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Abstract

To understand the “self-trapping” mechanism inducing spatio-temporal pattern formations observed in 
the experiment of [21] for bacterial motion, the following density-suppressed motility model

{
ut = �(γ (v)u) + u(a − bu),

vt = �v + u − v,

was proposed in [6,21], where u(x, t) and v(x, t) represent the densities of bacteria and the chemical emitted 
by the bacteria, respectively; γ (v) is called the motility function satisfying γ ′(v) < 0 and a, b > 0 are posi-
tive constants accounting for the growth and death rates of bacterial cells. The analysis of the above system 
is highly non-trivial due to the cross-diffusion and possible degeneracy resulting from the nonlinear motility 
function γ (v) and mathematical progresses on the global well-posedness and asymptotics of solutions were 
just made recently. Among other things, the purpose of this paper is to consider the above system with motil-
ity function γ (v) = 1

(1+v)m
(m > 0) and investigate the traveling wave solutions which are genuine patterns 

observed in the experiment of [21]. By introducing an auxiliary parabolic problem to which the comparison 
principle applies and constructing relaxed super- and sub-solutions with spatially inhomogeneous decay 
rates, we show that there exist two constants b∗(m, a) and K(m, a), for b > b∗(m, a) and K(m, a) < 1, the 
above density-suppressed motility model admits traveling wave solutions (u, v)(x, t) =: (U, V )(x · ξ − ct)

in RN along the direction ξ ∈ SN−1 for all wave speed c ≥ 2
√

a connecting the equilibrium (a/b, a/b) to 
(0, 0), while positive traveling wave solutions will not exist if c < 2

√
a. As m → 0, we have b∗(m, a) → 0

and K(m, a) → 0, our results are well consistent with the relevant results for the well-known Fisher-KPP 
equation (i.e. the first equation of the above system with γ (v) = 1). The main novel idea in the analysis of 
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this paper is the construction of super- and sub-solutions with spatially inhomogeneous (i.e. non-constant) 
decay rates, in contrast to the constant decay rates used in the literature for reaction-diffusion equations, 
which was developed to cope with the difficulty caused by the density-dependent nonlinear diffusion in 
the system. We further discuss the selection of wave patterns and wave speeds for given initial value and 
use numerical simulations to illustrate that both monotone and non-monotone traveling wavefronts exist 
depending on whether the motility function γ (v) changes its convexity at v = a/b. Two-dimensional sim-
ulations demonstrate that the system can generate outward expanding ring (strip) pattern as observed in the 
experiment.
© 2021 Elsevier Inc. All rights reserved.

MSC: 35B51; 35C07; 35K57; 35K65; 35Q92; 92C17

Keywords: Density-suppressed motility; Traveling waves; Minimal wave speed; Super- and sub-solutions; Auxiliary 
problem; Spatially inhomogeneous decay rate

1. Introduction

The reaction-diffusion models can reproduce a wide variety of exquisite spatio-temporal pat-
terns arising in embryogenesis, development and population dynamics due to the diffusion-driven 
(Turing) instability [18,27]. Many of them invoke nonlinear diffusion enhanced by the local envi-
ronment condition to accounting for population pressure (cf. [28]), volume exclusion (cf. [31,43]) 
or avoidance of danger (cf. [27]) and so on. However the opposite situation where the species 
will slow down its random diffusion rate when encountering external signals such as the predator 
in pursuit of the prey [9,12] and the bacterial in searching food [13,14] has not been considered. 
Recently a so-called “self-trapping” mechanism was introduced in [21] by a synthetic biology 
approach onto programmed bacterial Eeshcrichia coli cells which excrete signaling molecules 
acyl-homoserine lactone (AHL) such that at low AHL level, the bacteria undergo run-and-tumble 
random motion and are motile, while at high AHL levels, the bacteria tumble incessantly and be-
come immotile due to the vanishing macroscopic motility. Remarkably Eeshcrichia coli cells 
formed the outward expanding ring (strip) patterns in the petri dish (see Fig. 1). To understand 
the underlying patterning mechanism, the following two-component “density-suppressed motil-
ity” reaction-diffusion system has been proposed in [6]

{
ut = �(γ (v)u) + u(a − bu),

τvt = �v + u − v,
(1.1)

where u(x, t), v(x, t) denote the bacterial cell density, concentration of acyl-homoserine lactone 
(AHL) at position x and time t , respectively. The first equation of (1.1) describes the random 
motion of bacterial cells with an AHL-dependent motility coefficient γ (v) and logistic cell 
growth with growth rate a > 0 and death rate b > 0. The second equation of (1.1) describes 
the diffusion, production and turnover of AHL with τ ∈ {0, 1}. The striking feature of the sys-
tem (1.1) is that the bacterial diffusion rate is a function γ (v) depending on an external signal 
density v, which satisfies γ ′(v) < 0 accounting for the repressive effect of AHL concentration 
on the bacterial motility (cf. [21]). This monotone decreasing property of γ (v) distinguishes the 
nonlinear diffusion in (1.1) from other cross-diffusion systems (cf. [22]) where the diffusion of 
species is increasing with respect to density due to population pressure. We remark that the sys-
2



J. Li and Z.-A. Wang Journal of Differential Equations 301 (2021) 1–36
Fig. 1. Time-lapsed photographs of spatiotemporal patterns formed by the engineered Eeshcrichia coli strain CL3 (see 
details in [21]). The figure is taken from the Figure 1 in [21] for illustration.

tem (1.1) was originally given in the supplementary material of [21] and formally analyzed in 
[6].

Expansion of the Laplacian term �(γ (v)u) = ∇ · (γ (v)∇u + uγ ′(v)∇v) in the first equation 
of (1.1) indicates that the motility function γ (v) generates a cross-diffusion effect, and the de-
cay property γ ′(v) < 0 may lead to degenerate diffusion making the analysis highly nontrivial. 
Therefore not many mathematical results have been available to (1.1) which has received atten-
tions in recent years. When the system (1.1) is considered in a bounded domain � with Neumann 
boundary conditions, the following results are obtained in the literature.

(C1) (With cell growth: a = b > 0) Firstly the global existence and large time behavior of so-
lutions was established in [8] where it was shown that the system (1.1) with τ = 1 has a 
unique global classical solution in two dimensions under the following assumptions on the 
motility function γ (v):
(H0) γ (v) ∈ C3([0, ∞)), γ (v) > 0 and γ ′(v) < 0, lim

v→∞γ (v) = 0 and lim
v→∞

γ ′(v)
γ (v)

exists.

Moreover, the constant steady state (1, 1) of (1.1) is proved to be globally asymptotically 

stable if a = b >
K0
16 where K0 = max

0≤v≤∞
|γ ′(v)|2
γ (v)

. Later the global existence result was ex-

tended to higher dimensions (n ≥ 3) for large a > 0 in [41]. Recently the similar results 
have been obtained for (1.1) with τ = 0 in [5,11] without the condition lim

v→∞
γ ′(v)
γ (v)

in (H0). 

On the other hand, for small a > 0, the existence/nonexistence of nonconstant steady states 
of (1.1) was rigorously established under certain conditions in [25] and the periodic pul-
sating wave was analytically approximated by the multi-scale analysis. When γ (v) is a 
piecewise constant function, the dynamics of discontinuity interface was studied in [38]
and existence of discontinuous traveling wave solutions was established in [23].

(C2) (Without cell growth: a = b = 0) It turns out the dynamics of (1.1) with a = b = 0 are very 
different from the case a = b > 0 (with cell growth). With a specialized motility function 
γ (v) = c0/v

k(k > 0), the global existence of classical solutions of (1.1) with τ = 1 in any 
dimensions was established in [45] for small c0 > 0. This smallness assumption on c0 was 
removed later for the parabolic-elliptic case (i.e. (1.1) with τ = 0) with 0 < k < 2

n−2 in 
[1]. If γ (v) decays algebraically and 1 ≤ n ≤ 3, the global existence of weak solutions 
of (1.1) with τ = 1 with large initial data was established in [3]. However the solution 
of (1.1) may blow up if γ (v) has a faster decay rate. For example, if γ (v) = e−χv , by 
constructing a Lyapunov functional, it was proved in [10] that there exists a critical mass 
m∗ = 4π

χ
such that the solution of (1.1) with τ = 1 exists globally with uniform-in-time 

bound if 
∫
�

u0dx < m∗ while blows up if 
∫
�

u0dx > m∗ in two dimensions, where u0
is the initial value of u. The result of [10] was further refined in [4] by showing that the 
3
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blow-up time is infinite. When γ (v) has both positive lower and upper bounds, the global 
existence of classical solutions in two dimensions was proved in [39]. Very recently the 
existence/nonexistence of non-constant stationary solutions as well as pattern formation 
were explored in [44] via the global bifurcation theory and weak-strong solutions of (1.1)
with τ = 1 in any dimensions was explored in [2].

As recalled above, the existing results for (1.1) are confined to the global well-posedness, 
asymptotic behaviors of solutions and stationary solutions (pattern formation). However the trav-
eling wave solutions, which are genuinely relevant to the experiment observation of [21], are not 
investigated mathematically except for a special case that γ (v) is piecewise constant. When γ (v)

is a constant, equations of (1.1) are decoupled each other and the first equation becomes the well-
known Fisher-KPP equation - a benchmark model for the study of traveling wave solutions of 
reaction-diffusion equations [27]. However, once γ (v) is non-constant, (1.1) becomes a cou-
pled system with cross-diffusion and the study of traveling wave solutions drastically becomes 
difficult. The purpose of this paper is to make some progress to this direction and explore the 
existence of traveling wave solutions to (1.1) with allowable wave speeds. With general γ (v), 
the analysis and results will be too complicated to have an elegant presentation. Noticing that the 
key feature of γ (v) lies in the monotone property γ ′(v) < 0, in this paper we consider a general 
algebraically decreasing motility function

γ (v) = 1

(1 + v)m
, m > 0. (1.2)

However our argument can be directly extended to other forms of motility function, such as the 
exponentially decreasing function γ (v) = e−χv , and so on.

To put things in perspective, we rewrite (1.1) as

{
ut = ∇ · (γ (v)∇u + uγ ′(v)∇v) + u(a − bu),

vt = �v + u − v,
(1.3)

which is a Keller-Segel type chemotaxis model proposed in [13] with growth. For the classical 
chemotaxis-growth system

{
ut = ∇ · (∇u − χu∇v) + u(a − bu),

τvt = �v + u − v,
(1.4)

traveling wave solutions are investigated in a series of works [29,33–36] for both cases τ = 0
and τ = 1, where χ > 0 denotes the chemotactic coefficient. The existence of traveling wave 
solutions with minimal wave speed depending on a and χ was obtained, the asymptotic wave 
speed as χ → 0 as well as the spreading speed were examined in details in [33–35,37] where 
the major tool used therein to prove the existence of traveling wave solutions is the parabolic 
comparison principle. Except traveling wave solutions, the chemotaxis-growth system (1.4) can 
also drive other complex patterning dynamics (cf. [16,24,32]). When the volume filling effect is 
considered in (1.4) (i.e. χu∇v is changed to χu(1 − u)∇v), the traveling wave solutions with 
minimal wave speed were shown to exist in [30] for small chemotactic coefficient χ > 0. For the 
original singular Keller-Segel system generating traveling waves without cell growth, we refer 
to [15,20,42] and references therein. In contrast to the classical chemotaxis-growth system (1.4), 
4
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both diffusive and chemotactic coefficients in the system (1.3) are non-constant. This not only 
makes the analysis more complex, but also make the parabolic comparison principle inapplicable 
due to the nonlinear diffusion. In this paper, we shall develop some new ideas (see details in 
section 2) to tackle the various difficulties induced by the nonlinear motility function γ (v) and 
establish the existence of traveling wave solutions to (1.1).

The rest of this paper is organized as follows. In section 2, we state our main results on the 
existence/non-existence of traveling wave solutions to (1.1) for (x, t) ∈ RN × [0, ∞) and sketch 
the proof strategies. In section 3, we derive some preliminary results that will be used in the 
subsequent sections. In section 4, we construct and study some auxiliary problems connecting 
to our problem. In section 5, we prove our main theorems via Schauder fixed point theorem and 
compactness argument based on the results in previous sections. In final section 6, we discuss 
the possible selection of wave profiles/speeds and use numerical simulations to illustrate the 
traveling wave patterns.

2. Main results and proof strategies

We shall establish the existence of traveling wave solutions and wave speed, and explore 
how the density-suppressed motility influences traveling wave profiles and “the minimal wave 
speed”. In the spatially homogeneous situation the steady states are (0, 0) and (a/b, a/b), which 
are respectively unstable (saddle point) and stable node. This suggests that we should look for 
traveling wavefront solutions to (1.1) connecting (a/b, a/b) to (0, 0). Moreover negative u and 
v have no physical meanings with what we have in mind in the sequel.

A nonnegative solution (u(x, t), v(x, t)) is called a traveling wave solution of (1.1) connecting 
(a/b, a/b) to (0, 0) and propagating in the direction ξ ∈ SN−1 with speed c if it is of the form

(u(x, t), v(x, t)) = (U(x · ξ − ct),V (x · ξ − ct)) =: (U(z),V (z))

satisfying the following equations

{
(γ (V )U)′′ + cU ′ + U(a − bU) = 0,

V ′′ + cV ′ + U − V = 0
(2.1)

and

(U(−∞),V (−∞)) = (a/b, a/b), (U(+∞),V (+∞)) = (0,0), (2.2)

where ′ = d
dz

. In this paper, we proceed to find the constraints on the parameters to exclude 
the spatial-temporal pattern formation and guarantee the existence of traveling wave solutions 
connecting the two constant steady states.

Denote

b∗(m,a) = max

{
9m,3m + 2

√
m(m + 1)a

1 + a

}
, (2.3)

we obtain the following theorems.
5
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Theorem 2.1. Let γ (v) be given in (1.2). Then for any c ≥ 2
√

a and b > b∗(m, a), the system 
(1.1) has a traveling wave solution (u(x, t), v(x, t)) = (U(x · ξ − ct), V (x · ξ − ct)) with speed 
c in the direction ξ ∈ SN−1 for all (x, t) ∈RN × [0, +∞), satisfying

lim
z→+∞

U(z)

e−λz
= 1, lim

z→+∞
V (z)

e−λz
= 1

1 + a
(2.4)

with λ = c−
√

c2−4a
2 and

lim inf
z→−∞ U(z) > 0 and lim inf

z→−∞ V (z) > 0.

Moreover, if

K(m,a) = m

√
a(1 + a)

m(m + 1)

(√
a(1 + a)

m(m + 1)
+ 1

)m

< 1, (2.5)

we have

lim
z→−∞U(z) = lim

z→−∞V (z) = a/b

and

lim
z→±∞U ′(z) = lim

z→±∞V ′(z) = 0.

Theorem 2.2. For c < 2
√

a, (1.1) has no positive traveling wave solution (u(x, t), v(x, t)) =
(U(x · ξ − ct), V (x · ξ − ct)) connecting the constant solutions (a/b, a/b) and (0, 0) with 
speed c.

Remark 2.1. Theorem 2.1 and Theorem 2.2 imply that c = 2
√

a is the minimal wave speed 
same as the one for the classical Fisher-KPP equation, which is irrelevant to the decay rate of 
the motility function. Different from the Fisher-KPP equation, a lower bound b∗(m, a) for b is 
induced by the density-suppressed motility. As m → 0, γ (v) → 1 and the equation for u becomes 
the classical Fisher-KPP equation. Noticing

lim
m→0

b∗(m,a) = 0 and lim
m→0

K(m,a) = 0,

our result well agrees with that for the classical Fisher-KPP equation.

Proof strategies. Since the model (1.1) is a cross diffusion system, see also (1.3), many classical 
tools proving the existence of traveling waves such as phase plane analysis, topological methods 
and bifurcation analysis (cf. [40]), among others, become infeasible. Motivated from excellent 
works of Salako and Shen [33,34,36] for the chemotaxis-growth model (1.4) by constructing 
super- and sub-solutions and proving the existence of traveling wave solutions as the large-time 
limit of solutions in the moving-coordinate system based on the parabolic comparison principle, 
we plan to achieve our goals in a similar spirit. However substantial differences exist between the 
6
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models (1.1) and (1.4). The nonlinear motility function γ (v) in (1.1) refrains us employing the 
parabolic comparison principle and constructing super- and sub-solutions with the same decay 
rate at the far field, which are crucial ingredients used for (1.4) in [33,34]. In this paper, we 
develop two innovative ideas to overcome these barriers. First we introduce an auxiliary parabolic 
problem (4.3) with constant diffusion to which the method of super- and sub-solutions applies 
(see section 4.1). This auxiliary problem subtly bypasses the barriers induced by the nonlinear 
diffusion but its time-asymptotic limit yields a solution to an elliptic problem (4.18) whose fixed 
points indeed correspond to solutions to (2.1) - namely traveling wave solutions to our concerned 
system (1.1) (see section 4.2). Second we construct a sequence of relaxed sub-solution Un(x)

for any n > 1 with a spatially inhomogeneous decay rate θ1(x) which approaches to the constant 
decay rate of the super-solution U(x) as x → +∞ (see section 3.1). With them we use the 
method of super- and sub-solutions to construct solutions to the auxiliary parabolic problem 
(4.3) in appropriate function space and manage to show its time-asymptotic limit problem has a 
fixed point. This is a fresh idea substantially different from the works [33,34] where the super-
and sub-solutions were directly constructed with the same decay rates by taking the advantage 
of constant diffusion.

We divide the proof of Theorem 2.1 into four steps. In step 1, we construct an auxiliary 
parabolic problem (4.3) with constant diffusion and prove its global boundedness uniformly in 
time (see Proposition 4.1) by the method of super- and sub-solutions. In step 2, we show that 
the limit of global solutions to (4.3) as t → ∞ yields a semi-wavefront solution to an elliptic 
problem (4.18) with some compactness argument (see Proposition 4.2). In step 3, we show that 
the solution obtained in Step 2 satisfies the boundary condition (2.2) by direct estimates under 
some constraints on m and a (see Proposition 5.1), which hence warrants that the semi-wavefront 
solution is indeed a wavefront solution in R. Finally in step 4, we use the Schauder’s fixed point 
theorem to prove that (4.18) has a fixed point which gives a solution to (2.1) in R satisfying 
(2.2) (see section 5.1), where the trick of utilizing relaxed sub-solution Un(x) with spatially 
inhomogeneous decay rate is critically used to obtain the continuity of solution map. Theorem 2.2
is proved directly by an argument of contradiction.

3. Preliminary results

In this section we introduce some notations/definitions and list some basic facts which will be 
used in our subsequent analysis. In particular, the construction of relaxed super and sub-solutions 
with spatially inhomogeneous decay rates will be presented in this section as a preparation for 
the analysis in section 4.

3.1. Super and sub-solutions with spatially inhomogeneous decay rates

For c ≥ 2
√

a, define

λ := c − √
c2 − 4a

2
and θ1(x) :=

c −
√

c2 − 4a
(

1 + e−λx

1+a

)−m

2
(

1 + e−λx

1+a

)−m
∀x ∈ R, (3.1)

for which
7
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λ2 − cλ + a = 0,
(

1 + e−λx

1 + a

)−m

θ2
1 (x) − cθ1(x) + a = 0 ∀x ∈ R (3.2)

and

lim
x→+∞ θ1(x) = λ, 0 < θ1(x) < λ ≤ √

a ∀x ∈R. (3.3)

Choose

θ2(x) :=
{

θ1(x) + λ/4, c = 2
√

a,

θ1(x) + λ/k0, c > 2
√

a
∀x ∈R (3.4)

with k0 > max
{

2λ
c−2λ

,2
}

. Then

θ2(x) ∈
(

θ1(x), θ1(x) + λ

2

)
∀x ∈R (3.5)

and there exists x0 ∈R such that

θ2(x) < 2θ1(x) for x > x0. (3.6)

Define two functions:

U(x) := min{e−λx, η} ∀x ∈ R (3.7)

and

Un(x) :=
{

δ, x ≤ xδ,

dne
−θ1(x)x + d0e

−θ2(x)x, x > xδ
(3.8)

for b > b∗(m, a) with b∗(m, a) defined in (2.3), where δ is chosen sufficiently small, xδ > 0 is 
the unique positive solution of the equation dne

−θ1(x)x + d0e
−θ2(x)x = δ,

dn := 1 − 1

n
with 2 ≤ n ∈N, d0 :=

{
1, c = 2

√
a,

−1, c > 2
√

a
(3.9)

and

η := 2a

b − 3m +
√

(b − 3m)2 − 4m(m+1)a
1+a

. (3.10)

Noticing that dn ∈ (0, 1) and

lim
x→+∞ e(θ1(x)−λ)x = 1,

which will be verified in Lemma 3.1, we can choose sufficiently small δ, with which xδ is large 
enough such that for all x ∈ R,
8
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Fig. 2. A schematic of functions U(x) and Un(x), where the solid black line represents U(x) and the dashed red line 
represents Un(x). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

0 < Un < U ≤ η.

We note that the functions U(x) and Un(x) will be essentially used later as the super- and sub-
solutions of an auxiliary problem we introduce in section 4. A schematic of U(x) and Un(x)

is plotted in Fig. 2. Note that the coefficients dn (n ≥ 2) and d0 determine the amplitude of 
Un(x) and θ1(x) determines the decay of Un(x) for large x > xδ . This is a new ingredient 
developed in this paper to settle the difficulty of analysis caused by the nonlinear motility function 
γ (v).

Denote

Cb
unif(R) := {u ∈ C(R)| u is uniformly continuous in R and sup

z∈R
|u(z)| < +∞},

which is equipped with the norm

‖u‖ = sup
z∈R

|u(z)|.

Define the function space

En := {u ∈ Cb
unif(R)|Un ≤ u ≤ U}, X0 :=

⋂
n>1

En. (3.11)

To find solutions of (2.1) in X0, we need the following Lemmas.

Lemma 3.1. Let λ and θ1(x) be defined in (3.1). Then it follows that

lim
x→+∞ e(θ1(x)−λ)x = 1. (3.12)

Moreover, for sufficiently small δ > 0, if x > xδ , then for c = 2
√

a,
9



J. Li and Z.-A. Wang Journal of Differential Equations 301 (2021) 1–36
0 < θ ′
1(x) ≤ 2K1e

− λ
2 x and − λK1e

− λ
2 x ≤ θ ′′

1 (x) < 0 (3.13)

with K1 = a
2

√
m

1+a
; while for c > 2

√
a,

0 < θ ′
1(x) ≤ 2K2e

−λx and − 2λK2e
−λx ≤ θ ′′

1 (x) < 0 (3.14)

with K2 = 4a2mλ(
c+

√
c2−4a

)2√
c2−4a(1+a)

.

Proof. In the sequel, for notational simplicity, under c ≥ 2
√

a, we introduce the following nota-
tions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(x) := 1 + e−λx

1 + a
,

ρ(φ(x)) := √
c2 − 4aφ−m(x),

h(φ(x)) := 2a

c + ρ(φ(x))
= 2a

c + √
c2 − 4aφ−m(x)

.

Then from the definition of θ1(x), we have

θ1(x) = c − √
c2 − 4aφ−m(x)

2φ−m(x)
= 2a

c + √
c2 − 4aφ−m(x)

= h(φ(x)).

With simple calculation, we find

h′(φ(x)) = −4a2m

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)
, φ′(x) = −λe−λx

1 + a
(3.15)

and then

θ ′
1(x) = (h(φ(x)))′ = h′(φ)φ′(x) = 4a2mλe−λx

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a)
> 0. (3.16)

When c = 2
√

a, it has that lim
x→+∞φ(x) = 1 and lim

x→+∞ρ(φ(x)) = 0. By L’Hopital’s rule, we 

have

lim
x→+∞

∣∣∣∣ e− λ
2 x

ρ(φ(x))

∣∣∣∣
2

= lim
x→+∞

e−λx

c2 − 4aφ−m(x)

= lim
x→+∞

e−λx

4aφm(x) − 4a
lim

x→+∞φm(x) (3.17)

= lim
x→+∞

1 + a

4maφm−1(x)
= 1 + a

4ma
.

Then it can be easily verified that
10
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lim
x→+∞

4a2mλe− λ
2 x

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a)
= a

2

√
m

1 + a
:= K1,

from which and (3.16), by choosing sufficiently small δ > 0, we can find xδ > 0 such that for 
x > xδ , there holds that

0 < θ ′
1(x) ≤ 2K1e

− λ
2 x.

When c > 2
√

a, it has that lim
x→+∞φ(x) = 1 and lim

x→+∞ρ(φ(x)) = √
c2 − 4a. It can be directly 

checked that

lim
x→+∞

4a2mλ

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a)
= 4a2mλ√

c2 − 4a(c + √
c2 − 4a)2(1 + a)

:= K2.

Then from (3.16), by choosing sufficiently small δ > 0, for x > xδ , we obtain

0 < θ ′
1(x) ≤ 2K2e

−λx.

The first parts of (3.13) and (3.14) are proved.
On the other hand, by L’Hôpital’s rule, using (3.15) and (3.17), for c = 2

√
a, we obtain

lim
x→+∞ (h(φ(x)) − h(1)) x

= lim
x→+∞h′(φ(x))

λx2e−λx

1 + a

= lim
x→+∞

−4a2mλx2e−λx

ρ(φ(x))(c + ρ(φ(x)))2φm+1(x)(1 + a)

= − 4a2mλ

c2(1 + a)
lim

x→+∞
e− λ

2 x

ρ(φ(x))
lim

x→+∞
x2

e
λ
2 x

= − amλ

1 + a

√
1 + a

4ma
lim

x→+∞
x2

e
λ
2 x

= 0.

While for c > 2
√

a, we obtain

lim
x→+∞ (h(φ(x)) − h(1)) x = lim

x→+∞h′(φ(x))
λx2e−λx

1 + a
= λh′(1)

1 + a
lim

x→+∞
x2

eλx
= 0.

Summing up, for c ≥ 2
√

a, we obtain

lim
x→+∞ e(θ1(x)−λ)x = e

lim
x→+∞(h(φ(x))−h(1))x = 1

and then (3.12) follows.
11
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Now we turn to the estimate of θ ′′
1 (x). Noticing that h′′(φ) = h′(φ)(ln(−h′(φ)))′ and

(ln(−h′(φ)))′ =
[
ln(4a2m) − 2 ln(c + ρ(φ)) − lnρ(φ) − (m + 1) lnφ

]′

= −4am

ρ(φ)(c + ρ(φ))φm+1 − 2am

(ρ(φ))2φm+1 − m + 1

φ
,

which together with (3.15) and the fact that φ′(x) = −λe−λx

1+a
and φ′′(x) = λ2e−λx

1+a
implies

θ ′′
1 (x) = (h(φ(x))′′ = (h′(φ(x))φ′(x))′ = h′(φ(x))φ′′(x) + h′′(φ(x))(φ′(x))2

= h′(φ(x))[φ′′(x) + (ln(−h′(φ)))′(φ′(x))2]
= −4a2mλ2e−λx

ρ(φ(x))(c + ρ(φ(x)))2φ(x)m+1(1 + a)

{
1 − e−λx

1 + a

(
4am

ρ(φ(x))(c + ρ(φ(x)))φ(x)m+1

+ 2am

(ρ(φ(x)))2φ(x)m+1 + m + 1

φ(x)

)}
.

For c = 2
√

a, then λ = √
a, from (3.17), it can be verified that

lim
x→+∞

−4a2mλ2e− λ
2 x

ρ(φ(x))(c + ρ(φ(x)))2φ(x)m+1(1 + a)
= −λK1

and

lim
x→+∞

e−λx

1 + a

(
4am

ρ(φ(x))(c + ρ(φ(x)))φ(x)m+1 + 2am

(ρ(φ(x)))2φ(x)m+1 + m + 1

φ(x)

)
= 1

2
.

By choosing sufficiently small δ > 0, we can find a xδ > 0 such that

0 > θ ′′
1 (x) ≥ −λK1e

− λ
2 x, for x > xδ.

While for c > 2
√

a, we can check that

lim
x→+∞

−4a2mλ2

ρ(φ(x))(c + ρ(φ(x)))2φ(x)m+1(1 + a)
= −λK2

and

lim
x→+∞

e−λx

1 + a

(
4am

ρ(φ(x))(c + ρ(φ(x)))φ(x)m+1 + 2am

(ρ(φ(x)))2φ(x)m+1 + m + 1

φ(x)

)
= 0.

Then by choosing sufficiently small δ > 0 so as to generate a xδ > 0, we have

0 > θ ′′
1 (x) ≥ −2λK2e

−λx, for x > xδ.

Then the last parts of (3.13) and (3.14) follow. This completes the proof of Lemma 3.1. �

12
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3.2. Some priori estimates

Lemma 3.2. For any u ∈ En, denote V (·; u) the solution of

V ′′ + cV ′ + u − V = 0. (3.18)

Then for c ≥ 2
√

a, we have

0 < V (x;u) ≤ min

{
e−λx

1 + a
,η

}
, (3.19)

|V ′(x;u)| ≤ min

{
2η√

c2 + 4
,

2e−λx

√
c2 + 4

}
≤ min

{
η√

1 + a
,

e−λx

√
1 + a

}
(3.20)

for all x ∈R.

Proof. Denote

λ1 = −c − √
c2 + 4

2
, λ2 = −c + √

c2 + 4

2
. (3.21)

From (3.21) and the definition of λ in (3.1), we obtain

0 < λ ≤ √
a, λ1 < 0, λ2 > 0, λ1 + λ < 0, λ2 + λ > 0 (3.22)

and

λ1λ2 = −1, λ1 + λ2 = −c, λ2 − cλ − 1 = −(1 + a). (3.23)

By the variation of constants, the solution of (3.18) can be expressed as

V (x;u) = 1

λ2 − λ1

⎛
⎝ x∫

−∞
eλ1(x−s)u(s)ds +

+∞∫
x

eλ2(x−s)u(s)ds

⎞
⎠ . (3.24)

Note that 0 ≤ u ≤ U = min{η, e−λx} since u ∈ En. Then using (3.22) and (3.23), we obtain from 
(3.24) that

0 ≤ V (x;u) ≤ 1

λ2 − λ1

⎛
⎝ x∫

−∞
eλ1(x−s)e−λsds +

+∞∫
x

eλ2(x−s)e−λsds

⎞
⎠

= 1

λ2 − λ1

(
e−(λ1+λ)s

∣∣x−∞
−(λ1 + λ)e−λ1x

+ e−(λ2+λ)s
∣∣+∞
x

−(λ2 + λ)e−λ2x

)

= −e−λx

λ2 − cλ − 1
= e−λx

1 + a
13
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and

0 ≤ V (x;u) ≤ 1

λ2 − λ1

⎛
⎝ x∫

−∞
eλ1(x−s)ηds +

+∞∫
x

eλ2(x−s)ηds

⎞
⎠ = −η

λ1λ2
= η.

Thus the inequality in (3.19) follows. On the other hand, differentiating (3.24) with respect to x, 
we have

V ′(x;u) = 1

λ2 − λ1

⎛
⎝ x∫

−∞
λ1e

λ1(x−s)u(s)ds +
+∞∫
x

λ2e
λ2(x−s)u(s)ds

⎞
⎠ . (3.25)

For c ≥ 2
√

a, using (3.22), (3.23) and the fact that

λ2 − λ1 =
√

c2 + 4 ≥ 2
√

1 + a,

as well as the fact 0 ≤ u ≤ min{η, e−λx}, we obtain with some simple calculations

|V ′(x;u)| ≤ 1

λ2 − λ1

⎛
⎝ x∫

−∞
(−λ1)e

λ1(x−s)e−λsds +
+∞∫
x

λ2e
λ2(x−s)e−λsds

⎞
⎠

≤ 2e−λx

√
c2 + 4

≤ e−λx

√
1 + a

and

|V ′(x;u)| ≤ 1

λ2 − λ1

⎛
⎝ x∫

−∞
(−λ1)e

λ1(x−s)ηds +
+∞∫
x

λ2e
λ2(x−s)ηds

⎞
⎠

≤ 2η√
c2 + 4

≤ η√
1 + a

,

from which the inequality in (3.20) follows. The Lemma is thus proved. �
Lemma 3.3. For any u ∈ En, denote V (x; u) the solution of

V ′′ + cV ′ + u − V = 0.

Then for sufficiently small δ > 0, if x > xδ , then

γ (V )θ2
1 (x) − cθ1(x) + a ≥ 0, (3.26)

and
14



J. Li and Z.-A. Wang Journal of Differential Equations 301 (2021) 1–36
γ (V )θ2
2 (x) − cθ2(x) + a ≥ a

64
if c = 2

√
a, (3.27)

γ (V )θ2
2 (x) − cθ2(x) + a ≤ −λ(c − 2λ)

4k0
if c > 2

√
a. (3.28)

Proof. Noticing V (x) ≤ e−λx

1+a
for x > xδ , we get (3.26) from the fact that

γ (V )θ2
1 (x) − cθ1(x) + a ≥

(
1 + e−λx

1 + a

)−m

θ2
1 (x) − cθ1(x) + a = 0. (3.29)

With

lim
x→+∞

(
1 + e−λx

1 + a

)−m = 1, lim
x→+∞ θ1(x) = λ,

by choosing sufficiently small δ > 0, for all x > xδ , we have

15

16
λ ≤ θ1(x) < λ, γ (V ) = 1

(1 + V )m
≥

(
1 + e−λx

1 + a

)−m ≥ 33

34
. (3.30)

For the case c = 2
√

a, for which λ = c
2 , noticing θ2(x) = θ1(x) + 1

4λ, using (3.30), we get

γ (V )θ2
2 (x) − cθ2(x) + a = γ (V )θ2

1 (x) − cθ1(x) + a + γ (V )

(
1

16
λ2 + 1

2
λθ1(x)

)
− 1

4
cλ

≥ γ (V )

(
1

16
λ2 + 1

2
λθ1(x)

)
− 1

4
cλ (3.31)

≥ 33

34

(
1

16
λ2 + 15

32
λ2

)
− 1

2
λ2 = a

64

for all x > xδ , from which (3.27) follows.
On the other hand, for the case c > 2

√
a, for which λ < c

2 , noticing

θ2(x) = θ1(x) + 1

k0
λ with k0 > max

{
2λ

c − 2λ
,2

}
,

we obtain

1

k0
λ2 + 2λθ1(x) − cλ ≤ 1

2
λ(2λ − c) < 0

and then

γ (V )θ2
2 (x) − cθ2(x) + a ≤θ2

2 (x) − cθ2(x) + a (3.32)

=θ1(x)2 − cθ1(x) + a + 1

k0

(
1

k0
λ2 + 2λθ1(x) − cλ

)

≤θ1(x)2 − cθ1(x) + a + 1

2k0
λ(2λ − c),
15
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moreover owing to the fact limx→+∞ θ1(x) = λ, we have

lim
x→+∞(θ1(x)2 − cθ1(x) + a) = λ2 − cλ + a = 0.

Then choosing δ sufficiently small, we obtain that for all x > xδ .

θ1(x)2 − cθ1(x) + a ≤ 1

4k0
λ(c − 2λ). (3.33)

Inserting (3.33) into (3.32), we obtain γ (V )θ2
2 (x) − cθ2(x) + a ≤ 1

4k0
λ(2λ − c) < 0. Thus (3.28)

follows and Lemma 3.3 is proved. �
4. Auxiliary problems

In this section, we shall investigate some auxiliary problems which act as bridges to our con-
cerned problem.

4.1. An auxiliary parabolic problem

In the sequel, for convenience, we use γ ′(v) and γ ′′(v) to denote the first and second 
order derivatives of γ (v) with respect to v, respectively. This should not be confused with 
U ′, V ′, U ′′, V ′′ where the prime ′ means the differentiation with respect to x. Given u ∈ En, 
we first consider the following equation

V ′′ + cV ′ + u − V = 0 (4.1)

which, subject to variation of constants, yields

V := V (x;u) = 1

λ2 − λ1

⎛
⎝ x∫

−∞
eλ1(x−s)u(s)ds +

+∞∫
x

eλ2(x−s)u(s)ds

⎞
⎠ . (4.2)

Now taking V in (4.2) as a known function, we define

F(U,U ′) := 1

γ (V )

{(
2γ ′(V )V ′ + c

)
U ′ +

[
γ ′′(V )|V ′|2 +γ ′(V )(V −U − cV ′)+a

]
U −bU2

}
.

By U(x, t; u, U), we denote the solution of the following Cauchy problem

{
Ut = U ′′ + F(U,U ′), x ∈R, t > 0

U(x,0;u,U) = U(x), x ∈R.
(4.3)

From Lemma 3.2 and the definition of γ (·), the boundedness of 1
γ (V )

, γ ′(V ), γ ′′(V ), V , and 
V ′ has been guaranteed. Then the comparison principle is applicable to (4.3). By the semigroup 
theory, U can be represented as
16



J. Li and Z.-A. Wang Journal of Differential Equations 301 (2021) 1–36
U(x, t;u,U) =et(�−1)U(x) +
t∫

0

e−(t−s)e(t−s)�(U + F(U,U ′))(x, s)ds. (4.4)

The local existence of solutions to (4.3) can be obtained by the well-known fixed point theorem 
(cf. see [35, Theorem 1.1]) along with standard parabolic estimates. We omit the details here 
for brevity and assume that the solution of (4.3) exists in an maximal interval [0, T ) for some 
T ∈ (0, ∞] with U(x, 0; u, U) > 0 for x ∈ R. Then the comparison principle for (4.3) implies 
that U(x, t; u, U) > 0 for all (x, t) ∈R × [0, T ).

Proposition 4.1. If c ≥ 2
√

a and b > b∗(m, a) with b∗(m, a) defined in (2.3), there exists δ > 0
such that for any u ∈ En, the solution U(x, t; u, U) of (4.3) satisfies U(·, t; u, U) ∈ En for all 
t ∈ [0, +∞).

Proof. Denote

L(U) := γ (V )U ′′ + (
2γ ′(V )V ′ + c

)
U ′ +

(
γ ′′(V )(V ′)2 + γ ′(V )(V − U − cV ′) + a

)
U

− bU2 (4.5)

with V defined in (4.2). Noticing γ (V ) > 0, we have

U ′′ + F(U,U ′) = L(U)

γ (V )
.

Hence a function U(x) is a super-solution (resp. sub-solution) of (4.3) if L(U) ≤ 0 (reps. L(U) ≥
0). Firstly we need to prove that for any solution u ∈ En, there exists U(x, t; u, U) ≤ U . For any 
s ≥ 0, from the definition of γ (·), we have

0 < γ (s) = 1

(1 + s)m
≤ 1, −m < γ ′(s) = − m

(1 + s)m+1 < 0, (4.6)

and

0 < γ ′′(s) = m(m + 1)

(1 + s)m+2 ≤ m(m + 1). (4.7)

From (4.5), using (3.19), (3.20), (4.6) and (4.7), by the definition of η in (3.10), it is easy to verify 
that

L(η) =
(
γ ′′(V )(V ′)2 + γ ′(V )(V − η − cV ′) + a

)
η − bη2

≤
(

m(m + 1)

1 + a
η2 + m

(
1 + 2c√

c2 + 4

)
η + a − bη

)
η (4.8)

≤
(

m(m + 1)

1 + a
η2 + 3mη + a − bη

)
η = 0.
17
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On the other hand, from (4.5), using (3.19), (3.20), (4.6), and (4.7), we obtain

L(e−λx)

=γ (V )λ2e−λx − (
2γ ′(V )V ′ + c

)
λe−λx +

(
γ ′′(V )(V ′)2e−λx + γ ′(V )(V − e−λx − cV ′)

)
e−λx

+ ae−λx − be−2λx

≤λ2e−λx + 2mλ√
1 + a

e−2λx − cλe−λx + m(m + 1)

1 + a
e−4λx +

(
m + 2cm√

4 + c2

)
e−2λx (4.9)

+ ae−λx − be−2λx

≤(λ2 − cλ + a)e−λx +
(

2m
√

a√
1 + a

+ m(m + 1)

1 + a
e−2λx + 3m − b

)
e−2λx,

where we have used the fact that λ ∈ (0, 
√

a]. Noticing

b > b∗(m,a) >
2m

√
a√

1 + a
+ 3m,

by choosing δ sufficiently small in (4.16), we obtain L(e−λx) ≤ 0 for all x > xδ . By the compar-
ison principle for parabolic equations, it follows that U(x, t; u, U) ≤ U .

Now we prove that for any u ∈ En, we have U(x, t; u, U) ≥ Un. From (4.5), using (3.19), 
(3.20), (4.6) and (4.7), we obtain

L(δ) = γ ′′(V )(V ′)2δ + γ ′(V )(V − δ − cV ′)δ + δ(a − bδ)

≥ γ ′(V )(V − cV ′)δ + δ(a − bδ) (4.10)

≥ δ

(
a − bδ − mη

(
1 + 2c√

c2 + 4

))

≥ δ (a − bδ − 3mη)

Owing to the fact b > b∗(m, a), we obtain

η = 2a

b − 3m +
√

(b − 3m)2 − 4m(m+1)a
1+a

<
a

3m
. (4.11)

Substituting (4.11) into (4.10), we have L(δ) ≥ 0 for sufficiently small δ. On the other hand, 
using (4.5), by direct but tedious calculations, we have
18
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L(dne
−θ1(x)x + d0e

−θ2(x)x)

= γ (V )(dne
−θ1(x)x + d0e

−θ2(x)x)′′ + (2γ ′(V )V ′ + c)(dne
−θ1(x)x + d0e

−θ2(x)x)′

+
(
γ ′′(V )(V ′)2 + γ ′(V )(V − (dne

−θ1(x)x + d0e
−θ2(x)x) − cV ′) + a

)
× (dne

−θ1(x)x + d0e
−θ2(x)x)

− b(dne
−θ1(x)x + d0e

−θ2(x)x))2

≥
(
γ (V )θ2

1 (x) − cθ1(x) + a
)

dne
−θ1(x)x +

(
γ (V )θ2

2 (x) − cθ2(x) + a
)

d0e
−θ2(x)x

+ dne
−θ1(x)x

[
γ (V )

(
(θ ′

1(x)x)2 + 2θ ′
1(x)θ1(x)x − θ ′′

1 (x)x − 2θ ′
1(x)

)
− cθ ′

1(x)x

−2γ ′(V )V ′(θ ′
1(x)x + θ1(x)) + γ ′′(V )(V ′)2 + γ ′(V )(V − cV ′)

]
+ d0e

−θ2(x)x
[
γ (V )

(
(θ ′

2(x)x)2 + 2θ ′
2(x)θ2(x)x − θ ′′

2 (x)x − 2θ ′
2(x)

)
− cθ ′

2(x)x

−2γ ′(V )V ′(θ ′
2(x)x + θ2(x)) + γ ′′(V )(V ′)2 + γ ′(V )(V − cV ′)

]
− b(dne

−θ1(x)x + d0e
−θ2(x)x)2.

(4.12)

To prove that L(dne
−θ1(x)x + d0e

−θ2(x)x) ≥ 0, we consider the cases c = 2
√

a and c > 2
√

a

separately.
Case 1. c = 2

√
a. In this case we have d0 = 1 and substitute it into (4.12). Using (4.6), 

Lemma 3.1 and Lemma 3.3, by choosing sufficiently small δ, for x > xδ , we obtain

γ ′(V ) < 0, γ ′′(V ) > 0, θ ′
1(x) > 0, θ ′′

1 (x) < 0

and

γ (V )θ2
1 (x) − cθ1(x) + a ≥ 0, γ (V )θ2

2 (x) − cθ2(x) + a ≥ a

64
,

from which we obtain that for any x > xδ ,

L(dne
−θ1(x)x + e−θ2(x)x) (4.13)

≥ a

64
e−θ2(x)x

+ dne
−θ1(x)x

[−2γ (V )θ ′
1(x) − cθ ′

1(x)x − 2γ ′(V )V ′(θ ′
1(x)x + θ1(x)) + γ ′(V )(V − cV ′)

]
+ e−θ2(x)x

[−2γ (V )θ ′
2(x) − cθ ′

2(x)x − 2γ ′(V )V ′(θ ′
2(x)x + θ2(x)) + γ ′(V )(V − cV ′)

]
− b(dne

−θ1(x)x + e−θ2(x)x)2.

Furthermore, from (3.3), Lemma 3.1 and Lemma 3.2, we have

0 < θ1(x) <
√

a, 0 < θ ′
1(x) ≤ 2K1e

− λ
2 x

and

0 < V (x;u) ≤ min

{
e−λx

1 + a
,η

}
, |V ′(x;u)| ≤ min

{
η√

1 + a
,

e−λx

√
1 + a

}
.
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By the above estimates and (4.6), we arrive at the following estimates

− 2γ (V )θ ′
1(x) − cθ ′

1(x)x − 2γ ′(V )V ′(θ ′
1(x)x + θ1(x)) + γ ′(V )(V − cV ′) (4.14)

≥ −
(

4 + 2cx + 4mηx√
1 + a

)
K1e

− λ
2 x −

(
2m

√
a√

1 + a
+ m

1 + a
+ cm√

1 + a

)
e−λx

= −
(

4 + 4
√

ax + 4mηx√
1 + a

)
K1e

− λ
2 x −

(
4m

√
a√

1 + a
+ m

1 + a

)
e−λx.

Then from the fact that θ2(x) = θ1(x) + λ
4 , we get

− 2γ (V )θ ′
2(x) − cθ ′

2(x)x − 2γ ′(V )V ′(θ ′
2(x)x + θ2(x)) + γ ′(V )(V − cV ′) (4.15)

= − 2γ (V )θ ′
1(x) − cθ ′

1(x)x − 2γ ′(V )V ′(θ ′
1(x)x + θ1(x)) + γ ′(V )(V − cV ′) − 1

2
γ ′(V )V ′λ

≥ −
(

4 + 4
√

ax + 4mηx√
1 + a

)
K1e

− λ
2 x −

(
4m

√
a√

1 + a
+ m

1 + a
+ m

√
a

2
√

1 + a

)
e−λx.

Substituting (4.14) and (4.15) into (4.13), we end up with

L(dne
−θ1(x)x + e−θ2(x)x)

≥ e−θ2(x)x

{
a

64
− K1

(
4 + 4

√
ax + 4mηx√

1 + a

)(
e− λ

2 x + dne
(θ2(x)−θ1(x)− λ

2 )x
)

(4.16)

−
(

4m
√

a√
1 + a

+ m

1 + a

)(
e−λx + dne

(θ2(x)−θ1(x)−λ)x
)

− m
√

a

2
√

1 + a
e−λx

− b
(
d2
ne(θ2(x)−2θ1(x))x + e−θ2(x)x + 2dne

−θ1(x)x
)}

.

From (3.5) and (3.6), we have θ2(x) −2θ1(x) < 0 and θ2(x) −θ1(x) −λ < θ2(x) −θ1(x) − λ
2 < 0

for x > xδ , then for c = 2
√

a, by choosing δ sufficiently small in (4.16), we obtain

L(dne
−θ1(x)x + e−θ2(x)x) ≥ 0

for all x > xδ .
Case 2. c > 2

√
a. Inserting d0 = −1 in (4.12), using Lemma 3.1, Lemma 3.2 and Lemma 3.3, 

we obtain

0 < θ1(x) <
√

a, 0 < θ ′
1(x) ≤ 2K2e

−λx 0 > θ ′′
1 (x) ≥ −2λK2e

−λx,

0 < V (x;u) ≤ min

{
e−λx

1 + a
,η

}
,

|V ′(x;u)| ≤ min

{
2η√

c2 + 4
,

2e−λx

√
c2 + 4

}
≤ min

{
η√

1 + a
,

e−λx

√
1 + a

}
,

γ (V )θ2
1 (x) − cθ1(x) + a ≥ 0, γ (V )θ2

2 (x) − cθ2(x) + a ≤ −λ(c − 2λ)

4k0
.
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By these results, (4.6) and (4.7), for any x > xδ , noticing that θ2(x) = θ1(x) + λ
k0

, we obtain

L(dne
−θ1(x)x − e−θ2(x)x)

≥
(
γ (V )θ2

1 (x) − cθ1(x) + a
)
dne

−θ1(x)x −
(
γ (V )θ2

2 (x) − cθ2(x) + a
)
e−θ2(x)x

+ dne
−θ1(x)x

[−2γ (V )θ ′
1(x) − cθ ′

1(x)x − 2γ ′(V )V ′(θ ′
1(x)x + θ1(x)) + γ ′(V )(V − cV ′)

]
− e−θ2(x)x

[
γ (V )((θ ′

2(x)x)2 + 2θ ′
2(x)θ2(x)x − θ ′′

2 (x)x) − 2γ ′(V )V ′(θ ′
2(x)x + θ2(x))

+γ ′′(V )(V ′)2 − cγ ′(V )V ′] − b(dne
−θ1(x)x − e−θ2(x)x)2 (4.17)

≥ e−θ2(x)x

{
λ(c − 2λ)

4k0
− b

(
d2
ne(θ2(x)−2θ1(x))x + e−θ2(x)x

)

−
(

4K2 +2cxK2 + 2m√
1+a

(2K2e
−λxx +√

a)+m

(
1

1+a
+ 2c√

4+ c2

))
dne

(θ2(x)−θ1(x)−λ)x

−
(

(2K2x)2e−λx + 4K2

(√
a + λ

k0

)
x + 2λK2x + 2m√

1 + a

(
2K2xe−λx + √

a + λ

k0

)

+m(m + 1)

1 + a
e−λx + 2cm√

4 + c2

)
e−λx

}
.

Noticing θ2(x) −2θ1(x) < 0 and θ2(x) −θ1(x) −λ < 0 for x > xδ , then for c > 2
√

a, by choosing 
δ sufficiently small in (4.17), we obtain

L(dne
−θ1(x)x − e−θ2(x)x) ≥ 0

for all x > xδ . Then by the comparison principle for parabolic equations, we obtain U(x, t; u) ≥
Un for c ≥ 2

√
a.

Summing up, by choosing

η := 2a

b − 3m +
√

(b − 3m)2 − 4m(m+1)a
1+a

and sufficiently small δ, (U, Un) is a pair of super- and sub-solutions of (4.3) (see a schematic 
of super- and sub-solutions illustrated in Fig. 2). Denoting U(x, t; u, U) the unique solution of 
(4.3), by the comparison principle for parabolic equations, we obtain Un ≤ U(x, t; u, U) ≤ U

and thus U(x, t; u, U) ∈ En. This completes the proof of Lemma 4.1. �
4.2. An auxiliary elliptic problem

Now for u ∈ X0 := ⋂
n>1 En, we study the following problem

{
γ (V )U ′′ + (

2γ ′(V )V ′ + c
)
U ′ + (

γ ′′(V )(V ′)2 + γ ′(V )(V − U − cV ′) + a
)
U − bU2 = 0,

V ′′ + cV ′ + u − V = 0,

(4.18)
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which is equivalent to solving L(U) = 0.

Proposition 4.2. For every u ∈ X0, if c ≥ 2
√

a and b > b∗(m, a) with b∗(m, a) defined in (2.3), 
denote U(x, t; u, U) the solution of (4.3) with U(x, 0; u, U) = U , there exists a unique function 
U(x; u) ∈ X0 such that

U(x;u) = lim
t→∞U(x, t;u,U) = inf

t>0
U(x, t;u,U)

and U(x; u) is the unique solution of (4.18) satisfying

lim inf
x→−∞U(x;u) > 0 and lim

x→+∞
U(x;u)

e−λx
= 1. (4.19)

Proof. From Proposition 4.1, we have

U(x, t;u,U) ≤ U(x) for all (x, t) ∈ R× [0,+∞). (4.20)

For any 0 ≤ t1 ≤ t2, noticing

U(x, t2;u,U) = U(x, t1;u,U(x, t2 − t1;u,U)),

from (4.20), we have

U(x, t2 − t1;u,U) ≤ U(x).

Then using again the comparison principle for parabolic equations, we obtain

U(x, t2;u,U) ≤ U(x, t1;u,U),

which implies that U(x, ·; u, U) is decreasing with respect to t . Noticing that U(x, ·; u, U) has 
lower and upper bounds since U(x, ·; u, U) ∈ En as shown in Lemma 4.1, one can conclude that 
there exists a unique U(x; u) such that

U(x;u) = lim
t→∞U(x, t;u,U) = inf

t>0
U(x, t;u,U) (4.21)

for all x ∈ R. Denote

Un(x, t) = U(x, t + tn;u,U)

for (x, t) ∈ R × [0, ∞), where {tn}n≥1 is an increasing sequence of positive real numbers con-
verging to +∞. Then from the elliptic regularity theory for (4.1) and parabolic regularity theory 
for (4.3) (cf. [19]), we obtain that for all 1 < p < ∞, R > 0, T > 0,

‖V ‖W 2,p(−R,R) ≤ C and ‖Un‖W
2,1
p ((−R,R)×(0,T ))

≤ C.

From Sobolev embedding theorem, we obtain
22



J. Li and Z.-A. Wang Journal of Differential Equations 301 (2021) 1–36
‖V ‖
C

1,α
loc (R)

≤ C and ‖Un‖C
α,α/2
loc (R×(0,+∞))

≤ C.

The Arzelà-Ascoli’s theorem and Schauder’s theory for parabolic equation (cf. [17]) imply that 
there is a subsequence {Un′ }n′≥1 of the sequence {Un}n≥1 and a function Ũ ∈ C2,1(R × (0, ∞)), 
such that {Un′ }n′≥1 converges to Ũ locally uniformly in C2,1(R × (0, ∞)) as n′ → ∞. Hence 
Ũ (x, t) solves (4.18) and Ũ ∈ X0. On the other hand, noticing Ũ(x, t) = limt→∞ U(x, t; u, U), 
from (4.21), we have U(x; u) = Ũ (x, t) for every x ∈ R and t ≥ 0, from which we obtain that 
U(x; u) ∈ X0 is a solution of (4.18). Furthermore, from (3.12) and the definition of X0, we 
obtain

lim inf
x→−∞U(x;u) > 0 (4.22)

and

dn ≤ lim inf
x→+∞

U(x;u)

e−λx
≤ lim sup

x→+∞
U(x;u)

e−λx
= 1 (4.23)

for any n ≥ 2. Noticing limn→∞ dn = 1, by taking n → ∞ in (4.23), we obtain

lim
x→+∞

U(x;u)

e−λx
= 1. (4.24)

The uniqueness of U(x; u) satisfying (4.19) follows from the same arguments as that in Lemma 
3.6 in [34]. The proof is thus completed. �
5. Proof of main theorems

In this section, we shall prove Theorem 2.1 and Theorem 2.2. To this end, we first prove the 
following result concerning the asymptotic behavior of solutions to (2.1) as z → ±∞.

Proposition 5.1. Assume that a > 0 and m > 0 satisfy (2.5). Then any solution (U, V ) ∈
(C2(R) ∩ X0)

2 to (2.1) has the property that

lim
z→+∞U(z) = lim

z→+∞V (z) = 0, lim
z→−∞U(z) = lim

z→−∞V (z) = a/b

and

lim
z→±∞U ′(z) = lim

z→±∞V ′(z) = 0.

Proof. From the fact that (U, V ) ∈ X 2
0 and Lemma 3.2, we obtain

|U(z)| ≤ η, |V (z)| ≤ η and |V ′(z)| ≤ η√
1 + a

(5.1)

for all z ∈ R. From the first equation of (2.1), by the Hölder regularity estimates for bounded 
solutions of elliptic equations and the Schauder theory [7], there exists C > 0 independent of z
23
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and α ∈ (0, 1) such that ‖U‖C2,α(z,z+1) ≤ C and ‖V ‖C2,α(z,z+1) ≤ C for all z ∈ R, from which it 
follows that

|U ′(z)| ≤ C, |U ′′(z)| ≤ C and |V ′′(z)| ≤ C (5.2)

for all z ∈ R. Multiplying the first equation of (2.1) by (a − bU) and integrating the result over 
[−R, R], we obtain

0 =
R∫

−R

(γ (V )U)′′(a − bU)dz + c

R∫
−R

U ′(a − bU)dz +
R∫

−R

U(a − bU)2dz

=(γ (V )U)′(a − bU)
∣∣z=R

z=−R
+ b

R∫
−R

(γ ′(V )V ′U + γ (V )U ′)U ′dz + caU
∣∣z=R

z=−R

− 1

2
cbU2

∣∣z=R

z=−R
+

R∫
−R

U(a − bU)2dz.

Then using (4.6), (5.1) and (5.2), we find a constant C1 independent of R such that

b

(1 + η)m

R∫
−R

|U ′|2dz +
R∫

−R

U(a − bU)2dz

≤b

R∫
−R

γ (V )|U ′|2dz +
R∫

−R

U(a − bU)2dz (5.3)

≤b

R∫
−R

|γ ′(V )V ′UU ′|dz − (γ (V )U)′(a − bU)
∣∣z=R

z=−R
− caU

∣∣z=R

z=−R
+ 1

2
cbU2

∣∣z=R

z=−R

≤C1 + 1

2
bmη

⎛
⎝ R∫

−R

|U ′|2dz +
R∫

−R

|V ′|2dz

⎞
⎠ .

On the other hand, multiplying the second equation of (2.1) by V ′′ and integrating the result over 
[−R, R], we obtain

0 =
R∫

−R

|V ′′|2dz + c

R∫
−R

V ′V ′′dz +
R∫

−R

UV ′′dz −
R∫

−R

V V ′′dz

=
R∫

−R

|V ′′|2dz + c

2
(V ′)2

∣∣z=R

z=−R
+ UV ′∣∣z=R

z=−R
−

R∫
−R

U ′V ′dz − V V ′∣∣z=R

z=−R
+

R∫
−R

|V ′|2dz.
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This along with (5.1) and (5.2) yields

R∫
−R

|V ′′|2dz +
R∫

−R

|V ′|2dz ≤ C2 +
R∫

−R

U ′V ′dz ≤ C2 + 1

2

R∫
−R

|U ′|2dz + 1

2

R∫
−R

|V ′|2dz,

where C2 is a constant independent of R. Then it follows that

R∫
−R

|V ′|2dz ≤ 2C2 +
R∫

−R

|U ′|2dz. (5.4)

Substituting (5.4) into (5.3), one can find a constant C3 = C1 + bmηC2 independent of R such 
that

b

(1 + η)m

R∫
−R

|U ′|2dz +
R∫

−R

U(a − bU)2dz ≤ C3 + bmη

R∫
−R

|U ′|2dz. (5.5)

Note that (3.10) together with condition (2.5) implies

1

(1 + η)m
− mη > 0. (5.6)

Sending R → ∞ in (5.5), we obtain

b

(
1

(1 + η)m
− mη

)∫
R

|U ′|2dz +
∫
R

U(a − bU)2dz ≤ C3. (5.7)

By sending R → ∞ in (5.4), we find a constant C4 > 0 such that

∫
R

|V ′|2dz ≤ C4. (5.8)

Then (5.7) and (5.8) assert that

U ′ ∈ L2(R), U(a − bU)2 ∈ L1(R), V ′ ∈ L2(R). (5.9)

From (5.2) and (5.9), we obtain

lim
z→±∞U(z) ∈ {0, a/b}, lim

z→±∞U ′(z) = 0 and lim
z→±∞V ′(z) = 0. (5.10)

Furthermore, from the definition of X0 and the fact that U ∈ X0, we obtain

lim U(z) = 0 and lim U(z) = a/b.

z→+∞ z→−∞
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On the other hand, from the second equation of (2.1), we have

V (z) = 1

λ2 − λ1

⎛
⎝ z∫

−∞
eλ1(z−s)U(s)ds +

+∞∫
z

eλ2(z−s)U(s)ds

⎞
⎠ (5.11)

with λ1 < 0 and λ2 > 0 defined in (3.21). Applying L’Hopital’s rule to (5.11), from the fact 
(5.10), we obtain

lim
z→+∞V (z) = lim

z→+∞
1

λ2 − λ1

(∫ z

−∞ e−λ1sU(s)ds

e−λ1z
+

∫ +∞
z

e−λ2sU(s)ds

e−λ2z

)

= 1

λ2 − λ1
lim

z→+∞

(
U(z)

−λ1
+ U(z)

λ2

)

= lim
z→+∞U(z) = 0

and

lim
z→−∞V (z) = lim

z→−∞
1

λ2 − λ1

(∫ z

−∞ e−λ1sU(s)ds

e−λ1z
+

∫ +∞
z

e−λ2sU(s)ds

e−λ2z

)

= 1

λ2 − λ1
lim

z→−∞

(
U(z)

−λ1
+ U(z)

λ2

)

= lim
z→−∞U(z) = a

b
.

This completes the proof. �
5.1. Proof of Theorem 2.1

Note that a fixed point of the mapping X0 � u �→ U(·, u) ∈ X0 formed in (4.18) is a solution 
to the wave equations (2.1). Hence to prove the existence of traveling wave solutions to (1.1), it 
suffices to prove that the mapping X0 � u �→ U(·, u) ∈ X0 formed in (4.18) has a fixed point. 
We shall achieve this by the Schauder fixed point theorem.

First, we prove that the mapping X0 � u �→ U(·, u) ∈ X0 is compact. Let {un}n≥1 be a 
sequence in X0. Denote Un = U(·, un), we have Un ∈ X0. From the elliptic regularity the-
orem, we have that ‖Un‖W

2,p

loc (R)
≤ C for all p > 1. From Sobolev embedding theorem, we 

obtain ‖Un‖Cα
loc(R) ≤ C, which along with the Arzelà-Ascoli’s theorem implies that there is 

a subsequence {Un′ }n′≥1 of the sequence {Un}n≥1 and a function U(x) ∈ C(R), such that 
{Un′ }n′≥1 → U(x) locally uniformly in C(R). Furthermore, we have U(x) ∈ X0. Then the map-
ping X0 � u �→ U(·, u) ∈ X0 is compact.

Second, we prove that the mapping X0 � u �→ U(·; u) ∈ X0 is continuous. To this end, denote

‖u‖∗ =
∞∑ 1

2n
‖u‖L∞([−n,n]).
n=1
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Then any sequence of functions in X0 is convergent with respect to norm ‖ · ‖∗ if and only if it 
converges locally uniformly on R. Let u ∈ X0 and {un}n≥1 be a sequence in X0 such that un

converges to u locally uniformly on R as n → ∞. Then by the elliptic regularity theorem applied 
to the second equation of (4.18) and Sobolev embedding theorem, we obtain

‖V (·;un)‖C
1,α
loc (R)

≤ C.

Form the Arzelà-Ascoli’s theorem, there exists a subsequence of {V (·; un)}n≥1, still denoted by 
itself without confusion, such that

lim
n′→∞

V (·;un) = V (·;u) in C1
loc(R).

Suppose by contradiction that the mapping X0 � u �→ U(·; u) ∈ X0 is not continuous. Then 
there exists δ > 0 and a subsequence {un′ }n′≥1 such that

‖U(·;un′) − U(·;u)‖∗ ≥ δ, ∀n ≥ 1. (5.12)

By Schauder’s theory [17] applied to the first equation of (4.18) and Sobolev embedding theo-
rem, from the Arzelà-Ascoli’s theorem, there is a subsequence {U(·; un′′)}n′′≥1 of the sequence 
{U(·; un′)}n′≥1 and a function U(·) ∈ C2(R), such that {U(·; un′′)}n′′≥1 converges to U(·) in 
C2

loc(R) and U is a solution of (4.18). Moreover, from the fact that U(·; un′′) ∈ X0 and

lim
n→∞‖U(·;un′′) − U(·)‖∗ = 0,

we obtain U(·) ∈ X0. Then from Proposition 4.2, we obtain U(·) = U(·, u). By (5.12), then

‖U(·;u) − U(·)‖∗ ≥ δ,

which is a contradiction. Hence the mapping X0 � u �→ U(·; u) ∈ X0 is continuous.
Now by the Schauder’s fixed point theorem, there is U ∈ X0 such that U(·) = U(·; U). Denote 

V (·) := V (·; U). Then (U, V ) is a solution of (2.1). From the definition of X0 and (3.12), we 
obtain

lim
z→+∞

U(z)

e−λz
= 1.

This along with (3.22)-(3.23) and L’Hôpital’s Rule yields

lim
z→+∞

V (z)

e−λz
= lim

z→+∞
1

λ2 − λ1

(∫ z

−∞ e−λ1sU(s)ds

e−(λ1+λ)z
+

∫ +∞
z

e−λ2sU(s)ds

e−(λ2+λ)z

)

= 1

λ2 − λ1
lim

z→+∞

(
U(z)

−(λ1 + λ)e−λz
− U(z)

−(λ2 + λ)e−λz

)
= 1

1 + a
.

Since U ∈ X0, it follows that lim inf
z→−∞ U(z) > 0. On the other hand, noticing for z < xδ , U(z) > δ

and then
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V (z) = 1

λ2 − λ1

⎛
⎝ z∫

−∞
eλ1(z−s)U(s)ds +

+∞∫
z

eλ2(z−s)U(s)ds

⎞
⎠

≥ δ

λ2 − λ1

z∫
−∞

eλ1(z−s)ds = δ

(λ2 − λ1)(−λ1)
> 0,

from which lim inf
z→−∞ V (z) > 0 follows. Finally by the assumption (2.5) and Proposition 5.1, we 

finish the proof of Theorem 2.1. �
5.2. Proof of Theorem 2.2

Arguing by contradiction, for c < 2
√

a, we suppose that there is a positive traveling wave so-
lution (u(x, t), v(x, t)) = (U(x · ξ − ct), V (x · ξ − ct)) of (1.1) connecting the constant solutions 
(a/b, a/b) and (0, 0). Take a sequence {zn} with zn → +∞, then

lim
n→+∞U(zn) = lim

n→+∞V (zn) = lim
n→+∞V ′(zn) = 0.

Now we set

hn(z) = U(z + zn)

U(zn)
, Un(z) = U(z + zn), Vn(z) = V (z + zn).

As U is bounded and satisfies (2.1), the Harnack inequality implies that the shifted function 
Un(z), Vn(z) and V ′

n(z) converge to zero locally uniformly in z and the sequence hn is locally 
uniformly bounded and satisfies

⎧⎪⎨
⎪⎩

γ ′′(Vn)(V
′
n)

2hn + γ ′(Vn)(Vn − Un − cV ′
n)hn + 2γ ′(Vn)V

′
nh

′
n + γ (Vn)h

′′
n + ch′

n

+ hn(a − bUn) = 0,

V ′′
n + Un − Vn + cV ′

n = 0

in R. Thus up to a subsequence, the sequence {hn}n≥1 converges to a function h that satisfies

h′′ + ch′ + ah = 0 in R. (5.13)

Moreover, h is nonnegative and h(0) = 1. Equation (5.13) admits such a solution if and only if 
c ≥ 2

√
a, which leads to a contradiction. This denies our assumption and hence (1.1) admits no 

traveling wave solution connecting (a/b, a/b) and (0, 0) with speed c < 2
√

a. �
6. Selection of wave profiles

By introducing some auxiliary problems and spatially inhomogeneous relaxed decay rates 
for super- and sub-solutions constructed, we manage to establish the existence of traveling wave-
front solutions to the density-suppressed motility system (1.1) with decay motility function (1.2), 
where we find that there is a minimal wave speed coincident with the one for the cornerstone 
Fisher-KPP equation, and a maximum wave speed c resulting from the nonlinear diffusion. 
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However, we are unable to characterize further properties of wave profiles such as monotonic-
ity, stability and so on. In this section, we shall discuss the selection of possible wave profiles 
motivated by some argument in [30].

6.1. Trailing edge wave profiles

In the spatially homogeneous situation, the system (1.1) has equilibria (0, 0) and (a/b, a/b), 
which are unstable saddle and stable node respectively. This suggests that we should look for 
traveling wavefront solutions to (1.1) connecting (a/b, a/b) to (0, 0) as we have done in the 
paper. Now we linearize the ODE system (2.1) at the origin (0, 0) and let U ′ = X, V ′ = Y . Then 
we get the following linear system of (U, X, V, Y)

⎛
⎜⎜⎝

U ′
X′
V ′
Y ′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
− a

γ (0)
− c

γ (0)
0 0

0 0 0 1
−1 0 1 −c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

U

X

V

Y

⎞
⎟⎟⎠ . (6.1)

The eigenvalue λ of the above coefficient matrix is(
λ2 + c

γ (0)
λ + a

γ (0)

)(
λ2 + cλ − 1

)
= 0.

To ensure there is a positive trajectory connecting the equilibria (0, 0) and (a/b, a/b), we need 
to rule out the case that (0, 0) is a spiral, which amounts to require

c ≥ 2
√

γ (0)a. (6.2)

With γ (v) given in (1.2), γ (0) = 1 and (6.2) is equivalent to c ≥ 2
√

a. This is well consistent 
with our results obtained in Theorem 2.1 and Theorem 2.2. Under the restriction (6.2), it can be 
easily check that the origin (0, 0) is either a stable node or saddle point, which indicates that the 
traveling wave profile around the origin (0, 0) will not be oscillatory or periodic.

Next we linearize the system (2.1) at (a/b, a/b) and arrive at the following linearized system

⎛
⎜⎜⎝

U ′
X′
V ′
Y ′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
a(b+σ2)

σ1b
− c

σ1
− aσ2

bσ1

aσ2c
bσ1

0 0 0 1
−1 0 1 −c

⎞
⎟⎟⎠

⎛
⎜⎜⎝

U

X

V

Y

⎞
⎟⎟⎠ (6.3)

where σ1 = γ (a/b), σ2 = γ ′(a/b). By some tedious computation, we find that the eigenvalue λ
of the above coefficient matrix is determined by the following characteristic equation

λ4 +
(
c + c

σ1

)
λ3 +

(
c2

σ1
− a(b + σ2)

σ1b
− 1

)
λ2 − (a + 1)c

σ1
λ + a

σ1
= 0. (6.4)

We suppose that there are periodic solutions near the positive equilibrium (a/b, a/b), namely 
the above characteristic equation has purely imaginary roots λ = ±ωi, where ω is a real num-
ber. Then the substitution of this ansatz into the equation (6.4) immediately yields a necessary 
condition c = 0, and consequently we get
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ω4 −
(

a(b + σ2)

σ1b
+ 1

)
ω2 + a

σ1
= 0. (6.5)

Notice that σ2 = γ ′(a/b) < 0. Then a necessary and sufficient condition warranting that the 
equation (6.5) has a real root ω is

|σ2| < b

a
σ1

(√
a

σ1
− 1

)2

. (6.6)

That is, the linearized system (6.3) at the equilibrium (a/b, a/b) will have periodic solutions if 
the condition (6.6) is fulfilled. Thereof we anticipate that the non-monotone traveling wave so-
lutions oscillating about the critical point (a/b, a/b) may exist, but whether the condition (6.6)
is sufficient to guarantee that the nonlinear system (1.1) has similar oscillatory behavior around 
the equilibrium (a/b, a/b) is very hard to determine and even to predict due to the complexity 
induced by the nonlinear diffusion and cross-diffusion in the system. Below we shall use numer-
ical simulations to illustrate that indeed the condition (6.6) plays a critical role for the nonlinear 
system in determining the monotonicity of wave profiles.

We consider the motility function γ (v) = 1
(1+v)m

(m > 0) as given in (4.18). With simple 
calculation, we find that the condition (6.6) amounts to

√
m <

√
1 + ϑ

ϑ

∣∣√a(1 + ϑ)m − 1
∣∣, ϑ = a

b
. (6.7)

Without loss of generality, we first choose m = 6 and a = b = 0.1. Then ϑ = 1 and

√
1 + ϑ

ϑ

∣∣∣√a(1 + ϑ)m − 1
∣∣∣ = 2.1635 <

√
6 = 2.4495.

Hence the condition (6.7) is violated and no oscillation around (a/b, a/b) = (1, 1) is expected 
for the linearized system. To verify if this is the case for the nonlinear system (1.1), we set the 
initial value (u0, v0) as

u0(x) = v0(x) = 1

1 + e2(x−20)
(6.8)

and perform the numerical simulations in an interval [0, 200] with Neumann boundary condi-
tions to comply with the experiment. The numerical solution of (1.1) is shown in Fig. 3 where 
we obverse that the solution will stabilize into monotone traveling waves although it oscillates 
initially. This is also well consistent with our analytical results about the existence of traveling 
wave solutions given in Theorem 2.1 when K(m, a) = 0.4143 < 1 if m = 6 and a = b = 0.1. 

Next we choose m = 4 and a = b = 1 such that 
√

1+ϑ
ϑ

∣∣∣√a(1 + ϑ)m − 1
∣∣∣ = 4.2426 and hence 

(6.7) holds. But numerically we still find that the system (1.1) will generate monotone traveling 
waves qualitatively similar to the patterns shown in Fig. 3 (not shown here for brevity). This im-
plies that the condition (6.6) is not sufficient to induce non-monotone traveling waves oscillating 
around (a/b, a/b).

Now an important question is whether the density-suppressed motility system (1.1) is capable 
of producing persistent oscillating traveling waves to interpret (at least qualitatively) the pattern 
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Fig. 3. Numerical simulations of wave propagation generated by the system (1.1) in [0, 200] with γ (v) = 1
(1+v)m

with 
m = 6, a = b = 0.1, u0 = v0 = 1

1+e2(x−20) .

observed in the experiment (see Fig. 1). To explore this question numerically, we consider the 
following sigmoid motility function

γ (v) = 1 − v − 1√
0.1 + (v − 1)2

(6.9)

which decays but changes the convexity at the point v = 1, in contrast to the decreasing function 
(1.2) whose convexity remains unchanged. We perform the numerical simulations for (1.1) with 
a = b = 0.2 in an interval [0, 200] with the same initial value (6.8). Remarkably we find non-
monotone traveling wavefronts develop (see Fig. 4) and persist in time, where the wave oscillates 
at the trailing edge and propagates into the far field as time evolves. This is a prominent feature 
different from the patterns shown in Fig. 3 generated from the motility function (1.2). If we 
choose some other forms of decreasing function γ (v) that changes its convexity at v = a/b = 1, 
we shall numerically find similar non-monotone traveling wavefront patterns generated by (1.1).

The above numerical simulations indicate, although not proved in this paper, that the density-
suppressed motility system (1.1) can generate both monotone and non-monotone traveling 
wavefront solutions connecting (a/b, a/b) to (0, 0). It numerically appears that the change of 
convexity of γ (v) at v = a/b is necessary to generate the non-monotone traveling wavefronts 
oscillating at the trailing edge around the equilibrium (a/b, a/b). The underlying mechanism 
remains mysterious and we will leave it as an open question for future study.

Next we are devoted to exploring the patterns in a disk to mimic the apparatus used in the 
experiment of [21] where the experiment was conducted in petri dishes with bacteria initially 
inoculated at the center (see Fig. 1). In the numerical simulations, we set the domain as a disk 
with radius 10 and initially place the initial value (u0, v0) = (4 + e−(x2+y2), 4 + e−(x2+y2)) in the 
center. We use the motility function given in (1.2) with m = 6 and set out Neumann boundary (i.e. 
zero-flux) conditions aligned with the experiment reality. The snapshots of numerical patterns 
are recorded in Fig. 5, where we do observe the outward expanding ring patterns qualitatively 
analogous to the experiment patterns shown in Fig. 1. This validates the capability of model 
(1.1) reproducing the experimental patterns. However we should underline that it appears that 
the generation of oscillating patterns in two dimensions does not rely on the change of convexity 
of the motility function γ (v) as shown in Fig. 5, which is very different from the situation in 1-D 
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Fig. 4. Numerical simulations of wave propagation generated by the system (1.1) in [0, 200] with γ (v) = 1 −
v−1√

0.1+(v−1)2
, a = b = 0.2, u0 = v0 = 1

1+e2(x−20) .

as shown in Fig. 3 and Fig. 4. This imposes another interesting question elucidating this subtle 
difference.

6.2. Leading edge wave speeds

Following the spirit of classical method as in [26,27], we discuss the selection of the wave 
speed c from the initial conditions given at infinity. Suppose that the initial value (u0, v0) of the 
system (1.1) satisfies

{
u0(x) ∼ Ae−λx,

v0(x) ∼ Be−λx,
as x → ∞ (6.10)

with positive amplitudes A and B . Now we look for traveling wave solutions of (2.1) at the 
leading edge (i.e. x → ∞) in the form of

{
u(x, t) ∼ Ae−λ(x−ct),

v(x, t) ∼ Be−λ(x−ct).
(6.11)
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We substitute (6.11) into the first equation of (1.1) and get the dispersion relation between the 
wave speed c and the initial decay rate λ:

c = γ (0)λ + a

λ
. (6.12)

Hence by the standard argument as in [27], the asymptotic wave speed c of traveling wave solu-
tions to (1.1) satisfies

c =
{

γ (0)λ + a
λ
, if 0 < λ <

√
a,

2
√

γ (0)a, if λ ≥ √
a.

(6.13)

Next we plug (6.11) into the second equation of (1.1) and get the following relation on the 
amplitude of u and v

A = [1 + a + (γ (0) − 1)λ2]B. (6.14)

Therefore given the initial condition (6.10), the leading edge of traveling waves is fully deter-
mined by the ansatz (6.11) with wave speed (6.13) and amplitudes fulfilling (6.14).

As an example, we consider the motility function (1.2) chosen in this paper, where γ (0) = 1
and hence (6.12) gives

λ2 − cλ + a = 0

which is exactly the same as the equation (3.2). Furthermore (6.14) gives A = (1 + a)B which 
well agrees with the result (2.4) in Theorem 2.1.
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