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Abstract. We show that the Keller--Segel model in one dimension with Neumann boundary
conditions and quadratic cellular diffusion has an intricate phase transition diagram depending on
the chemosensitivity strength. Explicit computations allow us to find a myriad of symmetric and
asymmetric stationary states whose stability properties are mostly studied via free energy decreasing
numerical schemes. The metastability behavior and staircased free energy decay are also illustrated
via these numerical simulations.
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1. Introduction and main results. Aggregation-diffusion equations are ubiq-
uitous in the modeling of phenomena in mathematical biology, from the collective
behavior of animal groups [37, 47] to cell differential adhesion [2, 23, 38] passing
through cancer invasion models [28, 29], with cell movement by chemotaxis being one
of their most classical applications in mathematical biology [31, 34, 43]. We refer the
reader to [20] for a recent survey of current research in aggregation-diffusion equations.

Among this large class of equations, there is a particular case that has recently
attracted lots of attention corresponding to very localized repulsion and attraction due
to chemotaxis. More precisely, assume that we have cells whose nuclei are located
at positions \{ xi\} , i = 1, . . . , N . Let us suppose that cells will interact with other
cells either by chemoattractive interaction at a fairly long-range distance through
the production of a chemoattractant substance v(x, t) or by strong repulsion, if the
interparticle cell distance becomes very small due to volume size exclusion constraints
around the nuclei. Let us also assume that the localized repulsive forces exerted by
cell type j onto cell type i are radial in the direction of the centers of the nuclei,
and therefore they follow from a radial potential denoted by WN . The basic agent-
based model for this ensemble of cells of mass m moving up the gradient of the
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KELLER--SEGEL MODEL WITH VOLUME EXCLUSION 233

chemoattractant v with strongly localized repulsion reads as

\.xi = \chi 
\sum 
j \not =i

\nabla v(xi) - 
m

N

\sum 
j \not =i

\nabla WN (xi  - xj),

with \chi the chemosensitivity dimensionless parameter after standard nondimensional-
ization. Here, we made the mean-field assumption in order to keep a finite mass m in
the limit of large number of agents N \rightarrow \infty , that is,

u(x, t) \simeq m

N

N\sum 
i=1

\delta xi(t)

as N \rightarrow \infty . We now assume that the scaling of this repulsive potential reflects the
volume size restriction modeled by localized repulsion [11, 41]. The potential is scaled
in N such that WN \simeq \delta 0 as N \rightarrow \infty ; then taking the limit N \rightarrow \infty leads to the
following PDE describing the evolution of cell density u(x, t):

(1.1) ut = \nabla \cdot (u\nabla u - \chi u\nabla v) .

The rigorous derivation for one single-cell type from agent-based models was done
in [41]; see also [11, 12, 45] and the references therein. Let us point out that there are
other ways of including volume effects, such as the volume filling assumption [42], that
differ from the volume exclusion considered here [16]. This basic model shows very
rich dynamical properties and a complex set of stationary states and metastability
both for one species and multispecies cases [13, 14, 19, 20, 23] dealing with other
attractive kernels instead of the classical chemotaxis kernels. As usual in chemotaxis
modeling, the previous equation is coupled with a reaction-diffusion equation of the
chemoattractant v(x, t) typically created and degraded linearly as

(1.2) vt = \Delta v  - v + u .

System (1.1)--(1.2) has been studied thoroughly in the case of linear diffusion for the
cell density in two main settings: the whole space and the bounded domain case
with no-flux boundary conditions for both cell density and chemoattractant; see, for
instance, [5, 6, 8, 9, 10] for the full space case, [24, 32, 50] and the references therein for
the Neumann boundary condition, and the variants of (1.1)--(1.2) in [30, 36, 39, 40].

However, finding stationary states and the asymptotic behavior of this system
with nonlinear quadratic diffusion has been elusive. The difficulties include how to
show confinement of the mass and how to characterize all the steady states of the
system after the early work [16] showed globally uniform bounds on the cell density.
In the whole space case and in one and two dimensions, this has been clarified only
recently by taking advantage of the gradient flow properties of this system, which has
a particularly important Lyapunov functional of which stationary states are critical
points. In the whole space case, the existence of compactly supported radially de-
creasing global minimizers of the energy was proven in [18]. Taking advantage of this
variational structure, the authors in [22] were able to show that all stationary states
in the whole space must be radially decreasing and compactly supported about their
center of mass. In short, in two dimensions for the classical Keller--Segel model, all
stationary states with the right regularity in [22] are given by single bumps. This
property generalizes to any case in which the uniqueness of radial stationary solutions
is proven. For instance, this is shown in [33] for regular interaction kernels including
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234 CARRILLO, CHEN, WANG, WANG, AND ZHANG

the Bessel potential in one dimension, and in [15], where uniqueness is proven in one
dimension for general potentials.

Stationary states for this system in bounded domains can be fairly more com-
plicated. Let us start by mentioning that even for the simpler aggregation-diffusion
equation of the form

ut = \nu \Delta u+\nabla \cdot (u\nabla (W \ast u)) ,

withW being an interaction potential subject to periodic boundary conditions, this is
a case that can demonstrate a phase transition depending on the strength of the noise
\nu ; see [21] and the references therein. These phenomena were also analyzed in [26]
in the case of quadratic diffusion showing sufficient conditions on the potential W for
phase transitions to happen.

In this paper, we consider the following one-dimensional chemotaxis model with
quadratic cellular diffusion subject to Neumann boundary conditions

(1.3)

\left\{       
ut = (uux  - \chi uvx)x, x \in (0, L), t > 0,
vt = vxx  - v + u, x \in (0, L), t > 0,
u(x, 0), v(x, 0) \geq 0, but \not \equiv 0, x \in (0, L),
ux(x, t) = vx(x, t) = 0, x = 0, L, t > 0.

We shall show that system (1.3) exhibits a complicated phase transition phenomena
due to the fine/intricate structures of its steady states that depend on the chemotactic
sensitivity \chi . To this end, we shall study its nonnegative steady states, i.e., solutions
to the system

(1.4)

\left\{           
(uux  - \chi uvx)x = 0, x \in (0, L),
vxx  - v + u = 0, x \in (0, L),
ux = vx = 0, x = 0, L,
u(x) \geq 0, v(x) > 0, x \in (0, L),

(u, v) \in C0(0, L)\times C2(0, L),
\int L

0
u(x)dx =M,

and investigate how the structure and behavior of (1.4) change with respect to the
chemotactic sensitivity parameter \chi > 0. We note that an immediate consequence of
the zero-flux boundary conditions is the conservation of cell population

M =

\int L

0

u(x, t) dx =

\int L

0

u(x, 0) dx for all t > 0,

which further implies that the constant pair (\=u, \=v) :=
\bigl( 
M
L ,

M
L

\bigr) 
is a solution to (1.3)

and (1.4).
The main aim of this work is to show in detail the qualitative information encoded

in Figure 1, which turns out to be closely related to the following parameter:

\chi k =
\Bigl( k\pi 
L

\Bigr) 2

+ 1, k = 1, 2, 3, . . . .

Here, we see that the bifurcation diagram for steady states is quite intricate, and
vertical bifurcation occurs from the constant solution (\=u, \=v) at each bar \chi = \chi k :=
(k\pi L )2 + 1, k \geq 1.

Since the diffusion of the first equation of (1.4) is degenerate at u = 0, one often
expects that the solution component u will have a compact support: the solution has
a region with u positive surrounded by vanishing regions. Throughout the paper, we
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KELLER--SEGEL MODEL WITH VOLUME EXCLUSION 235

call the solution a ``bump"" if it is positive in some regions surrounded by two regions
of vacuum; a ``half-bump"" is a bump cut in its middle. We say a bump solution is
similar if it is obtained by reflecting a half-bump solution once or many times. Then
our main results can be summarized as follows.

Theorem 1.1. Let the cell mass M > 0 in (1.4) be arbitrary. Then for each
\chi \in [\chi 1,\infty ) \setminus \{ \chi k\} \infty k=1, the solution of (1.4) must have a compact support in (0, L),
and it has at most k half-bumps if \chi < \chi k+1 with k \geq 1. More specifically we have
the following results:

1. For \chi < \chi 1, (1.4) has only the positive constant solution (\=u, \=v), which is the
global and exponential attractor of (1.3).

2. For each \chi = \chi k, k = 1, 2, . . . , there exists a one-parameter family of non-
negative solutions to (1.4) of the form

(u\epsilon k(x), v
\epsilon 
k(x)) = (\=u, \=v) + \epsilon (\chi k, 1) cos

k\pi x

L
for all \epsilon \in 

\biggl[ 
 - \=u

\chi k
,
\=u

\chi k

\biggr] 
which are strictly positive in [0, L] whenever \epsilon \not = \pm \=u

\chi k
.

3. For each \chi \in (\chi 1,\infty ), (1.4) admits a pair of half-bump solutions (u, v)(x)
and (u, v)(L - x) explicitly given by

u(x) =

\biggl\{ 
\scrA 
\bigl( 
cos\omega x - cos\omega l\ast 

\bigr) 
, x \in (0, l\ast ),

0, x \in (l\ast , L),

v(x) =

\biggl\{ 
\scrA 
\bigl( 
cos\omega x

\chi  - cos\omega l\ast 
\bigr) 
, x \in (0, l\ast ),

\scrB cosh(x - L), x \in (l\ast , L),

where l\ast \in 
\bigl( 

\pi 
2\omega ,

\pi 
\omega 

\bigr) 
\subset (0, L) is uniquely determined by the algebraic equation

1
\omega tan\omega l\ast = tanh(l\ast  - L) and

\scrA =
\=uL

1
\omega sin\omega l\ast  - l\ast cos\omega l\ast 

, \scrB =
\=uL( 1\chi  - 1)\bigl( 

1
\omega tan\omega l\ast  - l\ast 

\bigr) 
cosh(l\ast  - L)

;

moreover, the above pair are the unique nonconstant monotone solutions to
(1.4). Furthermore, if \chi \in (\chi 1, \chi 2), then the above pair are the unique non-
constant solutions to (1.4).

4. For \chi \in [\chi 2,\infty ) \setminus \{ \chi k\} \infty k=2, the following statements hold:
\bullet system (1.4) has a unique pair of similar-bump solutions (u\pm k , v

\pm 
k )(x)

with k half-bumps explicitly given by (3.6) if and only if \chi > \chi k;
\bullet if \chi > \chi k, system (1.4) also admits similar-bump solutions (u\pm m, v

\pm 
m)(x)

with m half-bumps for each m = 2, . . . , k; moreover, it has infinitely
many asymmetric multibump solutions (u\#m, v

\#
m) that have m half-bumps.

From the above results, we see that the solution structure of (1.4) becomes in-
creasingly rich and complex as \chi expands. The qualitative information of Theorem 1.1
is encoded in the bifurcation diagram shown in Figure 1, where we plot the explicit
vertical bifurcation branches and their global continuums out of the constant solution
at \chi k := (k\pi L )2 + 1, k \geq 1.

Now that (1.4) admits more and more as \chi > 0 increases, a question then naturally
arises as to which solution or which type of solutions might be more stable than
another. This is very challenging, and it is hardly possible to give a positive answer;
however, one may find some clues by comparing the size of energy at stationary
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236 CARRILLO, CHEN, WANG, WANG, AND ZHANG

Fig. 1. Bifurcation diagram of the L\infty -norm of u vs. \chi with M = 1, L = \pi , and \=u = \=v = 1
\pi 
.

Each vertical bar at \chi 1 = 2, \chi 2 = 5, \chi 3 = 10, \chi 4 = 17, . . . represents a bifurcation branch that
consists of the one-parameter family of positive solutions (u\epsilon 

k, v
\epsilon 
k) given by result 2 of Theorem 1.1.

For each \chi \in \BbbR , the constant pair (\=u, \=v) is always a solution of (1.4), and it is globally asymptotically
stable if \chi < \chi 1 and unstable if \chi > \chi 1. For \chi \in (\chi 1,\infty ), (1.4) admits half-bump solutions given by
result 3 of Theorem 1.1, unique up to a reflection about x = L

2
; moreover, for \chi \in (\chi 2,\infty ), there

exist solutions with double boundary bumps or a single interior bump. In general, for \chi \in (\chi k,\infty ),
(1.4) admits solutions with k half-bumps, while for \chi \in (\chi k, \chi k+1), its solutions have at most k
half-bumps. For each k, we have that \| uk\| L\infty \rightarrow \infty as \chi \rightarrow \infty . For \chi \geq \chi 2 there are infinitely
many asymmetric solutions to (1.4).

solutions. It is known that system (1.4) admits the following dissipating energy:

\scrE (u, v) = 1

\chi 

\int L

0

u2dx+

\int L

0

(v2x + v2  - 2uv)dx.

Though computing the energy of all possible solutions of (1.4) for large \chi > 0 is im-
possible, another main result of this paper gives a complete hierarchy of all stationary
symmetric bump solutions as follows.

Theorem 1.2 (decay of energy of symmetric bump solutions). Assume that \chi >
\chi k, k \geq 1, and let (uk(x), vk(x)) be the symmetric multibump solutions for k \geq 2.
Then their energies decay as the number of half-bumps increases:

\scrE (u1, v1) < \scrE (u2, v2) < \cdot \cdot \cdot < \scrE (uk, vk) < \scrE (\=u, \=v).

Section 3 is devoted to constructing and analyzing deeply the behavior of half-
bumps, the compactly supported monotone distributional solutions, of (1.4) for \chi >
\chi 1. These half-bump solutions bifurcate from the limiting solutions of positive steady
states (u\epsilon 1, v

\epsilon 
1) as \epsilon \rightarrow \pm \=u

\chi 1
at \chi = \chi 1, as depicted in Figure 1. The same bifurcation

occurs to the limiting solutions at \chi = \chi k, k \geq 2, by a suitable reflection and gluing
procedure. Moreover, asymmetric half-bumps and symmetric single-bump solutions
are also possible as soon as \chi \geq \chi 2. We point out that some of these families of
solutions were already discovered in [3], and we revisit their analysis by complementing
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their results and understanding them in terms of the bifurcation diagram. Moreover,
the construction by symmetries of general branches is also novel with respect to [3].

Once this bifurcation diagram is analyzed in section 4, we take advantage of the
gradient flow structure to further analyze the stability of solutions from the energy
landscape viewpoint. We show that the half-bump solutions are the ones with the least
energy, even if they become boundary spikes as \chi \rightarrow \infty . In the last section, we focus
on the analysis of the stability of these branches via suitable numerical methods. Due
to the gradient flow structure, we propose a structure-preserving numerical method
in the spirit of [19] keeping the decreasing energy property of the system. Using this
scheme we showcase the stability/instability of the different branches. We present
certain conjectures about the basins of attraction of some branches and show the
inherent metastability of solutions due to the large number of unstable stationary
states and their complicated stable manifolds.

2. Stability of uniform density and its bifurcations. In this section, we
start by showing that the uniform steady state is exponentially asymptotically stable
for all initial data whenever \chi < \chi 1, and we will show that a vertical bifurcation
happens at every \chi k for all k \geq 1. Let us first point out that there are no nonconstant
positive classical solutions to the steady state equation (1.4) on [0, L] whenever \chi \geq \chi 1

unless \chi = \chi k, k \geq 1.

Lemma 2.1. Let (u, v) be an arbitrary nonconstant solution of (1.4). Then u
must be of compact support inside [0, L] for each \chi \in (\chi 1,\infty ) unless \chi = \chi k for some
k \in \BbbN +; for \chi = \chi k, there exists a one-parameter family of positive solutions to (1.4):

(2.1) (u\epsilon k(x), v
\epsilon 
k(x)) = (\=u, \=v) + \epsilon (\chi k, 1) cos

k\pi x

L
for all \epsilon \in 

\Bigl( 
 - \=u

\chi k
,
\=u

\chi k

\Bigr) 
.

Proof. We first show that u(x) to (1.4) is of compact support on [0, L] whenever
\chi > \chi 1 unless \chi = \chi k, k \geq 1. If not, assume that \chi \in (\chi 1,\infty )\setminus \{ \chi k\} \infty k=2 and u(x) > 0
in (0, L); then u - \chi v equals a constant in (0, L), while integrating it over (0, L) implies
that u - \=u = \chi (v  - \=v). Then the v-equation becomes\biggl\{ 

(v  - \=v)xx + (\chi  - 1)(v  - \=v) = 0, x \in (0, L),
vx = 0, x = 0, L,

which has no nonconstant solution unless \chi  - 1 = (k\pi L )2 for some k \in \BbbN +, i.e.,
\chi = \chi k. Therefore, for \chi \in (\chi 1,\infty )\setminus \{ \chi k\} \infty k=2, we deduce that v is constant, implying
u is constant on (0, L). Moreover, when \chi = \chi k, k \geq 1, one can solve the equation
explicitly to obtain this family of positive solutions (2.1).

One can also easily find that the constant solution (\=u, \=v) of (1.3) is locally stable if
\chi < \chi 1 and is linearly unstable if \chi > \chi 1 by linearizing around the constant solution.
Let us show further that (\=u, \=v) is globally asymptotically stable and (1.4) has only the
constant solution for 0 < \chi < \chi 1. To this end, one can apply the Csisz\'ar--Kullback
inequality [48] to derive a few important a priori estimates. For the sake of self-
containedness we shall make use of several inequalities which are summarized in the
following lemma.

Lemma 2.2. Let \lambda 1 be the principal eigenvalue for the Neumann problem of the
 - \Delta operator in the domain \Omega \subset \BbbR N . Assume that u \in L1

+ \cap L\infty (\Omega ), u \in H1(\Omega ), and\int 
\Omega 
udx = \=u| \Omega | . Then the following inequality holds:

(2.2)
1

2\| u\| L\infty 

\int 
\Omega 

| u - \=u| 2 \leq 
\int 
\Omega 

u ln
\Bigl( u
\=u

\Bigr) 
\leq 2

\=u

\int 
\Omega 

| u - \=u| 2 \leq 2

\=u

1

\lambda 1

\int 
\Omega 

| \nabla u| 2.
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Proof. The last inequality readily follows from the Rayleigh quotient. To show
the first two, we introduce the function f(z) := z ln z

\=u + \=u  - z, z \geq 0. One finds that
f(0) = \=u, f(\=u) = f \prime (\=u) = 0, and f \prime \prime (z) = 1

z . Taylor expansion implies that

f(u) = f(\=u) + f \prime (\=u)(u - \=u) +
f \prime \prime (\xi )

2
(u - \=u)2 =

1

2\xi 
(u - \=u)2 \geq 1

2\| u\| L\infty 
(u - \=u)2,

since z \in [u, \=u], which gives rise to the first inequality. To show the second inequality,
we take \alpha \in (0, 1), a constant to be determined. Then we have that f(z) = 1

2\xi (z  - 
\=u)2 \leq (z - \=u)2

2\alpha \=u , z \geq \alpha \=u; on the other hand, since f \prime (z) < 0 for z < \=u, we have that

f(z) \leq f(0) = \=u \leq (z - \=u)2

(1 - \alpha )2\=u , 0 \leq z \leq \alpha \=u. Choosing \alpha = 2  - 
\surd 
3 gives us the second

inequality.

We note that (1.3) is globally well-posed in general bounded domains \Omega \subset \BbbR N

(N \geq 1), and their weak solutions [24] are uniformly bounded and unique in the class
of bounded weak solutions [24]. We can conclude the exponential convergence.

Theorem 2.1. Let \Omega \subset \BbbR N (N \geq 1). If 0 < \chi < \chi 1, then for any nonnegative
initial data (u0, v0) \in L\infty (\Omega )\times L\infty (\Omega ), the constant solution (\=u, \=v) is the exponential
global attractor of (1.3), i.e., for any 1 \leq p <\infty , there exist two constants C, \delta \in \BbbR +

such that
\| u(\cdot , t) - \=u\| Lp(\Omega ) + \| v(\cdot , t) - \=v\| H1(\Omega ) \leq Ce - \delta t, t \geq 0.

Proof. Let us introduce the following functional:

\scrF :=

\int 
\Omega 

u ln
\Bigl( u
\=u

\Bigr) 
+
\chi 

2
| \nabla v| 2.

Using (1.3), one can easily obtain

d\scrF 
dt

=

\int 
\Omega 

(lnu+ 1)ut + \chi \nabla v \cdot \nabla vt =  - 
\int 
\Omega 

| \nabla (u - \chi v)| 2  - \chi 

\int 
\Omega 

\Bigl( 
| \Delta v| 2 + (1 - \chi )| \nabla v| 2

\Bigr) 
.

(2.3)

Note that solutions of the Cauchy problem with no-flux boundary conditions (1.3)
are regular enough to make sense of the previous computation in integrated-in-time
form. The free energy dissipation inequality can be obtained by classical methods
regularizing the degenerate diffusion in the cell density equation by approximated
nondegenerate diffusions and passing to the limit, as done in [7, 35], for instance. Let
us point out that the inequality is enough for our purposes here. If we insist on having
the entropy dissipation identity as stated in (2.3), we have to resort to gradient flow
techniques, as in [6, 10], that apply analogously to our specific case (1.3).

To proceed, we claim from the Rayleigh quotient that
\int 
\Omega 
| \Delta v| 2 \geq \lambda 1

\int 
\Omega 
| \nabla v| 2,

where \lambda 1 = ( \pi L )
2 in (0, L), and it can be generalized to the principal Neumann eigen-

value in higher dimensions. We present a simple proof of the claim for completeness.
Let \{ (\lambda i, \psi i)\} \infty i=0 be the Neumann eigenpairs, with \| \psi i\| L2 = 1. Then the eigen-
expansion of v =

\sum 
Ci\psi i implies\int 

\Omega 

| \nabla v| 2 =  - 
\int 
\Omega 

v\Delta v =
\sum 

\lambda iC
2
i ,

\int 
\Omega 

| \Delta v| 2 =
\sum 

\lambda 2iC
2
i ,

and we have that \int 
\Omega 

| \Delta v| 2  - \lambda 1

\int 
\Omega 

| \nabla v| 2 =
\sum 

\lambda i(\lambda i  - \lambda 1)C
2
i \geq 0,
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from which the claim follows. Then one can further proceed with \chi 1 = 1 + \lambda 1 to get
from (2.3) that

d\scrF 
dt

\leq  - 
\int 
\Omega 

| \nabla (u - \chi v)| 2  - \chi (\chi 1  - \chi )

\int 
\Omega 

| \nabla v| 2

= - (1 - \epsilon )

\int 
\Omega 

| \nabla (u - \chi v)| 2  - \epsilon 

\int 
\Omega 

| \nabla (u - \chi v)| 2  - \chi (\chi 1  - \chi )

\int 
\Omega 

| \nabla v| 2

\leq  - \epsilon 

2

\int 
\Omega 

| \nabla u| 2  - \chi 
\Bigl( 
\chi 1  - (1 + \epsilon )\chi 

\Bigr) \int 
\Omega 

| \nabla v| 2,(2.4)

where \epsilon > 0 is small and the last inequality follows from the pointwise inequality

| \nabla u  - \chi \nabla v| 2 \geq | \nabla u| 2
2  - \chi 2| \nabla v| 2. In light of the second inequality in (2.2), we have

from (2.4) that

d\scrF 
dt

\leq  - \lambda \epsilon \=u
4

\int 
\Omega 

u ln
\Bigl( u
\=u

\Bigr) 
 - \chi 

\Bigl( 
\chi 1  - (1 + \epsilon )\chi 

\Bigr) \int 
\Omega 

| \nabla v| 2 \leq  - \delta \scrF ,

with \delta := min
\bigl\{ 

\lambda \epsilon \=u
4 , 2

\bigl( 
\chi 1  - (1 + \epsilon )\chi 

\bigr) \bigr\} 
. This implies that \scrF converges to zero expo-

nentially as t\rightarrow \infty , which yields the exponential convergence of \| u - \=u\| L2(\Omega ) due to
(2.2). Since u is uniform-in-time bounded by classical arguments (see [16, 35, 46]),
we have that \| u  - \=u\| Lp(\Omega ) decays exponentially by Lp-interpolation. Applying clas-
sical regularity estimates for the heat equation, we can subtract the steady equation
for \=v from the second equation of (1.3) and use the exponential convergence of the
cell densities to get that \| v  - \=v\| H1(\Omega ) also decays exponentially. This completes the
proof.

It seems necessary to point out that (uk, vk) given by (2.1) are solutions that
bifurcate from (\=u, \=v) at \chi = \chi k, k \in \BbbN +. Indeed, one can apply the local bifurcation
theory of Crandall and Rabinowitz [27] and its user-friendly development [44, 50] as
follows: Let us denote \scrX = \{ w \in H2(0, L), w > 0, | w\prime (0) = w\prime (L) = 0\} , with \prime = d

dx .
Then we rewrite (1.4) into the abstract form by taking \chi as the bifurcation parameter
\scrF (u, v, \chi ) = 0, (u, v, \chi ) \in \scrX \times \scrX \times \BbbR , where

\scrF (u, v, \chi ) =

\left(  (uu\prime  - \chi uv\prime )\prime 

v\prime \prime  - v + u\int L

0
udx - M

\right)  .

It is easy to see that \scrF (\=u, \=v, \chi ) = 0 for any \chi \in \BbbR and that \scrF : \scrX \times \BbbR \times \BbbR \rightarrow \scrY \times \scrY \times \BbbR is
analytic with \scrY = L2(0, L). Moreover, one can find through straightforward calcula-
tions that, at any fixed (u0, v0) \in \scrX \times \scrX , the Fr\'echet derivative D(u,v)\scrF (u0, v0, \chi ) is a

Fredholm operator with zero index. Furthermore, the null space \scrN 
\bigl( 
D(u,v)\scrF (\=u, \=v, \chi )

\bigr) 
is not empty if and only if \chi = \chi k, and the null space \scrN (D(u,v)\scrF (\=u, \=v, \chi k)) is of one
dimension and has a span

\scrN (D(u,v)\scrF (\=u, \=v, \chi k)) = span

\biggl\{ 
(\chi k, 1) cos

k\pi x

L

\biggr\} 
, k \in \BbbN +.

Then for each k \in \BbbN +, there exists a (small) constant \delta > 0 such that the analytic
functions s \in ( - \delta , \delta ) :\rightarrow (uk(s, x), vk(s, x), \chi k(s)) \in \scrX \times \scrX \times \BbbR +

(2.5)

\left\{   uk(s, x) = \=u+ s\chi k cos
k\pi x
L + s2\varphi 1(x) + s3\varphi 2(x) +\scrO (s4),

vk(s, x) = \=v + s cos k\pi x
L + s2\psi 1(x) + s3\psi 2(x) +\scrO (s4),

\chi k(s) = \chi k + sK1 + s2K2 +O(s3),
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solve the system (1.4), where \scrO (s4) is defined with \scrX -topology, Ki (i = 1, 2) are
constants, and (\varphi i, \psi i) \in \scrZ with

\scrZ =

\biggl\{ 
(\varphi ,\psi ) \in \scrX \times \scrX 

\bigm| \bigm| \int L

0

(\chi k\varphi + \psi ) cos
k\pi x

L
dx = 0

\biggr\} 
.

Moreover, all nontrivial solutions of (1.4) near the bifurcation point (\=u, \=v, \chi k) lie on
the curve \Gamma k(s) = (uk(s), vk(s), \chi k(s)), s \in ( - \delta , \delta ).

One can compare (2.1) with (2.5) to speculate that \varphi i, \psi i \equiv 0 and Ki = 0 for
all the higher order terms. Therefore, all solutions around (\=u, \=v, \chi k) must be of the
form given by (2.1). To see it in full details, we substitute (2.5) into (1.4) and arrange
the equation in the order of s. First of all, collecting s-terms easily gives us K1 = 0;
moreover, collecting s2-terms gives\biggl\{ 

\varphi 1  - \chi k\psi 1 = 0, x \in (0, L),
\psi \prime \prime 
1  - \psi 1 + \varphi 1 = 0, x \in (0, L).

We solve these two equations and find that \varphi 1 = \psi 1 \equiv 0 for all x \in (0, L). Further-
more, we collect the s3-terms to find that\biggl\{ 

(\varphi 2  - \chi k\psi 2)
\prime = K2(cos

k\pi x
L )\prime , x \in (0, L),

\psi \prime \prime 
2  - \psi 2 + \varphi 2 = 0, x \in (0, L).

We test the first equation above against sin k\pi x
L and find that K2 = 0. Moreover,

testing the second equation against cos k\pi x
L gives us, thanks to the fact that (\varphi 2, \psi 2) \in 

\scrZ , that \int L

0

\varphi 2 cos
k\pi x

L
dx =

\int L

0

\psi 2 cos
k\pi x

L
dx = 0.

Then one can show that \varphi 2 = \psi 2 \equiv 0. Similarly, we can show that all the remaining
terms are zeros. Therefore, our claim is verified. These results are illustrated in
Figures 2 and 3. Though the degeneracy at u = 0 refrains us from applying the global
bifurcation as in [44, 50], we are able to know much about the global structures of
each branch, as in Figure 4, thanks to the explicit solutions.

3. Bifurcating bump solutions. In this section, we will first construct explicit
compactly supported weak solutions to (1.4) which are decreasing monotonically in
their support---so-called half-bumps---and study their properties with respect to the
chemoattractant sensitivity. Moreover, we will see that this thorough study of the half-
bump solutions allows for the easy construction of a family of multibump solutions by
reflection. This family of solutions will be referred to as the similar multibump family
of solutions since all are constructed from the basic building block of a single half-
bump solution. Finally, we will construct asymmetric multibump solutions showing
how intricate the bifurcation diagram of this problem can be. Let us recall that,
as mentioned in the introduction, some of these results were partly obtained in [3].
However, we revisit them here by constructing them in a different manner, expanding
the analysis of their properties, and putting them in context with the bifurcation
diagram in Figure 1.

3.1. Half-bumps. We first study monotone decreasing solutions of (1.4) with a
compact support for \chi > \chi 1, i.e., u(x) > 0 for x \in [0, l\ast ) and u(x) \equiv 0 for x \in [l\ast , L]
with l\ast to be determined. Then we shall construct its solutions with multibumps
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Fig. 2. Convergence to the constant solution (\=u, \=v) = ( 1
\pi 
, 1
\pi 
) out of initial data u0(x) =

max\{ 0, 3
2

\bigl( 
1  - x2

\bigr) 
\} and v0(x) = 1.2e - 3x2

+ 1.2e - 3(x - \pi )2 for \chi = 1.5 < \chi 1 = 2 over (0, \pi ). This
illustrates our theoretical result that (\=u, \=v) is the global attractor if \chi < \chi 1.

Fig. 3. Several positive steady states of (1.3) in (0, \pi ) given by (2.1) are achieved when \chi =
\chi 1 = 2 subject to different initial data. According to Lemma 2.1, any solution of (1.4) must take
the form of (2.1) whenever \chi = \chi 1 = 2, while this one-parameter family of solutions has the
same energy. The initial data are chosen to be u0(x) = 0.75max\{ 0, 1  - (x  - a)2\} and v0(x) =

0.5e - 3x2
+ 0.5e - 3(x - L)2 , with a = 1, 1.1, 1.3, and 1.5 from left to right. Our numerical results

suggest that the dynamical system (1.3) with \chi = \chi 1 can stabilize into both strictly positive steady
states or those touching zero at the boundary point even if the initial datum u0(x) is compactly
supported.
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by building on the reflecting and then extending this block. Denote in what follows
\omega :=

\surd 
\chi  - 1. First of all, since u > 0 in [0, l\ast ), we can readily see from the u-equation

that there exists some constant \lambda to be determined such that u - \chi v = \lambda , x \in (0, l\ast ),
hence the v-equation becomes\left\{   vxx + (\chi  - 1)v + \lambda = 0, x \in (0, l\ast ),

vxx  - v = 0, x \in (l\ast , L),
vx(0) = vx(L) = 0.

Solving the above problem directly gives us that

v(x) =

\biggl\{ 
C1 cos\omega x - \lambda 

\chi  - 1 , x \in (0, l\ast ),

C2 cosh(x - L), x \in (l\ast , L),

for some constants C1 and C2 to be determined. It can be easily checked that v\prime (x) < 0
for x \in (0, L). By the continuity of both v\prime (x) and v\prime \prime (x) at x = l\ast we have\biggl\{ 

 - C1\omega sin\omega l\ast = C2 sinh(l
\ast  - L),

 - C1\omega 
2 cos\omega l\ast = C2 cosh(l

\ast  - L),

which entail that l\ast is a root of the algebraic equation

(3.1)
1

\omega 
tan\omega l\ast = tanh(l\ast  - L).

For each \chi > \chi 1, one can easily show that there exists a unique l\ast \in 
\bigl( 

\pi 
2\omega ,

\pi 
\omega 

\bigr) 
\subset 

(0, L) that solves (3.1). Indeed, let us denote

f(\xi ;\omega ) :=
1

\omega 
tan\omega \xi  - tanh(\xi  - L), \xi \in (0, L).

Then \omega > \pi 
L for \chi > \chi 1, hence f(

\pi 
\omega ;\omega ) = tanh(L - \pi 

\omega ) > 0; moreover, f(( \pi 
2\omega )

+;\omega ) =
 - \infty < 0 and f(\xi ;\omega ) \in C\infty (( \pi 

2\omega ,
\pi 
\omega )) imply that f(l\ast ;\omega ) = 0 for some l\ast \in (\pi \omega ,

\pi 
2\omega ),

while f\xi (\xi ;\omega ) = tan2 \omega \xi + tanh2(\xi  - L) > 0 ensures that l\ast is unique. We would
like to point out that for \chi < \chi 1, f(\xi ;\omega ) admits no positive root; and hence (1.4)
has only constant solution (\=u, \=v); moreover, for \chi \in (\chi 1, \chi 2] it has a unique solution
l\ast \in (\pi \omega ,

\pi 
2\omega ). It is also necessary to point out that when \chi > \chi 2, f(\xi ;\chi ) has multiple

roots, at least l\ast \ast \in ( 3\pi 2\omega ,
2\pi 
\omega ). However, all the remaining roots will be ruled out

since we look for nonnegative solutions (u, v). Indeed, if not, u(l\ast \ast ) = 0 and u(x) =
C(cos\omega x - cos\omega l\ast \ast ) for x \in (0, l\ast \ast ), and then we have that u(x) < 0 for x \in (\pi \omega ,

3\pi 
2\omega ),

which is apparently not physical. Similarly, one can show that all the other roots
of f(\xi ;\omega ) = 0, if they exist at all, are not applicable. Therefore l\ast \in ( \pi 

2\omega ,
\pi 
\omega ) is the

unique root that we look for as claimed above.
With l\ast being obtained through (3.1), we find that

(3.2) u(x) =

\biggl\{ 
\scrA 
\bigl( 
cos\omega x - cos\omega l\ast 

\bigr) 
, x \in (0, l\ast ),

0, x \in (l\ast , L),

where the conservation of total population
\int l\ast 

0
u(x)dx = \scrA 

\bigl( 
1
\omega sin\omega x - x cos\omega l\ast 

\bigr) \bigm| \bigm| l\ast 
0

=
\=uL gives

(3.3) \scrA =
\=uL

1
\omega sin\omega l\ast  - l\ast cos\omega l\ast 

.
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Note that l\ast \in ( \pi 
2\omega ,

\pi 
\omega ); hence \omega l

\ast \in (\pi 2 , \pi ) and it follows that \scrA > 0.
To find v(x), we have from u = \chi v + \=v for x \in (0, l\ast ) that \scrA 

\bigl( 
cos\omega x - cos\omega l\ast 

\bigr) 
=

\chi C1 cos\omega x - \lambda 
\omega 2 , which implies C1 = \scrA 

\chi and \lambda = \scrA (\chi  - 1) cos\omega l\ast , i.e.,

\lambda =
\=uL\omega 2

1
\omega tan\omega l\ast  - l\ast 

.

Hence we find that v(x) = \scrA 
\bigl( 
cos\omega x

\chi  - cos\omega l\ast 
\bigr) 
in (0, l\ast ); on the other hand, by the

continuity of v(x) at x = l\ast , we equate ( 1\chi  - 1) cos\omega l\ast = \scrB cosh(l\ast  - L) to obtain

(3.4) \scrB =
\=uL( 1\chi  - 1)\bigl( 

1
\omega tan\omega l\ast  - l\ast 

\bigr) 
cosh(l\ast  - L)

,

with l\ast obtained in (3.1). Collecting the above calculations, we find that

(3.5) v(x) =

\biggl\{ 
\scrA 
\bigl( 
cos\omega x

\chi  - cos\omega l\ast 
\bigr) 
, x \in (0, l\ast ),

\scrB cosh(x - L), x \in (l\ast , L),

where \scrA and \scrB are given by (3.3) and (3.4).
According to our discussion above, (1.4) admits such half-bump solutions for each

\chi > \chi 1. Moreover, as we shall show in the coming section, it also has multibump
solutions for \chi > \chi 2; however, l

\ast is unique whenever \chi \in (\chi 1, \chi 2], which indicates
that the nonconstant half-bump solution to (1.4) is unique. The following results can
be summarized.

Proposition 3.1. Let M > 0 be an arbitrary constant in (1.4). Then
(i) if \chi < \chi 1, (1.4) only has the constant solution (\=u, \=v);
(ii) if \chi = \chi 1, the solution of (1.4) must take the form of (u\epsilon 1, v

\epsilon 
1) in (2.1);

(iii) for each \chi > \chi 1, (1.4) has a pair of half-bump solutions (u, v)(x) and
(u, v)(L - x), explicitly given by (3.2) and (3.5);

(iv) if \chi \in (\chi 1, \chi 2), the nonconstant solution of (1.4) must be the half-bumps
given in (iii).

Remark 3.1. Notice that the results (ii) and (iii) in the previous proposition are
obtained in [3] with different arguments, while (i) and (iv) are new results. We point
out that the half-bump solutions can be intuitively described in a bifurcating curve
whose starting point is the limit of the positive solutions on the interval [0, L] for
\chi = \chi 1 touching zero in one side.

In Figure 4, we plot (u(x), v(x)) given by (3.2) and (3.5) and its reflection (u(L - 
x), v(L - x)).

3.2. Asymptotic behavior of half-bumps in the limit of \bfitchi \rightarrow \infty . Next
we study the effect of large \chi on the half-bump (u, v) established in (3.2) and (3.5).
In particular, we shall show that u converges to a Dirac-delta function as \chi goes to
infinity. First of all, we note from above that the support size l\ast \in ( \pi 

2\omega ,
\pi 
\omega ) of u(x) is

uniquely determined by and continuously depends on \chi . We claim that l\ast is strictly
decreasing in \chi , and it is equivalent to showing that \partial l\ast 

\partial \omega < 0 for \omega > 0.
Differentiating both sides of (3.1) with respect to \omega , we have

 - 1

\omega 
tan\omega l\ast +

1

\omega cos2 \omega l\ast 

\Bigl( 
l\ast + \omega 

\partial l\ast 

\partial \omega 

\Bigr) 
=

1

cosh2(l\ast  - L)

\partial l\ast 

\partial \omega 
.
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Fig. 4. Half-bump solution (u, v)(x) of (1.4) from (3.2) and (3.5) and its reflection about L
2

in (0, \pi ). A unit total cell population and \chi = 4 are chosen, with support size given by l\ast = 1.22.

With the identities 1
cos2 \omega l\ast = 1 + tan2 \omega l\ast and 1

cosh2(l\ast  - L)
= 1  - tanh2(l\ast  - L), one

gets

\partial l\ast 

\partial \omega 
=

 - l\ast tan2 \omega l\ast + 1
\omega tan\omega l\ast  - l\ast 

\omega (tan2 \omega l\ast + tanh2(l\ast  - L))
.

Then it is easy to find that \partial l\ast 

\partial \omega < 0 since the numerator is strictly negative, thanks
to the fact that \omega l\ast \in (\pi 2 , \pi ).

We next show that the magnitude of u(x) is strictly increasing in \chi such that
\partial \| u\| L\infty 

\partial w > 0 for each \chi > \chi 1 and \| u\| L\infty = \omega + o(1) as \chi \rightarrow \infty . To prove the former,

we denote z = \omega l\ast and rewrite \| u\| L\infty = M\omega (1 - cos z)
sin z - z cos z . Then we have

\partial \| u\| L\infty 

\partial \omega 
=
(1 - cos z + \omega sin z \partial z

\partial \omega )(sin z  - z cos z) - w(1 - cos z)z sin z \partial z
\partial \omega 

(sin z  - z cos z)2

=
(1 - cos z)(sin z  - z cos z) + \omega sin z(sin z  - z) \partial z

\partial \omega 

(sin z  - z cos z)2
,

which, in light of the identity \partial z
\partial \omega = l\ast + \omega \partial l\ast 

\partial \omega , becomes

\partial \| u\| L\infty 

\partial \omega 
=
(1 - cos z)(sin z  - z cos z) + z sin z(sin z  - z)

(sin z  - z cos z)2
+
w2 sin z(sin z  - z)

(sin z  - z cos z)2
\partial l\ast 

\partial \omega 

\geq (1 - cos z)(sin z  - z cos z) + z sin z(sin z  - z)

(sin z  - z cos z)2
,

where we have applied the fact that sin z \leq z, z \in (\pi 2 , \pi ) and
\partial l\ast 

\partial \omega < 0 for the inequality.
Denote g(z) := (1  - cos z)(sin z  - z cos z) + z sin z(sin z  - z). Then, in order to

prove \partial \| u\| L\infty 

\partial \omega > 0, it suffices to show that g(z) > 0, z \in (\pi 2 , \pi ). To this end, we first
observe that g(\pi 2 ) = 1 + \pi 

2  - (\pi 2 )
2 > 0; moreover, we find g\prime (\pi 2 ) = 2 + (\pi 2 )

2  - \pi 
2 > 0

and g\prime \prime (z) = (4 sin z  - 3z) cos z + (z2  - 1) sin z > 0; therefore g\prime (z) > 0 and hence
g(z) > g(\pi 2 ) > 0 for all z \in (\pi 2 , \pi ), as expected. This finishes the proof.

To verify the latter, we first claim that z := \omega l\ast \rightarrow (\pi 2 )
+ as \chi \rightarrow \infty . If not---

say \omega l\ast \rightarrow \theta \in (\pi 2 , \pi ] as \chi \rightarrow \infty ---then the left-hand side of (3.1) converges to zero
and, as a consequence, l\ast \rightarrow L - as \chi \rightarrow \infty . This, however, yields a contradiction
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since l\ast \in ( \pi 
2\omega ,

\pi 
\omega ) and l\ast \rightarrow 0+ as \chi \rightarrow \infty . Then it is easy to see that \| u\| L\infty =

\omega (1 - cos z)
sin z - z cos z = \omega + o(1) as \chi \rightarrow \infty .

We proceed to study the effect of large \chi on the profiles of u(x) and v(x) given
by (3.2) and (3.5). Since l\ast \rightarrow 0+ and \omega l\ast \rightarrow (\pi 2 )

+ as \chi \rightarrow \infty , it is easy to see that
\scrA \rightarrow \infty , and we have that u(x) \rightarrow u\infty = \=uL\delta (x) pointwisely, where \delta (x) is the Dirac
delta at x = 0.

On the other hand, as \chi \rightarrow \infty , v(x) \rightarrow v\infty (x) pointwisely in (0, L), where v\infty (x)
satisfies v\prime \prime \infty  - v\infty = 0 in (0, L); therefore v\infty = \scrB \infty cosh(x  - L) with \scrB \infty = \=uL

sinhL

follows from the fact that
\int L

0
v\infty (x)dx = \=uL.

Fig. 5. Left panel: Plot of the solution (u(x), v(x)) for \chi = 4, 10, 100, and 400. It is observed

that u(x) \rightarrow \delta (x) and v(x) \rightarrow cosh(3 - x)
sinh 3

pointwisely as \chi \rightarrow \infty . Right panel: Plot of the asymptotic
convergence of l\ast and \| u\| L\infty with respect to \chi , where we observe that as \chi \rightarrow \infty , the support size
l\ast of u(x) shrinks to zero while the maximum of u(x) grows to

\surd 
\chi  - 1. Overall, the chemotaxis

rate \chi enhances the formation of (boundary) spikes, namely, the boundary cell aggregation for these
solutions.

Remark 3.2. Indeed, it is known that the Green's function G(x;x0) of\biggl\{ 
 - G\prime \prime +G = \delta (x;x0), x \in (0, L),
G\prime (0;x0) = G\prime (L;x0) = 0

is

G(x;x0) =

\biggl\{ 
cosh(L - x0)

sinhL coshx, x \in (0, x0),
cosh x0

sinhL cosh(L - x), x \in (x0, L).

Now since u(x) \rightarrow \=u\delta 0(x), we have that v(x) \rightarrow \=uG(x; 0), which is the same as what
we obtained above. See Figure 5 for an illustration.

3.3. Similar bumps. In the preceding section, we have shown for each \chi \in 
(\chi 1, \chi 2), all the nonconstant solutions (u, v) of (1.4) must be monotone and given by
(3.2) and (3.5) or its reflection (u(x), v(x)) or (u(L - x), c(L - x)). We now proceed
to look for nonmonotone solutions of (1.4), and we shall assume \chi > \chi 2 from now
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on. Note that when \chi = \chi k, k \geq 2, there exist solutions of (1.4) explicitly given by
the one-parameter family (2.1) such that both u(x) and v(x) are positive in (0, L).
It is our goal to investigate solutions such that u(x) is compactly supported, i.e., it
vanishes in subset(s) of (0, L) with a positive measure. The main results of this section
can be summarized as follows: for \chi \in (\chi 2,\infty ), there exists nonmonotone solutions,
and for each \chi \in (\chi k, \chi k+1), k \geq 2, the sign of v\prime (x) changes at most k  - 1 times in
(0, L).

Hereafter, by ``similar-bump solutions"" we mean the bump-profile solutions with
the same amplitude whose profile will be generally given later in (3.6). For simplicity,
we depart with the construction of nonmonotone solutions with two similar half-spike
profiles, denoted by (u2(x), v2(x)), and use the following approach: (i) find (u, v) over
(0, L2 ) as in the previous section; (ii) reflect it about x = L

2 to obtain the solution of

(1.4) over the whole interval. Then u and v are symmetric about L
2 with v\prime (L2 ) = 0.

Since \chi > \chi 2, by the same arguments as for (3.1), there exists l\ast 2 \in ( \pi 
2\omega ,

\pi 
\omega ), which

is the size of support of u(x) in (0, L2 ), such that 1
\omega tan\omega l\ast 2 = tanh

\bigl( 
l\ast 2  - L

2

\bigr) 
. Then we

solve (1.4) over (0, L2 ) to find its solution (u, v) given by

\BbbU 2(x) =

\Biggl\{ 
\scrA 2

\bigl( 
cos\omega x - cos\omega l\ast 2

\bigr) 
, x \in (0, l\ast 2),

0, x \not \in (0, l\ast 2),

and

\BbbV 2(x) =

\left\{     
\scrA 2

\bigl( 
1
\chi cos\omega x - cos\omega l\ast 2

\bigr) 
, x \in (0, l\ast 2),

\scrB 2 cosh(x - L
2 ), x \in (l\ast 2,

L
2 ),

0, x \not \in (0, L2 ),

with

\scrA 2 =
\=uL/2

1
\omega sin\omega l\ast 2  - l\ast 2 cos\omega l

\ast 
2

, \scrB 2 =
\=uL( 1\chi  - 1)/2\bigl( 

1
\omega tan\omega l\ast 2  - l\ast 2

\bigr) 
cosh(l\ast 2  - L

2 )
.

By reflecting (\BbbU 2,\BbbV 2) about x = L
2 , we can find that the solutions of interest

must be one of the pairs (u\pm 2 , v
\pm 
2 ) with (u+2 , v

+
2 )(x) = (\BbbU 2,\BbbV 2)(x)+(\BbbU 2,\BbbV 2)(L - x) or

(u - 2 , v
 - 
2 )(x) = (\BbbU 2,\BbbV 2)(L/2 - x) + (\BbbU 2,\BbbV 2)(x - L/2). Note that (u+2 , v

+
2 ) correspond

to a double-boundary-spike solution, and (u - 2 , v
 - 
2 ) the single-interior-spike solution.

See the first column in Figure 6 for an illustration of (u\pm 2 , v
\pm 
2 ).

Next we extend (u2, v2) obtained above to multiple half-bumps (uk, vk) with k \geq 
3, for which we assume that \chi > \chi k, k \geq 3, from now on. Similarly to the above,
our strategy is to first solve (1.4) over (0, Lk ) for (\BbbU k,\BbbV k) and continuously reflect

this half-spike bump profile at x = L
k ,

2L
k , . . . until it eventually extends to the whole

interval (0, L), as to be realized mathematically below. Since \chi > \chi k, there exists a
unique l\ast k \in ( \pi 

2\omega ,
\pi 
\omega ) such that 1

\omega tan\omega l\ast k = tanh
\bigl( 
l\ast k  - L

k

\bigr) 
. Then we can find that

\BbbU k(x) =

\biggl\{ 
\scrA k

\bigl( 
cos\omega x - cos\omega l\ast k

\bigr) 
, x \in (0, l\ast k),

0, x \not \in (0, l\ast k),

and

\BbbV k(x) =

\left\{   
\scrA k

\bigl( 
1
\chi cos\omega x - cos\omega l\ast k

\bigr) 
, x \in (0, l\ast k),

\scrB k cosh(x - L
k ), x \in (l\ast k,

L
k ),

0, x \not \in (0, Lk ),

where

\scrA k =
\=uL/k

1
\omega sin\omega l\ast k  - l\ast k cos\omega l

\ast 
k

, \scrB k =
\=uL( 1\chi  - 1)/k\bigl( 

1
\omega tan\omega l\ast k  - l\ast k

\bigr) 
cosh(l\ast k  - L

k )
.
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Then (\BbbU k,\BbbV k) solves (1.4) over (0, Lk ) with
\int L

k

0
\BbbU k(x)dx = 1

k . By reflecting and

extending it at x = 2L
k ,

3L
k , . . . , we find that the two pairs (u\pm k , v

\pm 
k ) solve (1.4) over

(0, L):

(3.6)

(u+k , v
+
k )(x) =

[ k2 ]\sum 
i=0

(\BbbU k,\BbbV k)
\Bigl( 2iL
k

 - x
\Bigr) 
+ (\BbbU k,\BbbV k)

\Bigl( 
x - 2iL

k

\Bigr) 
,

(u - k , v
 - 
k )(x) =

[ k2 ]+1\sum 
i=1

(\BbbU k,\BbbV k)
\Bigl( (2i - 1)L

k
 - x

\Bigr) 
+ (\BbbU k,\BbbV k)

\Bigl( 
x - (2i - 1)L

k

\Bigr) 
,

It is easy to check that both u\pm k and v\pm k have k half-bumps. See Figure 6 for illustra-
tions of these similar profiled solutions.

Fig. 6. Plots of the pairs (u\pm 
k , v\pm k ) over (0, \pi ) for k = 2, 3, 4, and 5 in columns from left to

right, k corresponding to the number of half-spikes, where \chi = 40 and a unit total cell population
are chosen.

Our similar-bump solutions can be summarized as follows.

Proposition 3.2. Let n0 \geq 1 be an arbitrary positive integer. Then (1.4) has a
unique pair of similar-bump solutions (u\pm k , v

\pm 
k )(x) with n0 half-bumps, explicitly given

by (3.6), if and only if \chi \geq \chi n0
. Moreover, if \chi \geq \chi n0

and n0 \geq 2, for (1.4) there
also exist similar-bump solutions for each k = 1, . . . , n0  - 1.

It seems necessary to point out that, similarly to the above, one can show that
\| uk\| L\infty is strictly increasing in \chi , \| uk\| L\infty = \omega \surd 

k
+ o(1) as \chi \rightarrow \infty , and uk con-

verges to a linear combination of the Dirac-delta function. Moreover, one can find
that \| u1\| L\infty > \| u2\| L\infty > \cdot \cdot \cdot > \| uk\| L\infty . A numerical illustration of these facts is
presented in Figure 6. Let us finally mention that again these k half-bumps can be
considered intuitively as bifurcation curves emanating from the corresponding k half-
bumps touching zero at the end points of the interval [0, L] existing for the first time
at \chi = \chi k.
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3.4. Asymmetric multibump and interior-bump solutions. We point out
that for each \chi > \chi 2, (1.4) also admits asymmetric multibump solutions, which

we shall denote by (u\#2 , v
\#
2 ), as was done in section 4.5 of [3] for two half-bumps.

Though not done or stated there explicitly, one can easily see that their work covers
the asymmetric bumps with more than 3 aggregates; see Proposition 4.7 in [3].

Let us start by finding the explicit formula of (u\#2 , v
\#
2 ) as follows: For each

\chi > \chi 2, one can chooses an arbitrary L0 \in (\pi \omega , L  - \pi 
\omega ) and find l\ast and l\ast \ast such that

1
\omega tan\omega l\ast = tanh(l\ast  - L0) and

1
\omega tan\omega l\ast \ast = tanh

\bigl( 
l\ast \ast  - (L - L0)

\bigr) 
. Then we have the

two aggregates supported by (0, l\ast ) and (L - l\ast \ast , L) and find that

u\#2 (x) =

\left\{   \scrA l

\bigl( 
cos\omega x - cos\omega l\ast 

\bigr) 
, x \in (0, l\ast ),

0, x \in (l\ast , L - l\ast \ast ),
\scrA r

\bigl( 
cos\omega (x - L) - cos\omega l\ast \ast 

\bigr) 
, x \in (L - l\ast \ast , L),

and

v\#2 (x) =

\left\{       
\scrA l

\bigl( 
1
\chi cos\omega x - cos\omega l\ast 

\bigr) 
, x \in (0, l\ast ),

\scrB l cosh(x - L0), x \in (l\ast , L0),
\scrB r cosh(x - L0), x \in (L0, L - l\ast \ast ),
\scrA r

\bigl( 
1
\chi cos\omega (x - L) - cos\omega l\ast \ast 

\bigr) 
, x \in (L - l\ast \ast , L),

withm1 andm2 being the cell population on the left and right aggregates, respectively,

\scrA l =
m1

1
\omega sin\omega l\ast  - l\ast cos\omega l\ast 

, \scrA r =
m2

1
\omega sin\omega l\ast \ast  - l\ast \ast cos\omega l\ast \ast 

,

and

\scrB l =
m1(1 - 1

\chi )

(l\ast  - 1
\omega tan\omega l\ast ) cosh(L0  - l\ast )

, \scrB r =
m2(1 - 1

\chi )

(l\ast \ast  - 1
\omega tan\omega l\ast \ast ) cosh(L - L0  - l\ast \ast )

;

moreover, the continuity of v(x) at L0 implies that \scrB l = \scrB r, i.e.,

m1

(l\ast  - 1
\omega tan\omega l\ast ) cosh(L0  - l\ast )

=
m2

(l\ast \ast  - 1
\omega tan\omega l\ast \ast ) cosh(L - L0  - l\ast \ast )

.

In terms of the asymmetric multibump solutions, we are able to construct solu-
tions with more aggregates and complex patterns. See Figure 7 for an illustration.

In contrast to the similar-bump case, in which one can combine the two boundary
half-bumps into a single interior bump, Proposition 4.8 in [3] states that if u(x) is a
single interior spike in (0, L), then it is symmetric about x = L

2 \triangleq L0. One can show
that this holds true for multi-half-bumps. We summarize the results as follows.

Proposition 3.3. Let n0 \geq 2 be an arbitrary positive integer. If \chi > \chi n0
, (1.4)

has infinitely many asymmetric multibump solutions (u\#k , v
\#
k ) that have k half-bumps,

for each k = 2, . . . , n0  - 1, and the graph of u\#k is symmetric within each connected
component of its support in (0, L), except the half-bumps on the boundaries; moreover,
if \chi < \chi n0+1, then any solution (u, v) of (1.4) has at most n0 half-bumps.

As can be easily computed there always exist multibump solutions, and the
spatial--temporal dynamics are rich and complex, as shall be seen later in numeri-
cal simulations when \chi is large.
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Fig. 7. In the top row, we plot u\#
2 (x) with asymmetric double boundary spikes and its reflection

u\#
2 (L - x) over (0, 5) with \chi = 10. Here we choose L0 = 3 and find that l\ast = 0.6326 and l\ast \ast = 0.6449.

In the middle and bottom rows, we piece together the two aggregates at the large and small spikes
to obtain solutions with large and small interior spikes.

4. Gradient flow structure. It is known that system (1.3) has free energy

(4.1) \scrE (u(x, t), v(x, t)) = 1

\chi 

\int 
u2dx+

\int 
(v2x + v2  - 2uv) dx,

which is nonincreasing along the solution trajectory of (1.3), and its dissipation is
given by

(4.2)
d\scrE 
dt

=  - 2

\chi 

\int 
u| (u - \chi v)x| 2dx - 2

\int 
| vt| 2dx :=  - \scrI \leq 0 for all t > 0.

The free energy \scrE allows for a gradient flow structure of this system in a product
space; see [6, 10, 17, 24]. The hybrid gradient flow structure introduced in [6, 10]
treats the evolution of the cell density in probability measures, while the evolution
of the chemoattractant is done in the L2-setting. The gradient flow structure used
in probability densities follows the blueprint of the general gradient flow equations
treated in [1, 25, 49]. Moreover, solutions were proved to be unique among the class
of bounded densities [24].

Note that the free energy \scrE is a Lyapunov functional since steady states (us, vs)
are characterized by zero dissipation \scrI (us, vs) = 0. Therefore, we readily obtain that
for any steady state (us, vs), the quantity us - \chi vs must be constant in each connected
component of the support of the cell density us. Note that the v-equation of (1.4)
readily gives us\int L

0

\bigl[ 
(vs)

2
x+v

2
s

\bigr] 
dx =

\int L

0

usvs dx , which implies that \scrE (us, vs) =
1

\chi 

\int L

0

us(us - \chi vs) dx.

Moreover, since us - \chi vs = \lambda i for some constants \lambda i on each of the possibly countably
many connected components of the support of us, denoted by sppti, we have that

(4.3) \scrE (us, vs) =
1

\chi 

\sum 
i

\int 
sppti

\lambda ius dx.
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Notice that all the constructed stationary states in the previous section have finitely
many connected components in their support, and the total number of connected
components is less than n0 if \chi < \chi n0

, as discussed above. We now study the energy
of the steady states constructed above. First of all, we find that the constant solution

(\=u, \=v) has free energy \scrE (\=u, \=v) = (1 - \chi )\=u
\chi M =  - \omega 2M2

\chi L , and the boundary spike (u1, v1)
has free energy

\scrE (u1, v1) =
cos\omega l\ast 

1
\omega sin\omega l\ast  - l\ast cos\omega l\ast 

\omega 2M2

\chi 
=

\omega 

tan z  - z

\omega 2M2

\chi 
,

where z := \omega l\ast . We claim that \scrE (u1, v1) < \scrE (\=u, \=v). To show this, we first note that
 - l\ast tan z < (L  - l\ast )z. Indeed, tan z = \omega tanh(l\ast  - L) thanks to (3.1); then the fact
tanh(L  - l\ast ) < L  - l\ast readily implies that  - z tanh(l\ast  - L) < (L  - l\ast )z, which leads
to this inequality. Then we can find

\scrE (u1, v1) - \scrE (\=u, \=v) =
\biggl( 
l\ast 

L
 - z

z  - tan z

\biggr) 
\omega 2M2

\chi l\ast 
< 0,

which is our claim.

4.1. Symmetric multibump solution. According to [3], one can compare the
free energies of half-bump (u1, v1), two similar half-bumps (u2, v2), and four similar
half-bumps (u4, v4) and show that \scrE (u1, v1) < \scrE (u2, v2) < \scrE (u4, v4) < \scrE (\=u, \=v). In this
section, we provide a complete hierarchy of the free energies of all similar multibumps.

According to (4.3), for similar-bump solutions (uk(x), vk(x)) =: (u\pm k (x), v
\pm 
k (x))

given in (3.6), the associated free energy is

\scrE (uk(x), vk(x)) =
1

k(tan\omega l\ast k  - \omega l\ast k)

\omega 3M2

\chi 
.

Our next result shows that the boundary spike has the least energy among all similar-
bump solutions.

Lemma 4.1. Assume that \chi > \chi k, k \geq 1, and let (uk(x), vk(x)) be the symmetric
multibump solution. Then we have the following inequalities:

(4.4) \scrE (u1, v1) < \scrE (u2, v2) < \cdot \cdot \cdot < \scrE (uk, vk) < \scrE (\=u, \=v).

Proof. The last inequality can be verified by the same arguments as for \scrE (u1, v1) <
\scrE (\=u, \=v). Let us denote

F (L) :=
L

1
\omega tan\omega l\ast  - l\ast 

.

Then \scrE (uk, vk) = \chi 
\omega 3M2F (

L
k ) and (4.4) is equivalent to F (L) < F (L/2) < \cdot \cdot \cdot <

F (L/k), and it is sufficient to prove that \partial F (L)
\partial L < 0. Note that l\ast depends on L in

F (L) but not on the fixed constant \omega . Denote z = 1
\omega tan\omega l\ast , z \in [0, 1), and rewrite

F as F (L) = l\ast  - arctanhz
z - l\ast . Note that l\ast depends on L; then differentiating F (L) with

respect to L gives us

\partial F

\partial L
=
\partial F

\partial l\ast 
\partial l\ast 

\partial L
, where

\partial l\ast 

\partial L
=  - cos2 \omega l\ast 

cosh2(l\ast  - L) - cos2 \omega l\ast 
< 0 .
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Then we only need to show \partial F
\partial l\ast > 0 to conclude the lemma. We calculate, by using

the fact that \partial z
\partial l\ast = 1 + (\omega z)2, to find that

\partial F

\partial l\ast 
=

\bigl( 
1 - 1

1 - z2
\partial z
\partial l\ast 

\bigr) 
(z  - l\ast ) - (l\ast  - arctanhz)( \partial z

\partial l\ast  - 1)

(z  - l\ast )2

=
(1 + \omega 2)z2

(1 - z2)(z  - l\ast )2
\psi (l\ast ), l\ast \in 

\Bigl( \pi 

2\omega 
,
\pi 

\omega 

\Bigr) 
,

where

\psi (l\ast ) := l\ast  - z  - \omega 2

1 + \omega 2
(l\ast  - arctanhz)(1 - z2).

Now we prove that \psi (l\ast ) > 0. Note that \psi (\pi \omega ) =
\pi 
\omega > 0; then it is sufficient to show

that \psi \prime (l\ast ) < 0. Indeed, we have for l\ast \in ( \pi 
2\omega ,

\pi 
\omega ) that

\psi \prime (l\ast ) = 1 - \partial z

\partial l\ast 
 - \omega 2

1 + \omega 2

\biggl( \biggl( 
1 - 1

1 - z2
\partial z

\partial l\ast 

\biggr) 
(1 - z2) - 2z(l\ast  - arctanhz)

\partial z

\partial l\ast 

\biggr) 
=

2\omega 2z(1 + (\omega z)2)

1 + \omega 2
(l\ast  - arctanhz).

We claim that \phi (l\ast ) := l\ast  - arctanhz > 0 for l\ast \in ( \pi 
2\omega ,

\pi 
\omega ); indeed \phi (

\pi 
\omega ) =

\pi 
\omega > 0 and

\phi \prime (l\ast ) = 1 - 1

1 - z2
\partial z

\partial l\ast 
=  - (1 + \omega 2)z2

1 - z2
< 0,

and therefore \phi (l\ast ) > 0, as claimed, and \psi \prime (l\ast ) > 0. This verifies that \partial F
\partial l\ast > 0, and

hence the lemma is proved.

An immediate consequence is the following result.

Lemma 4.2. Assume that \omega > k\pi 
L . Let (uk(x), vk(x)) be the kth symmetric multi-

bump solution. Then we have the following inequalities:

\| u1(x)\| L\infty > \| u2(x)\| L\infty > \cdot \cdot \cdot > \| uk(x)\| L\infty .

Proof. We already know that

\| uk(x)\| L\infty =

1
coswl\ast k

 - 1

k( 1
\omega tan\omega l\ast k  - l\ast k)

.

Let M(L) =
( 1
coswl\ast 

k
 - 1)L

1
\omega tan\omega l\ast k - l\ast k

. Then it is sufficient to prove that \partial M
\partial L > 0 for the lemma.

To this end, we write g(L) = 1
coswl\ast k

 - 1, and then M(L) = g(L)F (L) and M \prime (L) =

g\prime (L)F (L) + g(L)F \prime (L). Note that g\prime (L) =
\omega sin\omega l\ast k
cos2 \omega l\ast k

\partial l\ast k
\partial L < 0, F (L) < 0, g(L) < 0, and

F \prime (L) < 0; then we have that M \prime (L) > 0, completing the proof.

Remark 4.1. Observe that for each (uk, vk), k \in \BbbN +, we know that l\ast k \rightarrow 0+ and
1
\omega tan\omega l\ast = tanh(l\ast  - L/k) \rightarrow  - tanh(L/k); therefore we can easily find that

\scrE (uk, vk) \rightarrow  - 1

k tanh(L/k)
, as \chi \rightarrow \infty .

The qualitative behavior is schematically illustrated in Figure 8.
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Fig. 8. Hierarchy and qualitative behaviors of the steady state free energy \scrE in (4.2). Here a
unit total cell population and L = 6 are chosen. This illustrates Lemma 4.1, showing that the single
boundary spike has the least energy among all steady states with similar profiles, those with more
half-bumps have larger energies, and the constant solution (\=u, \=v) has the largest energy. We also
observe that for each k \in \BbbN +, \scrE (uk, vk) approaches a constant as \chi \rightarrow \infty . This fact is rigorously
proved later.

4.2. Asymmetric steady states: The role of \bfitL \bfzero . In general, we have that
the energy of the asymmetric solution (u\#k , v

\#
k ) is \scrE = 1

\chi 

\sum 
i \lambda imi, wheremi are the cell

populations on the ith component of the support of u. Let us consider for simplicity
the case in the previous section in which there are two asymmetric boundary spikes
(u\#2 , v

\#
2 ).

Therefore, for (u\#2 , v
\#
2 ) we have that

\scrE \#(u\#2 , v
\#
2 ;L0) =

\omega 2

2

\biggl( 
m2

1
1
\omega tan\omega l\ast  - l\ast 

+
m2

2
1
\omega tan\omega l\ast \ast  - l\ast \ast 

\biggr) 
, L0 \in 

\Bigl( \pi 
\omega 
,L - \pi 

\omega 

\Bigr) 
.

On the other hand, let us denote

\alpha 1 =

\biggl( 
l\ast  - 1

\omega 
tan\omega l\ast 

\biggr) 
cosh(L0  - l\ast ), \alpha 2 =

\biggl( 
l\ast \ast  - 1

\omega 
tan\omega l\ast \ast 

\biggr) 
cosh(L - L0  - l\ast \ast );

then m1 = \alpha 1

\alpha 1+\alpha 2
and m2 = \alpha 2

\alpha 1+\alpha 2
, and then we can also rewrite

\scrE \#(u\#2 , v
\#
2 ;L0) =

\alpha 1 cosh(L0  - l\ast ) + \alpha 2 cosh(L - L0  - l\ast \ast )

(\alpha 1 + \alpha 2)2
.

In Figure 9, we present the qualitative behaviors of E\#(u\#2 , v
\#
2 ;L0) as L0 varies.

The numerics suggest that \scrE \#(u\#2 , v
\#
2 ;L0) achieves its maximum at L0 = L

2 , which
we do not pursue analytically.

Remark 4.2. Finally, let us comment that we can approximate the Cauchy prob-
lem in the whole space by considering the Neumann problem on the centered interval
[ - L/2, L/2] and sending L\rightarrow \infty with \chi fixed; this can be obtained by rescaling from
a case in which the length is fixed and \chi \rightarrow \infty with mass M fixed. It is clear that
boundary spikes do not survive in the limit as steady states of the Cauchy problem
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Fig. 9. Qualitative behaviors of properties associated with the asymmetric double boundary

spikes (u\#
2 , v\#2 ) established in section 3.3. Here we choose \chi = 50 and L = 6. According to our

calculations, for each L0 \in (0.4488, 5.5512), one can find steady states (u\#
2 , v\#2 ) such that u\#

2 has two

asymmetric boundary spikes. The top figure illustrates the variation of E\#(u, v;L0) as L0 varies.
In particular, E\#(u, v;L0) is symmetric about x = L

2
and achieves its maximum value there, which

apparently equals that of the symmetric double boundary spike; on the other hand, as L0 \rightarrow 0.4488
or 5.5512, E\#(u, v;L0) approaches the energy of the single boundary spike. On the bottom row, we
plot the energy and mass of each spike as L0 varies. It is shown that the free energy of the left spike
decreases and its mass increases in L0, while the opposite holds for the right boundary spike.

because then the mass escapes to \infty . Moreover, it is easy to check that the distance
between bumps in the multibump solutions with more than one bump without bound-
ary spikes diverges as L\rightarrow \infty . The conclusion is that the only integrable steady states
remaining in the limit are the single-bump solutions as shown in [22].

5. Structure-preserving numerical scheme and simulations. We will adapt
the one-dimensional first-order finite-volume method for general gradient flow equa-
tions developed in [4, 19] to (1.3). For simplicity, we divide the computational do-
main into finite-volume cells Cj = [xj - 1

2
, xj+ 1

2
] of a uniform size \Delta x with xj = j\Delta x,

j \in \{ 0, . . . , N\} , and denote by

\=uj(t) =
1

\Delta x

\int 
Cj

u(x, t) dx

the computed cell averages of the solution u at time t \geq 0. The semidiscrete first-
order finite-volume scheme is obtained by integrating (1.3) over each cell Cj and is
given by the following system of ODEs for \=uj :

(5.1)
d\=uj(t)

dt
=  - 

Fj+ 1
2
(t) - Fj - 1

2
(t)

\Delta x
,

where the numerical flux Fj+ 1
2
approximates the continuous flux  - u(u - \chi v)x at cell

interface xj+ 1
2
. The dependence on t \geq 0 is omitted for simplicity. We use the upwind
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numerical fluxes by computing piecewise constant approximations to u in each cell
Cj , \widetilde uj(x) = \=uj , x \in Cj , and compute the right (``east""), uEj , and left (``west""), uWj ,
point values at the cell interfaces xj - 1

2
and xj+ 1

2
, respectively, as

(5.2) uEj = \widetilde u(xj+ 1
2
 - 0) = \=uj , uWj = \widetilde u(xj - 1

2
+ 0) = \=uj .

Given the piecewise constant reconstruction \widetilde uj(x) and point values uEj , u
W
j , the up-

wind fluxes in (5.1) are computed as

(5.3) Fj+ 1
2
= \xi +

j+ 1
2

uEj + \xi  - 
j+ 1

2

uWj+1,

where the discrete values \xi j+ 1
2

of the velocities are obtained using the centered-
difference approach,

\xi j+ 1
2
=  - (uj+1  - \chi vj+1) - (uj  - \chi vj)

\Delta x
,

and \xi \pm 
j+ 1

2

= \pm max(\pm \xi j+ 1
2
, 0). Here and in what follows we have simplified the no-

tation, avoiding the use of \=uj by simply writing uj , considering that the mean value
is the approximation of the point value at xj somehow given by uj = \widetilde uj(xj) = \=uj .
Concerning the discretization for the equation of the chemoattractant v, we use direct
second-order finite differences to obtain the scheme

(5.4)
dvj(t)

dt
=
vj+1 + vj - 1  - 2vj

\Delta x2
 - vj + uj .

Equations (5.1) and (5.4) are supplemented with zero flux boundary conditions mean-
ing v0 = v1 and u0 = u1, and vN = vN - 1 and uN = uN - 1, implying that F 1

2
=

FN - 1
2
= 0. Finally, the semidiscrete scheme (5.1) is a system of ODEs, which has to

be integrated numerically using a stable and accurate ODE solver.

Remark 5.1. We have the following remarks.
Positivity preserving. The scheme (5.1)--(5.4) preserves positivity of the computed

cell averages uj under a CFL condition. The proof is based on the forward Euler step
of the ODE system (5.1), but as usual remains equally valid if the forward Euler
method were replaced by a higher-order ODE solver as soon as their time stepping
is a convex combination of forward Euler steps. More precisely, the computed cell
averages uj \geq 0 for all j, provided that the CFL condition

\Delta t \leq \Delta x

2a
, where a = max

j

\Bigl\{ 
\xi +
j+ 1

2

, - \xi  - 
j+ 1

2

\Bigr\} 
,

is satisfied.
Second-order accuracy. The method can be turned into second order in a classical

way by using slope limiters as in [19] to increase the approximation in (5.2) to second
order. In fact, the reconstructed u is given by piecewise linear functions instead of
piecewise constant functions, and the fluxes are approximated similarly as in (5.3).

5.1. Semidiscrete free energy decay. A discrete version of the entropy \scrE 
defined in (4.1) is given by

(5.5) \scrE \Delta (t) = \Delta x
\sum 
j

\Biggl[ 
1

2\chi 
u2j +

1

2

\biggl( 
vj+1  - vj

\Delta x

\biggr) 2

 - 2ujvj +
1

2
v2j

\Biggr] 
.
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We also introduce the discrete version of the entropy dissipation

(5.6) \scrI \Delta (t) = \Delta x
\sum 
j

\Biggl[ 
\xi 2j+ 1

2
min
j

(uEj , u
W
j+1) +

\biggl( 
dvj
dt

\biggr) 2
\Biggr] 
.

In the following theorem, we prove that the time derivative of \scrE \Delta (t) is less than or
equal to the negative of \scrI \Delta (t), mimicking the corresponding property of the continuous
relation.

Theorem 5.1. Consider system (1.3) with no-flux boundary conditions on [0, L]
with L > 0 and with initial data u0(x) \geq 0. Given the semidiscrete finite-volume
scheme (5.1)--(5.4) with \Delta x = L/N , with a positivity preserving piecewise linear re-
construction for u and discrete boundary conditions F 1

2
= FN - 1

2
= 0, then the discrete

free energy (5.5) satisfies

d

dt
\scrE \Delta (t) \leq  - \scrI \Delta (t) for all t > 0.

Proof. By using (5.1)--(5.4) and discrete integration by parts, taking into account
the no-flux boundary conditions, we get

d

dt

\sum 
j

(vj+1  - vj)
2

2\Delta x
=  - 

\sum 
j

dvj
dt

\biggl( 
vj+1  - vj

\Delta x
 - vj  - vj - 1

\Delta x

\biggr) 

=  - \Delta x
\sum 
j

dvj
dt

\biggl( 
dvj
dt

+ vj  - uj

\biggr) 
,

\Delta x
d

dt

\sum 
j

u2j
2\chi 

=  - 1

\chi 

\sum 
j

Fj+ 1
2
(uj  - uj+1) ,

and

\Delta x
d

dt

\sum 
j

ujvj =  - 
\sum 
j

Fj+ 1
2
(vj  - vj+1) + \Delta x

\sum 
j

uj
dvj
dt

.

Putting together these identities and collecting terms, we deduce

d

dt
\scrE \Delta (t) =  - 1

\chi 

\sum 
j

Fj+ 1
2
(uj + \chi vj  - uj+1  - \chi vj+1) - \Delta x

\sum 
j

\biggl( 
dvj
dt

\biggr) 2

=  - 1

\chi 
\Delta x

\sum 
j

\xi j+ 1
2
Fj+ 1

2
 - \Delta x

\sum 
j

\biggl( 
dvj
dt

\biggr) 2

.

Finally, using the definition of the upwind fluxes (5.3) and formula (5.6), we conclude

d

dt
\scrE \Delta (t) =  - \Delta x

\sum 
j

\xi j+ 1
2

\Bigl[ 
\xi +
j+ 1

2

uEj + \xi  - 
j+ 1

2

uWj+1

\Bigr] 
 - \Delta x

\sum 
j

\biggl( 
dvj
dt

\biggr) 2

\leq  - \Delta x
\sum 
j

\xi 2j+ 1
2
min
j

(uEj , u
W
j+1) - \Delta x

\sum 
j

\biggl( 
dvj
dt

\biggr) 2

=  - \scrI \Delta (t).

Let us point out that the decrease of the free energy is crucial to keep at the dis-
crete level the set of stationary states and their stability properties. Due to the decay
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of the free energy, our semidiscrete scheme is well balanced since discrete stationary
states remain steady and characterized by \xi j+ 1

2
= 0 whenever uj > 0 and uj+1 > 0.

In the next two subsections, we take advantage of the numerical scheme in order
to analyze numerically some interesting phenomena of this problem due to the rich
bifurcation structure of the steady states. More precisely, we show the richness of
the dynamics of the problem and the subtle choice of the asymptotic state depending
on symmetries of the initial data, for instance. On the other hand, we show that a
metastability behavior appears naturally in the asymptotic behavior for \chi large as the
merging or separation of different bumps initially in the solution depends in a very
subtle way on the initial value of the chemoattractant, leading to a typical staircase
behavior in the decay of the free energy in time.

5.2. (A)symmetries of the initial data choose the asymptotic behavior.
One can see that as \chi > 0 increases, the structure of steady states becomes increas-
ingly complex. Hence we suspect that the dynamical behavior of solutions to system
(1.3) shall also become increasingly intricate. In this section, we use numerical ex-
amples to illustrate that the dynamical system (1.3) will exhibit rich behaviors which
critically depend on the value of chemotactic sensitivity parameter \chi and/or initial
data. When 0 < \chi \leq \chi 1, the dynamics of solutions to (1.3) have been thoroughly
explained in section 2 and numerical simulations shown therein.

Next we increase the value of \chi such that \chi 1 < \chi < \chi 2 to understand how
the asymptotic behavior of solutions is chosen dynamically. We fix the initial data
for the cell density as u0(x) = max\{ 0, 34

\bigl( 
1  - (x  - \pi /2)2

\bigr) 
\} being symmetric on the

interval with L = \pi . We also choose \chi = 4 that lies in the interval (\chi 1, \chi 2) = (2, 5).
We know that for \chi \in (\chi 1, \chi 2), steady states of (1.3) must be either constant or
monotone (half-bump), while the constant solution (\=u, \=v) = ( 1\pi ,

1
\pi ) is unstable in this

case (see details in section 2). On the other hand, for initial data (u0, v0) symmetric
about x = L

2 , (u(x, t), v(x, t)) stay symmetric for all t > 0, and the simulation in
Figure 10 shows that for a symmetric initial data of the chemoattractant taking
v0(x) = 1.2e - 3x2

+ 1.2e - 3(x - \pi )2 , the constant stationary state is the only possible
asymptotic limit, and the dynamics illustrate that all symmetric initial data will
converge to the constant steady state for \chi \in (\chi 1, \chi 2). In general, it is natural to
expect that the constant solution (\=u, \=v) is the global attractor of such symmetric initial
data \chi \in (\chi 1, \chi 2); however, this is an open problem that deserves future exploration
to show that the stable manifold of the constant steady state in this range of values
of \chi is given by the symmetric initial data.

On the other hand, as expected from the previous discussion, if we increase the
value of the chemosensitivity to \chi = 6 such that \chi > \chi 2, the same initial data
stay symmetric and now converge not to the constant steady state (\=u, \=v), but to
the nonmonotone stationary double boundary spike asymptotically, as seen in the
first column of Figure 11. This state is the one with the lowest energy among the
symmetric stationary states and is therefore expected to be chosen for a large class
of symmetric initial data. We did not pursue further clarification of the stability of
the constant steady state; however, our numerical studies indicate that once \chi > \chi 2,
the constant steady state (\=u, \=v) also becomes unstable for symmetric perturbations,
while symmetrical multibump solutions might be locally stable.

In the next three columns of Figure 11, we proceed to asymmetrize the initial
data for the chemoattractant by choosing initial data v0(x) = 1.2e - 3x2

+1.0e - 3(x - \pi )2 ,
which is slightly tilted to the left end point, and examine how the asymmetry of initial
data will affect the selection of asymptotic steady states.
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Fig. 10. Convergence of symmetric initial data to the constant solution (\=u, \=v) = ( 1
\pi 
, 1
\pi 
) for \chi =

4 and L = \pi with \chi \in (\chi 1, \chi 2) = (2, 5). We choose symmetric initial data: u0(x) = max\{ 0, 3
4

\bigl( 
1  - 

(x - \pi /2)2
\bigr) 
\} and v0(x) = 1.2e - 3x2

+ 1.2e - 3(x - \pi )2 .

Fig. 11. All parameters are the same as in Figure 10 except that v0(x) = 1.2e - 3x2
+ae - 3(x - \pi )2 ,

with a = 1.2, 1.0, 0.95, and 0.8 from left to right. We observe that the (a)symmetry of initial data

prevails, and the slightly tilted (u0, v0) converge to (u\#
2 , v\#2 ) with L0 = \pi 

L
. However, if we continue

asymmetrizing the initial data as in the last column, which is more tilted to the left end point than
v0, then cells, attracted to the left end point, eventually form a single boundary spike on the left.

We can summarize this subsection by pointing out that the gradient flow obviously
chooses to slide down the steepest descent of the free energy landscape. However, due
to the rich number of steady states, it is quite difficult to give precise conditions on
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the initial data choosing a particular asymptotic state in the whole generality. For
instance, giving a precise characterization of the basin of attraction of the compactly
supported single-bump (two half-bumps) solution for any value of L and \chi is an
interesting open problem, in particular, in view of the connection to the Cauchy
problem and asymptotic stability of the single-bump solutions as discussed in [22].

5.3. Metastability and transient behavior. In the last set of experiments,
we want to showcase that slowly variant transient behavior will be present due to the
large set of stationary states and the possibly large number of connected components
in their compact supports. There are transient states that keep a very similar shape
for a very long time, giving the impression of false stationarity. This has already
been reported in similar aggregation-diffusion problems [13] and also discussed in the
recent survey [20]. We refer to this kind of slow dynamics in the free energy landscape
as metastability.

The first simulation in Figure 12, Case (i), shows the asymptotic formation of a
single boundary spike given by (1.3) with \chi = 20 and L = 5. The initial data consist
of unit total population centered at x = 3 attracted by chemoattractant concentrated
at x = 2: u0(x) = max\{ 0, 34

\bigl( 
1 - (x - 3)2

\bigr) 
\} and v0(x) = 0.5e - 2(x - 2)2 . We observe that

cells are attracted by the chemical and migrate to the left right away and then form
a single aggregation centered at x \approx 2.2 at t = 1. This interior spike then endures a
metastable process for t \in (1, 20.5) shifting to the left end very slowly and eventually
touching the left end point and forming a stationary boundary spike there. According
to our calculations, the steady state is u(x) = \scrA (cos\omega x  - cos\omega l\ast ) over its support
(0, l\ast ) with \scrA \approx 3.1668 and l\ast \approx 0.4121. The numerical simulations fully agree
with this formula. The second row plots the decaying of free energy \scrE (u, v) given by

Fig. 12. Metastability behavior of (1.3) for \chi = 20 and L = 10. Case (i): formation of
half-bump (single boundary spike). Case (ii): formation of asymmetric two half-bumps. Case (iii):
formation of a single interior bump solution.
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(4.1). It captures the metastable evolution of the interior spike and formation of the
single boundary spike and shows that the free energy \scrE (u, v) converges to that of the
boundary spike, which is the least among all stationary solutions. We also emphasize
the staircase behavior of the free energy which is the typical metastability behavior in
which the shape of the solution changes dramatically only at points of a high gradient
of the decay of the free energy or high values of the free energy dissipation.

The metastability phenomena are ubiquitous in these models, and we show two
more cases in Figure 12. In Figure 12, Case (ii), we show the evolution corresponding
to two initial bumps asymmetrically attracted to each other. The initial data are
given by u0(x) = max\{ 0, 38

\bigl( 
1  - (x  - 2)2

\bigr) 
\} + max\{ 0, 38

\bigl( 
1  - (x  - 8)2

\bigr) 
\} and v0(x) =

1.2e - 2(x - 3)2 + 0.6e - 2(x - 7)2 . We observe that the two bumps start attracting and
moving slowly toward each other. They finally merge into one single stationary single
compactly supported bump (two half-bumps) in the middle.

In Figure 12, Case (iii), we take very similar initial data for the cell density with
slightly closer initial bumps; however, we take the initial concentration of chemo-
attractant toward the end points of the interval. The precise initial data are given by
u0(x) = max\{ 0, 38

\bigl( 
1 - (x - 3)2

\bigr) 
\} +max\{ 0, 38

\bigl( 
1 - (x - 7)2

\bigr) 
\} and v0(x) = 1.2e - 2(x - 2)2 +

0.6e - 2(x - 8)2 . This causes the bumps to separate slowly and get closer and closer to
the end points of the intervals. The one to the left arrives at zero earlier due to the
asymmetry of the initial concentration of chemoattractant, which is higher to the left.
The one to the right finally also achieves the end points, leading to convergence to
the double symmetric boundary spike solution. The concentration of cell density is
symmetric finally due to the symmetry of the cell mass distribution between the two
initial bumps. The chemoattractant also achieves a stationary symmetric distribution.

In both cases, the staircase effect in the decay of free energy is clear. The free
energy dissipation is very small except for instances of time in which the shape of the
solution changes abruptly from two bumps onto a single one in Case (ii) of Figure 12,
or the times in which each of the two bumps arrives at the corresponding end points
of the interval in Case (iii) of Figure 12.
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