1

4
‖qx‖2 +

∫ 1

0

(1

2
qx − p̃

)2

dx+ ‖p̃‖2 + 2p̄‖q‖2,

M(t) = 4K(t) +
p̄

4
‖qx‖2 +

ε

2
‖qxx‖2 −

5

4
‖p̃x‖2

= 4C1

(∫ 1

0

(p̃x)2

p

)
+

3

4
‖p̃x‖2 +

p̄

4
‖qx‖2 +

ε

2
‖qxx‖2 + 4ε(p̄+ 2C1)‖qx‖2.

(2.17)
The right hand side of (2.16) can be estimated as

‖p̃qx‖2 + ‖qp̃x‖2 ≤ ‖p̃‖2∞‖qx‖2 + ‖q‖2∞‖p̃x‖2

≤ 2
(
‖p̃‖‖p̃x‖‖qx‖2 + ‖q‖‖qx‖‖p̃x‖2

)
≤ C3‖p̃x‖‖qx‖

(
‖qx‖+ ‖p̃x‖

)
≤ C4(δ)‖p̃x‖2‖qx‖2 + δ

(
‖p̃x‖2 + ‖qx‖2

) (2.18)

for any δ > 0, where we have used the Sobolev inequality ‖f‖2∞ ≤ 2‖f‖‖fx‖ for
f : I = [a, b]→ R satisfying f |∂I = 0 or f̄I = 0, and the uniform estimates of ‖q‖2
and ‖p̃‖2 due to (2.7) and (2.13), respectively. By choosing δ small enough, we have
from (2.16)

d

dt
L(t) +N(t) ≤ C5‖p̃x‖2‖qx‖2 ≤ 4C5‖p̃x‖2L(t), (2.19)

where

N(t) = 4C1

∫ 1

0

(p̃x)2

p
dx+

1

2
‖p̃x‖2 +

p̄

8
‖qx‖2 +

ε

2
‖qxx‖2 + 4ε(p̄+ 2C1)‖qx‖2.

Applying Gronwall’s inequality to (2.19) and using the uniform estimate (2.13), we
have

‖qx(·, t)‖2 +

∫ t

0

‖qx(·, τ)‖2 + ε‖qx(·, τ)‖2H1dτ ≤ C6. (2.20)

Substituting (2.20) back to (2.19), we have

d

dt
L(t) +N(t) ≤ C7‖p̃x‖2. (2.21)

We remark that the constants C3, ..., C7 are independent of t and ε.
Multiplying (2.12) by 4C7 and combining the resulting inequality with (2.21) we

have

d

dt
R(t) + S(t) ≤ 0, (2.22)
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where

R(t) = 4C7G(t) + L(t)

= 8C1(C7 + 1)

(∫ 1

0

η(p)− η(p̄)− η′(p̄)(p− p̄)dx+
1

2
‖q‖2

)
+ (2C7 + 1)‖p̃‖2 + 2(C7 + 1))p̄‖q‖2 +

1

4
‖qx‖2 +

∫ 1

0

(1

2
qx − p̃

)2

dx

S(t) = 4C7K(t)− C7‖p̃x‖2 +N(t)

= 4C1(C7 + 1)

∫ 1

0

(p̃x)2

p
dx+

(
C7 +

1

2

)
‖p̃x‖2 +

p̄

8
‖qx‖2

+ 4(C7 + 1)ε(p̄+ 2C1)‖qx‖2 +
ε

2
‖qxx‖2.

Step 3. H1 estimate. Taking spatial derivatives of (2.8), we have{
p̃xt − (p̃q)xx − p̄qxx = p̃xxx,

qxt − p̃xx = εqxxx + ε(q2)xx.
(2.23)

Taking L2 inner products of (2.23)1 with p̃x and (2.23)2 with p̄qx, adding the results,
we have

d

dt

(
1

2
‖p̃x‖2 +

p̄

2
‖qx‖2

)
+

1

2
‖p̃xx‖2 + εp̄‖qxx‖2

≤‖p̃qx‖2 + ‖qp̃x‖2 − 2εp̄

∫ 1

0

qqxqxxdx

≤C8‖p̃x‖2‖qx‖2 +
(
‖p̃x‖2 + ‖qx‖2

)
+
εp̄

2
‖qxx‖2 + 2εp̄‖q‖2∞‖qx‖2

≤C8‖p̃x‖2‖qx‖2 +
(
‖p̃x‖2 + ‖qx‖2

)
+
εp̄

2
‖qxx‖2

+ 4εp̄[C6(‖q0‖2 + 2d1‖p0 − p̄‖2)]1/2‖qx‖2

≤C9

(
‖p̃x‖2 + ‖qx‖2

)
+
εp̄

2
‖qxx‖2,

(2.24)

where we have used similar argument as in deriving (2.18), the Sobolev inequality:

‖q‖2∞ ≤ 2‖q‖‖qx‖ since
∫ 1

0
qdx = 0, and the uniform estimates of ‖q‖ and ‖qx‖2

obtained from (2.7) and (2.20), respectively. From above estimate we have

d

dt

(
1

2
‖p̃x‖2 +

p̄

2
‖qx‖2

)
+

1

2
‖p̃xx‖2 +

εp̄

2
‖qxx‖2 ≤ C9

(
‖p̃x‖2 + ‖qx‖2

)
. (2.25)

Multiplying (2.22) by 2C9

min{(C7+ 1
2 ), p̄8 }

and combining the resulting inequality with

(2.25) we have

d

dt
V (t) +W (t) ≤ 0, (2.26)
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where

V (t) =
2C9

min{(C7 + 1
2 ), p̄8}

R(t) +
1

2
‖p̃x‖2 +

p̄

2
‖qx‖2,

W (t) =
2C9

min{(C7 + 1
2 ), p̄8}

S(t)− C9

(
‖p̃x‖2 + ‖qx‖2

)
+

1

2
‖p̃xx‖2 +

εp̄

2
‖qxx‖2

≥2C9(4C1C7 + 4C1)

min{(C7 + 1
2 ), p̄8}

(∫ 1

0

(p̃x)2

p
dx

)
+ C9

(
‖p̃x‖2 + ‖qx‖2

)
+

1

2
‖p̃xx‖2

+
εp̄

2
‖qxx‖2 +

2C9

min{(C7 + 1
2 ), p̄8}

(
4(C7 + 1)ε(p̄+ 2C1)‖qx‖2 +

ε

2
‖qxx‖2

)
.

In particular, integrating (2.26) with respect to t we have

‖p̃x(t)‖2 +

∫ t

0

‖p̃xx(τ)‖2dτ ≤ C10. (2.27)

In view of (2.13) and (2.27) we see that ‖p̃‖2H1 ≤ C11, which gives ‖p̃‖2∞ ≤ C12.
Thus, ‖p‖∞ = ‖p̃ + p̄‖∞ is uniformly bounded from above for any t > 0. This
implies that there exist uniform-in-time constants d2, d3 > 0 such that

d2‖p̃‖2 ≤
∫ 1

0

η(p)− η(p̄)− η′(p̄)(p− p̄)dx ≤ d3‖p̃‖2. (2.28)

Hence there exist positive t-independent constants C13, ..., C16 such that

C13

(
‖p̃‖2H1 + ‖q‖2H1

)
≤ V (t) ≤ C14

(
‖p̃‖2H1 + ‖q‖2H1

)
,

C15

(
‖p̃x‖2H1 + ‖qx‖2 + ε‖qx‖2H1

)
≤W (t) ≤ C16

(
‖p̃x‖2H1 +

∫ 1

0

(p̃x)2

p
dx+ ‖qx‖2 + ε‖qx‖2H1

)
.

(2.29)

Due to the boundary conditions and Poincaré inequality: ‖f‖ ≤ ‖fx‖ on [0, 1],
we have

1

2
‖p̃‖2H1 ≤ ‖p̃x‖2 ≤ ‖p̃‖2H1 ,

1

2
‖q‖2H1 ≤ ‖qx‖2 ≤ ‖q‖2H1 ,

which together with (2.26) and (2.29) imply the exponential decay of V (t). Thus,
we have

‖p̃(t)‖2H1 + ‖q(t)‖2H1 ≤ C17

(
‖p̃(0)‖2H1 + ‖q(0)‖2H1

)
e−C18t,

for some positive constants C17 and C18. We remark that the constants C8, ..., C18

are independent of t and ε.

Step 4. H2 estimate. Differentiating system (2.8) twice in x, then taking inner
product of the first equation of resulting system with p̃xx and second equation with
p̄qxx, we obtain in a similar fashion as before

d

dt

(
1

2
‖p̃xx‖2 +

p̄

2
‖qxx‖2

)
+

1

2
‖p̃xxx‖2 +

εp̄

2
‖qxxx‖2 ≤

1

2
‖(p̃q)xx‖2 + C19ε‖qxx‖2.

(2.30)
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Similar to (2.15), we have

d

dt

(
1

2
‖qxx‖2 −

∫ 1

0

p̃xqxxdx

)
+
p̄

2
‖qxx‖2 +

ε

2
‖qxxx‖2

≤ 1

2p̄
‖(p̃q)xx‖2 + ‖p̃xx‖2 + C20ε‖qxx‖2. (2.31)

Multiplying (2.30) by 4 and combining the result with (2.31) we get

d

dt

(
1

2
‖qxx‖2 −

∫ 1

0

p̃xqxxdx+ 2‖p̃xx‖2

+ 2p̄‖qxx‖2
)

+ 2‖p̃xxx‖2 +
p̄

2
‖qxx‖2 + ε

(
2p̄+

1

2

)
‖qxxx‖2

≤
(

2 +
1

2p̄

)
‖(p̃q)xx‖2 + ‖p̃xx‖2 + C21ε‖qxx‖2.

Using previously established estimates, we can show that

‖(p̃q)xx‖2 ≤ C22

(
‖p̃x‖2∞‖qx‖2 + ‖p̃‖2∞‖qxx‖2 + ‖q‖2∞‖p̃xx‖2

)
≤ C23

(
‖p̃x‖‖p̃xx‖‖qx‖2 + ‖p̃‖‖p̃x‖‖qxx‖2 + ‖q‖‖qx‖‖p̃xx‖2

)
≤ C24

(
‖p̃xx‖‖qx‖2 + ‖p̃x‖‖qxx‖2 + ‖qx‖‖p̃xx‖2

)
≤ C25

(
‖p̃xx‖2 + ‖qx‖2

)
+ C26(δ)‖p̃x‖2‖qxx‖2 + δ‖qxx‖2.

(2.32)

By choosing δ > 0 sufficiently small we have

d

dt

(
1

2
‖qxx‖2 −

∫ 1

0

p̃xqxxdx

+ 2‖p̃xx‖2 + 2p̄‖qxx‖2
)

+ 2‖p̃xxx‖2 +
p̄

4
‖qxx‖2 + ε

(
2p̄+

1

2

)
‖qxxx‖2

≤C27

(
‖p̃xx‖2 + ‖qx‖2 + ε‖qxx‖2

)
+ C28‖p̃x‖2‖qxx‖2.

We note that, by virtue of Poincaré inequality: ‖p̃x‖2 ≤ ‖p̃xx‖2, it holds that

1

2
‖qxx‖2 −

∫ 1

0

p̃xqxxdx+ 2‖p̃xx‖2 ≥
1

4
‖qxx‖2 +

∫ 1

0

(
1

2
qxx − p̃x

)2

dx+ ‖p̃xx‖2.

(2.33)
Substituting (2.33) into the previous estimate we have

d

dt

(
1

2
‖qxx‖2 −

∫ 1

0

p̃xqxxdx

+ 2‖p̃xx‖2 + 2p̄‖qxx‖2
)

+ 2‖p̃xxx‖2 +
p̄

4
‖qxx‖2 + ε

(
2p̄+

1

2

)
‖qxxx‖2

≤C27

(
‖p̃xx‖2 + ‖qx‖2 + ε‖qxx‖2

)
+ C29‖p̃x‖2

(
1

2
‖qxx‖2 −

∫ 1

0

p̃xqxxdx+ 2‖p̃xx‖2 + 2p̄‖qxx‖2
)
.

Applying Gronwall inequality to the above estimate, using the uniform-in-time in-
tegrabilities of ‖p̃xx‖2, ‖p̃x‖2, ‖qx‖2 and ε‖qxx‖2, and applying (2.33) we have

‖p̃xx(t)‖2 + ‖qxx(t)‖2 +

∫ t

0

(
‖p̃xxx(τ)‖2 + ‖qxx(τ)‖2 + ε‖qxxx‖2

)
dτ ≤ C30. (2.34)
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Substituting the uniform estimate of ‖qxx(t)‖2 into the estimate before (2.33) we
have

d

dt

(
1

2
‖qxx‖2 −

∫ 1

0

p̃xqxxdx

+ 2‖p̃xx‖2 + 2p̄‖qxx‖2
)

+ 2‖p̃xxx‖2 +
p̄

4
‖qxx‖2 + ε

(
2p̄+

1

2

)
‖qxxx‖2

≤C31

(
‖p̃xx‖2 + ‖p̃x‖2 + ‖qx‖2 + ε‖qxx‖2

)
.

We observe that the quantity W (t) in (2.26) contains the four terms on the right
hand side of above estimate. Hence, by combining (2.26) and above estimate one
can show that

d

dt
Y (t) + Z(t) ≤ 0, (2.35)

where the quantities Y (t) and Z(t) satisfy

C32

(
‖p̃‖2H2 + ‖q‖2H2

)
≤Y (t) ≤ C33

(
‖p̃‖2H2 + ‖q‖2H2

)
,

C34

(
‖p̃‖2H3 +‖q‖2H2 +ε‖q‖2H3

)
≤Z(t)≤C35

(
‖p̃‖2H3 +

∫ 1

0

(p̃x)2

p
dx+‖q‖2H2 +ε‖q‖2H3

)
.

(2.36)
Hence, we have

‖p̃(t)‖2H2 + ‖q(t)‖2H2 +

∫ t

0

(
‖p̃(τ)‖2H3 + ‖q(τ)‖2H2 + ε‖q(τ)‖2H3

)
dτ ≤ C36, (2.37)

and

‖p̃(t)‖2H2 + ‖q(t)‖2H2 ≤ C37

(
‖p̃(0)‖2H2 + ‖q(0)‖2H2

)
e−C38t. (2.38)

We remark again that the constants C19, ..., C38 are independent of t and ε.
Step 5. Uniqueness. Suppose that there are two solutions (p1, q1) and (p2, q2).

Let p̌ = p1 − p2 and q̌ = q1 − q2. Then it is easy to see that p̌ and q̌ satisfy
p̌t − (p1q̌)x − (p̌q2)x = p̌xx,

q̌t − p̌x = εq̌xx + εq̌x(q1 + q2) + εq̌(q1 + q2)x;

(p̌, q̌)(x, 0) = (0, 0);

p̌x|x=0,x=1 = q̌|x=0,x=1 = 0.

(2.39)

Taking L2 inner products of (2.39)1 with p̌ and (2.39)2 with q̌, and adding the
results, we have

1

2

d

dt

(
‖p̌(t)‖2 + ‖q̌(t)‖2

)
+ ‖p̌x‖2 + ε‖q̌x‖2

=

∫ 1

0

(q̌ − p1q̌ − p̌q2)p̌xdx+
ε

2

∫ 1

0

(q̌)2(q1 + q2)xdx. (2.40)

Applying Cauchy-Schwarz inequality to the right-hand side of (2.40), we have∫ 1

0

(q̌ − p1q̌ − p̌q2)p̌xdx ≤
1

2
‖p̌x‖2 +

1

2
‖q̌ − p1q̌ − p̌q2‖2

≤ 1

2
‖p̌x‖2 +

3

2

(
‖q̌‖2 + ‖p1‖2∞‖q̌‖2 + ‖q2‖2∞‖p̌‖2

)
≤ 1

2
‖p̌x‖2 + C

(
‖q̌‖2 + ‖p̌‖2

)
,

(2.41)
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where we have applied the uniform estimates of ‖p1‖∞ and ‖q2‖∞. Substituting
(2.41) into (2.40), we obtain

1

2

d

dt

(
‖p̌(t)‖2 + ‖q̌(t)‖2

)
+

1

2
‖p̌x‖2 + ε‖q̌x‖2 ≤ C

(
‖q̌(t)‖2 + ‖p̌(t)‖2

)
where we used the uniform estimate of ‖(q1 + q2)x‖∞. In particular, it holds that

1

2

d

dt

(
‖p̌(t)‖2 + ‖q̌(t)‖2

)
≤ C

(
‖q̌(t)‖2 + ‖p̌(t)‖2

)
. (2.42)

Then solving (2.42) with the initial conditions in (2.39) yields that ‖q̌(t)‖2+‖p̌(t)‖2 =
0 and hence the uniqueness of the solution follows. The proof of Theorem 1.1 is
complete. �

3. Diffusion limit and convergence rate (proof of Theorem 1.2). In this
section we study the diffusion limit and convergence rate of (1.5) toward the non-
diffusive problem (i.e., (1.5) with ε = 0) when ε→ 0. Let (p, q) and (pε, qε) be the
solutions to the non-diffusive problem and the diffusive problem, respectively, with

the same initial data. Let p̃ = p− p̄, p̂ = p−pε and q̂ = q−qε where p̄ =
∫ 1

0
p0(x)dx.

Then we have the following IBVP:

p̂t − (p̃q̂)x − p̄q̂x − (p̂qε)x = p̂xx,

q̂t − p̂x = −εqεxx − ε[(qε)2]x;

(p̂, q̂)(x, 0) = (0, 0);

p̂x|x=0,1 = q̂|x=0,1;

p̃x|x=0,1 = qε|x=0,1 = 0.

(3.1)

Taking L2 inner products of (3.1)1 with p̂ and (3.1)2 with p̄q̂ we have

1

2

d

dt
(‖p̂‖2+p̄‖q̂‖2)+‖p̂x‖2 =

∫ 1

0

[(p̃q̂)x+(p̂qε)x]p̂dx−εp̄
∫ 1

0

{
qεxx + [(qε)2]x

}
q̂dx

= −
∫ 1

0

(p̃q̂ + p̂qε)p̂xdx+ εp̄

∫ 1

0

[qεx + (qε)2]q̂xdx,

which gives by Hölder’s inequality

1

2

d

dt
(‖p̂‖2+p̄‖q̂‖2)+‖p̂x‖2≤

(
‖p̃‖∞‖q̂+‖qε‖∞‖p̂‖)‖p̂x‖+εp̄(‖qεx‖+‖qε‖∞‖qε‖

)
‖q̂x‖

≤
(
‖(p̃, qε)‖∞‖(p̂, q̂)‖

)
‖p̂x‖+ Cε‖qε‖H1‖q̂x‖.

(3.2)
Using the first two equations of (3.1) we have

q̂xt + p̄q̂x = −(p̃q̂)x − (p̂qε)x − εqεxxx − ε[(qε)2]xx + p̂t. (3.3)

Taking L2 inner product of (3.3) with q̂x we have

1

2

d

dt
‖q̂x‖2 + p̄‖q̂x‖2

=−
∫ 1

0

[(p̃q̂)x + (p̂qε)x]q̂xdx− ε
∫ 1

0

{
qεxxx + [(qε)2]xx

}
q̂xdx+

∫ 1

0

p̂tq̂xdx. (3.4)

For the last term on the right hand side of (3.4), by using (3.1)2 we have∫ 1

0

p̂tq̂xdx =
d

dt

∫ 1

0

p̂q̂xdx+ ‖p̂x‖2 − ε
∫ 1

0

{
qεxx + [(qε)2]x

}
p̂xdx. (3.5)
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Substituting (3.5) into (3.4) one has

d

dt

(
1

2
‖q̂x‖2 −

∫ 1

0

p̂q̂xdx

)
+ p̄‖q̂x‖2

=−
∫ 1

0

[(p̃q̂)x + (p̂qε)x]q̂xdx+ ‖p̂x‖2

− ε
∫ 1

0

{
qεxxx + [(qε)2]xx

}
q̂xdx− ε

∫ 1

0

{
qεxx + [(qε)2]x

}
p̂xdx

≤
(
‖(p̃, p̃x, qε, qεx)‖∞‖(p̂, p̂x, q̂, q̂x)‖

)
‖q̂x‖+ ‖p̂x‖2 + Cε‖qε‖H3

(
‖p̂x‖+ ‖q̂x‖

)
.

(3.6)

Taking spatial derivatives of the first two equations of (3.1) we get{
p̂xt − (p̃q̂)xx − p̄q̂xx − (p̂qε)xx = p̂xxx,

q̂xt − p̂xx = −εqεxxx − ε[(qε)2]xx.
(3.7)

Taking L2 inner products of (3.7)1 with p̂x and (3.7)2 with p̄q̂x we have

1

2

d

dt
(‖p̂x‖2 + p̄‖q̂x‖2) + ‖p̂xx‖2

=−
∫ 1

0

[(p̃q̂)x + (p̂qε)x]p̂xxdx− εp̄
∫ 1

0

{
qεxxx + [(qε)2]xx

}
q̂xdx

≤
(
‖(p̃, p̃x, qε, qεx)‖∞‖(p̂, p̂x, q̂, q̂x)‖

)
‖p̂xx‖+ Cε‖qε‖H3‖q̂x‖

(3.8)

where the results of Theorem 1.1 and the Sobolev inequality ‖f‖2∞ ≤ C‖f‖2H1 have
been used.

By multiplying (3.2) by 4 and then taking the sum of the result with (3.6) and
(3.8) one has

d

dt
X(t) + Y (t) ≤C

(
‖(p̃, p̃x, qε, qεx)‖∞‖(p̂, p̂x, q̂, q̂x)‖

)(
‖p̂x‖+ ‖p̂xx‖+ ‖q̂x‖

)
+ Cε‖qε‖H3

(
‖p̂x‖+ ‖q̂x‖

)
,

where

X(t) = 2‖p̂‖2 + 2p̄‖q̂‖2 +
1

2
‖q̂x‖2 −

∫ 1

0

p̂q̂xdx+
1

2
‖p̂x‖2 +

p̄

2
‖q̂x‖2,

Y (t) = 3‖p̂x‖2 + p̄‖q̂x‖2 + ‖p̂xx‖2.

Here we should remark that X(t) is non-negative for all t ≥ 0. Indeed by Young’s

inequality ab ≤ a2

4 + b2 for all a, b ≥ 0, we have
∫ 1

0
p̂q̂xdx ≤ 1

4

∫ 1

0
q̂2
xdx+

∫ 1

0
p̂2dx =

1
4‖q̂x‖

2 + ‖p̂‖2, and hence

X(t) ≥ ‖p̂‖2 + 2p̄‖q̂‖2 +
1

4
‖q̂x‖2 +

1

2
‖p̂x‖2 +

p̄

2
‖q̂x‖2.

Therefore, by Cauchy-Schwarz inequality we obtain

d

dt
X(t) +

1

2
Y (t) ≤ C

(
‖p̃‖2∞ + ‖p̃x‖2∞ + ‖qε‖2∞ + ‖qεx‖2∞

)
X(t) + Cε2‖qε‖2H3

≤ C
(
‖p̃‖2H2 + ‖qε‖2H2

)
X(t) + Cε2‖qε‖2H3 .

Gronwall’s inequality then implies that

X(t) ≤ C exp

{
C

∫ t

0

(
‖p̃‖2H2 + ‖qε‖2H2

)
dτ

}
· ε
∫ t

0

ε‖qε‖2H3dτ.
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Using the uniform temporal integrabilities of ‖p̃‖2H2 , ‖qε‖2H2 and ε‖qε‖2H3 , see The-
orem 1.1, we finally get

X(t) +

∫ t

0

Y (τ)dτ ≤ Cε

for some constant C > 0 which is independent of t. In particular, it holds that

‖p− pε‖2H1 + ‖q − qε‖2H1 +

∫ t

0

(
‖p− pε‖2H2 + ‖q − qε‖2H1

)
dτ ≤ Cε. (3.9)

Moreover, by Sobolev embedding we have

‖p− pε‖2L∞ + ‖q − qε‖2L∞ ≤ Cε.

This completes the proof of Theorem 1.2. �

4. Results for the original chemotaxis model. In this section we study long-
time dynamics, diffusion limit and convergence rate of the original model (1.2) based
on the results for the transformed system (1.5).

4.1. Long-time dynamics (proof of Corollary 1). Let (u, v) be the solution to
(1.6). Since the dynamics of u = p is clear from Theorem 1.1, we are only concerned
with the dynamics of the original function v. We consider the following equation

[ln(v)]t = u− µ+ εqx + εq2

where q = [ln(v)]x = [ln(veµt)]x. Integrating the above equation over [0, 1] × [0, t]
we get ∫ 1

0

ln(v)dx =

∫ 1

0

ln(v0)dx+ (ū− µ)t+ ε

∫ t

0

‖q‖2dτ.

Define

ξ(x, t) = ln(v)−
∫ 1

0

ln(v0)dx− (ū− µ)t− ε
∫ t

0

‖q‖2dτ. (4.1)

It is straightforward to check that

ξx = q, and

∫ 1

0

ξ(x, t)dx = 0.

By Poincaré inequality we have ‖ξ‖2 ≤ ‖q‖2. From (2.38) we see that

‖ξ(t)‖2H3 ≤ αe−βt (4.2)

for some positive constants α and β which are independent of t.
Now from (4.1) we see that

v(x, t) = exp

{
ξ(x, t) +

∫ 1

0

ln(v0)dx+ ε

∫ t

0

‖q‖2dτ
}

exp {(ū− µ)t} .

From (2.37) and (4.2) one sees that

γ1 exp {(ū− µ)t} ≤ v(x, t) ≤ γ2 exp {(ū− µ)t}

for some positive constants γ1 and γ2 which are independent of t. Thus

v(x, t)→ 0 as t→∞, when ū < µ,

v(x, t)→ +∞ as t→∞, when ū > µ.

This completes the proof of Corollary 1. �
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4.2. Diffusion limit and convergence rate (proof of Corollary 2). Let (uε, vε)
be the solution to (1.6) and (u, v) be the solution to (1.6) with ε = 0. Noticing that
uε = pε and u = p, the first part of Corollary 2 is obtained directly from Theorem
1.2. It remains to prove the convergence for vε only. Note that{

[ln(vε)]t = uε − µ+ εqεx + ε(qε)2,

[ln(v)]t = u− µ,
(4.3)

where qε = [ln(vε)]x. We consider the difference of the two equations:

[ln(vε)− ln(v)]t = (uε − u) + εqεx + ε(qε)2. (4.4)

Integrating the above inequality with respect to t one has

vε(x, t)

v(x, t)
=
vε(x, 0)

v(x, 0)
exp

{∫ t

0

[
(uε − u) + εqεx + ε(qε)2

]
dτ

}
.

Since it is assumed that vε(x, 0) = v(x, 0), it follows that

|vε(x, t)−v(x, t)| = |v(x, t)| ·
∣∣∣∣exp

{√
ε

(∫ t

0

[
(uε − u)√

ε
+
√
εqεx+

√
ε(qε)2

]
dτ

)}
−1

∣∣∣∣ .
Next, it follows from Hölder’s inequality that∫ t

0

[
(uε − u)√

ε
+
√
εqεx +

√
ε(qε)2

]
dτ

≤ 1√
ε

∫ t

0

‖uε − u‖L∞dτ +
√
ε

∫ t

0

‖qεx‖L∞dτ +
√
ε

∫ t

0

‖qε‖2L∞dτ

≤ 1√
ε

(∫ t

0

‖uε − u‖2L∞dτ
) 1

2

t
1
2 +
√
ε

(∫ t

0

‖qεx‖2L∞dτ
) 1

2

t
1
2 +
√
ε

∫ t

0

‖qε‖2L∞dτ

≤ 1√
ε

(∫ t

0

‖uε − u‖2H1dτ

) 1
2

t
1
2 +
√
ε

(∫ t

0

‖qεx‖2H1dτ

) 1
2

t
1
2 +
√
ε

∫ t

0

‖qε‖2H1dτ

≤ 1√
ε

(Cε)
1
2 t

1
2 +
√
ε (C36)

1
2 t

1
2 +
√
εC36

≤C(t),

where we have used the estimates (3.9) and (2.37), and the smallness of ε.
From [11] we know that the non-diffusive chemical concentration v(x, t) satisfies

|v(x, t)| ≤

C, if

∫ 1

0

u0(x)dx = ū ≤ µ,

Ce(ū−µ)t, if ū > µ

where the constant C is independent of t.
From the above estimates we know that for any fixed t > 0 it holds that

‖vε − v‖L∞ = O(
√
ε).

Hence,

‖vε − v‖2L∞ = O(ε).

This completes the proof of Corollary 2. �
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5. Numerical illustrations. Generally it is unfeasible to simulate the chemotaxis
model (1.2) directly by the routine numerical scheme due to the singularity term
∇ ln(v) = ∇v/v. By noting that the transformed system (1.4) removes the singular-
ity appearing in (1.2), the Hopf-Cole transformation (1.3) enables us to study the
model not only analytically (as shown in the paper) but also numerically. From the
original chemotaxis model (1.2) to the transformed parabolic system (1.4), the cell
density u = p remains the same. Therefore we can numerically solve system (1.4) to
obtain the numerical value of u. Nevertheless it is mathematically interesting alone
to numerically investigate system (1.4) as a newly derived system of conservations
laws from biology.
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Figure 1. Numerical solutions to system (1.5) in (0, 1) with
initial data p0(x) = 3(x2/2−x3/3), q0(x) = x(1−x), ε = 1. (a)-(b)
plot the snapshot of solutions at different time steps, and (c)-(d)
plot time evolution of solutions at a fixed position x = 0.1.

In this section, we shall numerically illustrate the analytical results derived in
this paper for the one-dimensional version of model (1.4), i.e. model (1.5). We are
particularly interested in showing the asymptotical behavior and diffusion limits
of solutions. The Matlab PDE solver will be implemented to solve system (1.5)
in (0, 1), where the time step size ∆t = 0.01 and spatial step size ∆x = 0.01.
Numerical results are presented in Fig. 1 and Fig. 2.

In the simulation, we choose initial data p0(x) = 3(x2/2−x3/3), q0(x) = x(1−x)

such that the conditions of Theorem 1.1 are satisfied where p̄ =
∫ 1

0
p0(x)dx = 0.25.

By Theorem 1.1, the solutions p and q converge to 0.25 and 0, respectively. Fig. 1
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(a)-(b) plot the snapshot of solutions at different time steps, which illustrate that
the solution p asymptotically approaches 0.25 and q asymptotically approaches 0.
Fig. 1 (c)-(d) give alternate visualization of the asymptotics of solutions where the
time evolution of solutions at a specific location x = 0.2 was plotted.

Fig. 2 numerically illustrates the diffusion limit of solutions as ε→ 0 at a given
time step T = 20. It shows that, as ε → 0, the solution profiles are getting closer
to the solution profiles with ε = 0. This is consistent with Theorem 1.2.
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Figure 2. Numerical solutions to system (1.5) in (0, 1) at time
step T = 20 for different values of ε, where the initial data was the
same as in Figure 1.
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