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Abstract. By employing the Fourier transform to derive key a priori esti-

mates for the temporal gradient of the chemical signal, we establish the ex-
istence of global solutions and hydrodynamic limit of a chemotactic kinetic

model with internal states and temporal gradient in one dimension, which is
a system of two transport equations coupled to a parabolic equation proposed

in [4].

1. Introduction. The mathematical models of chemotaxis were generally con-
structed at two scales of interest: population (macroscopic) or cellular (microscopic)
scale. The prototype of the population-based chemotaxis model was proposed by
Keller-Segel in the 1970s [17] to describe the aggregation of cellular slime molds
Dictyostelium discoideum in response to the chemical cyclic adenosine monophos-
phate (cAMP). The first microscopic description of chemotaxis model was due to
Patlak [21] where the kinetic theory was used to express the chemotactic velocity in
term of the average of the velocities and run times of individual cells. This approach
was essentially developed in [28, 1, 19] using a velocity-jump process assuming that
cells run with some velocity and at random instants of time they changes velocities
(directions) according to a Poisson process with the intensity λ. The governing
evolution equation for the simplest version of this process reads

∂

∂t
p(t, x, v) + v · ∇p(t, x, v) = −λp(t, x, v) + λ

∫
V

K[S](v′, v)p(t, x, v′)dv′, (1.1)

where p(t, x, v) denotes the density of particles at position x ∈ RN (N ≥ 1), moving
with velocity v ∈ V at time t ≥ 0 [19] and V is a symmetric compact set in RN .
Here λ is called the turning frequency and 1/λ is a measure of the mean run length
between velocity jumps. The kernel function K[S](v′, v) is the density distribution
function of a velocity jump from v′ to v if a jump occurs, which is a function of the
chemical concentration S(t, x). Generally speaking both turning frequency λ and
turning kernel may also depend on internal or external variables.

The microscopic models of chemotaxis can incorporate the individual cell proper-
ties and pass them to the macroscopic models via appropriate spatial/
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temporal scalings. When the kernel function K[S] depends on the chemical con-
centration or its spatial derivative and S(t, x) satisfies some appropriate dynamical
equation, the kinetic system (1.1) has been extensively studied in the literature
with focuses on the global well-posedness (cf. [3, 6, 14, 13]) and macroscopic limits
(see [20, 7, 30, 27, 22] for formal derivation and [3, 14, 13, 16, 18, 5] for rigorous
justification). In this paper, we consider following kinetic equation with internal
dynamics proposed in [19]

∂p

∂t
+v ·∇p+∇ξ ·(ηp) = −λ(S)p(t, x, v, ξ)+

∫
V

λ(S)K[S](v′, v)p(t, x, v′, ξ)dv′, (1.2)

where ξ ∈ Z ⊂ Rm(m ≥ 1) denotes the internal variable which evolves according to
the equation

dξ

dt
= η(ξ, S(t, x(t)))

with η(·, S) : Z → R being a function describing the signal transduction and S(t, x)
denoting the concentration of chemical signal and x(t) is the cell moving path.
Here the internal dynamics of cells is included through ξ and the chemical signal is
incorporated into the turning frequency. The kernel function is a non-negative and
satisfies the normalization condition∫

V

K[S](v′, v)dv = 1. (1.3)

To write (1.2) in a compact form, we introduce a notation

T [S](v′, v) = λ(S)K[S](v′, v) (1.4)

which is called the turning kernel. Then equation (1.2) can be rewritten as a
compact form

∂p

∂t
+ v · ∇p+∇ξ(ηp) =

∫
V

(T [S]p′ − T ∗[S]p)dv′, (1.5)

where the abbreviation p′ = p(t, x, v′, ξ), T [S] = T [S](v′, v), T ∗[S] = T [S](v, v′) and
the intensity λ of the Poisson process is thus given by from (1.3)-(1.4)

λ(S) =

∫
V

T ∗[S]dv′.

Then (1.5) becomes an equation same as the one considered in paper [4], where the
turning kernel T [S] is assumed to be independent of ξ (i.e. ξ has no influence on
cell movement). When T [S] replies on the internal variable ξ, there are some results
available as follows. When the signal response function η has some stiffness, the
macroscopic equation of Keller-Segel type as a parabolic limit of (1.5) was derived in
[22] and the global existence of solutions of (1.5) coupled to an elliptic equation for
the chemical signal S was proved in [18]. The formal macroscopic limit of (1.5) with
certain specific internal dynamics was previously derived in [7, 8]. In this paper, we
shall consider another approach illustrated in [4] by considering the averaging effect
of internal dynamics to derive the dynamics of internal variable instead of a given
dynamics as recalled above, and investigate the global existence of solutions to the
resulting equations. To make our presentation self-contained, we shall briefly recall
some derivations shown in [4] below.

Define f and ρ as

f(t, x, v) =

∫
Z

p(t, x, v, ξ)dξ, ρ(t, x) =

∫
V

f(t, x, v)dv.
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That is f is the position-velocity density of cells and ρ is the total density of cells
over all velocities. Then the average value of the internal variables is defined by

z(t, x) =
1

ρ

∫
V

∫
Z

ξp(t, x, v, ξ)dξdv.

Here we assume the boundary condition p(t, x, v, ξ) = 0 for ξ ∈ ∂Z where ∂Z
denotes the boundary of Z, and two moment closure assumptions∫

V

∫
Z

ξvpdξdv = z

∫
V

vfdv,

∫
V

∫
Z

ηpdξdv = ρη̄(z, S). (1.6)

The first closure assumption in (1.6) means that the variables v and ξ are uncorre-
lated (namely the internal variable ξ has no influence on cell movement) and it can
be fulfilled, say, for p(t, x, v, ξ) = f(t, x, v)p̃(t, x, ξ). The second closure assumption
in (1.6) depends on the form of η(z, S) (an example will be discussed in section 2).
Upon an integration of (1.5), the following equations are obtained

ft + v · ∇f =

∫
V

(T [S]f ′ − T ∗[S]f)dv′, (1.7)

(ρz)t +∇ ·
(
z

∫
V

vfdv

)
= ρη̄(z, S). (1.8)

More detailed explanations of (1.6) and derivation of (1.7)-(1.8) are referred to [4].
We remark here that (1.7) is weakly coupled to (1.8) in the sense that S depends on
the internal variable z (see (2.9) in section 2). A typical form of the turning kernel
T depending on spatial-temporal gradient of the chemical signal is (cf. [4])

T [S] = φ(St + v · ∇S), (1.9)

where φ : R → R is a smooth monotonically decreasing function.
For given chemical concentration S(t, x), when the turning kernel function in

(1.9) satisfies

0 < α ≤ φ ≤ β (1.10)

with two constants α, β > 0, the hydrodynamic limit of equations (1.7)-(1.8) was
derived in [4]. When (1.7) is coupled to a reaction-diffusion equation for S

τSt = ∆S + ρ− S (1.11)

with τ = {0, 1}, and the turning kernel T [S] depends on St implicitly (meaning that
the bound of T [S] does not depend on |St|), the global existence and parabolic limit
of solutions were obtained in a series of works [13, 14, 15] for x ∈ RN (1 ≤ N ≤ 3).
When φ in (1.9) satisfies φ ∈ C1(R) ∩ L∞(R) and φ′ < 0, the global existence and
numerical simulation of solutions were investigated in [29], and the so-called flux-
limited Keller-Segel model was formally derived in [26] and justified in [23] where the
global dynamics of the resulting flux-limited Keller-Segel model was also studied.
However, when T [S] explicitly depends on |St| (i.e. the bound of T [S] depends on
|St|), the only result available so far is the global existence of solutions to (1.7)
coupled with (1.11) with τ = 0 in R established in [6]. For the kinetic chemotaxis
model with internal state and turning kernel explicitly depending on the temporal
gradient St, no results seem to be available as we know. The purpose of this paper
is two folds: (1) establish the existence of global solutions of the model (1.7)-(1.8) in
R with a more general turning kernel explicitly depending on the temporal gradient
St where S satisfies a reaction-diffusion equation derived in [4] (see section 2); (2)
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relax the condition (1.10) imposed in [4] and rigorously derive the hydrodynamic
limit of (1.7)-(1.8).

The rest of this paper is organized as follows. In section 2, we briefly recall
the derivation of the equation for the chemical concentration S shown in [4, 7]
and state our main results. In section 3, we present some preliminary results. In
section 4, we show the local and global existence of solutions. Finally we discuss
the hydrodynamic limit of the model in section 5.

2. Model review and main results. To complete the statement of our problem,
we briefly review the function η(z, S) and dynamical equation for the chemical signal
S derived in [4, 7]. Then we propose the condition on the turning kernel T [S] and
state our main result.

In general the dynamics of the chemical concentration S follows a reaction-
diffusion equation

∂S

∂t
= ∆S + ϕ(S, z, ρ), (2.1)

where ϕ(S, z, ρ) describes the production and degradation of the chemical signal in
dependence on the cell density and the internal state of the cells.

For internal dynamics, we employ the model studied in [4, 7, 8]. This model
assumes that the internal states ξ = (ξ1, ξ2) satisfies a Cartoon model

dξ1
dτ

=
g(S(t, x))− (ξ1 + ξ2)

τe
,
dξ2
dτ

=
g(S(t, x))− ξ2

τa
, (2.2)

where τe and τa are respective excitation and adaptation time scales in the signal
transduction, and the production of the chemical signal is triggered by the first
internal variable. Then the reaction term ϕ(S, z, ρ) takes the form

ϕ(S, z, ρ) = ρw −Ψ(S), (2.3)

where w denotes the concentration of the first state ξ1 and the function −Ψ(S)
models the degradation of S, which has the form after rescaling (see [4])

Ψ(S) = S(1 + S). (2.4)

In general it is reasonable (e.g. see [7]) to assume that τe << τa in (2.2) due to the
fast excitation and slow adaptation of signaling process. Effectively we may assume
that τe = 0. Then from the first equation of (2.2), we have that

ξ1 = g(S)− ξ2,

which implies that the concentration of the first internal variable can be represented
by the concentration of the second internal variable. Therefore we focus on the
second internal chemical ξ2 and hence z ≈ ξ2. Consequently from the moment
closure assumption (1.6) and internal dynamic equation (2.2), we deduce that

η̄(z, S) = η(z, S) =
g(S(t, x))− z

τa
(2.5)

and the concentration w of the first state variable ξ1 is chosen as

w = (g(S)− z)+

where the notation q+ denotes the positive part of q. The function g ≥ 0 describes
the mechanism of signal transduction and we assume that

g ∈ C1([0,∞)) and g is bounded for any S ≥ 0. (2.6)
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Typically g(S) vanishes at zero, is monotone increasing and saturates for large S.
A suitable representation of g should depend on the fraction of receptors occupied.
A prototypical form is

g(S) = Φ

(
S

KD + S

)
with some continuous function Φ, where KD denotes the dissociation rate for the
chemical signal [2]. A typical choice (e.g. see [4]) is that Φ = identity, i.e., g(S) =

S
KD+S . In general the turning kernel depends on S, St and ∇S and hence denoted

by T [S, St,∇S]. For brevity, in what follows, we use the short form T [S] to denote
T [S, St,∇S] if there is no confusion caused. Without loss of generality we assume
τa = 1 in the sequel.

Then substituting (2.3) and (2.5) into (2.1) and coupling the resulting equation
with (1.7)-(1.8) lead to the following one-dimensional system

ft + v · fx =

∫
V

(T [S]f ′ − T ∗[S]f)dv′, (2.7)

(ρz)t + (zj)x = ρg(S)− ρz, (2.8)

St = Sxx + g(S)− zρ− S(1 + S) (2.9)

for (x, v) ∈ R× V , where V ⊂ R is a bounded interval and

j(t, x) =

∫
V

vf(t, x, v)dv (2.10)

denotes the cell density flux. To complete the statement of the problem, we impose
the following initial conditions

f |t=0 = f0, z|t=0 = z0, S|t=0 = S0. (2.11)

Due to the biological relevance, we assume f0, z0, S0 are all non-negative. The main
result of this paper is the global existence of solutions to the one-dimensional system
(2.7)-(2.11), where the turning kernel fulfills the following structural assumption:

(H) The turning kernel T [S] is a Lipschitz continuous function satisfying the
growth condition

0 ≤ T [S] ≤ C0(1 + ∥S∥W 1,∞(R) + ∥St∥L∞(R)) (2.12)

with some constant C0 > 0.

The assumption (H) entails that the boundedness of turning kernel depends on the
magnitude of S, Sx and St, instead of being uniformly bounded as assumed in (1.10)
and in [23]. A typical example is T [S] = λ0 + σ(St + vSx) with positive constant
λ0 and non-zero constant σ, see [10].

The main result of this paper is the global existence of solutions of (2.7)- (2.11),
which is stated in the following theorem.

Theorem 2.1. Let the structure condition (H) and assumption (2.6) hold. Assume
that f0 ∈ L1 ∩L∞(R×V ), z0 ∈ L∞(R) and S0 ∈ W 2,∞(R). Then the system (2.7)-
(2.11) has a global solution (f, z, S) satisfying for all 1 ≤ p ≤ ∞

f ∈ L∞([0,∞);Lp(R× V )), (2.13)

z ∈ L∞([0,∞);L∞(R)), (2.14)

S ∈ L∞([0,∞);W 2,∞(R)) ∩ C([0,∞);Lp(R)) (2.15)

such that
∥z∥L∞(R) + ∥S∥L∞(R) + ∥S∥W 1,q(R) ≤ C, 1 ≤ q < ∞
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holds for some constant C > 0 independent of t.

The key to prove the global existence of solutions of (2.7)-(2.11) is to derive a
priori estimates of Sx and St so that the bound of T [S] assumed in (2.6) can be
controlled. However this is a very challenging issue since there is no general theory
or method to estimate the spatial or temporal gradient of solutions for parabolic
equations. The main new contribution of this paper is to employ the Fourier trans-
form to derive a priori estimates of Sx and St in one dimension (see Lemma 3.6
and Lemma 3.7) which enable us to derive the global existence of solutions by using
a Gronwall inequality with logarithmic nonlinearity (see Lemma 3.2). The results
in Lemma 3.6 and Lemma 3.7 can only be ensured in R while remain open in the
multi-dimensional space RN (N ≥ 2).

The second result of this paper is to extend the result of hydrodynamic limits
of (2.7) established in [4] under the restrictive condition (1.10) to a more general
turning kernel T [S] which is allowed to be unbounded. The details are presented in
section 5.

3. Preliminary results. In this section, we introduce and prove some preliminary
results. In what follows, we use C to denote a positive generic constant which can
change from one line to another. By Γ(t, x) we denote the fundamental solution of
the differential operator ∂t −∆x + 1 in RN (N ≥ 1)

Γ(t, x) =
1

(4πt)N/2
exp

(
−|x|2

4t
− t

)
. (3.1)

Lemma 3.1. Let 1 ≤ p ≤ +∞ and Γ(t, x) be defined in (3.1). Then it holds that∫ ∞

0

∥∂k
xΓ(t, ·)∥Lp(RN )dt < +∞, if

1

p
> 1 +

k − 2

N
.

Proof. First recall a basic result (cf. [23]): for any 1 ≤ p ≤ ∞, 0 ≤ l, k ≤ ∞, there
is a constant C such that for any t > 0 it holds that

∥∂l
t∂

k
xΓ(t, ·)∥Lp(RN ) ≤ Ce−tt

N
2p−

N
2 −l− k

2 . (3.2)

Then we immediately have∫ ∞

0

∥∂k
xΓ(t)∥Lp(RN )dt ≤ C

∫ ∞

0

e−tt
N
2 ( 1

p−1)− k
2 dt.

Clearly the above integral is bounded if N
2 (

1
p − 1)− k

2 > −1, i.e., 1
p > 1+ k−2

N . The

proof is completed.

Next we present a generalized Gronwall’s type inequality for later use based on
an inequality in [14, Lemma 4]. Throughout the paper, we use the notation ϕ+ to
denote the positive part of ϕ+, namely ϕ+ = 0 if ϕ ≤ 0 and ϕ+ = ϕ if ϕ > 0.

Lemma 3.2. Let a(t) and b(t) be positive functions. If the function y(t) ≥ 0 is
differentiable in t and satisfies

y(t) ≤ y(0) +

∫ t

0

[a(τ)y(τ)(ln y(τ))+ + b(τ)y(τ)]dτ, (3.3)

then the following inequality holds

y(t) ≤
[
(1 + y(0)) exp

(∫ t

0

[a(τ) + b(τ)]e−
∫ τ
0

a(s)dsdτ

)]exp(∫ t
0
a(s)ds)

.
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Proof. First note that for y ≥ 0, it holds that y(ln y)+ < (1 + y) ln(1 + y). Then
one has from (3.3) that

y(t) ≤ y(0) +

∫ t

0

[a(τ)(1 + y) ln(1 + y) + b(τ)(1 + y)]dτ.

Let X(t) = y(0)+
∫ t

0
[a(τ)(1+y) ln(1+y)+b(τ)(1+y)]dτ . Then we get y(t) ≤ X(t)

and
d

dt
X(t) = a(t)(1 + y) ln(1 + y) + b(t)(1 + y)

≤ a(t)(1 +X) ln(1 +X) + b(t)(1 +X).

Define w(t) = 1 + X(t). The above inequality becomes dw
dt ≤ a(t)w lnw + b(t)w

which gives by using the result of [14, Lemma 4]

w(t) ≤
[
w(0) exp

(∫ t

0

b(τ)e−
∫ τ
0

a(s)dsdτ

)]exp(∫ t
0
a(s)ds)

.

Hence the facts w(0) = 1 +X(0) = 1 + y(0) and y(t) ≤ X(t) ≤ w(t) complete the
proof.

In the following, we show that for any (t, x) ∈ [0,∞)×R, it holds that n = zρ ∈
L∞([0,∞);L1(R)).

Lemma 3.3. Let f0 ∈ L1(R×V ) and z0 ∈ L∞(R). Then the solution z of equation
(2.8) satisfies that

∥n(t)∥L1(R) = ∥zρ(t)∥L1(R) ≤ Ce−t(1 + t). (3.4)

Proof. Integrating equation (2.8) with respect to x gives

d

dt

∫
R
n(t, x)dx =

∫
R
ρ(t, x)g(S(t, x))dx−

∫
R
n(t, x)dx.

Using the boundedness of g, we deduce that

d

dt

∫
R
n(t, x)dx+

∫
R
n(t, x)dx ≤ C∥ρ∥L1(R). (3.5)

Integrating equation (2.7) with respect to v over V gives the conservation of cell
density

ρt + jx = 0, (3.6)

which immediately implies that

∥ρ(t)∥L1(R) = ∥ρ0∥L1(R) = ∥f0∥L1(R×V ). (3.7)

Substituting (3.6) into (3.5) and applying the Gronwall’s inequality, one deduces
that

∥n(t)∥L1(R) = ∥zρ(t)∥L1(R) ≤ Ce−t(∥ρ0∥L1(R)t+ ∥n0∥L1(R)),

which implies (3.4) due to the fact n0 = z0ρ0 ∈ L1(R) along with (3.7) and the
condition in Lemma 3.3.

With the equation (3.6), we can write the equation (2.8) as

ρzt + jzx = ρ(g(S)− z). (3.8)

Recalling that j(t, x) =
∫
V
vf(t, x, v)dv and ρ(t, x) =

∫
V
f(t, x, v)dv, we see that

| jρ | < C(V ) for some constant C(V ) depending on the measure of V . Because of

the biological relevance, we are only interested in the case that f, z and S are all
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nonnegative. If there is a point (t0, x0) such that ρ(t0, x0) = 0, then f(t0, x0, v) = 0
for every v ∈ V since ρ(t0, x0) =

∫
V
f(t0, x0, v)dv denotes the total cell density at

point (t0, x0). As a result, j(t0, x0) =
∫
V
vf(t0, x0, v)dv = 0 and the equation (3.8)

is satisfied in the solution space indicated in Theorem 2.1. Therefore we only need
to condider the case ρ(t, x) > 0 and consequently we can rewrite (3.8) as

zt +
j

ρ
zx = g(S)− z. (3.9)

Then we have the following result for the solution of equation (3.9).

Lemma 3.4. Let z0 ∈ L∞(R). Then the solution z of equation (3.9) satisfies

∥z∥L∞(R) ≤ C(1 + e−t). (3.10)

Proof. First we rewrite the equation (3.9) as follows

z̃t +
j

ρ
z̃x = etg(S) (3.11)

where z̃ = etz. Then the characteristic equation of the hyperbolic equation (3.11)
is

dx

dt
=

j(t, x)

ρ(t, x)
=: Λ(t, x).

which satisfies 0 ≤ Λ(t, x) ≤ C(V ) as argued above. Hence along backward charac-
teristics starting at (t, x), we have that for any 0 ≤ τ ≤ t

x(τ ; t, x) = x−
∫ t

τ

Λ(τ,x(τ))dτ. (3.12)

Then integrating the equation (3.9) along the characteristic curve (3.12), one has
that

z̃(t, x) = z0(x(0)) +

∫ t

0

eτg(S(τ,x(τ)))dτ.

Noting that g(S(t, x)) is bounded for any S(t, x), we have

∥z̃(t, ·)∥L∞(R) ≤ ∥z0∥L∞(R) + C

∫ t

0

etdτ = ∥z0∥L∞(R) + C(et − 1).

This indicates that

∥z(t, ·)∥L∞(R) ≤ e−t(∥z0∥L∞(R) + C(et − 1)) ≤ e−t∥z0∥L∞(R) + C

which completes the proof.

The following Lemma gives a priori estimates for the Lp-norm (1 ≤ p ≤ ∞) of
S(t, x).

Lemma 3.5. Let f0 ∈ L1(R× V ), S0 ∈ Lp(R)(1 ≤ p ≤ ∞) and z0 ∈ L∞(R). Then
there exists a constant C such that the solution S of equation (2.9) satisfies the
following properties

∥S(t)∥Lp(R) ≤ C(1 + ∥ρ0∥L1(R) + ∥S0∥Lp(R)), 1 ≤ p ≤ ∞. (3.13)
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Proof. Then by the Duhamel’s principle, the solution of (2.9) can be implicitly
represented as

S(t, x)

=

∫ t

0

Γ(s, ·) ∗ (g(S(t− s, ·))ρ(t− s, ·))ds−
∫ t

0

Γ(s, ·) ∗ (zρ)(t− s, ·)ds

−
∫ t

0

Γ(s, ·) ∗ S2(t− s, ·)ds+ Γ(t, ·) ∗ S0(x)

(3.14)

Notice that
∫ t

0
Γ(s, ·)∗S2(t−s, ·)ds ≥ 0. Then by Jensen’s inequality and convolution

inequality, it follows from (3.14) that

∥S(t)∥Lp(R) ≤
∫ t

0

∥Γ(s, ·) ∗ (g(S(t− s, ·))ρ(t− s, ·))∥Lp(R)ds

+

∫ t

0

∥Γ(s, ·)∥Lp(R)∥zρ(t− s, ·)∥L1(R)ds+ ∥Γ(t, ·)∥L1(R)∥S0∥Lp(R)

≤ C

∫ t

0

∥Γ(s, ·)∥Lp(R)(∥ρ(t− s, ·)∥L1(R) + ∥zρ(t− s, ·)∥L1(R))ds

+∥Γ(t, ·)∥L1(R)∥S0∥Lp(R),

(3.15)

where we have used the boundedness of g assumed in (2.6). It can be easily checked
that max

0≤s≤t
(1 + t − s)e−(t−s) = 1. Then for any p with p ∈ [1,∞], we have from

(3.7), Lemma 3.3 and Lemma 3.1 with N = 1 that∫ t

0

∥Γ(s, ·)∥Lp(R)(∥ρ(t− s, ·)∥L1(R) + ∥zρ(t− s, ·)∥L1(R))ds

≤ C

∫ t

0

∥Γ(s, ·)∥Lp(R)[1 + (1 + t− s)e−(t−s)]ds

≤ C

∫ t

0

∥Γ(s, ·)∥Lp(R)dx ≤ ∞.

(3.16)

Moreover, it is straightforward to verify from (3.2) that

∥Γ(t, ·)∥L1(R) =
1

(4πt)1/2
e−t∥e− x2

4t ∥L1(R) ≤ Ce−t ≤ C. (3.17)

Then the inequality (3.13) follows from (3.15), (3.16) and (3.17).
In the above proof of Lemma 3.5, we only use the boundedness of g in the

assumption (2.6). By the global boundedness of S shown in Lemma 3.5, g′ is
bounded due to g ∈ C1 as assumed in (2.6). Therefore hereafter we shall use the
boundedness of g′ directly.

Below we derive some a priori L∞-estimates on the gradient Sx and St, which
play key roles in the subsequent analysis.

Lemma 3.6. Let f0 ∈ L1(R × V ), S0 ∈ W 1,∞(R) and z0 ∈ L∞(R). Let (f, z, S)
satisfy (2.7)-(2.9). Then there exists a constant C0 depending on ∥z0∥L∞(R) and
∥ρ0∥L1∩L∞(R) such that the solution S of (2.9) satisfies

∥Sx(t)∥L∞(R) ≤ C0(1 + (ln t)+ + (ln sup
0≤s≤t

∥ρ(s)∥L2(R))+). (3.18)

Proof. First note that the solution S(t, x) can be expressed by (3.14). To derive

the L∞ bound for Sx(t, x), we first estimate ∥ξŜ(t, ξ)∥L1(R) whereby ˆ denotes the
Fourier transform with frequency ξ, and then use the Fourier transform inequality
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∥Sx(t, ·)∥L∞(R) ≤ ∥Ŝx(t, ·)∥L1(R) = ∥ξŜ(t, ξ)∥L1(R) to obtain (3.18). To this end, we
take the Fourier transform on both side of (3.14) and get

Ŝ(t, ξ) =

∫ t

0

Γ̂(s, ξ)(̂gρ)(t− s, ξ)ds−
∫ t

0

Γ̂(s, ξ)(̂zρ)(t− s, ξ)ds

−
∫ t

0

Γ̂(s, ξ)Ŝ2(t− s, ξ)ds+ Γ̂ ∗ S0

= Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4.

(3.19)

Noting that ∥ξŜ(t, ξ)∥L1(R) = ∥ξ(Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4)(t, ξ)∥L1(R) ≤
∑4

i=1 ∥ξŜi(t, ξ)∥L1(R),

we next estimate ∥ξŜi(t, ξ)∥L1(R) for i = 1, 2, 3, 4. We first estimate ∥ξŜ1(t, ξ)∥L1(R)
for which we apply the idea of [15] and split the integral into two parts as follows

∥ξŜ1(t, ·)∥L1(R) ≤
∫ t

0

∥ξΓ̂(s, ξ)(̂gρ)(t− s, ξ)∥L1(R)ds =

∫ r

0

· · ·+
∫ t

r

· · · , (3.20)

where r is between 0 and t and will be appropriately determined later. Note that
the Fourier transform of the Green function Γ is Γ̂(s, ξ) = exp(−s(4ξ2 + 1)). Then
for 0 < s < r, we apply Hölder inequality, Plancherel’s identity and boundedness of
g to deduce that∫ r

0

∥ξΓ̂(s, ξ)(̂gρ)(t− s, ξ)∥L1(R)ds

≤
∫ r

0

∥ξΓ̂(s, ξ)∥L2(R)∥ĝρ(t− s, ξ)∥L2(R)ds

≤ C∥g∥L∞(R) sup
0≤s≤t

∥ρ(s, ·)∥L2(R)

∫ r

0

e−ss−3/4ds

≤ Cr1/4 sup
0≤s≤t

∥ρ(s, ·)∥L2(R),

(3.21)

where we have used the inequality

∥ξΓ̂(s, ξ)∥L2(R) = ∥ξ exp(−s(4ξ2 + 1))∥L2(R) ≤ Ce−ss−3/4,

which can be derived directly by the simple calculations. For 0 < r < s < t, we use
the mass conservation of ρ from (3.6) and boundedness of g from (2.6) to infer that∫ t

r

∥ξΓ̂(s, ξ)(̂gρ)(t− s, ξ)∥L1(R)ds

≤
∫ t

r

∥ξΓ̂(s, ξ)∥L1(R)∥ĝρ(t− s, ξ)∥L∞(R)ds

≤ C∥ρ0∥L1(R)

∫ t

r

e−ss−1ds

≤ C∥ρ0∥L1(R)(ln t− ln r)

(3.22)

where we have used the fact that ∥ĝρ∥L∞(R) ≤ ∥gρ∥L1(R) ≤ ∥g∥L∞(R)∥ρ∥L1(R) ≤
C∥ρ∥L1(R). Then the combination of (3.21) and (3.22) leads to

∥ξŜ1(t, ·)∥L1(R) ≤ C(r1/4 sup
0≤s≤t

∥ρ(s, ·)∥L2(R) + ∥ρ0∥L1(R)(ln t− ln r)). (3.23)

Now choosing r = min{t, ( sup
0≤s≤t

∥ρ(s, ·)∥L2(R))
−4} in (3.23), we have

∥ξŜ1(t, ·)∥L1(R) ≤ C(1 + ∥ρ0∥L1(R)[1 + (ln t)+ + (ln sup
0≤s≤t

∥ρ(s)∥L2(R))+]) (3.24)

Thus the L1 estimate for ξŜ1(t, ξ) is completed.
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Performing the same procedure as above (replacing g by z), we have the L1

bound for ξŜ2(t, ξ) as follows

∥ξŜ2(t, ·)∥L1(R) ≤ C(1 + (ln t)+ + (ln sup
0≤s≤t

∥ρ(s)∥L2(R))+),

where Lemma 3.3 and Lemma 3.4 have been used.
Moreover, using the Plancherel’s identity and inequality (3.13), we have

∥ξŜ3(t, ·)∥L1(R) ≤
∫ t

0

∥ξΓ̂(s, ξ)∥L2(R)∥S2(t− s, ξ)∥L2(R)ds

≤
∫ t

0

∥ξΓ̂(s, ξ)∥L2(R)∥S(t− s, ξ)∥2L4(R)ds

≤ C(1 + ∥S0∥L4(R) + ∥ρ0∥L1(R))
2

(3.25)

where we have used the fact
∫ t

0
∥ξΓ̂(s, ξ)∥L2(R) ≤ C

∫ t

0
e−ss−3/4ds < ∞. In addition,

from (3.2), we have ∥Γ(t, ·)∥L1(R) ≤ C for some constant C > 0. Then with the
convolution inequality, the following inequality holds

∥∂xS4∥L∞(R) = ∥Γ ∗ ∂xS0∥L∞(R) ≤ ∥Γ(t, ·)∥L1(R) · ∥∂xS0∥L∞(R)

≤ C∥∂xS0∥L∞(R).
(3.26)

Finally, we derive the L∞ norm of Sx as follows

∥Sx∥L∞(R) ≤
3∑

i=1

∥∂xSi(t)∥L∞(R) + ∥∂xS4(t)∥L∞(R)

≤
3∑

i=1

∥∂̂xSi∥L1(R) + ∥∂xS4(t)∥L∞(R)

≤
3∑

i=1

∥ξŜi(t, ξ)∥L1(R) + ∥∂xS4(t)∥L∞(R).

(3.27)

Then the substitution of (3.24)-(3.26) into (3.27) gives inequality (3.18) and hence
completes the proof of Lemma 4.1.

The next Lemma gives the a priori L∞-estimate for the temporal gradient St.

Lemma 3.7. Let f0 ∈ L1 ∩ L∞(R × V ), S0 ∈ W 2,∞(R) and z0 ∈ L∞(R). Let
(f, z, S) satisfy (2.7)-(2.9). Then the solution S of (2.9) satisfies that

∥St(t)∥L∞(R) ≤ C(1 + (ln t)+ + (ln sup
0≤s≤t

∥ρ(s)∥L2(R))+). (3.28)

Proof. The idea used in the proof of Lemma 3.6 will be partially applied here.
First we set ṽ = St and differentiate equation (2.9) with respect to t to obtain an
equation for ṽ

∂ṽ

∂t
= ∆ṽ − ṽ +

∂

∂t
F(S, z, ρ)− 2Sṽ,

where F(S, z, ρ) = (g(S)− z)ρ. Then by the Duhamel’s principle we have

ṽ(t, x) = Γ(t, ·) ∗ ṽ0(·)− 2

∫ t

0

Γ(s, ·) ∗ (Sṽ)(t− s)ds

+

∫ t

0

Γ(s, ·) ∗ Ft(t− s, ·)ds

= I1 + I2 + I3.

(3.29)
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Next we employ a similar argument as in the proof of Lemma 3.6 for Sx to estimate
ṽ. First from the equation (2.9), one has that St(0) = ṽ0 = S0xx+(g(S0)− z0)ρ0−
S0 − S2

0 . Then ∥ṽ0∥L∞(R) ≤ C(1 + ∥S0∥W 2,∞(R) + ∥ρ0∥L∞(R) + ∥z0ρ0∥L∞(R)) by the
boundedness of g. Therefore the convolution inequality yields the following estimate

∥I1∥L∞(R) ≤ ∥Γ(t)∥L1(R)∥ṽ0∥L∞(R)

≤ Ce−t(1 + ∥S0∥W 2,∞(R) + ∥ρ0∥L∞(R) + ∥z0ρ0∥L∞(R)),
(3.30)

where we have used the fact ∥Γ(t)∥L1(R) = e−t which is obtained in Lemma 3.1.
For I2, we use the convolution inequality again and (3.13) to get

∥I2∥L∞(R) ≤
∫ t

0

∥Γ(s)∥L1(R)∥S∥L∞(R)∥ṽ∥L∞(R)ds ≤ C

∫ t

0

e−s∥ṽ∥L∞(R)ds, (3.31)

where C depends on ∥S0∥L∞(R), ∥ρ0∥L1(R) which can be seen from (3.13) directly.
Next we prove the boundedness of I3 using the Fourier transform inequality

∥I3∥L∞(R) ≤ ∥Î3∥L1(R). To this end, we write I3 in the form

I3 =

∫ t

0

Γ(s, ·) ∗ (g(S)ρt(t− s, ·))ds−
∫ t

0

Γ(s, ·) ∗ (zρ)t(t− s, ·)ds

+

∫ t

0

Γ(s, ·) ∗ (g′(S)ρṽ(t− s, ·))ds

= M1 +M2 +M3.

(3.32)

Since ∥I3∥L∞(R) ≤
∑3

i=1 ∥Mi∥L∞(R) ≤
∑3

i=1 ∥M̂i∥L1(R), it suffices to estimate

∥M̂i∥L1(R) for i = 1, 2, 3. From the equation (2.7), we have ρt = −jx, where

j(t, x) =
∫
V
vf(t, x, v)dv denoting the density flux. Then it follows that

ĝ ∂ρ
∂t (t− s, ξ) = −ĝ ∂j

∂x (t− s, ξ) = −ĝ(t− s, ·) ∗ ∂̂j
∂x (t− s, ·)

= −ĝ(t− s, ·) ∗ (iξĵ(t− s, ·))
= −iξ

∫
R ĝ(t− s, ξ − y)ĵ(t− s, y)dy

= −iξ(ĝ ∗ ĵ)(t− s, ξ)

= −iξĝj(t− s, ξ).

(3.33)

In addition, from the Plancherel’s identity, using the positivity of f , we can deduce
that

∥ĵ(t)∥L2(R) = ∥j(t)∥L2(R)

≤
(∫

R

(∫
V

vf(t, x, v)dv

)2

dx

)1/2

≤C(V )∥ρ(t)∥L2(R)
(3.34)

where we have used the compactness of domain V .
Observing that

∥M̂1∥L1(R) ≤
∫ t

0

∥ξΓ̂(s, ξ)(̂gj)(t− s, ξ)∥L1(R)ds, (3.35)

we use exactly the same method as estimating (3.20), and employ Hölder inequality,
Plancherel’s inequality and the boundedness of g to (3.35). After some calculations,
we have

∥M1∥L∞(R) ≤ ∥M̂1∥L1(R)
≤ C(1 + ∥ρ0∥L1(R)(1 + (ln t)+ + (ln sup

0≤s≤t
∥ρ(s)∥L2(R))+)). (3.36)
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To estimate M2, we first notice from the equation (2.8) that

∂̂(zρ)

∂t
= − ∂̂(zj)

∂x
+ ρ̂g(S)− ẑρ = iξẑj(t, ξ) + ρ̂g(S)(t, ξ)− ẑρ(t, ξ).

Then it follows from the convolution identity involving the Fourier transform that

∥M̂2∥L1(R) ≤
∫ t

0

∥ξΓ̂(s, ξ)ẑj(t− s, ξ)∥L1(R)ds

+

∫ t

0

∥Γ̂(s, ξ)ρ̂g(S)(t− s, ξ)∥L1(R)ds

+

∫ t

0

∥Γ̂(s, ξ)ẑρ(t− s, ξ)∥L1(R)ds.

(3.37)

Note that one has ∥j∥L1(R) ≤ C∥ρ∥L1(R) ≤ C∥ρ0∥L1(R) from (2.10) and (3.6). Fur-

thermore ∥ẑj∥L∞(R) ≤ ∥zj∥L1(R). Then applying inequality (3.4), (3.10) and (3.34),
and using the same approach as estimating (3.20), we end up with the following
inequality ∫ t

0

∥ξΓ̂(s, ξ)ẑj(t− s, ξ)∥L1(R)ds

≤C(1 + (ln t)+ + (ln sup
0≤s≤t

∥ρ(s)∥L2(R))+).
(3.38)

Noticing that ∥Γ̂(t, ·)∥L1(R) ≤ Ct−1/2e−t, one has∫ t

0

∥Γ̂(s, ξ)ρ̂g(S)(t− s, ξ)∥L1(R)ds

≤ sup
0≤s≤t

∥ĝρ(t− s, ·)∥L∞(R)

∫ t

0

∥Γ̂(τ, ·)∥L1(R)dτ

≤ C sup
0≤s≤t

∥gρ(t− s, ·)∥L1(R)

≤ C∥ρ0∥L1(R).

(3.39)

Similarly, we can deduce from (3.10) that∫ t

0

∥Γ̂(s, ξ)ẑρ(t− s, ξ)∥L1(R)ds ≤ C∥ρ0∥L1(R). (3.40)

Then the substitution of (3.38), (3.39) and (3.40) into (3.37) yields

∥M2∥L∞(R) ≤ ∥M̂2∥L1(R) ≤ C(1 + (ln t)+ + (ln sup
0≤s≤t

∥ρ(s)∥L2(R))+). (3.41)

To finish the proof, it remains to estimate M3 for which we have

∥M3∥L∞(R) ≤
∫ t

0

∥g′(S)ρ∥L1(R)∥Γ(s, ·)∥L∞(R)∥ṽ∥L∞(R)ds

≤ C∥ρ0∥L1(R)

∫ t

0

t−1/2e−s∥ṽ∥L∞(R)ds.

(3.42)

Plugging (3.36), (3.41) and (3.42) into (3.32) and combining the resulting inequality
with (3.30) and (3.31), we end up with the following inequality from (3.29)

∥ṽ∥L∞(R) ≤ C(1 + (ln t)+ + (ln sup
0≤s≤t

∥ρ(s)∥L2(R))+)

+C

∫ t

0

(e−s + s−1/2e−s)∥ṽ∥L∞(R)ds,

where C > 0 is a constant depending on initial data.
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Note that
∫ t

0
(e−s+s−1/2e−s)ds ≤

∫∞
0

(e−s+s−1/2e−s)ds = 1+
√
π/2 and ṽ = St.

Then the application of Gronwall’s inequality into the above inequality gives (3.28)
due to St = ṽ. The proof of Lemma 3.7 is completed.

4. Global existence. The proof of global existence of solutions to (2.7)-(2.9) con-
sists of a local existence theorem and the a priori estimates. We first prove the
local existence of solutions.

4.1. Local existence. The local existence theorem is given below.

Lemma 4.1 (Local existence). Let f0 ∈ L1 ∩ L∞(R × V ), z0 ∈ L∞(R), S0 ∈
W 2,∞(R). Let the hypothesis (H) hold. Then there exists a positive constant T0 such
that (2.7)-(2.9) has a unique solution satisfying f ∈ L∞([0, T0);L

1 ∩ L∞(R× V )),
S ∈ L∞([0, T0);W

2,∞(R)) with z ∈ L∞([0, T0);L
∞(R)).

Proof. From the results given in Lemma 3.4, the local solution z can be obtained
by the fixed point theorem directly irrespective of the properties of f and S due
to the uniform boundedness of g and j

ρ . Therefore we only consider the equations

for f and S. The proof consists of the following three steps. For convenience, we
denote for some T > 0

X (T ) = L∞([0, T );L∞(R× V )), ∥f∥X = sup
0≤t≤T

∥f(t, ·, ·)∥L∞(R×V )

and
Y(T ) = L∞([0, T );W 1,∞(R)), ∥S∥Y = sup

0≤t≤T
∥S(t, ·)∥W 1,∞(R).

Step 1. Given a function θ ∈ X (T ) with ϱ(t, x) =
∫
V
θ(t, x, v)dv, we consider the

following equation

St = Sxx − S + g(S)− S2 − zϱ, S|t=0 = S0. (4.1)

For convenience, we denote h(S) = g(S)−S2. Then by Duhamel principle, one can
write the solution of (4.1) as

S(t, x) = Γ(t, ·) ∗ S0(·) +
∫ t

0

Γ(τ, ·) ∗ [h(S(t− τ, ·))− (zϱ)(t− τ, ·)]dτ. (4.2)

Next we define an operator T1 : Y → Y such that

T1[S] = Γ(t, ·) ∗ S0(·) +
∫ t

0

Γ(τ, ·) ∗ [h(S(t− τ, ·))− (zϱ)(t− τ, ·)]dτ

and show that T1 has a unique fixed point. Indeed for any S, S̃ ∈ Y with S(0, ·) =
S̃(0, ·) = S0, we have

T1[S]− T1[S̃] =
∫ t

0

Γ(τ, ·) ∗ [h(S(t− τ, ·))− h(S̃(t− τ, ·))]dτ. (4.3)

By the convolution inequality, we have the following estimates

∥Γ(τ, ·) ∗ {h(S(t− τ, ·))− h(S̃(t− τ, ·))}∥Y
= sup

0≤τ≤t
∥(Γ(τ, ·) + ∂xΓ(τ, ·)) ∗ [h(S(t− τ, ·))− h(S̃(t− τ, ·))]∥L∞(R)

≤ sup
0≤τ≤t

(
∥Γ(τ, ·)∥W 1,1(R)∥h(S(t− τ, ·))− h(S̃(t− τ, ·)∥L∞(R)

)
.

(4.4)

Note that

h(S)− h(S̃) = g(S)− S2 − (g(S̃)− S̃2) = [g′(ξ)− (S + S̃)](S − S̃) (4.5)
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where ξ is between S and S̃. Therefore it follows from Lemma 3.5 and (2.6) that

∥h(S)− h(S̃)∥L∞(R) ≤ C∥S − S̃∥L∞(R). (4.6)

From (3.2), one has that ∥Γ(τ, ·)∥W 1,1(R) ≤ Ce−t(1 + t−
1
2 ) and hence∫ t

0

∥Γ(τ, ·)∥W 1,1(R)dτ ≤ C(1− e−t + t
1
2 ).

This alongside (4.3)-(4.6) gives

∥T1[S]− T1[S̃]∥Y ≤ Cm(t)∥S − S̃∥Y

where m(t) = 1 − e−t + t
1
2 . By choosing T small with 0 < t < T such that

Cm(t) < 1, we conclude that T1 is a contraction mapping on Y(T ) and hence has
a unique fixed point S ∈ Y(T ). This implies that the problem (4.1) has a unique
solution S ∈ Y(T ) if T is small, which further satisfies the following estimates in
view of Lemma 3.6 and Lemma 3.7

∥Sx(t)∥L∞(R) + ∥St(t)∥L∞(R) ≤ C(1 + (ln t)+ + (ln sup
0≤s≤t

∥ϱ(s)∥L2(R))+)

≤ C(1 + t+ sup
0≤s≤t

∥ϱ(s)∥L2(R)) ≤ C(1 + t)
(4.7)

where we have used the fact (ln s)+ ≤ ln(1 + s) ≤ s for s ≥ 0 and ∥ϱ∥L2(R) ≤
C(V )∥θ∥L2(R×V ) by the Hölder inequality due to the definition ϱ(t, x) =

∫
V
θ(t, x, v)

dv for θ ∈ X (T ).
Next we proceed to explore the continuous dependence of S on θ. For this

purpose, we choose another θ̄(t, x, v) ∈ X (T ) with ϱ̃(t, x) =
∫
V
θ̄(t, x, v)dv, and by

S̃ we denote the solution of (4.1) with ϱ replaced by ϱ̄. Then it follows from (4.1)
and (4.2) that

S − S̄ =

∫ t

0

Γ(τ, ·) ∗ {ℏ(S(t− τ, ·), ϱ(t− τ, ·))− ℏ(S̄(t− τ, ·), ϱ̄(t− τ, ·))}dτ (4.8)

where ℏ(s, ϱ) = g(S)− S2 − zϱ. The convolution inequality yields that

∥Γ(τ, ·) ∗ (ℏ(S, ϱ)− ℏ(S̄, ϱ̄))∥Y
= sup

0≤τ≤t
∥(Γ(τ, ·) + Γx(τ, ·)) ∗ (ℏ(S, ϱ)− ℏ(S̄, ϱ̄))∥L∞(R)

≤ sup
0≤τ≤t

(
∥Γ(τ, ·)∥W 1,1(R)∥(ℏ(S, ϱ)− ℏ(S̄, ϱ̄))∥L∞(R)

)
.

(4.9)

Note that

ℏ(S, ϱ)− ℏ(S̄, ϱ̄) = (g(S)− z)ρ− S2 − (g(S̄)− z)ϱ̄+ S̄2

= (g(S)− z)(ϱ− ϱ̄) + [g(S)− g(S̄)]ϱ̄− (S + S̄)(S − S̄)

= (g(S)− z)(ϱ− ϱ̄) + g′(ζ)(S − S̄)ϱ̄− (S + S̄)(S − S̄)

= (g(S)− z)(ϱ− ϱ̄)− (S + S̄ − g′(ζ)ϱ̄)(S − S̄)

(4.10)

where ζ is between S and S̄. Therefore it follows from Lemma 3.4, Lemma 3.5 and
(2.6) that

∥(ℏ(S, ϱ)− ℏ(S̄, ϱ̄))∥L∞(R) ≤ C(1 + e−t)(∥ϱ− ϱ̄∥L∞(R) + ∥S − S̄∥L∞(R)). (4.11)

Note again
∫ t

0
∥Γ(τ, ·)∥W 1,1(R)dτ ≤ C(1 − e−t + t

1
2 ) from (3.2). Then we get from

(4.8)-(4.11)

∥S − S̄∥Y ≤ Cm(t)(∥θ − θ̄∥X + ∥S − S̄∥Y) (4.12)
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where m(t) = 1− e−t + t
1
2 as above and the inequality ∥ρ− ϱ̄∥L∞(R) ≤ C∥θ − θ̄∥X

has been used. Taking T > 0 small enough with 0 < t < T such that Cm(t) < 1,
we have from (4.12) that

∥S − S̄∥Y ≤ Cm(t)

1− Cm(t)
∥f − f̃∥X =: ℓ1(t)∥θ − θ̄∥X . (4.13)

Step 2. Let S ∈ Y(T ) be the fixed point of (4.1) satisfying (4.7) obtained in Step
1. We consider the following problem

ft + v · ∇xf =

∫
V

(T [S]f ′ − T ∗[S]f)dv′, f |t=0 = f0. (4.14)

Using the backward characteristic starting at (t, x), the characteristic curve for any
0 ≤ τ ≤ t is given by

X(τ ; t, x) = x− v(t− τ).

Then we can rewrite (4.14) along the characteristic curve as

f(t, x, v) = f0(X(0), v) +

∫ t

0

∫
V

{T [S(τ,X(τ))]f(τ,X(τ), v′)

− T ∗[S(τ,X(τ))]f(τ,X(τ), v)}dv′dτ.

Next we define an operator T2 : X → X such that

T2[f ] =f0(X(0))

+

∫ t

0

∫
V

(T [w(τ,X(τ))]f(τ,X(τ), v′)− T ∗[w(τ,X(τ))]f(τ,X(τ), v))dv′dτ.

Then for any f, f̃ ∈ X (T ) with f0 = f̃0, we have

T2[f ]− T2[f̃ ] =
∫ t

0

∫
V

T [S(τ,X(τ))](f(τ,X(τ), v′)− f̃(τ,X(τ), v′))dv′dτ

−
∫ t

0

∫
V

T ∗[S(τ,X(τ))](f(τ,X(τ), v)− f̃(τ,X(τ), v))dv′dτ.

By the hypothesis (H) along with (4.7), one deduces for any 0 < t ≤ T that

∥T2[f ]− T2[f̃ ]∥X ≤ 2C0(1 + sup
0≤τ≤T

∥S(τ)∥W 1,∞(R)

+ ∥St(t)∥L∞(R))

∫ t

0

∫
V

∥f − f̃∥Xdv′dτ

≤ 2C|V |t(1 + t)∥f − f̃∥X ,

where Lemma 3.5 has been used. Now let T > 0 small with 0 < t < T such that
0 < t(1 + t) < 1

2C|V | . Then T2 is a contraction mapping on X (T ) and hence has a

unique fixed point f ∈ X (T ).
Now we investigate the continuous dependence of f on S. To this end, we

replace S by S̃ ∈ Y(T ) in (4.14) with S0 = S̃0, which gives another unique solution

f̃ ∈ X (T ) by the above argument. Then

f − f̃ =

∫ t

0

∫
V

[(T [S]− T [S̃])f ′ + (T ∗[S̃]− T ∗[S])f ]dv′dτ

+

∫ t

0

∫
V

(T [S̃](f ′ − f̃ ′)− T ∗[S̃](f − f̃))dv′dτ.
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From the assumption (H) and (4.7), it follows that

∥f − f̃∥X ≤2L|V |t(∥f∥X + ∥f̃∥X )∥S − S̃∥Y
+ 2C|V |t(1 + t+ ∥S∥Y + ∥S̃∥Y)∥f − f̃∥X ,

where L is a Lipschitz constant. If we let T > 0 small enough with 0 < t < T such
that t(1 + t+ ∥S∥Y + ∥S̃∥Y) < 1

2|V | , then

∥f − f̃∥X ≤ 2L|V |t(∥f∥X + ∥f̃∥X )

1− 2|V |t(1 + t+ ∥S∥Y + ∥S̃∥Y)
∥w − w̃∥Y =: ℓ2(t)∥S − S̃∥Y . (4.15)

Step 3. From the procedures shown above, we get a map ϕ1 : X (T ) → Y(T ) in
Step 1 and another map ϕ2 : Y(T ) → X (T ) for small T > 0 in Step 2. Now we
define a map Φ = ϕ2 ◦ ϕ1 : X (T ) → X (T ) such that Φ(θ) = f . Given two functions
θ1, θ2 ∈ X , we denote Si = ϕ1(θi) and f1 = ϕ2(Si) for i = 1, 2. Then using (4.15)
and (4.13), we get

∥Φ(θ1)− Φ(θ2)∥X ≤ ∥ϕ2(S1)− ϕ2(S2)∥X ≤ ∥f1 − f2∥X ≤ ℓ1(t)ℓ2(t)∥θ1 − θ2∥X

where ℓ1(t) are ℓ2(t) can be made arbitrarily small if t is small enough. Hence for
T > 0 sufficiently small with 0 < t < T , Φ is a contraction mapping and hence
has a unique fixed point which yields a unique solution f ∈ X (T ). Furthermore we
can get f ∈ L1(R× V ) directly by integrating (2.7). Using this f , we get a unique
solution S ∈ Y(T ) from the S-equation as shown in Step 1. To finish the proof, it
remains only to show Sxx ∈ L∞([0, T );L∞(R)). Indeed from Lemma 3.7, one has
St ∈ L∞([0, T );L∞(R)). Note that (2.9) gives Sxx = St − g(S) + zρ + S(1 + S),
which along with the fact that St, g, S and zρ are bounded for any t ∈ [0, T ) shown
above entails that Sxx ∈ L∞([0, T );L∞(R)). This completes the proof of Lemma
4.1.

4.2. Proof of Theorem 2.1. By the continuity argument, to obtain the global
existence, it suffices to derive a priori bound for the solution. Note that (2.14) is
a direct consequence of (3.10). Then it remains to show (2.13) and (2.15). To this
end, we integrate (2.7) along the characteristic curve and use the assumption (2.6)
along with the hypothesis (H) to have that

f(t, x, v) = f0(x− vt, v)−
∫ t

0

∫
V

T ∗[S(t− τ, x− vτ)]f(t− τ, x− vτ, v)dv′dτ

+

∫ t

0

∫
V

T [S(t− τ, x− vτ)]f(t− τ, x− vτ, v′)dv′dτ

≤ f0(x− vt, v) +

∫ t

0

∫
V

T [S(t− τ, x− vτ)](t− τ, x− vτ, v′)dv′dτ.

Using the hypothesis (H), we have

f(t, x, v) ≤ f0(x− vt, v)

+C

∫ t

0

{(
1 + |S(t− τ, x− vτ)|+ |Sx(t− τ, x− vτ)|

+|St(t− τ, x− vτ)|
)∫

V

f(t− τ, x− vτ, v′)dv′
}
dτ.

(4.16)



44 ZHI-AN WANG

Taking the p-th power of (4.16) and integrating the result with respect to x and v,
together with the compactness of V , we end up with

∥f(t)∥Lp(R×V ) ≤ ∥f0∥Lp(R×V )

+ C

∫ t

0

(1 + ∥S(τ)∥W 1,∞(R×V ) + ∥St∥L∞(R))∥f(τ)∥Lp(R×V )dτ.
(4.17)

Using Lemma 3.6 and Lemma 3.7, and taking p = 2, we get for all t ≥ 0

∥f(t)∥L2(R×V ) ≤ ∥f0∥L2(R×V ) + C

∫ t

0

∥f(τ)∥L2(R×V )dτ

+ C

∫ t

0

(1 + (ln τ)+ + (ln sup
0≤s≤τ

∥ρ(s)∥L2(R×V ))+) · ∥f(τ)∥L2(R×V )dτ

≤ ∥f0∥L2(R×V ) + C

∫ t

0

∥f(τ)∥L2(R×V )dτ

+ C

∫ t

0

a(τ)(ln sup
0≤s≤τ

∥f(s)∥L2(R×V ))+∥f(τ)∥L2(R×V )dτ

where the fact ∥ρ(t)∥L2(R×V ) ≤ C(V )∥f(t)∥L2(R×V ) has been used and a(τ) =
1 + (ln τ)+. Setting

y(τ) = sup
0≤s≤τ

∥f(s)∥L2(R×V )

we obtain from the above inequality that

y(t) ≤∥f0∥L2(R×V ) + C

∫ t

0

[a(τ)y(τ)(ln y(τ))+ + y(τ)]dτ.

Then applying the Gronwall’s inequality in Lemma 3.2, we obtain

∥f(t)∥L2(R×V ) ≤ C1(t) (4.18)

where C1(t) =
[
(1 + ∥f0∥L2(R×V )) exp

( ∫ t

0
[1 + a(τ)]e−

∫ τ
0

a(s)dsdτ
)]exp(∫ t

0
a(s)ds)

is
bounded for any 0 < t ≤ T < ∞. It is evident from (3.18) and (4.18) that there is
another constant C2(t) bounded for any 0 < t ≤ T < ∞ such that

∥Sx(t)∥L∞(R) ≤ C2(t) (4.19)

which, along with Lemma 3.5, indicates that S ∈ L∞([0, T ];W 1,∞(R)) for any
0 < t ≤ T < ∞. Then applying (4.18) and (4.19) into (4.17) with the Gronwall’s
inequality, we obtain the following inequality

∥f(t)∥Lp(R×V ) ≤ C3(t), 1 ≤ p ≤ ∞ (4.20)

which implies (2.13). Furthermore the application of Lemma 3.7 indicates that

St ∈ L∞([0, T ];L∞(R)).

By the standard argument of temporal regularity for parabolic equations (e.g., see
[25]), we have S ∈ C([0, T ];L∞(R)).
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Next we derive Sx ∈ Lp(R) for any 1 ≤ p < ∞ and any t > 0. In fact from
(3.14), it holds that

∥Sx(t)∥Lp(R) ≤ ∥Γx(t, ·) ∗ S0∥Lp(R) +

∫ t

0

∥Γx(s) ∗ (g(S)− z)ρ∥Lp(R)ds

+

∫ t

0

∥Γx(s) ∗ S2∥Lp(R)ds

≤ ∥Γx(t, ·)∥L1(R)∥S0∥Lp(R) +

∫ t

0

∥Γx(s)∥Lp(R)∥ρ∥L1(R)ds

+

∫ t

0

∥Γx(s)∥Lp(R)∥S∥2L2(R)ds.

Then ∥Sx(t)∥Lp(R) < ∞ for 1 ≤ p < ∞ and any t > 0 due to Lemma 3.1, (3.7) and
(3.13).

To finish the proof, it remains to derive the L∞ estimates for ∂2
xS. Indeed using

the equation (2.9), the second spatial derivative of external signal can be expressed
as

Sxx = St − g(S) + zρ+ S(1 + S).

Then it is easy to see that Sxx ∈ L∞([0, T ];L∞(R)) for any 0 < T < ∞ by (3.13),
(3.28), (4.18) and (4.20). Combining the above results with Lemma 3.4, we finish
the proof of Theorem 2.1.

5. Hydrodynamic Limits. The model (2.7)-(2.9) studied in the present paper in-
cludes the internal state z, which impacts the turning kernel T [S] implicitly through
affecting the chemical signal S. In this section, we shall extend the hydrodynamic
limit of the model to a more general turning kernel than that in [4].

We start with reformulating the equation (2.7) as follows

∂tf + v · ∇xf = Q(f), (5.1)

where

Q(f) = −λ[S](v)f(v) +

∫
V

T [S]f(v′)dv′, λ[S](v) =

∫
V

T ∗[S](v′, v)dv′

where we have used the abbreviated notation f(v) := f(t, x, v) and f(v′) := f(t, x, v′).
We assume that the turning rate λ[S](v) has a lower bound λ1 and an upper

bound λ2:
0 < λ1 ≤ λ[S](v) ≤ λ2. (5.2)

We remark that the assumption (5.2) is more general than (1.10) made in [4].
Particularly in our assumption, the turning kernel T [S] can be a Dirac delta function
of velocity v which is unbounded. This extension is of importance in applications.
For instance, in case of mesenchymal motion [11, 12], cell motion is highly guided
by fibre orientation, and the fibre distribution is a Dirac delta distribution when
fibres are totally aligned. For bacteria motion using a “run-and-tumble” strategy
based on a velocity-jump process, the jumps are instantaneous and consequently the
turning kernel T can be given by a Dirac distribution (see [9]). In such scenario,
measurable solutions may be considered [12]. However the aim of this section is to
carry out the hyperbolic limits under the generalized assumption (5.2) with an idea
of [24] where the crucial element is to study the invertibility of the operator Q in a
suitable space L1

λ(V ) - a weighted L1 space defined by

L1
λ(V ) =

{
f :

∫
V

|f(v)|λ[S](v)dv < ∞
}
.
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Noticing that L1(V ) = L1
λ(V ) under the assumption (5.2), we have the following

results for the null space N(Q) of the operator Q (see Theorem 1 in [24]).

Lemma 5.1. The following two conclusions have only one true
(1) N(Q) = {0};
(2) There is a unique positive function F (v) such that Q(F ) = 0,

∫
V
F (v)dv = 1

and N(Q) = {αF : α ∈ R}.

The second conclusion of Lemma 5.1 implies that the kernel of the turning oper-
ator Q is one dimensional and spanned by the equilibrium distribution F (v). Fur-
thermore, we have the following result for the invertibility of Q (see [24, Theorem
2]).

Lemma 5.2. For any function ϕ ∈ L1(V ), the problem Q(f) = ϕ has a solution if
and only if

∫
V
ϕ(v)dv = 0 and the solution is unique in L1,0(V ), where

L1,0(V ) =

{
f ∈ L1(V ) :

∫
V

f(v)dv = 0

}
.

We now substitute the hyperbolic scaling x̄ = εx, t̄ = εt into (5.1), where ε is a
small parameter. Dropping the bars for convenience, we obtain

ε∂tfε + εv · ∇xfε = Q(fε), (5.3)

with initial data
fε(0, x, v) = fI(x, v). (5.4)

For simplicity, we assume here that Q(fI(x, v)) = 0 to avoid a problem of initial
layers (see [4] for the discussion on the initial layer problem).

We expand fε in terms of ε : fε = f0 + εf1 + · · · satisfying

f0(t = 0) = fI .

Substituting this expansion into (5.3) and equating the same order term of ε, we
find

ε0 : Q(f0) = 0 (5.5)

ε1 : ∂tf
0 + v · ∇xf

0 = Q(f1). (5.6)

Note that we look for nonzero leading order term. Then from (5.5) and Lemma 5.1,
we deduce that f0(t, x, v) = ρ0(t, x)F (t, x, v) with ρ0 =

∫
V
f0(v)dv. By equation

(5.6) and Lemma 5.2, we get

∂ρ0

∂t
+∇ · (σρ0) = 0, σ =

∫
V

vF (v)dv (5.7)

satisfying the initial condition

ρ0(t = 0) =

∫
V

fI(v)dv. (5.8)

Then we have the following result analogous to the one in [4] but with weaker
assumption than (1.10) made in [4].

Theorem 5.1. Let assumption (5.2) hold. Let fε and ρ0 be the solutions of problem
(5.3)-(5.4) and (5.7)-(5.8) for any (x, v) ∈ RN × V (N ≥ 1), respectively. Let F
be the equilibrium distribution spanning the kernel of the turning operator Q. Then
fε(t, x, v) → ρ0(t, x)F (t, x, v) as ε → 0 such that for any 0 ≤ t ≤ T it holds that

∥fε(t, ·, ·)− ρ0(t, ·)F (t, ·, ·)∥L1(RN×V ) ≤ CT ε,
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where CT is a constant depending on T .

Proof. The proof is in the same spirit of [24] and hence will be sketched only. We
first derive from equations (5.7) and (5.8) that

∂tf
0 + v · ∇xf

0 ∈ L1,0(V ).

Noting that fI = ρ0(t = 0)F (t = 0) and f0(t = 0) = fI , we derive that the residue
rε = fε − f0 − εf1 is the solution of the problem

∂trε + v · ∇xrε =
1

ε
Q(fε)− ε(∂tf

1 + v · ∇xf
1),

rε(0) = εf1(0).
(5.9)

Integrating (5.9) along the characteristic curve, we get

rε(t, x, v) =rε(0, x− vt, v)− 1

ε

∫ t

0

Q(fε(t− s, x− vs, v))ds

− ε

∫ t

0

(∂tf
1(t− s, x− vs, v) + v · ∇xf

1(t− s, x− vs, v))ds.

Since V is compact in RN and
∫
V
Q(fε)dv = 0, we derive from above inequality

that

∥rε(t, ·, ·)∥L1(RN×V ) =ε∥f1(0, ·, ·)∥L1(RN×V )

+ ε

∫ t

0

∥∂tf1 + v · ∇xf
1(t− s, ·, ·)∥L1(RN×V )ds.

It then follows that

∥rε(t, ·, ·)− f0(t, ·, ·)∥L1(RN×V ) ≤ (C1 + C2T )ε,

where

C1 = ∥f1(0, ·, ·)∥L1(RN×V ) + sup
0≤t≤T

∥f1(t, ·, ·)∥L1(RN×V ),

C2 = sup
0≤t≤T

∥∂tf1 + v · ∇xf
1(t− s, ·, ·)∥L1(RN×V ).

To finish the proof, it remains to show that

f1, ∂tf
1 + v · ∇xf

1 ∈ L∞([0, T );L1(RN × V )).

which was shown in [24, section 5]. Hence we omit the details and complete the
proof.
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