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This paper considers the stationary problem of density-suppressed motility models proposed in Fu et al.
(2012) and Liu et al. (2011) in one dimension with Neumman boundary conditions. The models consist
of parabolic equations with cross-diffusion and degeneracy. We employ the global bifurcation theory
and Helly compactness theorem to explore the conditions under which non-constant stationary (pattern)
solutions exist and asymptotic profiles of solutions as some parameter value is small. When the cell
growth is not considered, we are able to show the monotonicity of solutions and hence achieve a global
bifurcation diagram by treating the chemical diffusion rate as a bifurcation parameter. Furthermore, we
show that the solutions have boundary spikes as the chemical diffusion rate tends to zero and identify
the conditions for the non-existence of non-constant solutions. When transformed to specific motility
functions, our results indeed give sharp conditions on the existence of non-constant stationary solutions.
While with the cell growth, the structure of global bifurcation diagram is much more complicated and
in particular the solution loses the monotonicity property. By treating the growth rate as a bifurcation
parameter, we identify a minimum range of growth rate in which non-constant stationary solutions are
warranted, while a global bifurcation diagram can still be attained in a special situation. We use numerical
simulations to test our analytical results and illustrate that patterns can be very intricate and stable
stationary solutions may not exist when the parameter value is outside the minimal range identified in
our paper.

Keywords: density-suppressed motility; stationary solutions; global bifurcation theory; Helly compact-
ness theorem; pattern formation.

1. Introduction

The reaction–diffusion models have played key roles in mathematical biology in reproducing a wide
variety of exquisite spatio-temporal patterns arising in embryogenesis, development and population
dynamics due to the diffusion-driven (Turing) instability (Kondo & Miura, 2010; Murray, 2001). Many
of them invoke nonlinear diffusion enhanced by the local environment condition to accounting for
population pressure (cf. Méndez et al., 2012), volume exclusion (cf. Dyson & Bakerm, 2015; Painter
& Hillen, 2002) or avoidance of danger (cf. Murray, 2001), and so on. However, the opposite situation
may occur where the species will slow down its random diffusion rate when encountering external
signals such as the predator in pursuit of the prey (Jin & Wang, 2021b; Kareiva & Odell, 1987) and
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578 Z.-A. WANG AND X. XU

the bacterial in searching food (Keller & Segel, 1971, 1970). Recently, a so-called ‘self-trapping’
mechanism was introduced in Liu et al. (2011) by a synthetic biology approach onto programmed
bacterial Escherichia coli cells, which excrete signalling molecules acyl-homoserine lactone (AHL)
such that at low AHL level, the bacteria undergo run-and-tumble random motion and are motile, while at
high AHL levels, the bacteria tumble incessantly and become immotile due to the vanishing macroscopic
motility. Remarkably, E. coli cells formed the outward expanding stripe (wave) patterns in the petri dish.
To understand the underlying patterning mechanism, the following three-component reaction–diffusion
system has been proposed in Liu et al. (2011)

⎧⎪⎪⎨⎪⎪⎩
ut = Δ(γ (v)u) + αw2u

w2+μ
, x ∈ Ω , t > 0,

vt = dΔv + u − v, x ∈ Ω , t > 0,

wt = Δw − w2u
w2+μ

, x ∈ Ω , t > 0,

(1.1)

where u(x, t), v(x, t) and w(x, t) denote the bacterial cell density, concentration of AHL and nutrient
density, respectively; α, μ, d > 0 are constants and Ω is bounded domain in R

N(N ≥ 1). The first
equation of (1.1) describes the random motion of bacterial cells with an AHL-dependent motility
coefficient γ (v), and a cell growth due to the nutrient intake. The second equation of (1.1) describes
the diffusion, production and turnover of AHL, while the third equation describes the dynamics of
diffusion and consumption on nutrient. The most of existing reaction–diffusion systems usually assume
that the diffusion rate is constant or depend on the density of species itself, except the cross-diffusion
systems (cf. Lou & Ni, 1996). The prominent feature of the system (1.1) is that the bacterial diffusion
rate is a function γ (v) depending on external signal density v, which satisfies γ ′(v) < 0 by taking into
account the repressive effect of AHL concentration on the bacterial motility (cf. Liu et al., 2011). This
monotone decreasing property of γ (v) distinguishes the nonlinear diffusion in (1.1) from the cross-
diffusion systems (cf. Lou & Ni, 1996).

Though the system (1.1) may numerically reproduce some key features of experimental observations
as illustrated in Liu et al. (2011), its mathematical analysis seems not easy. Later, an alternative simpli-
fied two-component so-called ‘density-suppressed motility’ model was proposed in Fu et al. (2012):

{
ut = Δ(γ (v)u) + σu(1 − u), x ∈ Ω , t > 0,

vt = dΔv + u − v, x ∈ Ω , t > 0,
(1.2)

where the reduced growth rate of cells at high density was used to approximate the nutrient depletion
effect in the system (1.1). By expanding the Laplacian term in the first equation of (1.2), we shall find
the motility function γ (v) produces cross-diffusion effect, and more importantly the decay property
γ ′(v) < 0 may lead to degenerate diffusion. Therefore the mathematical analysis of the above systems is
non-trivial and no mathematical result has been available for (1.1) as we know. There are only few results
obtained recently for the simplified system (1.2) with Neumann boundary conditions as recalled below.

(i) σ = 0. The existence of global classical solutions of (1.2) in any dimensions has been
established in Yoon & Kim (2017) in the case of γ (v) = c0/vk(k > 0) for small c0 > 0. The
smallness assumption on c0 is removed lately for the parabolic-elliptic case with 0 < k < 2

n−2
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DENSITY-SUPPRESSED MOTILITY MODEL 579

in Ahn & Yoon (2019). When γ (v) = 1
c+vk (k > 0, c ≥ 0), the existence of global weak

solutions of (1.2) with large initial data in dimensions n ∈ {1, 2, 3} was established in
Desvillettes et al. (2019) under some constraints for k in different dimensions. However, the
solution of (1.2) with σ = 0 may blow up if γ (v) has a faster decay than algebraic decay. For
example, if γ (v) = e−χv, by constructing a Lyapunov functional, it is proved in Jin & Wang
(2020) that there exists a critical mass m∗ = 4π

χ
such that the solution of (1.2) with σ = 0

exists globally with uniform-in-time bound if
∫
Ω

u0dx < m∗ while blows up if
∫
Ω

u0dx > m∗
in two dimensions, where u0 denotes the initial value of u. It was further shown in Fujie &
Jiang (2020a) that the blow-up time is infinity.

(ii) σ > 0. It appears that the cell growth (i.e. σ > 0) has a strong impact on the dynamics
of (1.2) and bring many differences than the case σ = 0. The first result on the global
existence and large time behavior of solutions was established in Jin et al. (2018). More
precisely, it is shown in Jin et al. (2018) that the system (1.2) with σ > 0 has a unique
global classical solution in two dimensions under the following assumptions on the motility
function γ (v):

(H0) γ (v) ∈ C3([0, ∞)), γ (v) > 0 and γ ′(v) < 0 on [0, ∞), lim
v→∞ γ (v) = 0 and

lim
v→∞

γ ′(v)
γ (v) exists.

Moreover, the constant steady state (1, 1) of (1.2) is proved to be globally asymptotically stable

if σ >
K0
16 where K0 = max

0≤v≤∞
|γ ′(v)|2
γ (v) . The global existence result has been extended to higher

dimensions (n ≥ 3) for large σ > 0 in Wang & Wang (2019). Recently, the last condition
‘ lim
v→∞

γ ′(v)
γ (v) exists’ was improved in Jin & Wang (2021a) and removed in Fujie & Jiang (2020b)

in the case of parabolic-elliptic case (i.e. the second equation of (1.2) is replaced by dΔv +
u − v = 0). On the other hand, for small σ > 0, the existence/non-existence of non-constant
steady states of (1.2) was rigorously established under some constraints on the parameters in
Ma et al. (2020) and the periodic pulsating wave is analytically approximated by the multi-scale
analysis. When γ (v) is a piecewise constant function, the dynamics of discontinuity interface
was studied in Smith-Roberge et al. (2019).

The above-mentioned are the results available to the system (1.2). It appears that the results for
(1.1) are very limited and there is only one work (Jin et al., 2020) addressing the global existence and
asymptotic behavior of solutions under some stringent assumption on the motility function γ (v). The
purpose of this paper is to investigate the existence of non-constant stationary (classical) solutions to
the density-suppressed motility models (1.1) and (1.2) with Neumann boundary conditions. First the
stationary problem of (1.2) with Neumann boundary conditions reads as

⎧⎪⎨⎪⎩
Δ(γ (v)u) + σu(1 − u) = 0, x ∈ Ω ,

dΔv + u − v = 0, x ∈ Ω ,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω ,

(1.3)

where ν denotes the unit outward normal vector of ∂Ω . Next we claim that the non-constant stationary
solutions of (1.1) are also determined by the above stationary problem (1.3) with σ = 0. Indeed the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/3/577/6283599 by H

ong Kong Polytechnic U
niversity user on 10 June 2021



580 Z.-A. WANG AND X. XU

stationary problem of (1.1) with Neumann boundary conditions is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ(γ (v)u) + αw2u

w2+λ
= 0, x ∈ Ω ,

dΔv + u − v = 0, x ∈ Ω ,

Δw − w2u
w2+λ

= 0, x ∈ Ω ,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω .

(1.4)

Multiplying the third equation of (1.4) by w and then integrating the result by part, we end up with

∫
Ω

|∇w|2 +
∫

Ω

uw3

w2 + λ
= 0. (1.5)

For biologically meaningful solution u ≥ 0, w ≥ 0, we have two conclusions from (1.5): (1) w is a non-
zero constant and u ≡ 0; or (2) w ≡ 0 and u ≥ 0 satisfies (1.3) with σ = 0. However, the case (1) gives
only constant solutions, which is not our interest. In case (2), the non-constant solution of (1.4) will
be (u, v, 0) where (u, v) is determined by (1.3) with σ = 0. Therefore, in this paper, we shall focus on
the stationary problem (1.3) with σ ≥ 0 and explore the existence of non-constant solutions. Note that
stationary problem (1.3) with σ > 0 has been studied recently in Ma et al. (2020) under the hypotheses
(H0). This paper will complement the results by Ma et al. (2020) with the case σ = 0. For the case
σ > 0, the system (1.3) was only partially understood and many interesting questions still open. This
paper will fill some gaps left in Ma et al. (2020) for the case σ > 0.

Due to the appearance of cross-diffusion and possible degeneracy as mentioned above, the
mathematical study of (1.3) is non-trivial. The paper (Ma et al., 2020) cleverly uses an idea by defining
ũ = γ (v)u to transform the system (1.3) into an elliptic system without cross-diffusion and degeneracy,
but the reaction terms become very complicated. Hence, the non-existence of non-constant solutions
is partially obtained under certain assumptions, and the existence results established by the method of
topological degree are rather weak. In this paper, we shall explore the existence of non-constant classical
solutions of (1.3) in one dimension with explicit conditions on parameters. For the case σ = 0, we treat
the chemical diffusion rate d > 0 as a bifurcation parameter and find explicit sharp parameter regimes
for the existence of monotone solutions of (1.3) by the global bifurcation theory. Moreover, we show
that the solution (u, v) has a boundary spike as d → 0 by using the Helly compactness theorem. For the
case σ > 0, it is very hard to find monotone solutions and hence a complete global bifurcation diagram
becomes elusive. Luckily we still can use the global bifurcation to find a specific (minimal) range of
σ > 0 so that (1.3) admits non-constant solutions. This is an essential improvement of the results by
Ma et al. (2020) where no any specific range of σ was found to warrant the existence of non-constant
solutions to (1.3). We shall detail these in the upcoming sections. Throughout paper, whenever we say a
solution of (1.3), it always means a positive classical solution without particular mention.

The rest of this paper is organized as follows. In section 2, we shall perform the global bifurcation
analysis for system (1.3) with σ = 0 and identify the range of d for the existence of non-constant
solutions. In section 3, the case σ > 0 will be explored and a minimal range of σ > 0 is explicitly
found to warrant the existence of non-constant solutions. Numerical simulations are shown to verify our
analytical results and predict the possible results for the situations not proved in the paper. Finally, in
section 4, we summarize our results and discuss some open questions with some speculations based on
numerical simulations.
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DENSITY-SUPPRESSED MOTILITY MODEL 581

2. Steady states without growth (i.e. σ = 0)

In this section, we shall consider the steady state problem (1.3) with σ = 0 with Neumann boundary
condition in one dimension. Without loss of generality, we assume Ω = (0, l). Then the concerned
problem is the following:

⎧⎨⎩
(γ (v)u)xx = 0, x ∈ (0, l),
dvxx − v + u = 0, x ∈ (0, l),
vx = ux = 0, x = 0, l,

(2.6)

where d > 0 is a constant and the motility function satisfies the following mild condition:

(H1) γ (v) ∈ C2(0, ∞), γ (v) > 0 and γ ′(v) < 0.

Note that the conditions (H1) are much weaker than (H0) imposed in Jin et al. (2018) for time-
dependent problem (1.2).

2.1 Existence

The first equation of (2.6) with Neumann boundary conditions implies that total mass of u is conserved,
and the second equation of (2.6) with the Neumann boundary condition entails that the cell and chemical
have the same mass (i.e.

∫ l
0 udx = ∫ l

0 vdx). Therefore, in the sequel, we suppose

1

l

∫ l

0
u(x)dx = 1

l

∫ l

0
v(x)dx = ω, (2.7)

where ω > 0 is a fixed number denoting the cell mass. Then the stationary problem with mass restriction
becomes

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[γ (v)u]xx = 0, x ∈ (0, l),

dvxx − v + u = 0, x ∈ (0, l),

vx = ux = 0, x = 0, l,
1
l

∫
Ω

u(x)dx = ω.

(2.8)

We give a priori estimates first.

Lemma 2.1 Let (u, v) be a positive classical solution of (2.8) in [0, l] with the hypothesis (H1). Then it
holds that

ωl√
d sinh l√

d

= ϑ1 ≤ v(x) ≤ ϑ2 = ω + ωl2

d
(2.9)
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582 Z.-A. WANG AND X. XU

and

ω exp
(

− ωl2

d
K
)

≤ u ≤ ω exp
(ωl2

d
K
)

, (2.10)

where K = supϑ1≤v≤ϑ2

|γ ′(v)|
γ (v) .

Proof. Denote G(x; x0) as the Green’s function for any fixed x0 ∈ (0, l) and it satisfies

{ −dGxx + G = δ(x − x0), x ∈ (0, l),
Gx(0; x0) = Gx(l; x0) = 0.

Then G can be explicitly given by

G(x; x0) =

⎧⎪⎪⎨⎪⎪⎩
cosh

(l−x0)√
d√

d sinh l√
d

cosh 1√
d

x, x ∈ (0, x0),

cosh 1√
d

x0√
d sinh l√

d

cosh (l−x)√
d

, x ∈ (x0, l).

Obviously, G(x; x0) ≥ 1√
d sinh l√

d

for x, x0 ∈ (0, l). By the v-equation we have

v(x0) =
∫ l

0
G(x; x0)u(x)dx ≥ 1√

d sinh l√
d

∫ l

0
u(x)dx = ωl√

d sinh l√
d

= ϑ1, ∀x0 ∈ (0, l).

This prove the first inequality in (2.9).
Recall that

∫ l

0
v(x)dx = ωl.

With the fact that v′(x) = ∫ x
0 v′′(y)dy and v′(0) = 0, and we again use the v−equation to obtain

dv′(x) =
∫ x

0
(v − u)dy.

Note that u, v ≥ 0. Then it follows from (2.7) that |dv′(x)| ≤ ωl. Take x0 ∈ [0, l] such that v(x0) =∫ l
0 v(x)dx

l = ω by the mean value theorem for integrals. Then we have the following estimate for v(x):

v(x) = v(x0) +
∫ x

x0

v′(y)dy ≤ ω + ωl2

d
= ϑ2.
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DENSITY-SUPPRESSED MOTILITY MODEL 583

By u−equation in (2.6) and Neumann boundary conditions, we have

γ (v)u′ = −γ ′(v)uv′ or
u′

u
= −γ ′(v)v′

γ (v)
. (2.11)

So

|(ln u)′| =
∣∣∣γ ′(v)
γ (v)

v′
∣∣∣ ≤ ωl

d

|γ ′(v)|
γ (v)

.

Take y0 ∈ [0, l] such that u(y0) = ω. Then the integration from y0 to x gives us (2.10). �
We shall use the diffusion rate d as the bifurcation value for the bifurcation theory. To this end,

we introduce some notations. Let X = H2
N(0, l) = {u ∈ H2(0, l)|u′(0) = 0 = u′(l)}, Y = L2(0, l),

Y0 = {u ∈ L2(0, l)| ∫ l
0 u(x)dx = 0}. Define F : R+ × X × X → Y0 × Y × R such that

F(d, u, v) =
⎛⎝ −[γ (v)u]xx−dvxx + v − u∫ l

0 u(x)dx − ωl

⎞⎠ .

Observe that (u, v) is a solution of system F(d, u, v) = 0 is equivalent to that (u, v) is a solution of (2.8).
For any fixed point (d, u1, v1) ∈ R

+ × X × X, we have the Fréchet derivative

D(u,v)F(d, u1, v1)(u, v) =
⎛⎝ −[γ ′(v1)u1v + γ (v1)u]xx−dvxx + v − u∫ l

0 u(x)dx

⎞⎠ . (2.12)

Then the following results can be obtained.

Lemma 2.2 For any fixed point (u1, v1) ∈ X × X, the Fréchet derivative

D(u,v)F(d, u1, v1) : X × X → Y0 × Y × R

is a Fredholm operator with index 0.

Proof. Note that the second-order derivative terms of u and v in the first line of (2.12) are −γ ′(v1)u1vxx
and −γ (v1)uxx. Denote

D(u,v)F(d, u1, v1)(u, v) � F1(u, v) + F2(u, v),

where

F1(u, v) =
⎛⎝ −[γ ′(v1)u1v + γ (v1)u]xx−dvxx + v − u

0

⎞⎠ , F2(u, v) =
⎛⎝ 0

0∫ l
0 u(x)dx

⎞⎠ .
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584 Z.-A. WANG AND X. XU

For F1, the second-order derivatives of u and v in F1 can be written as

−
(

γ (v1) γ ′(v1)u1
0 d

)(
u
v

)
xx

,

and then we have the conclusion that

D(u,v)F(σ , u1, v1)(u, v) : X × X → Y0 × Y × R

is a Fredholm operator with index zero by a similar argument as in the proof of Lemma 2.3 in Wang
& Xu (2013). Clearly, F2 is linear and compact. So the compact perturbation, F2, does not change the
Fredholmness and the Fredholm index of F1. This completes the proof. �

We aim to find all possible bifurcation values of d. Recall for a positive constant steady state (d, ω, ω)

(ω > 0), the necessary condition for bifurcation to occur is that the null space of D(u,v)F(d, ω, ω) is non-
trivial, i.e. N(D(u,v)F(d, ω, ω)) = {0}. According to (2.12), we know the null space of D(u,v)F(d, ω, ω)

is the space of solution (u, v) satisfying

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−γ (ω)uxx − γ ′(ω)ωvxx = 0, x ∈ (0, l),

−dvxx + v − u = 0, x ∈ (0, l),

ux = vx = 0, x = 0, l,∫ l
0 u(x)dx = 0.

(2.13)

Since the system (2.13) is linear with Neumann boundary conditions, its solution is of the form

u =
∞∑

m=0

tm cos
mπx

l
and v =

∞∑
m=0

sm cos
mπx

l
. (2.14)

Substituting above expansions of u, v into (2.13), we arrive at{
γ (ω)tm + γ ′(ω)ωsm = 0,
dm2π2

l2
sm + sm − tm = 0.

(2.15)

The condition
∫ l

0 u(x)dx = 0 applied to (2.14) immediately implies that t0 = s0 = 0. So the equation
(2.15) have non-trivial solutions if and only if d = d̄m such that

−γ ′(ω)ω

γ (ω)
= 1 + d̄mm2π2

l2
, m = 1, 2, · · · . (2.16)

Clearly, the null space is one-dimensional and

N(D(u,v)F(d̄m, ω, ω)) = span{(ūm, v̄m)},
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DENSITY-SUPPRESSED MOTILITY MODEL 585

where (ūm, v̄m) = ( d̄mm2π2

l2
+ 1, 1) cos mπx

l , m = 1, 2, · · · . So if we can choose (ω, ω) such that d̄m =( − γ ′(ω)ω
γ (ω)

− 1
) l2

m2π2 > 0 along with the condition |γ ′(ω)ω|
γ (ω)

− 1 > 0, we can carry out the bifurcation
analysis for the chemical diffusion rate d > 0.

To use the local bifurcation theorem (Theorem A.1), we need to check the transversality condition:

D(u,v)dF(d̄m, ω, ω)(ūm, v̄m) /∈ R(D(u,v)F(d̄m, ω, ω)). (2.17)

Assuming, by contradiction, that (2.17) is false, then there exists (ũ, ṽ) ∈ X × X such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−γ (ω)ũxx − γ ′(ω)ωṽxx = 0, x ∈ (0, l),

−d̄mṽxx + ṽ − ũ = m2π2

l2
cos mπx

l , x ∈ (0, l),

ũx = ṽ = 0, x = 0, l,∫ l
0 ũ(x)dx = 0.

Similarly, we substitute the expansions ũ = ∑∞
m=0 t̃m cos mπx

l andṽ = ∑∞
m=0 s̃m cos mπx

l into the above
system and find that t̃m and s̃m satisfy{

γ (ω)t̃m + γ ′(ω)ωs̃m = 0,
d̄mm2π2

l2
s̃m + s̃m − t̃m = m2π2

l2
.

(2.18)

With (2.16), the second equation of (2.18) can be written as γ (ω)t̃m+γ ′(ω)ωs̃m = −m2π2γ (ω)

l2
. Inserting

this into the first equation of (2.18), we have −m2π2γ (ω)

l2
= 0, which is impossible since m ≥ 1. This

verifies the transversality condition.
Applying Theorem A.1, we obtain that ∀m ≥ 1, d̄m is a bifurcation value and hence there exists a

δ > 0 and continuous functions: s ∈ (−δ, δ) �→ dm(s) ∈ R and s ∈ (−δ, δ) �→ (um(s), vm(s)) ∈ X × X
such that dm(0) = d̄m and

(um(s, x), vm(s, x)) = (ω, ω) + s(ūm(x), v̄m(x)) + o(s) (2.19)

is a solution of (2.8). Moreover, all non-constant solutions of (2.8) near the bifurcation point (d̄m, ω, ω)

lie on the curve

Cm = (dm(s), um(s, x), vm(s, x)), s ∈ (−δ, δ).

Now we are ready to prove the following existence result on the non-constant solutions to (2.8).

Theorem 2.1 For any fixed constant ω > 0 such that |γ ′(ω)|ω
γ (ω)

− 1 > 0, if

0 < d < d̄1,

where d̄1 = (
|γ ′(ω)|ω

γ (ω)
− 1) l2

π2 , then there exists a positive solution (u, v) to (2.8) satisfying u′, v′ < 0
on (0, l).
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Proof. The proof consists of several steps.
Step 1. Denote by C the component of non-trivial solutions that contains C1. We show if (d, u, v) ∈ C,

then u(x) > 0 and v(x) > 0 for x ∈ [0, l]. Define

A = {(d, u, v) ∈ C|u > 0, v > 0 in [0, l]}.

First A is non-empty since (d̄1, ω, ω) ∈ A. Clearly, A is open in C. Suppose that a sequence
(dm, um, vm) ∈ A converges to (d, u, v) ∈ C as m → ∞ in the norm of R

+ × X × X and also
R × C2([0, l]) × C2([0, l]) by elliptic regularity theorem. Obviously u ≥ 0, v ≥ 0 on [0, l] because
um > 0, vm > 0 on [0, l]. We can show that u = 0, v = 0 on [0, l]. Consider the value of v first. Assume
that there exists x0 ∈ [0, l] such that v(x0) = 0. Recall v satisfies

{
dv′′ − v = −u, in (0, l),
v′(0) = v′(l) = 0.

Applying strong maximum principle and Hopf boundary point lemma, we have v ≡ 0 on [0, l], which
implies u ≡ 0, contradicting

∫ l
0 u(x)dx = ω > 0. Thus v > 0 on [0, l]. To show u > 0 on [0, l], observe

that u satisfies

γ (v)uxx + 2γ ′(v)vxux + u(γ ′′(v)v2
x + γ ′(v)vxx) = 0, (2.20)

where the coefficients γ (v), γ ′(v), γ ′′(v) are all bounded since v is bounded (see Lemma 2.1). Similarly,
if u(x0) = 0 for some x0 ∈ [0, l], then again we can apply strong maximum principle and Hopf boundary
point lemma to obtain u ≡ 0, which is impossible. Then we have u(x) > 0 on [0, l], which means
(d, u, v) ∈ A, i.e. A is closed. Hence A = C.

Step 2. We now study C+, the ‘upper’ branch of C. The existence of C+ is guaranteed by the
bifurcation Theorem A.1. So C+ contains the part of the curve C1 corresponding to s > 0. Next we
show that u′, v′ < 0 on (0, l), ∀(d, u, v) ∈ C+\{(d̄1, ω, ω)}.

Define B = {(d, u, v) ∈ C+\{(d̄1, ω, ω)}|u′, v′ < 0 on(0, l)}. First, we prove that B is non-empty. By
(2.19), for (d, u, v) ∈ C+ near (d̄1, ω, ω), we have

(u(s, x), v(s, x)) = (ω, ω) + s(ū1(x), v̄1(x)) + o(s)

for some s ∈ (0, δ), where

(ū1(x), v̄1(x)) =
(

d̄1π
2

l2
+ 1, 1

)
cos

πx

l
.

Obviously, u′ < 0 and v′ < 0 on (0, l). So B is non-empty.
Then we proceed to prove B is open in C+\{(d̄1, ω, ω)}. Suppose (d, u, v) ∈ B and (dm, um, vm) ∈

C+\{(d̄1, ω, ω)} → (d, u, v) as m → ∞. We want to show (dm, um, vm) ∈ B i.e. u′
m, v′

m < 0 in (0, l)
for large m. Since u′, v′ < 0 on (0, l), then for large m, u′

m, v′
m < 0 on any fixed compact subinterval of

(0, l). We just need to consider the sign of u′
m, v′

m near the end points x = 0, l. It suffices to show the
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DENSITY-SUPPRESSED MOTILITY MODEL 587

‘non-degeneracy’ of u and v at x = 0, l, which is u′′, v′′ = 0 at x = 0, l. To show this, we differentiate
the v−equation and get {

d(v′)′′ − v′ = −u′ > 0, in (0, l),
v′(0) = 0 = v′(l), v′ < 0, in (0, l).

(2.21)

Applying Hopf boundary point lemma we have v′′(l) > 0 > v′′(0). Using (2.20) for x = 0 and x = l,
we have u′′(l) > 0 > u′′(0). Now for large m, u′

m, v′
m < 0 on (0, l) and then B is open.

Finally we shall prove B is closed in C+\{(d̄1, ω, ω)}. Suppose (dm, um, vm) ∈ B → (d, u, v) ∈
C+\{(d̄1, ω, ω)} as m → ∞. We want to show u′, v′ < 0 in (0, l). We know u′, v′ ≤ 0 on [0, l] since
u′

m, v′
m < 0. Applying strong maximum principal to (2.21), v′ ≡ 0 or v′ < 0 on (0, l). If v′ ≡ 0, by (2.11),

we have u′ ≡ 0. Recall
∫ l

0 u(x)dx = ωl = ∫ l
0 v(x)dx, so u ≡ v ≡ ω, which implies d is a bifurcation

value and then d = d̄n for some n ≥ 1. n = 1 is impossible because (d, u, v) ∈ C+\{(d̄1, ω, ω)}. If n ≥ 2,
then (dm, um, vm) must be on the bifurcation curve Cn = {(dn(s), un(s, x), vn(s, x))|s ∈ (−δ, δ), s = 0}
for large m. Recall

(un(s, x), vn(s, x)) = (ω, ω) + s(ūn(x), v̄n(x)) + o(s)

and (ūn, v̄n) = ( d̄nn2π2

l2
+ 1, 1) cos nπx

l , n = 2, 3, · · · . Obviously un(s, x) and vn(s, x) are not decreasing
on (0, l) while um(x) and vm(x) are decreasing, which is impossible. Thus v′ < 0 on (0, l). Using (2.11),
we also have u′ < 0 in (0, l).

Step 3. Now by Theorem A.2, C+ satisfies at least one of the following alternatives:
(a) it is not compact in R

+ × X × X;
(b) it contains a point (d∗, ω, ω) with d∗ = d̄1;
(c) it contains a point (d, ω + û, ω + v̂) where 0 = (û, v̂) ∈ Z and Z is a closed linear subspace of

X × X, complementing to N(D(u,v)F(d̄1, ω, ω)) = span{(ū1, v̄1)}. We can take

Z =
{
(u, v) ∈ X × X

∣∣∣ ∫ l

0
(ū1(x)u(x) + v̄1(x)v(x))dx = 0

}
.

Next we prove the alternatives (b) and (c) cannot happen to our problem.
If (b) occurs, then d∗ shall be some bifurcation value d̄n and n ≥ 1. This situation cannot happen

according to the proof in Step 2.
If (c) occurs, (d, ω + û, ω + v̂) ∈ C+\{(d̄1, ω, ω)} and by Step 2, we know û′, v̂′ < 0 on (0, l). Since

(û, v̂) ∈ Z, with the definition of Z, we have

0 =
∫ l

0

[(dπ2

l2
+ 1

)
û(x) + v̂(x)

]
cos

πx

l
dx

= − l

π

∫ l

0

[(dπ2

l2
+ 1

)
û′(x) + v̂′(x)

]
sin

πx

l
dx > 0,

which raises a contradiction. Hence (c) can not happen and the situation (a) will occur.
Step 4. We finally show that the ‘d-coordinate’ on C+ is full of (0, d̄1).
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588 Z.-A. WANG AND X. XU

Recall (2.9) and (2.10), we know u and v are all bounded for any fixed d > 0. The function γ (·) is
C2-smooth in (0, ∞), so − γ ′(v)

γ (v) is bounded for bounded v. If d is strictly larger than a positive number,

(u, v) is bounded in the norm of C3(0, l) × C3(0, l). So if d-coordinate on C+ is not full of (0, d̄1),
situation (a) implies that on the curve C+, d shall go to infinity. By Lemma 2.1, we see that all positive
solutions (u, v) of (2.8) tend to (ω, ω) as d → ∞. Recall the null space of N(D(u,v)F(d̄m, ω, ω)) is {0} for
large d. Using implicit function theorem, we know for large d, (2.8) only has positive constant solution
(ω, ω). Since we have proved that on the curve C+, u′, v′ < 0 by step 2, we have that d-coordinate on
C+ is full of (0, d̄1). This implies that for any d satisfying 0 < d < d̄1, there exists a positive solution
(u, v) to (2.8) satisfying u′, v′ < 0 on (0, l), and the proof of Theorem 2.1 is complete. �

2.2 Asymptotic profiles as d → 0

In this section, we shall find the asymptotic profiles of positive monotone decreasing solutions (u, v)
of (2.8) as d → 0 by using the Helly compactness theorem. We remark that the idea of using Helly
compactness theorem to explore the asymptotic dynamics of solutions to chemotaxis models first
appeared in Wang (2000) and then in Wang & Xu (2013). Here we extend their ideas to density-
suppressed motility models.

Theorem 2.2 Let (u, v) be the positive monotone decreasing solutions of (2.8) obtained in Theorem
2.1. If sup

v>0

γ (v)
|γ ′(v)| < ω, then both u and v have spikes at x = 0 as d → 0 (i.e. namely u, v → ∞ in

L∞-norm at x = 0 as d → 0, and u, v are bounded in any (ε, 1) for 0 < ε < 1).

Proof. Since (u, v) is the solution of (2.8), we have 1
l

∫ l
0 u(x) = ω. By the monotonicity of u, ∀ small

ε > 0, u is uniformly bounded in [ε, l] for any small d. Observe that the differentiation of dv′′−v+u = 0
yields

(dv′)′′ − v′ + u′ = 0.

Recall u′ = − γ ′(v)uv′
γ (v) , see (2.11). Inserting u′ into the above differentiated v-equation, we have

(dv′)′′ +
(

−γ ′(v)
γ (v)

u − 1

)
v′ = 0. (2.22)

Consider the coefficient of v′ of equation (2.22), if − γ ′(v(z))
γ (v(z)) u(z) − 1 > dπ2

z2 for any z ∈ (0, l), then by
Sturm’s oscillation theorem via a comparison between v′ and sin(πx

z ), v′ must change sign in [0, z]. So
we have

−γ ′(v(z))
γ (v(z))

u(z) − 1 ≤ dπ2

z2 .

Rearranging the equation and writing u(z) = u(d; z), we have

u(d; z) ≤
(dπ2

z2
+ 1

)(
− γ (v)

γ ′(v)

)
≤
(dπ2

z2
+ 1

)
G1, ∀z ∈ (0, l], (2.23)
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DENSITY-SUPPRESSED MOTILITY MODEL 589

where we have denoted G1 =: sup
v>0

γ (v)
|γ ′(v)| for convenience. Then for any μ ∈ (0, l

d ], we have the

following estimate ∫ l

dμ

u(x)dx ≤
∫ l

dμ

G1

(dπ2

x2 + 1
)

dx ≤ G1

(π2

μ
+ l
)

.

From the assumption, we see that ω > G1. Then there exists a positive small constant c such that

ω > G1 + c. Then for small d, we can take μ = G1π
2

cl , then

ωl =
∫ l

dG1π2

cl

u(x)dx +
∫ dG1π2

cl

0
u(x)dx ≤ (G1 + c)l + u(0)

dG1π
2

cl
.

Rearrangement of the above equation, we end up with

u(d; 0) ≥ (ωl − (G1 + c)l)cl

dG1π
2 .

Since ωl − (G1 + c)l > 0, u(d; 0) tends to infinity as d → 0.
Now we consider the asymptotic behaviour of v as d → 0. Recall that (u, v) is a pair of C2 smooth

bounded decreasing function in (0, l) solving (2.6). Let us denote v(x) = v(d; x). Since v′ < 0 for
x ∈ (0, l) and

∫ l
0 v(d; x) = ωl, it can be easily shown by a contradiction argument that v(d; x) < ωl

x . For
any fixed small ε > 0 and for any interval W embedded in (ε, l), one can check directly that

sup
n∈N

(
‖v

(
1

n
; x

)
‖L1(W) + ‖dv( 1

n ; x)

dx
‖L1(W)

)
= ωl + ωl

ε
< ∞.

Moreover, v
( 1

n ; x
)

is uniformly bounded in n at a point in (0, l), e.g. v
( 1

n ; l
2

)
< 2ω. So by Helly’s

compactness theorem, after passing to a subsequence of n → ∞, which implies d → 0, we have
v(x) → some vk

0(x) pointwise in C2 on [ 1
k , l] for any fixed large integer k. Hence, (vk

0(x))xx is bounded
in [ 1

k , l]. In a same manner, we can find uk
0(x) such that passing the limit d → 0 to the v−equation in

(2.8), uk
0(x) and vk

0(x) satisfy

uk
0(x) = vk

0(x), x ∈
[

1

k
, l

]
.

By the standard diagonal argument of compactness (cf. Giga et al., 2010), after passing to a subsequence
of d → 0, we have v(x) → some v0(x) pointwise in C2 on (0, l]. The uniqueness of limit implies that
v0(x) = vk

0(x) in
[ 1

k , l
]
. Similarly, we can find u0(x) such that the following holds thanks to the fact∫ l

0 u(x)dx = ∫ l
0 v(x)dx:

∫ 1
k

0
u0(x)dx +

∫ l

1
k

uk
0(x)dx =

∫ l

0
u0(x)dx =

∫ l

0
v0(x)dx =

∫ 1
k

0
v0(x)dx +

∫ l

1
k

vk
0(x)dx,
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590 Z.-A. WANG AND X. XU

i.e.
∫ 1

k
0 u0(x)dx = ∫ 1

k
0 v0(x)dx. Then

1

k
u0(

1

k
) ≤

∫ 1
k

0
u0(x)dx =

∫ 1
k

0
v0(x)dx ≤ 1

k
v0(0),

which is u0(
1
k ) ≤ v0(0) for any large integer k. Since u(d; 0) → ∞ as d → 0, sending k → ∞, we

immediately have v(d; 0) → ∞ as d → 0 and conclude the proof. �
Lemma 2.3 Assume infv>0

γ (v)
|γ ′(v)| = G2 > 0. If ω ≤ G2, (2.8) only has constant positive solution for

any fixed d > 0.

Proof. We prove the results by contradiction. With Neumann boundary conditions, we assume, without
loss of generality, that there exists a non-constant positive solution (u, v) to (2.8) with v′ < 0 in (0, l).
Recall that

(dv′)′′ +
(

−γ ′(v)
γ (v)

u − 1

)
v′ = 0.

Since ωl = ∫ l
0 u(x)dx ≤ lG2 and u is decreasing, u(x) < G2 for x ∈ (0, l) or there exists an interval (a, l)

with a > 0 such that u(x) < G2 for x ∈ (a, l) and u(a) = G2. If u(x) < G2 for x ∈ (0, l), one has

(dv′)′′ = (−v′)
(

−γ ′(v)
γ (v)

u − 1

)
≤ (−v′)

(
u

G2
− 1

)
≤ 0, for x ∈ (0, l). (2.24)

Then applying strong maximum principle to the above equation with boundary condition v′(0) = v′(l) =
0, we have v′(x) ≡ 0 for x ∈ (0, l), which is impossible because v′(x) < 0. So we alternatively have
that u(x) < G2 for x ∈ (a, l) and u(a) = G2. By (2.24), (v′)′′ < 0 in (a, l). Since v′(x) < 0 in (a, l) and
v′(l) = 0, it can be shown that v′′(a) > 0. Recall u′ has the same sign with v′. Then u is decreasing in
(0, l). Hence u(x) ≥ G2 in [0, a]. With similar arguments as above, we have v′′(a) < 0. This raises a
contradiction and completes the proof. �

2.3 Transformation to explicit motility functions

The conditions in Theorem 2.1, Theorem 2.2 and Lemma 2.3 can be explicitly found as long as the
motility function γ (v) is known. Therefore, it would be of interest to transform these results to typical
motility functions and make the results more transparent. Notice that γ (v) is a smooth decreasing
function, which typically may be of exponential or algebraic decay. Then we can present the following
more specific results.

Corollary 2.1 For any fixed constant ω > 0, the following results hold.

(i) If γ (v) = e−χv with χ > 0, then (2.8) has a positive non-constant solution satisfying

u′, v′ < 0 on (0, l) for any d > 0 if χω > 1 + dπ2

l2
, where u and v have boundary
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DENSITY-SUPPRESSED MOTILITY MODEL 591

Fig. 1. Numerical simulations of monotone decreasing solutions of the system (1.2) with σ = 0 and d = 0.02 in (0, π), where
the initial value (u0, v0) is set as a small random perturbation of a constant steady state (1, 1). In the first panel (row), we choose
γ (v) = e−2v, and in the second panel (row) we choose γ (v) = 1

v12 .

spikes at x = 0 as d → 0. Moreover, if χω ≤ 1, then (2.8) has only constant solution
(u, v) = (ω, ω).

(ii) If γ (v) = 1
vλ with λ > 0, then (2.8) has a positive non-constant solution satisfying u′, v′ < 0

on (0, l) for any d > 0 if λ > 1 + dπ2

l2
, where u and v have boundary spikes at x = 0 as d → 0.

In addition, if λ ≤ 1, then (2.8) has only constant solution (u, v) = (ω, ω).

Proof. When γ (v) = e−χv with χ > 0, the conditions |γ ′(ω)|ω
γ (ω)

− 1 > 0 and 0 < d < d̄1 become

χω > 1 + dπ2

l2
. Furthermore γ (v)

|γ ′(v)| = 1
χ

. Hence substituting these results to Theorem 2.1, Theorem

2.2 and Lemma 2.3, the results in (i) are directly obtained. Similarly, if γ (v) = 1
vλ with λ > 0, then

γ (v)
|γ ′(v)| = v

λ
. By simple calculations with results of Lemma 2.1, the first part result in (ii) with λ > 1+ dπ2

l2
follows from Theorem 2.1 and Theorem 2.2. The second part result in (ii) with λ ≤ 1 comes from Yoon
& Kim (2017, Theorem 3.3) directly. �

From the above results, we find that the existence of non-constant solutions may essentially depend
on the decay rate of γ (v) for given chemical diffusion rate d > 0. However, the results have a difference
between exponential decay and algebraic decay motility function: the cell mass ω plays a role in the
former one while does not in the latter one. We numerically test the results in Corollary 2.1 in Fig.1
where we do find the monotone decreasing solution by choosing parameters fulfilling the conditions in
Corollary 2.1.
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3. Steady states with growth (i.e. σ > 0)

Consider the steady-state problem (1.3) with σ > 0 and Neumann boundary condition in one dimension⎧⎨⎩
(γ (v)u)xx + σu(1 − u) = 0, x ∈ (0, l),
dvxx − v + u = 0, x ∈ (0, l),
ux = vx = 0, x = 0, l,

(3.25)

where σ > 0, d > 0 are constants. Observe that (0, 0) and (1, 1) are two only constant solutions of
(3.25). We impose the following assumption on the motility function:

(H2) γ (v) is C2-smooth in (0, ∞) with γ ′(v) < 0 and − γ ′(1)
γ (1)

> dπ2

l2
+ 1.

We remark that the quantity − γ ′(1)
γ (1)

characterizes the decay rate of motility function γ (v). For

example, if γ (v) = e−kv or γ (v) = 1
vk , then it can easily checked that − γ ′(1)

γ (1)
= k.

3.1 Existence of non-constant solutions

Define F : V → Y × Y by

F(σ , u, v) =
( −[(γ (v)u)xx + σu(1 − u)]

−dvxx + v − u

)
,

where V = (0, ∞) × X × X is an open set and X, Y have been defined before. Clearly, if (u, v) is
the solution of system F(σ , u, v) = 0, (u, v) is the solution of (3.25) and vice versa. For any fixed
(σ , u1, v1) ∈ V , consider the Fréchet derivative

D(u,v)F(σ , u1, v1) =
( −[(γ ′(v1)u1v + γ (v1)u)xx + σu(1 − u1) − σuu1]

−dvxx + v − u

)
. (3.26)

Lemma 3.1 For any fixed (u1, v1) ∈ X × X, the Fréchet derivative

D(u,v)F(σ , u1, v1) : X × X → Y × Y

is a Fredholm operator with index zero.

Proof. Consider the Fréchet derivative at a fixed point (σ , u1, v1) in V , which is (3.26). The second-
order derivatives of u and v in the first line of (3.26) are −γ ′(v1)u1vxx and −γ (v1)uxx. So the second-
order derivatives part of D(u,v)F can be written as

−
(

γ (v1) γ ′(v1)u1
0 d

)(
uxx
vxx

)
and hence we have the conclusion that

D(u,v)F(σ , u1, v1) : X × X → Y × Y
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DENSITY-SUPPRESSED MOTILITY MODEL 593

is elliptic and satisfies Agmon’s condition by Remark 2.5 case 3 in Shi & Wang (2009). By Theorem
3.3 and Remark 3.4 in Shi & Wang (2009), D(u,v)F(σ , u1, v1) : X × X → Y × Y is a Fredholm operator
with zero index. �

Now we try to find all the possible bifurcation value of σ . Recall there are only two constant
steady states of (3.25), (0, 0) and (1, 1). The necessary condition for bifurcation is that the null space of
D(u,v)F(σ , 0, 0) or D(u,v)F(σ , 1, 1) is non-trivial, i.e.

N(D(u,v)F(σ , 0, 0)) = {0} or N(D(u,v)F(σ , 1, 1)) = {0}.

According to (3.26), we know the null space of D(u,v)F(σ , 0, 0) is the space of solution (u, v) of{ −γ (0)uxx − σu = 0,
−dvxx + v − u = 0,

and the null space of D(u,v)F(σ , 1, 1) is the space of solution (u, v) of{ −γ ′(1)vxx − γ (1)uxx + σu = 0,
−dvxx + v − u = 0.

With a similar discussion in Section 2.1, we have the following results:

For any positive integer m such that σm = (−γ (1) − γ ′(1)

dm2π2

l2
+1

)m2π2

l2
> 0, σm is a positive bifurcation

value and (σm, 1, 1) is a bifurcation point in V . By theorem A.1, there exists a δ > 0 and continuous
functions: s ∈ (−δ, δ) �→ σm(s) ∈ (0, ∞), s ∈ (−δ, δ) �→ (um(s, x), vm(s, x)) ∈ X × X such that
σm(0) = σm and

(um(s, x), vm(s, x)) = (1, 1) + s(um(x), vm(x)) + o(s)

is a solution of (3.25), where (um(x), vm(x)) = (am, bm) cos mπx
l for any constants am, bm satisfying

am
bm

= dm2π2

l2
+ 1. Furthermore, all non-constant solutions of (3.25) near the bifurcation point (σm, 1, 1)

are on the curve

Cm = (σm(s), um(s, x), vm(s, x)), s ∈ (−δ, δ).

For any positive integer m, σ̃m = γ (0)m2π2

l2
is a bifurcation value and (σ̃m, 0, 0) is a bifurcation

point in V . Similarly, there exists δ̃ > 0 and continuous functions: s ∈ (−δ̃, δ̃) �→ σ̃m(s) ∈ (0, ∞),
s ∈ (−δ̃, δ̃) �→ (ũm(s, x), ṽm(s, x)) ∈ X × X such that σ̃m(0) = σ̃m and

(ũm(s, x), ṽm(s, x)) = (0, 0) + s(um(x), vm(x)) + o(s)

is a solution of (3.25), where (um(x), vm(x)) are defined above. Moreover, all non-constant solutions of
(3.25) near the bifurcation point (σ̃m, 0, 0) are on the curve

C̃m = (σ̃m(s), ũm(s, x), ṽm(s, x)), s ∈ (−δ, δ).
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Observe that for any s ∈ (−δ, δ), s = 0, ũm(s, x) and ṽm(s, x) must change signs for x ∈ [0, l], which
are not meaningful solutions in applications of biology. So we shall not perform the global bifurcation
analysis for the trivial steady state (0, 0). Below by Cm we denote the component of non-trivial solutions
that contains Cm. The existence of C1 is guaranteed by Theorem A.1 and assumption (H2). However, for
m > 1, we do not know σm is non-negative or negative and cannot make sure Cm is exist. By assumption
(H2), we know there exists a positive integer M such that

dM2π2

l2
+ 1 < −γ ′(1)

γ (1)
≤ d(M + 1)2π2

l2
+ 1 (3.27)

with σm > 0 for 1 ≤ m ≤ M and σm ≤ 0 for m ≥ M + 1. Hence for m = 1, 2, · · · , M, the existence of
Cm is guaranteed. Then we have the following theorem.

Theorem 3.1 Let the assumption (H2) hold and σm = (−γ (1)− γ ′(1)

dm2π2

l2
+1

)m2π2

l2
with m being a positive

integer. Then there exists a positive integer M such that (3.27) and the following results hold.

(i) If M = 1, then the problem (3.25) has a non-constant solution for σ ∈ (0, σ1).

(ii) If M ≥ 2, then the problem (3.25) has a non-constant solution for σ ∈ (σ∗, σ ∗), where σ ∗ =
max

1≤m≤M
{σm} and σ∗ = max

1≤m≤M
{σm|σm < σ ∗} (namely σ ∗ and σ∗ are the largest and second

largest numbers of σm for 1 ≤ m ≤ M, respectively).

Proof. We start the proof with a claim: if (σ , u, v) ∈ Cm(m = 1, 2, · · · , M), then u(x) > 0 and v(x) > 0
for all x ∈ [0, l].

Define

Am = {(σ , u, v) ∈ Cm|u(x) > 0, v(x) > 0 in [0, l]} for m = 1, 2, · · · , M.

For any fixed m, Am is non-empty since (σm, 1, 1) ∈ Am. We can easily see that Am is open in Cm. So
it suffices to show Am is closed in Cm to prove the claim because the connectedness of Cm will give us
Cm = Am. Suppose a sequence (σk, uk, vk) ∈ Am converges to (σ , u, v) ∈ Cm as k → ∞ in the norm of
R×X ×X and hence in the norm of R×C2([0, l])×C2([0, l]) by elliptic regularity theory. To show Am
is closed, we just need to show (σ , u, v) ∈ Am. Since uk > 0, vk > 0 in [0, l], u ≥ 0, v ≥ 0 in [0, l]. We
only need to show u = 0, v = 0 in [0, l]. First we consider the value of v and assume that there exists
x0 ∈ [0, l] such that v(x0) = 0. Recall v satisfies

{
dv′′ − v = −u ≤ 0, in (0, l),
v′(0) = v′(l) = 0.

Applying strong maximum principle and Hopf boundary point lemma, we have v ≡ 0 in [0, l]. Hence
u ≡ v ≡ 0 in [0, l], which implies (σ , u, v) = (σ , 0, 0) is a bifurcation point on the curve Cn for some
n ≥ 1. So when k is large, there exists δ > 0, such that (uk, vk) = (0, 0) + s(un(x), vn(x)) + o(s) for
s ∈ (−δ, δ) for some n. Recall that vn(x) = bn cos nπx

l , where bn is a constant. So vk must be negative
or zero in [0, l]. This contradicts the fact vk > 0 in [0, l]. So our assumption is false and v > 0 in [0, l].
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DENSITY-SUPPRESSED MOTILITY MODEL 595

Now we show u > 0 in [0, l]. Observe that u satisfies

γ (v)uxx + 2γ ′(v)vxux + [σ(1 − u) + γ ′′(v)(vx)
2 + γ ′(v)vxx]u = 0.

The ‘coefficient’ of u is bounded by a priori estimate of u and v, which is given in Proposition 2.1 in Ma
et al. (2020). Similarly, if u(x0) = 0 for some x0 ∈ [0, l], again we can apply strong maximum principle
and Hopf boundary point lemma to obtain u ≡ v ≡ 0, which is impossible. Now we have (σ , u, v) ∈ Am
and the claim is proved.

Since all the constant solutions can only be (0, 0) or (1, 1), and (σ , 0, 0) is not on the curve Cm by our
former discussion, all points (σ , u, v) on the curve Cm must be non-constant solutions of (3.25) except
the points on the σ -coordinate, which are (σ , 1, 1) for some σ > 0. From Theorem A.1, we know Cm
is either not compact in V or contains a point (σn, 1, 1) with σn = σm. First, we know (u, v) is bounded
by Proposition 2.1 in Ma et al. (2020) with σ > 0 and when σ = 0, (u, v) is bounded by Lemma 2.1.
By Theorem 3.1 (a) in Ma et al. (2020), we know (3.25) does not have non-constant solutions for large
σ . We immediately have the conclusion that if Cm is not compact, the σ -coordinate must cover (0, σm).
Clearly, if Cm contains a point (σn, 1, 1) with σn = σm, the σ -coordinate must cover the interval with
endpoints σn and σm. Consider the curve bifurcating from the largest positive bifurcation value σ ∗, the
σ -coordinate must cover (σ∗, σ ∗) for M ≥ 2 and (0, σ1) for M = 1. This completes the proof. �
Remark 3.1 If we use d as the bifurcation parameter, then bifurcations may occur at

d̂m = l2

(σ l2 + γ (1)π2m2

(
−γ ′(1) − γ (1) − σ l2

π2m2

)
, m = 1, 2, · · · (3.28)

and the counterpart of assumption (H2) is

(H3) γ (v) is C2-smooth in (0, ∞) with γ ′(v) < 0 and − γ ′(1)
γ (1)

> 1,

which ensures that there exists a positive integer M such that d̂m > 0 for m ≥ M + 1 and d̂m ≤ 0 for
m = 1, 2, ..., M, i.e.

1 + σ l2

π2(M + 1)2 <
|γ ′(1)|
γ (1)

≤ 1 + σ l2

π2M2 . (3.29)

Since there exist infinitely many positive bifurcation numbers and d̂m → 0 as m → ∞, we cannot assert
the global bifurcation result as Theorem 3.1(i). However, the similar result to Theorem 3.1(ii) will hold
for d ∈ (d∗, d∗) where d∗ and d∗ are the largest and second largest numbers of d̂m for m ≥ M + 1
respectively. That is, we have the following results.

Corollary 3.1 Let the assumption (H3) hold and d̂m defined in (3.28). Then there exists a positive
integer M such that (3.29) holds and the problem (3.25) has a non-constant solution for d ∈ (d∗, d∗),
where d∗ = max

m≥M+1
{d̂m} and d∗ = max

m≥M+1
{d̂m|d̂m < d∗}.

Remark 3.2 The dynamics of (1.2) with σ > 0 is much more complicated than the case σ = 0 as
numerically illustrated in Jin et al. (2018). Theorem 3.1 gives the minimum ranges of σ for the existence
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of non-constant stationary solutions of (3.25). This is the first result that can assert the existence of non-
constant stationary solutions for (3.25) in a specified range of σ . In this sense, our results improve
the one-dimensional existence results by Ma et al. (2020, Theorem 4.1) in one dimension where the
conditions can only be checked for a given value of σ . However, the results in Theorem 3.1 by no means
rule out the possibility that (3.25) has non-constant solutions outside the range (σ∗, σ ∗). The existence
of non-constant solutions of (3.25) is far from being completely understood.

Remark 3.3 If M is not large, we can easily find all values of σm for m = 1, 2, · · · , M and reorder the
largest and second largest value of bifurcation values σm (i.e. σ ∗ and σ∗, respectively). However, if M
is large, it is cumbersome to compute all positive bifurcation values to make comparison. Notice that

the function σ(x) = − γ (1)π2

l2
x2 − γ ′(1)

d+ l2

π2x2

, where σ(m) = σm if m is a positive integer, has a unique

maximum at

x = l√
dπ

√√√√√−γ ′(1)

γ (1)
− 1 � x̄ (3.30)

and σ(x) is strictly increasing in (0, x̄) while strictly decreasing in (x̄, M). Since we are mainly concerned
with two numbers: the largest and second largest values of bifurcation values, we find a short algorithm
to quickly find σ∗ and σ ∗ for any M ≥ 2 as given in the following lemma.

Lemma 3.2 Let M ≥ 2 in (3.27) and x̄ be defined in (3.30). Then the two numbers σ ∗ and σ∗ can be
explicitly found in the following ways.

• If x̄ is an integer, then

σ ∗ = σx̄ = 1

d
(
√−γ ′(1) −√γ (1))2, σ∗ = max{σx̄−1, σx̄+1}.

• If x̄ is not an integer, then

σ ∗ = max{σ�x̄�, σ�x̄�}, σ∗ = max{σx̃−1, σx̃+1}

where �x̄� denotes the largest integer less than x̄ while �x̄� denotes the smallest integer greater
than x̄, and x̃ is the integer such that σ ∗ = σx̃ (i.e. x̄ is either �x̄� or �x̄�).

Proof. We divide two cases to proceed.
Case 1: x̄ is an integer. It is obvious that σ ∗ = σx̄ and σ∗ = max{σx̃−1, σx̃+1}.
Case 2: x̄ is not an integer. Consider �x̄� and �x̄�. If σ�x̄� > σ�x̄�, then σ ∗ = σ�x̄� and we need to

compare the value of σ�x̄� and σ�x̄�−1 to take σ∗ = max{σ�x̄�, σ�x̄�−1}. Similarly, if σ̄�x̄� < σ̄�x̄�, σ ∗ = σ�x̄�
and we need to compare the value of σ�x̄� and σ�x̄�+1 to take σ∗ = max{σ�x̄�, σ�x̄�+1}. If σ�x̄� = σ�x̄�,
σ ∗ = σ�x̄� = σ�x̄�, σ∗ = max{σ�x̄�−1, σ�x̄�+1}. Observe that �x̄� + 1 = �x̄�. So if we denote x̃ as the
integer such that σ ∗ = σx̃, then σ∗ = max{σx̃+1, σx̃−1}. �
Remark 3.4 If M = 1 and x̄ is an integer for given motility function γ (v), then σ ∗ = σx̄ and σ∗ = 0.
Note that σx̄ = σ1 = 1

d (
√−γ ′(1) − √

γ (1))2 is the maximal value of σ to allow the pattern formation
(see Jin et al., 2018). Hence in this case the global bifurcation diagram full of (0, σ1) is achieved on
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DENSITY-SUPPRESSED MOTILITY MODEL 597

Fig. 2. Bifurcation diagram of the solution (u, v) in the space X × X vs. σ in the case that M = 1 and x̄ is an integer. When
σ > σ1, the constant steady state (1, 1) is asymptotically stable and no non-constant solutions will bifurcate, while for each
σ ∈ (0, σ1), there is at least one non-constant solution (indicated by solid curve). Here we only plot the half bifurcation curve
above σ -axis, which can be connected to vertical axis. Other bifurcation points σm(m ≥ 2) are negative and hence are out of our
interest although there are also non-constant solutions bifurcating from them (indicated by dashed curve).

the σ -axis and our result gives the largest parameter regime for the existence of pattern (i.e. stationary
non-constant) solutions, see a plot of bifurcation diagram in Fig. 2. For example, if l = π , d = 1
and γ (v) = 1/(1 + e8(v−1)). Then a simple calculation shows that (3.27) holds with M = 1 and

x̄ = l√
dπ

√√
4 − 1 = 1, where σ ∗ = σ1 = 0.5, σ∗ = 0 and σ2 = −0.4.

3.2 Examples

We shall use some examples to numerically illustrate that stationary patterns will arise from the
model (1.2) under the assumptions in Theorem 3.1. We also numerically demonstrate that the patterns
may be intricate if the parameter value of σ is outside the range (σ∗, σ ∗). In particular, unstable
or periodic patterns may arise. This indicates that the global bifurcation diagram in the full regime
(0, σ ∗) cannot be expected for any motility function γ (v) satisfying (3.27) except the case M = 1
as discussed in Remark 3.4. We also numerically show the possible differences in pattern formations
between exponentially and algebraically decay motility functions, which have not been qualitatively
characterized in any existing works.

Example 1: Theorem 3.1 provides a simple algorithm to identify the minimal range (σ∗, σ ∗) in
which the existence of non-constant steady states to density-suppressed motility models is ensured. We
present an example for M ≥ 2 to illustrate the patterns for σ inside and outside this range. Consider
γ (v) = 1/(1 + e9(v−1)), l = 4π and d = 1. By a simple calculation, we know (3.27) holds for M = 7

and x̄ = l√
dπ

√√
4.5 − 1 = 4.2357. Hence �x̄� = 4, �x̄� = 5. By the algorithm stated in Lemma 3.2,

we find that σ∗ = σ3 = 0.5287 and σ ∗ = σ4 = 0.6250. Therefore, we can confirm by Theorem 3.1
that the system (3.25) has a non-constant solution for any σ ∈ (0.5287, 0.6250). This is numerically
verified by the simulations shown in Fig. 3 for σ = 0.6 where we find the stable stationary patterns.
However, an interesting question arises as whether the elliptic problem (3.25) has non-constant solutions
outside this range (σ∗, σ ∗) = (0.5287, 0.6250), which remains an open question in this paper. Here we
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598 Z.-A. WANG AND X. XU

Fig. 3. Numerical stationary patterns generated by the system (1.2) with σ = 0.6 in (0, 4π), where γ (v) = 1/(1+e9(v−1)), d = 1
and the initial value (u0, v0) is set as a small random perturbation of constant steady state (1, 1).

Fig. 4. Numerical periodic patterns generated by the system (1.2) with σ = 0.2 in (0, 4π), where γ (v) = 1/(1 + e9(v−1)), d = 1
and the initial value (u0, v0) is set as a small random perturbation of constant steady state (1, 1).

numerically illustrate the possibilities. To this end, we first choose σ = 0.2, which is less than the value
of σ∗, and numerical simulations shown in Fig. 4 show that time-periodic patterns will arise and hence
the system (1.3) may not have stable steady states. This implies that it is perhaps impossible to get a
global bifurcation diagram full of (0, σ ∗) to ensure the existence of stationary solutions.

Example 2: We consider two examples for γ (v): γ (v) = 1/(1 + e9(v−1)) and γ (v) = 1
(1+v)9 , to look

at the differences of patterning processes between exponential and algebraic decay motility functions.
For this, we choose the parameter values of σ to be outside the identified range (σ∗, σ ∗) where we
do not know whether the system allows stationary patterns. The simulations in Fig. 5 illustrate that
the exponentially decay motility function generates unstable (chaotic) temporal-spatio patterns while
the algebraically decay one produces stationary patterns. This indicates that the patterning process
may be very different for motility functions with different decay rates in some (narrow) parameter
regimes.
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DENSITY-SUPPRESSED MOTILITY MODEL 599

Fig. 5. Numerical patterns generated by the system (1.2) with σ = 0.02 in (0, 20), where γ (v) = 1/(1 + e9(v−1)) and d = 0.3
in the first panel (row) and γ (v) = 1/(1 + v)9 and d = 0.02 in the second panel (row). The initial value (u0, v0) is set as a small
random perturbation of constant steady state (1, 1).

4. Summary and discussion

In this paper, we find the explicit parameter regimes for the existence of non-constant solutions to
the one-dimensional stationary Neumann problem (1.3). When the cell growth rate σ = 0, (1.3)
corresponds to the stationary problem of density-suppressed motility systems (1.1) with Neumann
boundary conditions, while σ > 0, it corresponds to the stationary problem of (1.2) subject to Neumann
boundary conditions. The one-dimensional problem (1.3) with σ = 0 and σ > 0 is formulated by
(2.6) and (3.25), respectively. Using the global bifurcation theory by treating the chemical diffusion
rate d > 0 as a bifurcation parameter, we show that the problem (2.6) admits monotone solutions as
0 < d < d̄1(see Theorem 2.1). Furthermore, we show that the monotone solutions have boundary
spikes as d → 0 in Theorem 2.2. With the help of maximum principle, we find conditions such that
(2.6) admits only constant solutions (see Lemma 2.3). These results, if they are transformed to specific
motility function γ (v), lead to sharp (threshold) conditions on the existence of non-constant stationary
solutions (see Corollary 2.1). Numerical simulations shown in Fig. 1 well agree with our analytical
results. When σ > 0, the bifurcation analysis is more complicated and a global bifurcation diagram is
elusive. By bifurcation theorems, we are able to identify a minimal range, denoted by (σ∗, σ ∗) of σ , to
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guarantee the existence of non-constant solutions of (3.25) (Theorem 3.1). But for a special case M = 1
and x̄ is an integer, the global bifurcation diagram is indeed achieved (see Remark 3.4 and Fig. 2). When
σ > 0 is large, say σ > σ ∗, the logistic damping will be strong enough to homogenize the dynamics
and hence erase any patterns. This fact is rigorously shown in both papers (Jin et al., 2018, and Ma et
al., 2020) that non-constant solutions of (1.3) will not exist if σ is larger than some number. Hence, the
existence of upper bound σ ∗ for σ in Theorem 3.1 is necessary although our methods are different from
Jin et al. (2018); Ma et al. (2020). The concerned issue is the existence of a lower bound σ∗ since the
global bifurcation diagram exists when σ = 0. However, this is indeed the case for the sublinear and
linear algebraic decay motility function as shown in Ma et al. (2020, Theorem 3.1 and Remark 3.1).
In other words, when the decay of motility function γ (v) is linear or sub-linear, the bifurcation range
for σ cannot be decreasingly extended from σ ∗ to zero but to some positive number. Nevertheless, the
assumption in (H2) requires that the decay rate of motility function γ (v) must be super-linear, and we
are unable to prove that there is no non-constant solution if σ < σ∗. Hence an open question arises as

• If the decay rate of γ (v) is superlinear like γ (v) = 1
vk (k > 1) or γ (v) = e−χv with χ > 0,

whether the lower bound σ∗ in Theorem 3.1 can be zero or arbitrarily close to zero?

The answer of the above question seems elusive from numerical simulations. In Fig. 4, we show that
when σ is inside the range (σ∗, σ ∗), the stationary pattern exists. However, if the value of σ is decreased
to be outside the range (σ∗, σ ∗), periodic patterns instead of stationary patterns will develop. If we
further decrease the value of σ , then chaotic (unstable) temporal-spatio pattern will arise (see the first
row of Fig. 5). This indicates that for exponentially decay motility function, stationary pattern may only
exist for a medium range of σ , namely σ∗ cannot be arbitrarily close to zero. However, for the algebraic
decay motility function with superlinear decay rate, the situations seem different as shown in the second
row of Fig. 5 where we observe the stationary patterns and no periodic or chaotic patterns can be found.
This implies that to investigate the above question, we may need to differentiate fast (like exponential)
and slow (like algebraic) decay motility function γ (v). This makes the question even more delicate and
exploration of this question will be rewarding.

In this paper, we consider the system (1.3) only in one dimension for σ ≥ 0. The multi-dimensional
problem of (1.3) with σ > 0 has been investigated in Ma et al. (2020). But the results are far from
being complete and solution profiles/patterns have not been qualitatively characterized. Hence the multi-
dimensional problem of (1.3) has a demand for further investigation. Lastly, we discuss the patterning
processes caused by the logistic growth in the density-suppressed motility model (1.2). By expanding
the diffusion term Δ(γ (v)u) = ∇ · (γ (v)∇u + γ ′(v)u∇v), we find that the system (1.2) is analogous to
chemotaxis models with logistic growth. The difference is that in (1.2), both diffusion and chemotactic
coefficient are not constant but chemical-density dependent functions that not only make the analysis
different but also lead to different patterning processes. As shown in Kolokolnikov et al. (2014);
Ma et al. (2012); Painter & Hillen (2011); Wang & Hillen (2007), pattern formation of chemotaxis
models with logistic growth typically has the so-called merging and emerging dynamics. But no merging
and emerging patterning process is identified for the system (1.2) as shown in our various numerical
simulations in this paper and in Ma et al. (2020). This implies that the motility function γ (v) plays an
important role in determining the pattern profiles.

Acknowledgements

We thank the two referees for helpful comments and suggestions which greatly improve the exposition
of this paper. The research of Z.A. Wang was supported by the Hong Kong Research Grant Council

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/3/577/6283599 by H

ong Kong Polytechnic U
niversity user on 10 June 2021



DENSITY-SUPPRESSED MOTILITY MODEL 601

General Research Fund No. PolyU 15303019 (Primary Work Programme Q75G). The research of X.
Xu was supported by NSFC-12071394.

References

Ahn, J. & Yoon, C. (2019) Global well-posedness and stability of constant equilibria in parabolic-elliptic
chemotaxis systems without gradient sensing. Nonlinearity, 32, 1327–1351.

Crandall, M. G. & Rabinowitz, P. H. (1971) Bifurcation from simple eigenvalues. J. Funct. Anal., 8,
321–340.

Desvillettes, L., Kim, Y. J., Trescases, A. & Yoon, C. (2019) A logarithmic chemotaxis model featuring global
existence and aggregation. Nonlinear Anal. Real World Appl., 50, 562–582.

Dyson, L. & Bakerm, R. E. (2015) The importance of volume exclusion in modelling cellular migration. J. Math.
Biol., 71, 691–711.

Fitzpatrick, P. M. & Pejsachowicz, J. (1991) Parity and generalized multiplicity. Trans. Amer. Math. Soc., 326,
281–305.

Fu, X., Tang, L. H., Liu, C., Huang, J. D., Hwa, T. & Lenz, P. (2012) Stripe formation in bacterial system with
density-suppressed motility. Phys. Rev. Lett., 108, 198102.

Fujie, K. & Jiang J. (2020a) Comparison methods for a Keller–Segel-type model of pattern formations with
density-suppressed motilities. arXiv:2001.01288.

Fujie, K. & Jiang, J. (2020b) Global existence for a kinetic model of pattern formation with density-suppressed
motilities. J. Differential Equations, 269, 5338–5378.

Giga, M. H., Giga, Y. & Saal, J. (2010) Compactness theorems. Nonlinear Partial Differential Equations. Progress
in Nonlinear Differential Equations and Their Applications, vol 79. Birkhäuser Boston.

Jin, H. Y. & Wang, Z. A. (2021a) The Keller–Segel system with logistic growth and signal-dependent motility.
Disc. Cont. Dyn. Syst.-B, 26, 3023–3041. doi: 10.3934/dcdsb.2020218.

Jin, H. Y., Kim, Y. J. & Wang, Z. A. (2018) Boundedness, stabilization, and pattern formation driven by density-
suppressed motility. SIAM J. Appl. Math., 78, 1632–1657.

Jin, H. Y., Shi, S. & Wang, Z. A. (2020) Boundedness and asymptotics of a reaction–diffusion system with density-
dependent motility. J. Differential Equations, 269, 6758–6793.

Jin, H. Y. & Wang, Z. A. (2021b) Global dynamics and spatio-temporal patterns of predator–prey systems with
density-dependent motion. Eur. J. Appl. Math. doi: 10.1017/S09567925200002482.

Jin, H. Y. & Wang, Z. A. (2020) Crtical mass on the Keller–Segel system with signal-dependent motility. Proc.
Amer. Math. Soc., 148, 4855–4873.

Kareiva, P. & Odell, G. (1987) Swarms of predators exhibit “preytaxis” if individual predators use area-restricted
search. Amer. Nat., 130, 233–270.

Keller, E. F. & Segel, L. A. (1971) Models for chemtoaxis. J. Theor. Biol., 30, 225–234.
Keller, E. F. & Segel, L. A. (1970) Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol.,

26, 399–415.
Kolokolnikov, T., Wei, J. & Alcolado, A. (2014) Basic mechanisms driving complex spike dynamics in a

chemotaxis model with logistic growth. SIAM J. Appl. Math., 74, 1375–1396.
Kondo, S. & Miura, T. (2010) Reaction–diffusion model as a framework for understanding biological pattern

formation. Science, 329, 1616–1620.
Liu, C., et al. (2011) Sequential establishment of stripe patterns in an expanding cell population. Science, 334,

238–241.
Lou, Y. & Ni, W.-M. (1996) Diffusion, self-diffusion and cross-diffusion. J. Differential Equations, 131, 79–131.
Ma, M., Ou, C. H. & Wang, Z. A. (2012) Stationary solutions of a volume filling chemotaxis model with logistic

growth and their stability. SIAM J. Appl. Math., 72, 740–766.
Ma, M., Peng, R. & Wang, Z. (2020) Stationary and non-stationary patterns of the density-suppressed motility

model. Phys. D, 402, 132259, 13pp.
Murray, J. D. (2001) Mathematical Biology. New York: Springer.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/3/577/6283599 by H

ong Kong Polytechnic U
niversity user on 10 June 2021

10.3934/dcdsb.2020218
10.1017/S09567925200002482


602 Z.-A. WANG AND X. XU

Méndez, V., Campos, D., Pagonabarraga, I. & Fedotov, S. (2012) Density-dependent dispersal and population
aggregation patterns. J. Theor. Biol., 309, 113–120.

Pejsachowicz, J. & Rabier, P. J. (1998) Degree theory for C1 Fredholm mappings of index 0. J. Anal. Math., 76,
289–319.

Painter, K. J. & Hillen, T. (2002) Volume-filling and quorum-sensing in models for chemosensitive movement.
Can. Appl. Math. Q., 10, 501–543.

Painter, K. & Hillen, T. (2011) Spatio-temporal chaos in a chemotaxis model. Phys. D, 240, 363–375.
Smith-Roberge, J., Iron, D. & Kolokolnikov, T. (2019) Pattern formation in bacterial colonies with density-

dependent diffusion. Eur. J. Appl. Math., 30, 196–218.
Shi, J. & Wang, X. (2009) On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differential

Equations, 246, 2788–2812.
Wang, J. & Wang, M. (2019) Boundedness in the higher-dimensional Keller–Segel model with signal-dependent

motility and logistic growth. J. Math. Phys., 60, 011507.
Wang, X. (2000) Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and

chemotaxis and dynamics. SIAM J. Math. Anal., 31, 535–560.
Wang, X. & Xu, Q. (2013) Spiky and transition layer steady state of chemotaxis systems via global bifurcation and

Helly’s compactness theorem. J. Math. Biol., 66, 1241–1266.
Wang, Z. A. & Hillen, T. (2007) Classical solutions and pattern formation for a volume filling chemotaxis model.

Chaos, 17, 037108.
Yoon, C. & Kim, Y. J. (2017) Global existence and aggregation in a Keller–Segel model with Fokker–Planck

diffusion. Acta Appl. Math., 149, 101–123.

Appendix A. Bifurcation theorem

For convenience, we hereby recall some bifurcation theorems for an abstract equation

F(λ, u) = 0,

where F : R × X → Y is a nonlinear differentiable mapping and X and Y are Banach spaces. In the
following N(L) and R(L) are the null space and the range of a linear operator L, respectively; Fu denotes
the Fréchet partial derivatives of F with respect to argument u, and Fλu is the mixed Fréchet partial
derivatives of F with respect to u and λ.

We revisit the following global bifurcation theorem formulated in Shi & Wang (2009, Theorem
4.3), which was based on almost the same conditions of local bifurcation theorem by Crandall &
Rabinowitz (1971) and the global bifurcation theorem for Fredholm operators developed by Fitzpatrick,
Pejsachowicz and Rabier (Fitzpatrick & Pejsachowicz, 1991, and Pejsachowicz & Rabier, 1998).

Theorem A.1 Let X, Y be Banach spaces and V be an open connected subset of R×X. Let (λ0, u0) ∈ V
and F be a continuously differentiable mapping from V to Y . Assume that

• F(λ, u0) = 0 for (λ, u0) ∈ V;

• DλuF(λ, u) exists and is continuous for (λ, u) near (λ0, u0);

• DuF(λ0, u0) is a Fredholm operator with index zero;

• DλuF(λ0, u0)w0 /∈ R(DuF(λ0, u0)) for w0 ∈ X and dim N(DuF(λ, u0)) = 1 with
N(DuF(λ0, u0)) = span{w0} (transversality condition).
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Let Z be a closed complement of span{w0} in X. Then there exists an open interval (−δ, δ) and
continuous functions λ : (−δ, δ) �→ R, ψ : (−δ, δ) �→ Z such that λ(0) = λ0, ψ(0) = 0, and if
u(s) = u0 + sw0 + sψ(s) for all s ∈ (−δ, δ), then

F(λ(s), u(s)) = 0.

In addition, F−1(0) near (λ0, u0) consists precisely of the curves u = u0 and S = {(λ(s), u(s))|s ∈
(−δ, δ)}. Furthermore, if DuF(λ, u) is a Fredholm operator ∀(λ, u) ∈ V , then the curve S is contained in
a connected component C of S̄ where S = {(λ, u) ∈ V|F(λ, u) = 0, u = u0}, and C is either not compact
in V or contains a point (λ∗, u0) with λ∗ = λ0.

Consider the ‘positive part and negative part’ of C. Let Γ+ = {(λ(s), u(s))|s ∈ (0, δ)}, and
Γ− = {(λ(s), u(s))|s ∈ (−δ, 0)}. Let C+ be the component of C\Γ− that contains Γ+ and C− be the
component of C\Γ+ that contains Γ−, we have the following convenient results from Shi & Wang (2009,
Theorem 4.4).

Theorem A.2 Suppose that all conditions in the Theorem A.1 are satisfied. Furthermore, we assume
that

• DuF(λ, u0) is continuously differentiable w.r.t. λ for (λ, u0) ∈ V;

• The norm function: u ∈ X �→ ‖u‖ is C1(X\{0});
• For k ∈ (0, 1), if (λ, u0) and (λ, u) are both in V , then (1 − kFu(λ, u0)) + kFu(λ, u) is a Fredholm

operator.

Then each of C+ and C− satisfies one of the following:

(i) it is not compact in V;

(ii) it contains a point (λ∗, u0) with λ∗ = λ0;

(iii) it contains a point (λ, u0 + z) where z = 0 ∈ Z.

It is well known that if X is the usual Sobolev space Wm,p(Ω) with 1 < p < ∞, the second condition
in Theorem A.2 is always satisfied. The third condition is true for elliptic operator considered in Section
2 and 3 in Shi & Wang (2009).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/86/3/577/6283599 by H

ong Kong Polytechnic U
niversity user on 10 June 2021


	Steady states and pattern formation of the density-suppressed motility model
	1. Introduction
	2. Steady states without growth i.e. sigma =0
	2.1 Existence
	2.2 Asymptotic profiles as d	o 0
	2.3 Transformation to explicit motility functions

	3. Steady states with growth i.e. sigma >0
	3.1 Existence of non-constant solutions
	3.2 Examples

	4. Summary and discussion


