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The flux limited Keller–Segel system;

properties and derivation from kinetic equations

Benôıt Perthame, Nicolas Vauchelet and Zhian Wang

Abstract. The flux limited Keller–Segel (FLKS) system is a macroscopic
model describing bacteria motion by chemotaxis which takes into account
saturation of the velocity. The hyperbolic form and some special parabolic
forms have been derived from kinetic equations describing the run and
tumble process for bacterial motion. The FLKS model also has the advan-
tage that traveling pulse solutions exist as observed experimentally. It has
attracted the attention of many authors recently.

We design and prove a general derivation of the FLKS departing from
a kinetic model under stiffness assumption of the chemotactic response
and rescaling the kinetic equation according to this stiffness parameter.
Unlike the classical Keller–Segel system, solutions of the FLKS system do
not blow-up in finite or infinite time. Then we investigate the existence
of radially symmetric steady state and long time behaviour of this flux
limited Keller–Segel system.

1. Introduction

Chemotaxis, the directed movement of an organism in response to a chemical
stimulus, is a fundamental cellular process in many important biological pro-
cesses such as embryonic development [27], wound healing [41], blood vessel for-
mation [11], [18], pattern formation [6], [36]) and so on. Well-known examples of
biological species experiencing chemotaxis include the slime mold amoebae Dic-
tyostelium discoideum, the flagellated bacteria Escherichia coli and Salmonella ty-
phimurium, and the human endothelial cells [31]. Mathematical models of chemo-
taxis were derived from either microscopic (individual) or macroscopic (population)
perspectives, which have been widely studied in the past four decades. The macro-
scopic chemotaxis model has been first developed by Keller–Segel in [25] to describe
the aggregation of cellular slime molds Dictyostelium discoideum, and in [26] to
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describe the wave propagation of bacterial chemotaxis. Because thresholds on the
cell number decide when solutions will undergo smooth dispersion or blow-up in
finite time, and because of the interest of related functional analysis, this system
has attracted an enormous number of studies (cf. [38]).

In this paper, we are interested in the flux-limited Keller–Segel (FLKS) system
in the whole space Rd. Some particular form of such system has already been in-
troduced in [21], [12]. It describes the evolution of cell density ρ(t, x) and chemical
signal concentration S(t, x) at x ∈ Rd and time t > 0, and is based on the phys-
ical assumption that the chemotactic flux function is bounded, modeling velocity
saturation in large gradient environment. It reads

(1.1)

⎧⎪⎪⎨
⎪⎪⎩
∂tρ = DΔρ− div(ρφ(|∇S|)∇S), x ∈ Rd, t > 0,

τ ∂tS −ΔS + αS = ρ,

ρ(0, x) = ρ0(x) ≥ 0, and S(0, x) = S0(x) if τ = 1.

We denote the cell total number M :=
∫
Rd ρ

0(x) dx > 0. This system is conserva-
tive, that is

M =

∫
Rd

ρ(t, x) dx, ∀t ≥ 0.

Compared to the classical Keller–Segel system, the chemotactic response function
φ ∈ C1(R+;R+) depends nonlinearly on the chemical concentration gradient. We
assume flux limitation, that means there is a positive constant A∞ such that

(1.2) max
r∈R+

φ(r) = φ(0), max
r∈R+

|rφ(r)| = A∞.

These boundedness assumptions on the flux induce that solutions to (1.1) exist
globally in time (see e.g. [20], [12]), unlike the Keller–Segel system for which finite
time blow-up may occur.

The motivation to study the FLKS system (1.1) comes from its derivation
from mesoscopic kinetic model. The first microscopic/mesoscopic description of
chemotaxis model is due to Patlak [37] whereby the kinetic theory was used to
express the chemotactic velocity in term of the average of velocities and run times
of individual cells. This approach was essentially boosted by Alt [1] and developed
by Othmer, Dunber and Alt [34] using a velocity-jump processes which assumes
that cells run with some velocity and at random instants of time they changes
velocities (directions) according to a Poisson process. The advantage of kinetic
models over macroscopic models is that details of the run-and-tumble motion at
individual scales can be explicitly incorporated into the tumbling kernel and then
passed to macroscopic quantities through bottom-up scaling (cf. [19], [47], [48],
[16], [17], [44], [39], [13]), where the rigorous justification of upscaling limits have
been studied in many works (see [10], [22], [23], [24], [28] and reference therein).
Denoting by f(t, x, v) the cell number density, at time t, position x ∈ R

d moving
with a velocity v ∈ V (compact set of Rd with rotational symmetry), the governing
evolution equation of this process is described by a kinetic equation reading as:

(1.3)
∂f

∂t
+ v · ∇xf =

∫
V

(
T [S](v, v′)f(t, x, v′)− T [S](v′, v)f(t, x, v)

)
dv′,
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The tumbling kernel T [S](v, v′) describes the frequency of changing trajectories
from velocity v′ (anterior) to v (posterior) depending on the chemical concentra-
tion S or its gradient. Because cells are able to compare present chemical con-
centration to previous ones and thus to respond to temporal gradients along their
pathways, the tumbling kernel may depend on the pathway (directional derivative)
and takes the form ([13], [39])

(1.4) T [S](v, v′) = λ0 + σΨ(DtS), DtS = ∂tS + v′∇S,

where λ0 denotes a basal meaning tumbling frequency, σ accounts for the varia-
tion of tumble frequency modulation and Ψ denotes the signal response (sensing)
function which is decreasing to express that cells are less likely to tumble when
the chemical concentration increases. These assumptions are now well accepted,
see the discussion in [39], indeed the pathway derivative is a first order approxima-
tion of an integral chemotactic response (see [9] and references therein for a recent
interpretation).

The first goal of the present paper is to derive the FLKS system (1.1) as the
parabolic limit of the kinetic equation (1.3)-(1.4) and relate the flux limiting func-
tion φ to Ψ. In particular, we introduce a new rescaling, related to the stiffness of
signal response, which has been shown to be important to describe the traveling
pulses of bacterial chemotaxis observed in the experiment [43], [42], [14] and is
related to instabilities both of the FLKS system and the kinetic equation [40, 8].
In particular, we wish to go further than the case proposed in [42], when the re-
sponse function Ψ is bi-valuated step (stiff) function: Ψ(Y ) = −sign(Y ), where
the parabolic limit equation of (1.3) is

∂tρ = Δρ− div(ρu[S]), u[S] = J(St, |∇S|) ∇S

|∇S| .

with J denoting a macroscopic quantity depending on ∇S and/or St (cf. [13], [42]).
Our method of proof is based on the method of moments and on compactness
estimates to treat the nonlinearity.

Our second goal is to study the long time behaviour of solutions to the FLKS
system (1.1) and the existence of stationary radial solutions. Contrary to the
Keller–Segel system for which finite time blow-up of weak solutions is observed,
solutions to (1.1) under assumption (1.2) exist globally in time. For a study of the
long time convergence towards radially symmetric solutions for the Keller–Segel
system, which may be computed explicitely, we refer to [7]. Yet, we do not have
an explicit expression of radially symmetric solutions for system (1.1). Then, we
prove that when the degradation coefficient is positive (α > 0), diffusion takes the
advantage over attraction. On the contrary, when the degradation coefficient is
disregarded (α = 0), the total mass of the system, denoted M , appears to be an
important parameter. Indeed, when α = 0, we observe a threshold phenomenon,
with a critical mass M∗ = 8π/φ(0) in dimension d = 2, for the existence of radial
stationary solution.

More precisely, our main results may be summarized as follows:
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• Radial stationary solutions when α = 0 (Theorem 3.1).

For d > 2, there are no positive radially symmetric steady state solutions
to (1.1) with finite mass M > 0.

For d = 2, system (1.1) has positive radially symmetric steady state if and
only if M > M∗ = 8π/φ(0).

• Long time behaviour in one dimension when α = 0 (Corollary 4.4).

For d = 1 and α = 0, for any M > 0, there exists a unique stationary solu-
tion ρ̄. Moreover, denoted by ρ is the solution of the dynamical system (1.1)
with τ = 0 and α = 0. We have

lim
t→+∞W2(ρ(t), ρ̄) = 0,

where W2 denotes the Wasserstein distance of order 2.

• Long time behaviour (Theorem 5.1).

In dimension d = 2 or d = 3. Let (ρ, S) be a solution of (1.1) on R
d× [0,∞).

If α > 0 and τ ∈ {0, 1}, or if α = 0, τ = 0 and M > 0 is small enough, then
we have for any p ∈ (1,+∞],

‖ρ(t)‖Lp(Rd) ≤ C t−
d
2 (1−1/p),

where C is a nonnegative constant. Notice that this estimate on the time
decay is the same as the one for the heat equation.

The situation in bounded domain is quite different. Indeed, existence of steady
state solutions for α > 0 on bounded domain with Neumann boundary conditions
has been investigated in [12] in one dimension. Based on a bifurcation analysis,
they observe spiky solutions when the chemotactic sensibility is large. See also
[30], [33], [45], [46] for spiky steady states in chemotaxis models.

The outline of the paper is as follows. In the next section, we derive the
flux-limited Keller–Segel model (1.1) from the kinetic system with the appropriate
scaling. Section 3 deals with the existence of radially symmetric stationary states
in dimension greater than 2. The one dimensional case is investigated in Section 4.
The study of the long time behaviour is performed in Section 5, where Theorem 5.1
is proved. Then we summarize briefly our results in a conclusion and provide open
questions related to this work. Finally, an appendix is devoted to some technical
lemma useful throughout the paper.

2. Derivation of FLKS from kinetic model

Our approach uses the stiffness parameter ε and a smoothed stiff response function
Ψε(Y ) = Ψ(Y/ε). In other words, we consider the following smooth stiff tumbling
kernel:

T [S](v, v′) = λ0 + σΨ(DtS/ε).
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A possible example, as suggested in [43], is Ψ(Y/ε) = − tanh(Y/ε). Other examples
include, for instance, Ψ(Y/ε) = −Y/

√
ε2 + Y 2. The case ε = 0 corresponds to a

stepwise stiff response function mentioned in the introduction. In [43], it has been
measured that σ/ε ≈ 12. For convenience, we write σ = χε for some scaling
constant χ(≈ 12) > 0 and rewrite above tumbling kernel as

(2.1) T [S](v, v′) = λ0 + χεΨ(DtS/ε).

In this paper, we shall take ε as a scaling parameter and derive the parabolic limit
of kinetic models of chemotaxis which turns out to be the FLKS model (1.1) as
long as the response function Ψ is bounded.

2.1. Rescaling of the kinetic equation

We summarize the condition on the response function Ψ as follows:

(2.2) Ψ ∈ C1 ∩ L∞(R), Ψ′(z) < 0 ∀z ∈ R.

Applying the parabolic scaling t′ = ε2t, x′ = εx into (1.3) with the tumbling
kernel (2.1), and recovering (t′, x′) by (t, x) for convenience, we get

(2.3) ε2
∂

∂t
fε(t, x, v) + εv · ∇xfε(t, x, v) = Lε[Sε](fε)

with

Lε[S](f) =

∫
V

(
Tε[S](v, v

′)f ′−Tε[S](v
′, v)f

)
dv′, f ′ := f(t, x, v′), f := f(t, x, v),

and

Tε[S](v, v
′) = λ0 + χεΨε[S](v, v

′), Ψε[S](v
′, v) = Ψ(ε∂tS + v · ∇xS).(2.4)

Since the chemical production and degradation are much slower than the movement
(cf. [43], [14]), we assume prior to the microscopic scaling that the equation for S
is given by

τ ∂tS = ΔS + ε2(ρ− αS),

where ρ(t, x) =
∫
V f(t, x, v)dv, τ = {0, 1}, and α ≥ 0 is a constant denoting

chemical decay rate.

After rescaling, we may state the complete problem we are interested in. On
one hand, the equation for the chemical concentration with the parabolic scaling
reads as

(2.5)

⎧⎨
⎩
τ ∂tSε −ΔSε + αSε = ρε, ρε(t, x) =

∫
V fε(t, x, v)dv,

Sε(0, x) = S0(x) ∈ L1
+ ∩ L∞(Rd) for τ = 1.
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On the other hand, substituting (2.4) into (2.3), we get the final form of the kinetic
equation:

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε2
∂

∂t
fε(t, x, v) + εv · ∇xfε(t, x, v) = λ0

∫
V

(f ′
ε − fε) dv

′

+χε

∫
V

(Ψ∗
ε[Sε]f

′
ε −Ψε[Sε]fε) dv

′,

fε(0, x, v) = f0(x, v) ∈ L1
+ ∩ L∞(Rd × V ),

Ψε[Sε] = Ψ(ε∂tSε + v · ∇xSε), Ψ∗
ε[Sε] = Ψ(ε∂tSε + v′ · ∇xSε).

2.2. Well-posedness, a priori estimates and compactness

The well-posedness and macroscopic limits of kinetic models of chemotaxis where
the tumbling kernel depends on the chemical concentration or its spatial derivative
have been extensively studied e.g. in [34], [35], [10], [22], [5] either formally or
rigorously, based on the advanced functional analytical tools available for kinetic
equations. When the tumbling kernel depends on the pathway derivative DtS, the
formal limits have been studied in [35], [13] and rigorous justification was given
in [15] for the two species case. The well-posedness of equations (2.3)–(2.5) and the
limit as ε → 0 are the direct consequence of the results of [15]. For completeness,
we present, without proof, the following result.

Theorem 2.1 (Existence, a priori estimates). Let ε > 0 and assume (2.2). There
exists a unique global solution of (2.5)–(2.6), fε ∈ L∞

loc([0,∞);L1
+ ∩L∞(Rd ×V )),

Sε ∈ L∞
loc([0,∞);L∞(Rd)). Moreover, there is a constant C(λ0, ‖Ψ‖∞), indepen-

dent of ε, such that

e−Ct

∫
Rd×V

fε(t)
2dxdv +

λ0

4ε2

∫ t

0

∫
Rd×V×V

|f ′
ε − fε|2dvdv′dxds ≤ ‖f0‖22,(2.7)

‖ρε‖L2([0,T ]×Rd) + ‖Jε‖L2([0,T ]×Rd) ≤ C(T )eCT , Jε :=
1

ε

∫
V

vfεdv.(2.8)

The flux Jε in (2.8) arises because integration of (2.6) with respect to v gives

(2.9)
∂ρε
∂t

+ divxJε = 0.

Lemma 2.2 (Strong local compactness on ∇Sε(t, x)). The signal function Sε is
uniformly bounded and ∇Sε(t, x) is strongly locally compact in L1

loc((T1,∞)×Rd)
for all T1 > 0.

Proof. We use that ρε is bounded in L∞
loc((0,∞);L1(Rd) ∩ L2(Rd)) from Theo-

rem 2.1.
From usual elliptic or parabolic regularizing effects (see Lemma A.2 in Ap-

pendix), and using only the above bounds for ρε, we conclude that Sε is bounded
in L∞

loc((0,∞);Lp(Rd)), with p∗ := d
d−2 < p ≤ 2d

d−4 (p = ∞ in dimensions d = 2, 3,
p < ∞ in dimension 4).
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Next, the equation on ∂tSε reads

τ ∂t(∂tSε)−Δ(∂tSε) + α(∂tSε) = ∂tρε = −divJε, Jε ∈bdd L2([0, T ]× R
d)

and gives ∂tSε ∈ Lr((T1, T );L
2(Rd)), for any r < 2 any 0 < T1 < T thanks to

the direct estimates on the heat kernel (see (A.1) in Appendix with p = 1, l = 0,
k = 1).

Next, we notice by a similar argument, that ∇Sε is bounded in L∞((T1, T );
L2(Rd)) for 0 < T1 < T . Compactness in x for ∇Sε also follows from the convolu-
tion formula. Finally, we write

τ ∂t(∂t∇Sε)−Δ(∂t∇Sε) + α(∂t∇Sε) = −∇divJε,

and thus we conclude that ∂t∇Sε ∈bdd L2((T1, T )×Rd), for all 0 < T1 < T , thus
providing time compactness. �

As a conclusion, we may extract a subsequence {ε(n)}n≥1 such that ∇Sε(n) →
∇S0 locally in all spaces Lr

loc((0,∞);Lq(Rd)), 1 ≤ r < ∞, d
d−1 < q ≤ 2p∗. Notice

that the bounds above tell us that, as n → ∞,

Ψε(n)[Sε(n)] = Ψ(ε(n) ∂tSε(n) + v · ∇xSε(n)) → Ψ(v · ∇xS0).

2.3. The convergence result

As a consequence of the a priori estimates in Theorem 2.1 and the discussion in
section 2.2, we may also extract subsequences (still denoted by {ε(n)}) such that,
weakly in L2([0, T ]× Rd) for all T > 0, as n → ∞, we have

(2.10) fε(n)→f0(t, x, v)=ρ0(t, x)F (v), Jε(n)(t, x):=
1

ε(n)

∫
V

vfε(n) dv→J0(t, x),

where F (v) is a uniform distribution on V :

(2.11) F (v) =
�{v∈V }
|V | .

With the symmetry assumption of V , it satisfies
∫
V
vF (v)dv=0 and

∫
V
F (v)dv=1.

In the limit we infer from (2.9) that

(2.12)
∂ρ0
∂t

+∇x · J0 = 0.

The flux J0 can be identified and we are going to show in the next subsection
the following

Theorem 2.3 (Derivation of the FLKS system). Assuming (2.2), the above limit
(ρ0, S0) satisfies the FLKS system (1.1) with initial data (

∫
V
f0(x, v)dv, S0) and

D =
1

λ0|V |2
∫
V

v ⊗ vdv, φ(u) = − 1

λ0|V |u
∫
V

v1Ψ(v1u)dv > 0 for u ≥ 0,

where v1 is the first component of the vector field v.

Notice that φ(0) is well defined by continuity, and φ(0) = −Ψ′(0)
λ0|V |

∫
V v21 dv.
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2.4. Asymptotic analysis

In order to complete the proof of Theorem 2.3, we proceed to find the flux term J0
in (2.12). Multiplying (2.6) by v and integrating, we get

ε
∂

∂t
Jε(t, x) +∇x ·

∫
V

v ⊗ vfεdv

=
λ0

ε

∫
V

v

∫
V

(f ′
ε − fε)dv

′dv + χ

∫
V

v

∫
V

(Ψ∗
ε[Sε]f

′
ε −Ψε[Sε]fε)dv

′dv

= −λ0|V |Jε − χ|V |
∫
V

vΨε[Sε]fεdv

using the definition of Jε in (2.8), the definition of Ψ∗
ε in (2.6), and the symmetry

of V .
We may pass to the weak limit and find, based on the above mentioned strong

compactness for Sε and its derivatives as well as (2.10) and (2.11), that∫
V

v ⊗ vdv ∇xρ0 = −λ0 |V |J0 − χ |V |ρ0
∫
V

vΨ(v · ∇S0)dv.

In other words, we have identified the flux term

(2.13) J0 = −∇xρ0
1

λ0 |V |2
∫
V

v ⊗ vdv − χ

λ0 |V | ρ0
∫
V

vΨ(v · ∇S0)dv.

Using (2.13), the leading order terms of (2.9) and (2.5) lead to the following drift-
diffusion equations:

(2.14)

{
∂tρ0 = div(D∇ρ0 − χρ0u[S]),

τ ∂tS0 = ΔS0 + ρ0 − αS0,

where

(2.15) D =
1

λ0 |V |2
∫
V

v ⊗ vdv, u[S] = − 1

λ0 |V |
∫
V

vΨ(v · ∇S0)dv.

By the rotational symmetry of V , u[S] is proportional to ∇S and hence yields the
expression of φ(u) in Theorem 2.3. Due to the assumptions (2.2) on Ψ, the drift
velocity term u[S] is uniformly bounded in time t and space x. This is the main
feature of the macroscopic limit model resulting from the stiff response postulated
in the kinetic models. �

2.5. Example

We consider a specific form of signal response function Ψ as follows:

Ψ(Y/ε) = − Y√
ε2 + Y 2

or Ψ(z) = − z√
1 + z2

and derive an explicit flux-limited Keller–Segel system. When ε = 0, Ψ(Y/ε) =
−sign(Y ) which is a sign function reflecting the stepwise stiff response. However,
as ε > 0, Ψ(Y/ε) is smooth and Ψ′(0) = −1/ε.
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By substitution, we have from (2.4) that

Ψε[S](v
′, v) = − ε∂tS + v · ∇S√

1 + (ε∂tS + v · ∇S)2
.

Then the limit equations of (2.3)-(2.5) read as (see (2.14)-(2.15))

{
∂tρ = div(D∇ρ− ρφ(|∇S|)∇S),

τ ∂tS = ΔS + ρ− αS,
(2.16)

where we have recovered (ρ0, S0) by (ρ, S) for brevity and, by the rotational sym-
metry of V ,

(2.17) D =
1

λ0 |V |2
∫
V

v ⊗ v dv, φ(|∇S|) = χ

λ0 |V |
∫
V

v21√
1 + v21 |∇S|2 dv,

where v1 is the first component of v colinear to ∇S: v1 = v · ∇S/|∇S|. Clearly
both φ and φ(|∇S|)∇S are bounded for all ∇S, which implies that the chemotactic
(drift) velocity is limited. The system (2.16) with (2.17) gives a specific example
of the FLKS system (1.1).

2.6. Global existence for the macroscopic system

Finally, we state the existence result for system (1.1) under the assumption (1.2).
A specific example of function φ satisfying this set of assumptions has been given
in (2.17). Under the assumption (1.2), the chemotactic (or drift) velocity term
φ(|∇S|)∇S is bounded and hence the global existence of classical solutions of (1.1)
can be directly obtained.

Theorem 2.4 (Global existence). Let 0 ≤ (ρ0, S0) ∈ (W 1,p(Rd))2 with p > d and
α ≥ 0. Let φ ∈ C1(R+;R+) such that (1.2) holds. Then the Cauchy problem (1.1)
has a unique solution (ρ, S) ∈ C([0,∞)× Rd)× C2((0,∞)× Rd) such that

∀ t > 0, ‖ρ(t, ·)‖L∞(Rd) ≤ C, d ≥ 2,

where C > 0 is a constant independent of t. Moreover cell mass is conserved:
‖ρ(t)‖L1(Rd) = ‖ρ0‖L1(Rd) = M .

Proof. The proof consists of two steps. The first step is the local existence of
solutions which can be readily obtained by the standard fixed point theorem
(cf. [3], [2]). The second step is to derive the a priori L∞ bound of u in order
to extend local solutions to global ones. This can be achieved by the method of
Nash iterations as it is well described in [20], Lemma 1. Although the procedure
therein was shown for bounded domain with Neumann boundary conditions, the
estimates directly carry over to the whole space R

d. �
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3. Radial steady states in dimension d ≥ 2

Since it is proved in section 5 that when α > 0 diffusion takes the advantage over
attraction implying the time decay towards zero of the solutions to system (1.1),
we are only interested in the case α = 0. The stationary problem for system (1.1)
is non-trivial due to the nonlinearity. Below we explore a simpler case: existence of
radial symmetric stationary solutions. The stationary system of (1.1) when α = 0
written in radial coordinates for d ≥ 2 reads

(3.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

rd−1
(rd−1S(r)′)′ = ρ(r), r > 0,

1

rd−1

[
rd−1

(− ρ(r)′ + ρ(r)S(r)′φ(|S(r)′|))]′ = 0,

S′(0) = 0, ρ′(0) = 0.

Notice that there is another relation, at infinity, expressing that the mass is given by

(3.2)
M

|Sd−1| =
∫ +∞

0

rd−1ρ(r) dr = −
∫ +∞

0

(rd−1S(r)′)′ dr = − lim
r→∞ rd−1S(r)′.

We are going to prove the following result.

Theorem 3.1. There are no positive radially symmetric steady state solutions
with finite mass to system (1.1) with α = 0 in dimension d > 2. In dimension 2
(i.e., d = 2), system (1.1) with α = 0 has radially symmetric steady states if and
only if M > 8π/φ(0).

Proof. We use the unknown v(r) = −rd−1S′(r) ≥ 0 in order to carry out the
analysis. The equation on ρ in (3.1) now reads −ρ′(r) + ρ(r)S′(r)φ(|S′(r)|) = 0,
and we obtain

(3.3)

⎧⎪⎨
⎪⎩

v′ = rd−1ρ(r) ≥ 0,

ρ′ = −ρ v(r)
rd−1 φ

( v(r)
rd−1

)
,

v(0) = 0, ρ(0) = a > 0.

From (1.2) and the second equation of (3.3), we get ρ′ ≥ −ρA∞ and hence ρ(r) ≥
ae−A∞r > 0 for all r ∈ [0,∞). Furthermore from the first equation of (3.3), we
know that v is non-decreasing and has a limit as r → ∞ which determines the
total mass according to (3.2). Hence for finite mass M , v(r) has a finite limit and
thus for r large enough, say r ≥ r0 for some r0 > 0, we have

(3.4) (ln ρ)′ = − v(r)

rd−1
φ
( v(r)

rd−1

)
≥ − b

rd−1
,

for some positive constant b > 0.
If d > 2, integrating (3.4) yields

ρ(r) ≥ C e
b

d−2
1

rd−2 .

This is incompatible with finite mass M in (3.2).
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In dimension d = 2, we recover a phenomenon similar to the multiple solu-
tions for the critical mass in the Keller–Segel system but explicit solutions are not
available. The system (3.3) reduces to

(3.5)

{
rv′′ = v′ (1− vφ(v/r)) , r > 0,

v(0) = v′(0) = 0.

By the boundary conditions in (3.3), we see that positive solutions behave as
v(r) ≈ a

2 r
2 for r ≈ 0 and some constant a > 0. Then, the proof of Theorem 3.1 is

a consequence of Lemma 3.2 and Proposition 3.3 below. Lemma 3.2 states that a
necessary condition of existence of radial solution is M > 8π/φ(0). Proposition 3.3
shows that for any finite mass M larger than the critical mass 8π/φ(0), there exist
radial solutions with mass M to system (1.1) with α = 0. �

Lemma 3.2. Let v be a positive solution to (3.5). Then v is increasing. If v is
bounded, then

lim
r→+∞ v(r) > 4/φ(0).

Proof. We split the proof into three steps:

1) From the behaviour near r = 0, we know that v′(r) > 0 for r > 0 small
enough. If we had v′(r0) = 0 for some r0 > 0, then the unique solution of (3.5) is
v(r) = v(r0) which is a contradiction. Therefore v′(r) > 0 for all r > 0.

2) Since φ(·) ≤ φ(0) from (1.2), we deduce from (3.5) that, for all r > 0,

v′(1 − vφ(0)) ≤ rv′′.

This inequality may be rewritten as

(3.6) v′(2− vφ(0)) ≤ (rv′)′.

Integrating (3.6) from 0 to r and using boundary conditions in (3.5), we deduce
that

2v − φ(0)

2
v2 ≤ rv′.

This inequality implies that

lim
r→∞ v(r) ≥ 4/φ(0)

because if it were smaller, we would have v′(r) > c/r for some c > 0, and 1/r is
not integrable.

As a consequence, we know that as r → ∞, rv′′ ≤ −3v′ and thus, for some
nonnegative constant C, it holds that

(3.7) r3v′(r) ≤ C, ast → ∞.

3) We may go further and write the first equation of (3.5) as

(rv′)′ = v′(2 − vφ(0)) + vv′[φ(0)− φ(v/r)].
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Integrating it from 0 to r, we have

rv′ = 2v − φ(0)
v2

2
+Q(r), Q(r) =

∫ r

0

v(s)v′(s)[φ(0) − φ(v(s)/s)] ds > 0.

Therefore as r → ∞, using (3.7), there holds that

φ(0)
v2∞
2

− 2v∞ = Q(∞) > 0.

This implies that v∞ > 4/φ(0). �

Proposition 3.3. Let the function φ satisfies (1.2). Then for any b > 4/φ(0),
there exists a solution v to (3.5) such that limr→+∞ v(r) = b.

Proof. We want to prove that for any b > 4/φ(0), there exists a > 0 such that
the solution to (3.5) verifying v′′(0) = a and limr→+∞ v(r) = b. We first simplify

the problem by introducing the change of variable y = r2

r2+1 ∈ [0, 1). Setting
u(y) = v(r), we deduce, from straightforward computations, that u is a solution
to the system

(3.8)

⎧⎨
⎩ u′′ =

2u′

1− y

(
1− u

4y
φ
(√

1−y
y u

))
, y ∈ (0, 1),

u(0) = 0, u′(0) = a/2.

We are left to use a shooting method to show there is a number a > 0 such
that (3.8) has a solution satisfying u(1) = limy→1 u(y) = b for any b > 4/φ(0).

• By definition of u and thanks to the above results, we have that u ≥ 0
and u′ ≥ 0 on [0, 1).

• Since φ(·) ≤ φ(0), we deduce from (3.8) that

(y(1− y)u′)′ ≥ −uu′

2
φ(0) + u′.

After integration we obtain

y(1− y)u′ ≥ −u2

4
φ(0) + u.

Thus, when u(y) ≤ 4/φ(0), we have

u′(y)
u(y)− u2(y)φ(0)/4

≥ 1

y(1− y)
.

Upon integration, we find a positive constant λ > 0 such that for all y ∈ (0, 1) and
u(y) ≤ 4/φ(0), we have

u(y) ≥ 4λy

1− y + λφ(0)y
→ 4/φ(0) as y → 1.

Thus, by continuity and the fact u is increasing, we have that u(1) ≥ 4/φ(0).
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• Let us prove that: for any b > 4/φ(0), there exists a number a > 0 small
enough such that the solution to (3.8) satisfies u(1) ≤ b.

In the vicinity of 0, we have u(y) ∼ a
2y. Then for a > 0 small enough,

there exists y0 ∈ (0, 1) such that u(y0) = ay0. (Indeed, if it is not true, we
will have u(y) ≤ ay on (0, 1), which is not possible for a < 4/φ(0) since u(1) ≥
4/φ(0)). The function y �→

√
1−y
y u(y) being bounded on (0, 1), let us denote

φm = miny∈(0,1) φ
(√

1−y
y u(y)

)
. By the same token as above, we deduce from (3.8)

that

(y(1− y)u′)′ ≤ − tu′

2
φm + u′.

Integrating above inequality over (0, y) gives

(3.9) y(1− y)u′ ≤ −u2

2
φm + u.

On one hand, integrating (3.9) from 1/2 to y, we get

u(y) ≤ 2u(1/2)y

2(1− y)(1 − φm

4 u(1/2)) + φm

2 u(1/2)y
≤ Cm y.

On the other hand, integrating (3.9) between y0 and y, we obtain

u(y) ≤ u(y0)y/y0
1−y
1−y0

(1− u(y0)
4 φm) + φm

4 u(y0)
y
y0

=
ay(1− y0)

1− y + φm

4 a(y − y0)
.

Then, √
1− y

y
u(y) ≤ ξ = min

(
Cm

√
y(1− y),

a
√
y(1− y)(1− y0)

1− y + φm

4 a(y − y0)

)
.

It is clear that ξ → 0 as a → 0 for all y ∈ [0, 1]. Let ε > 0 small. Then by the
continuity of the function φ, for a > 0 small enough, we can deduce from the above

estimate that φ
(√

1−y
y u(y)

) ≥ φ(0) − ε. Then, we can redo the same estimate as

above, replacing φm by φ(0)− ε, we arrive at

u(y) ≤ ay(1− y0)

1− y + φ(0)−ε
4 a(y − y0)

,

which implies by taking y = 1,

u(1) ≤ b =:
4

φ(0)− ε
.

• Let us prove that lima→+∞ u(1) = +∞.
By the second assumption on φ in (1.2), we know that for any u > 0 and

y ∈ (0, 1),

φ
(√1− y

y
u
)
≤ A∞

u

√
y

1− y
.
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Since u′ ≥ 0, we get from (3.8) that

u′′ ≥ 2u′

1− y

(
1− A∞

4
√
y(1− y)

)
.

We may integrate this inequality between 0 and y for y ∈ (0, 1), and get

lnu′(y)− ln
(a
2

)
≥ −2 ln(1− y)− A∞

2

∫ y

0

dz√
z (1− z)3/2

.

We deduce that for any y ∈ [0, 1/2],

u′(y) ≥ a

2
exp

(
− A∞

2

∫ 1/2

0

dz√
z (1− z)3/2

)
.

Hence the integration of last inequality from 0 to 1/2 yields

u
(1
2

)
− u(0) ≥ a

4
exp

(
− A∞

2

∫ 1/2

0

dz√
z(1− z)3/2

)
−→

a→+∞ +∞.

Since u is nondecreasing, we have u(1)≥ u(1/2). It implies lima→+∞ u(1) = +∞.

• We are now in a position to conclude the proof. The function a �→ u(1) is
continuous. We have proved that lim infa→0 u(1) = 4/φ(0) and lima→+∞ u(1) =
+∞. Thus for any b > 4/φ(0) there exists a > 0 such that the solution to (3.8)
verifies u(1) = b. This completes the proof. �

4. One dimensional case

In one dimension, we can improve the above results and show the existence and
uniqueness of a steady state for any finite M > 0 and the convergence (in Wasser-
stein distance) of the solution ρ(t) towards this unique steady state as t → +∞.
Let us consider system (1.1) when α = 0 and τ = 0 in one dimension:

∂tρ− ∂xxρ+ ∂x(ρφ(|∂xS|)∂xS) = 0,(4.1)

− ∂xxS = ρ,(4.2)

ρ(t = 0) = ρ0 ∈ L1
+(R), ‖ρ0‖L1 = M > 0.(4.3)

We assume that φ ∈ C1(R+;R+) and φ verifies assumption (1.2).
In order to reduce the problem, we define u = −∂xS, such that ρ = ∂xu. We no-

tice that −ρuφ(|u|) = −∂xΦ(u), where Φ is an antiderivative of x �→ xφ(|x|).
Remark that Φ is even and nondecreasing on R+. As a consequence, the sys-
tem (4.1)–(4.2) reduces to

(4.4) ∂tu− ∂xxu− ∂xΦ(u) = 0, u(t = 0, x) = u0(x) :=

∫ x

−∞
ρ0(y) dy −M/2.

We assume moreover that |u0| −M/2 ∈ L1(R).
As it is now standard for parabolic equation, we may prove easily the following

existence result.
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Lemma 4.1. Let M > 0 be given and let us assume that ρ0 ∈ L1
+(R). Then, there

exists a unique solution u to (4.4) which satisfies

0 ≤ ∂xu ∈ L∞((0,+∞);L1(R)), u(0) = 0, lim
x→±∞u(t, x) = ±M/2.

If we assume moreover that |u0|−M/2 ∈ L1(R), then we also have that |u|−M/2 ∈
L∞((0,+∞);L1(R)).

4.1. Steady state

We now investigate the existence of steady state for the system in one dimension:

Lemma 4.2. Let M > 0 be fixed. There exists a unique steady state ū for (4.4)
which satisfies ū(0) = 0, 0 ≤ ∂xū ∈ L1(R) and ‖∂xū‖L1(R) = M .

Proof. The steady states are given by

∂xxū = −∂xΦ(ū).

Since Φ is defined up to a constant, this problem is invariant by translation, thus we
may fix ū(0) = 0. Integrating the latter equation, taking into account the boundary
condition at infinity, the steady state is a solution to the Cauchy problem

(4.5) ū′(x) = Φ(M/2)− Φ(ū), ū(0) = 0.

We recall that Φ is even. The constant functions ±M/2 being clearly solu-
tions to this differential equation, but not satisfying the boundary condition, we
have by uniqueness that the function ū never reaches the values ±M/2. Then,
|ū| < M/2. It implies, by the assumptions (1.2) on φ that ū′ > 0. Thus
limx→±∞ ū exists and is finite. Since from (4.5), we have ū(x) =

∫ x

0
(Φ(M/2) −

Φ(ū(y))) dy, we deduce that y �→ Φ(M/2)−Φ(ū(y)) is integrable on R. Necessarily
limy→±∞(Φ(M/2)− Φ(ū(y))) = 0. Since Φ is even and nondecreasing on R+, we
deduce that limx→±∞ ū(x) = ±M/2 and

∫
R
ū′(x) dx = M . Let us denote

(4.6) A is an antiderivative of u �→ 1

Φ(M/2)− Φ(u)
.

It is an increasing function, thus it is invertible. Therefore the solution to the
Cauchy problem (4.5) is given by

ū(x) = A−1(x +A(0)). �

4.2. Asymptotic behaviour

Proposition 4.3. Let u and ū be as in Lemma 4.1 and 4.2 respectively. For A
defined as in (4.6), we introduce

E(t) :=

∫
R

∫ u

ū

(A(v) −A(ū)) dvdx ≥ 0.

Then we have the estimate

(4.7)
d

dt
E(t) = −

∫
R

(
Φ(M/2)− Φ(u)

)∣∣∂x(A(u)−A(ū))
∣∣2 dx ≤ 0.



372 B. Perthame, N. Vauchelet and Z. Wang

If we assume moreover that the initial data u0 is such that E(0) < ∞, then

lim
t→+∞E(t) = 0.

Proof. We first notice that by definition of E, since A is a nondecreasing function,
we have E(t) ≥ 0. Then E may be seen as an entropy. Next we complete our proof
in a series of steps.

Step 1 (Entropy dissipation). We may rewrite equation (4.4) as

∂tu− ∂x
(
∂xu+Φ(u)− Φ(M/2)

)
= 0,

which, thanks to the definition of the steady state ū, rewrites as

∂tu− ∂x
((
Φ(u)− Φ(M/2)

)
∂x(A(ū)−A(u))

)
= 0.

Multiplying by A(ū)−A(u) and integrating over R, we obtain∫
R

∂tu(A(ū)−A(u)) dx +

∫
R

(
Φ(u)− Φ(M/2)

)|∂x(A(ū)−A(u))|2 dx = 0.

We deduce that (4.7) holds.

Step 2 (Compactness argument). Integrating (4.7) in time, we deduce that for
any t > 0,

E(t) +

∫ t

0

∫
R

(
Φ(M/2)− Φ(u)

)∣∣∂x(A(u)−A(ū))
∣∣2 dxds = E(0) < +∞.

In particular, it implies that
∫
R

(
Φ(M/2)−Φ(u)

)∣∣∂x(A(u)−A(ū))
∣∣2 dx ∈ L1(R+).

Thus there exists a sequence tj → +∞ such that

D(tj) :=

∫
R

(
Φ(M/2)− Φ(u(tj))

)∣∣∂x(A(u(tj))−A(ū))
∣∣2 dx −→

j→+∞
0.

Expanding and using Young’s inequality, we get∣∣∂x(A(u(tj)))− 1
∣∣2 = |∂x(A(u(tj)))|2 − 2∂x(A(u(tj))) + 1 ≥ 1

2
|∂x(A(u(tj)))|2 − 1.

Thus there exists a nonnegative constant such that∫
R

(
Φ(M/2)− Φ(u(tj))

)∣∣∂x(A(u(tj)))∣∣2 dx ≤ C + 2

∫
R

(
Φ(M/2)− Φ(u(tj))

)
dx

≤ C + 2‖φ‖∞
∫
R

|M/2− |u(tj)|| dx.

From Lemma 4.1, the last term of the right-hand side is bounded. By definition
of A, we also get∫

R

(
Φ(M/2)− Φ(u(tj))

)∣∣∂x(A(u(tj)))∣∣2 dx =

∫
R

|∂xu(tj)|2
Φ(M/2)− Φ(u(tj))

dx

=

∫
R

|∂xB(u(tj))|2 dx,

where B is an antiderivative of u �→ 1/
√
Φ(M/2)− Φ(u), then B is increasing and

invertible.
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We deduce from the above computation that the sequence {∂xB(u(tj))}j is uni-
formly bounded in L2(R). Therefore, we can extract a subsequence, still denoted
{B(u(tj))}j converging in L2

loc(R) and a.e. towards a limit denoted B̄ as j → +∞.
As a consequence, {u(tj)}j converges a.e. towards u∞ = B−1(B̄) as j → +∞.

Step 3 (Identification of the limit). To identify this limit, we first notice that
since u(tj , 0) = 0 for any j ∈ N, then u∞(0) = 0. Moreover, for any h ∈ L2(R), we
have, by the Cauchy–Schwarz inequality,∫

R

(
∂xB(u(tj))−

√
Φ(M/2)− Φ(u(tj))

)
h dx ≤

( ∫
R

h2 dx
)1/2

D(tj)
1/2 −→

j→+∞
0.

It implies that for any h ∈ L2(R),∫
R

(
∂xB(u∞)−

√
Φ(M/2)− Φ(u∞)

)
h(x) dx = 0.

We deduce that u∞ satisfies the problem (4.5). By uniqueness, we have u∞ = ū.
Finally, for any regular function χ compactly supported, we have,

∫
R

∫ u(tj)

ū

(A(ū)−A(v))χ(x) dvdx −→
j→+∞

0.

Then, choosing χ ∈ C∞ such that χ(x) = 1 on [−1/2, 1/2] and χ(x) = 0 for |x| ≥ 1,

E(tj)

≤
∫
R

∫ u(tj)

ū

(A(ū)−A(v))χ
(
x
R

)
dvdx +

∫
R

∫ u(tj)

ū

(A(ū)−A(v))
(
1− χ

(
x
R

))
dvdx

≤
∫
R

∫ u(tj)

ū

(A(ū)−A(v))χ
(
x
R

)
dvdx+‖1−χ‖∞

∫
R\[−R,R]

∫ u(tj)

ū

(A(ū)−A(v))dvdx.

The second term of the right-hand side goes to 0 as R → +∞, the first term
converges to 0 as j → +∞. We deduce that E(tj) → 0 as j → +∞. Since E is
decreasing, we conclude that limt→+∞ E(t) = limj→+∞ E(tj) = 0. �

Corollary 4.4. Let M > 0 and (ρ, S) be a solution to system (4.1)–(4.3) with φ
satisfying (1.2) and with an initial data ρ0 ∈ L1(R) such that the function x �→∣∣ ∫ x

−∞ ρ0(y)dy −M/2
∣∣−M/2 belongs to L1(R).

Let ρ̄ = ∂xū where ∂xū is defined in Lemma 4.2. Then we have

lim
t→+∞W2(ρ(t), ρ̄) = 0,

where W2 denotes the Wasserstein distance of second order.

Remark 4.5. The assumption on the initial data is automatically satisfied if ρ0 is
compactly supported, since then x �→ ∣∣ ∫ x

−∞ ρ0(y)dy−M/2
∣∣−M/2 is also compactly

supported.
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Proof. This is a direct consequence of Proposition 4.3. Indeed, we have ρ = ∂xu
and ρ̄ = ∂xū and

E(t) =

∫
R

∫ u

ū

(A(v)−A(ū)) dvdx =

∫
R

∫ u

ū

∫ ū

v

dw

Φ(M/2)− Φ(w)
dvdx

≥ 1

Φ(M/2)− Φ(0)

∫
R

∫ u

ū

∫ ū

v

dwdvdx =

∫
R

(u− ū)2

2(Φ(M/2)− Φ(0))
dx.

We conclude by using that W2(ρ, ρ̄) =‖u− ū‖L2(R), and limt→+∞ E(t) = 0. �

5. Long time asymptotics

Now, we investigate the asymptotic dynamics in long time of solutions to the flux-
limited Keller–Segel system (1.1) in physical dimension d = 2 or d = 3. We show
that for the chemical decay rate α > 0, then ρ(t, x) → 0 as t → ∞. While when
the chemical decay is ignored (α = 0), we obtain the convergence ρ(t, x) → 0 as
t → ∞ under the assumption that the cell mass M =

∫
Rd ρ

0(x)dx is small.

Theorem 5.1. Let d = 2, 3 and (ρ, S) be a solution of (1.1) on Rd× [0,∞). Then
for any M > 0 when α > 0 and τ = {0, 1} or small M > 0 when α = 0 and τ = 0
it holds that

‖ρ(t)‖Lp(Rd) ≤ C t−
d
2 (1−1/p),

where 1 < p ≤ ∞ and C > 0 is a constant independent of t.

In both cases, the estimate of order of convergence in time of the norm of ρ
towards 0 is the same as the one for the heat equation. We will use the following
notations. The heat kernel is denoted by G:

G(t, x) =
1

(4πt)d/2
exp

(
− |x|2

4t

)
, x ∈ R

d, t > 0.

It generates a semi-group whose operator is denoted by etΔ, i.e. etΔf = G(t) ∗ f .

5.1. Asymptotics with chemical decay (α > 0)

First we remark that in the case α > 0, as a direct consequence of Lemma A.2 in
Appendix along with the fact that ρ ∈ Lq(Rd) for q ∈ [1,∞] (see Theorem 2.4),
we have

(5.1) ∀ t > 0, ‖∇S(t)‖Lp(Rd) < ∞, for all p ∈ [1,∞],

which is crucial to prove the following result.

Lemma 5.2. Let β be a constant with 0 < β ≤ 1/2. Then for any 1 < p < d
d−2

(d ≥ 2), there is a constant C > 0 such that, for t ≥ 1,

‖ρ(t)‖Lp(Rd) ≤ C tβ−
d
2 (1−1/p).
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Proof. With a stretching transformation by borrowing an idea from [32], we intro-
duce

ρλ(t, x) = λdρ(λ2t, λx), Sλ(t, x) = S(λ2t, λx), x ∈ R
d, t > 0.

We find from (1.1) that (ρλ, Sλ) satisfies{
∂tρλ = Δρλ − div[ρλφ(

1
λ |∇Sλ|)∇Sλ], x ∈ R

d, t > 0,

τ ∂tSλ = ΔSλ − αλ2Sλ + λ2−dρλ.

It can also be easily checked that

(5.2)

‖∇ρλ(t)‖Lp(Rd) = λ1+d−d/p ‖∇ρ(λ2t)‖Lp(Rd),

‖∇Sλ(t)‖Lp(Rd) = λ1−d/p ‖∇S(λ2t)‖Lp(Rd),

‖ρλ(t)‖Lp(Rd) = λd−d/p ‖ρ(λ2t)‖Lp(Rd).

By Duhamel’s principle, we write ρλ from (1.1) as

ρλ(t) = etΔ ρ0λ −
∫ t

0

∇ · e(t−s)Δ
(
ρλφ

( 1
λ
|∇Sλ|

)∇Sλ

)
(s)ds,

where ρ0λ(x) = λdρ0(λx). For given constant β with 0 ≤ β < 1/2, we define

r =

{
d

2(1/2−β) , if 0 < β < 1/2,

∞, if β = 1/2.

Using the properties of etΔ in Lemma A.1 in the Appendix, and the fact that
|φ( 1

λ |∇Sλ|)| ≤ A0 (cf. (1.2)), we find constants 1 < q ≤ p ≤ ∞ with 1/r+1/p = 1/q
such that

‖ρλ(t)‖Lp(Rd) ≤ ‖etΔρ0λ‖Lp(Rd)

+ C

∫ t

0

(t− s)−
d
2 (

1
q− 1

p )− 1
2

∥∥∥ρλ(s)φ( 1

λ
|∇Sλ(s)|

)
∇Sλ(s)

∥∥∥
Lq(Rd)

ds

≤ ‖etΔρ0λ‖Lp(Rd) + C

∫ t

0

(t− s)−
d
2 (

1
q− 1

p )− 1
2 ‖ρλ(s)∇Sλ(s)‖Lq(Rd)ds

≤ C t−
d
2 (1− 1

p ) ‖ρ0λ‖L1(Rd)(5.3)

+ C

∫ t

0

(t− s)−
d
2 (

1
q− 1

p )− 1
2 ‖ρλ(s)‖Lp(Rd)‖∇Sλ(s)|‖Lr(Rd)ds,

where Lemma A.1 in Appendix and the Hölder inequality have been used for
the last inequality. Since ρ0λ(x) = λdρ0(λx), it is easy to verify that ‖ρ0λ‖L1(Rd) =

‖ρ0‖L1(Rd) = M . From (5.2) and (5.1), it follows ‖∇Sλ‖Lr(Rd) = λ1−d/r‖∇S‖Lr(Rd)

≤ Cλ1−d/r for some constant C > 0. Then we update (5.3) as

‖ρλ(t)‖Lp(Rd) ≤ CM t−
d
2 (1−1/p) + C λ1−d/r

∫ t

0

(t− s)β−1‖ρλ(s)‖Lp(Rd) ds

≤ CM t−
d
2 (1−1/p) + Cλ2β

∫ t

0

(t− s)β−1‖ρλ(s)‖Lp(Rd) ds,
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which, along with the singular Gronwall inequality (see Lemma A.3), yields

(5.4) ‖ρλ(t)‖Lp(Rd) ≤ C t−
d
2 (1−1/p) + Cλ2β

∫ t

0

(t− s)β−1s−
d
2 (1−1/p) ds.

Let 1 < p < d/(d− 2). Then 1− d
2 (1− 1/p) > 0 and∫ t

0

(t− s)β−1s−
d
2 (1−1/p) ds

=

∫ t/2

0

(t− s)β−1s−
d
2 (1− 1

p )ds+

∫ t

t/2

(t− s)β−1s−
d
2 (1− 1

p )ds(5.5)

≤
( t

2

)β−1
∫ t/2

0

s−
d
2 (1− 1

p ) ds+
( t

2

)− d
2 (1− 1

p )
∫ t

t/2

(t− s)β−1ds ≤ C tβ−
d
2 (1− 1

p ),

where C is a positive constant depending on d, p and β.
Let 0 < t ≤ 1. Then tβ ≤ 1 and as a result of (5.4)–(5.5) it holds that

‖ρλ(t)‖Lp(Rd) ≤ C (1 + λ2β) t−
d
2
(1−1/p).

By the third inequality in (5.2) with t = 1, we have

‖ρ(λ2)‖Lp(Rd) ≤ Cλ−d+d/p ‖ρλ(1)‖Lp(Rd) ≤ Cλ−d+d/p (1 + λ2β).

Since λ is arbitrary, we get by letting λ =
√
t that

‖ρ(t)‖Lp(Rd) ≤ C tβ−
d
2 (1−1/p) fort ≥ 1,

which completes the proof. �

Then we investigate the time decay of ‖ρ(t)‖L∞(Rd).

Lemma 5.3. Let d = 2, 3. For any t ≥ 1, there is a constant C > 0 such that the
solution component ρ(t, x) satisfies for 1 < p ≤ ∞,

‖ρ(t)‖Lp(Rd) ≤ C t−
d
2 (1−1/p).

Proof. We shall first prove ‖ρ(t)‖L∞(Rd) ≤ C t−d/2. From the first equation of (1.1),
we can write ρ as

ρ(t) = etΔρ0 −
∫ t

0

∇ · e(t−s)Δ(ρφ(|∇S|)∇S)(s) ds

= etΔρ0 −
∫ t/2

0

∇ · e(t−s)Δ(ρφ(|∇S|)∇S)(s) ds

−
∫ t

t/2

∇ · e(t−s)Δ(ρφ(|∇S|)∇S)(s) ds

= I0 + I1 + I2.

(5.6)

Next we estimate Ii(i = 0, 1, 2). First by Lemma A.1 in Appendix and the fact
‖ρ0‖L1(Rd) = M , we get

(5.7) ‖I0‖L∞(Rd) ≤ C t−d/2.
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By Lemma A.1 in Appendix and the fact that φ(|∇S|) is bounded (cf. (1.2)),
we have for any p > 1 that

‖I1‖L∞(Rd) ≤ C

∫ t/2

0

(t− s)−d/2−1/2 ‖ρφ(|∇S|)∇S‖L1 ds

≤ C

∫ t/2

0

(t− s)−d/2−1/2 ‖ρ |∇S|‖L1 ds

≤ C

∫ t/2

0

(t− s)−d/2−1/2 ‖ρ‖Lp ‖∇S‖
L

p
p−1

ds.

Now we choose p such that d
d−1<p< d

d−2 . Then from (5.1), we know ‖∇S‖
L

p
p−1

<∞,

and furthermore using Lemma 5.2 it holds that

‖I1‖L∞ ≤ C

∫ t/2

0

(t− s)−d/2−1/2 ‖ρ‖Lp ds

≤ C t−d/2−1/2

∫ t/2

0

(1 + s)−
d
2 (1−1/p)+β ds ≤ C t−d/2− d

2 (
d−1
d − 1

p )+β .

Let 0 < β < d
2 (

d
d−1 − 1

p ) and define η1 = d
2 (

d−1
d − 1

p )− β. Then η1 > 0, hence

(5.8) ‖I1‖L∞(Rd) ≤ C t−d/2−η1 , 0 < η1 <
d

2

(d− 1

d
− 1

p

)
.

Next, we estimate ‖I2‖L∞(Rd). First let us pick q such that q > d and let 1 < p <
d/(d − 2) if d ≥ 3 and p = q if d = 2. Note that here p has nothing to do with
the p used in the estimate for I1. Then by interpolation and the boundedness of
‖ρ(t)‖L∞(Rd), we have from Lemma 5.2 that, for t ≥ 1,

‖ρ‖Lq(Rd) ≤ ‖ρ‖p/q
Lp(Rd)

‖ρ‖1−p/q

L∞(Rd)
≤ C t−

p
q [

d
2 (1−1/p)−β],

which, along with the results in Lemma A.2, yields that

(5.9) ‖∇S‖L∞(Rd) ≤ C t−
p
q [

d
2 (1−1/p)−β], q > d.

These two latter inequalities yield that

‖ρ(s)∇S(s)‖Lq(Rd) ≤ C‖ρ(s)‖Lq(Rd)‖∇S(s)‖L∞(Rd) ≤ Cs−
2p
q [ d2 (1−1/p)−β].

Then we have by Lemma A.1,

‖I2‖L∞(Rd) ≤ C

∫ t

t
2

(t− s)−
d
2q− 1

2 ‖ρ(s)∇S(s)‖Lq(Rd)ds

≤ C

∫ t

t
2

(t− s)−
d
2q− 1

2 s−
2p
q [ d2 (1− 1

p )−β]ds ≤ C t−
2p
q [ d2 (1− 1

p )−β]

∫ t

t
2

(t− s)−
d
2q− 1

2 ds

≤ C t−
d
2q+

1
2− dp

q (1− 1
p )+

2βp
q ≤ C t−

d
2−l(p,q)+ 2βp

q ,

where l(p, q) = −d/2− d/(2q)− 1/2 + dp/q.
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Consider d = 2, 3. For d = 2, from p = q, we see that l(p, q) = 1/2 − 1/q > 0
by choosing q > 2. When d = 3, l(p, q) = 3

q (p − 1/2) − 2 and l(p, q) > 0 ⇔ q <
3
2 (p− 1/2). Now by choosing p such that d/2 + 1 < p < d

d−2 (i.e. 5/2 < p < 3 for

d = 3), we can verify that 3
2 (p−1/2) > 3. Hence we can choose 3 < q < 3

2 (p−1/2)

such that l(p, q) > 0. Hence for such p and q, we have that l(p, q) − 2p
q β > 0 for

β > 0 sufficiently small. This produces

(5.10) ‖I2‖L∞(Rd) ≤ C t−d/2−η2 , 0 < η2 < l(p, q)− 2p

q
β.

Then substituting (5.7), (5.8) and (5.10) into (5.6), we arrive at

‖ρ(t)‖L∞(Rd) ≤ C t−d/2, for t ≥ 1.

Thus the interpolation inequality gives

‖ρ‖Lp(Rd) ≤ ‖ρ‖1/p
L1(Rd)

‖ρ‖1−1/p

L∞(Rd)
≤ C t−

d
2 (1−1/p)

by noting that ‖ρ‖L1(Rd) = M . �

5.2. Asymptotics without chemical decay (α = 0)

In this section, we shall explore the asymptotic behavior of solutions of (1.1) with
α = 0 as time t → ∞. From the estimates in Appendix (A.3)–(A.4), we see that in
this case the estimate (5.9) does not hold for both τ = 0 and τ = 1, and hence the
approach in the preceding section can not be used. In particular, in the case τ = 1,
from (A.4), we see that even the basic inequality (5.1) does not hold. However in
the case τ = 0, we can derive the asymptotic behavior of solutions and so we now
consider the following parabolic-elliptic model:

(5.11)

⎧⎪⎨
⎪⎩
ρt = Δρ− div(ρφ(|∇S|)∇S), t > 0, x ∈ Rd,

−ΔS = ρ,

ρ(0, x) = ρ0(x),

where φ satisfies the condition (1.2).

5.2.1. Two dimensional case (d = 2). To derive the asymptotic decay of
solutions in two dimensions, we shall employ the so-called method of trap (e.g.,
see [4]), which essentially can assert the following result.

Lemma 5.4. Let ϕ(t) be a continuous function on [0,∞) with ϕ(0) = 0 satisfying
the following inequality for some constants m,β, θ > 0:

ϕ(t) ≤ c0m+ c1m
β(ϕ(t))θ ,

where c0 and c1 are positive constants. If θ > 1 and 0 < β < 1, then

ϕ(t) < (c1θm
β)

1
1−θ

provided that m < m0, where m0 = [ 1
c0

θ−1
θ (c1θ)

1
1−θ ]

1−θ
β+θ−1 .
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Proof. This result can be proved directly by applying the method of trap in [4]. So
we omit the details. �

We will make use of Lemma 5.4 to prove our results. To this end, we first use
Duhamel’s principle to write the solution ρ(t, x) as

ρ(t0 + t, x) =

∫
R2

G(t, x − y)ρ(t0, y)dy −
∫ t

0

∇G(t− s) ∗ (ρφ(|∇S|)∇S)(t0 + s)ds.

where G(t, x) = 1
4πt exp(− |x|2

4t ) is the heat kernel on R2. Then by Young’s convo-
lution inequality and Lemma A.1 in Appendix, we have for � > 2,

‖ρ(t0 + t)‖L∞(R2) ≤
1

4πt
‖ρ(t0)‖L1(R2)

+A0 C(�)

∫ t

0

(t− s)−1/	−1/2 ‖(ρ∇S)(t0 + s)‖L�(R2) ds.(5.12)

where the boundedness of φ has been used (cf. (1.2)).
On one hand, the Hölder inequality gives us that

‖(ρ∇S)(t0 + s)‖L�(R2) ≤ ‖ρ(t0 + s)‖Lp(R2) ‖∇S(t0 + s)‖Lq(R2) ,(5.13)

where 1/� = 1/p+1/q, q > 2. On the other hand, by estimate (A.3) in Appendix,
there exists a constant C(r) depending on r such that, for any s > 0,

‖∇S(t0 + s)‖Lq(R2) ≤ C(r) ‖ρ(t0 + s)‖Lr(R2) ,(5.14)

where r = 2q
2+q (or 1/r = 1/q + 1/2), 1 < r < 2. Substituting (5.14) into (5.13)

gives

‖(ρ∇S)(t0 + s)‖L�(R2) ≤ C(r) ‖ρ(t0 + s)‖Lp(R2) ‖ρ(t0 + s)‖Lr(R2) ,(5.15)

with 1/� = 1/p+ 1/r − 1/2. Then we apply the interpolation inequality

‖ρ‖Lγ(R2) ≤ ‖ρ‖1/γL1(R2) ‖ρ‖1−1/γ
L∞(R2) ≤ M1/γ ‖ρ‖1−1/γ

L∞(R2) , 1 < γ < ∞,

to (5.15) and get

‖(ρ∇S)(t0 + s)‖L�(R2) ≤ C(r)M1/p+1/r ‖ρ(t0 + s)‖2−1/p−1/r
L∞(R2) .(5.16)

Substituting (5.16) into (5.12), we find a constant C0 = C0(�,A0, r) > 0 such that

‖ρ(t0 + t)‖L∞(R2) ≤
M

4πt
+ C0M

1
p+

1
r

∫ t

0

(t− s)−
1
�− 1

2 ‖ρ(t0 + s)‖2−
1
p− 1

r

L∞(R2) ds.(5.17)

We recall the exponents present above satisfy 1/p+ 1/q = 1/� (� > 2) and 1/r −
1/q = 1/2 (1 < r < 2). Then it can be checked that 1/�+ 1/2 = 1/p+ 1/r, hence
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1/p+1/r < 1 since � > 2. Taking t0 = t, and then multiplying the inequality (5.17)
by 2t, we get

2t ‖ρ(2t)‖L∞(R2) −
M

2π

≤ 2C0M
ξt

∫ t

0

(t− s)−ξ (t+ s)ξ−2
[
(t+ s) ‖ρ(t+ s)‖L∞(R2)

]2−ξ
ds,

(5.18)

where ξ = 1/p+ 1/r. Simple calculation gives us that

t

∫ t

0

(t− s)−ξ(t+ s)ξ−2ds =
1

2(1− ξ)
, 0 < ξ < 1.

For any t > 0, we observe that

sup
0≤s≤t

(t+ s) ‖ρ(t+ s)‖L∞(R2) ≤ sup
0≤s≤t

2s ‖ρ(2s)‖L∞(R2) = ϕ(t).

Since ρ ∈ C0(R+;L∞(R2)), ϕ is continuous, then it follows from (5.18) that

(5.19) ϕ(t) ≤ M

2π
+ C1M

ξϕθ(t),

where C1 = C0/(1− ξ), θ = 2− ξ. Since 0 < ξ < 1, then 1 < θ < 2.
Once we have inequality (5.19) with θ > 1 and 0 < ξ < 1, we can apply

Lemma 5.4 to find a constant C > 0 such that ϕ(t) ≤ C for any t > 0 if M is
small. This gives us that ‖ρ(t)‖L∞(R2) ≤ C t−1. Then by interpolation we can get

‖ρ(t)‖Lp(R2) ≤ C t−(1−1/p).

5.2.2. Higher dimensional case (d > 2). Setting φ(|∇S|)∇S = U and multi-
plying the first equation of (5.11) by pρp−1 (p > 1), we have

d

dt

∫
Rd

ρpdx +
4(p− 1)

p

∫
Rd

|∇ρp/2|2 dx = p(p− 1)

∫
Rd

ρp−1 U · ∇ρ dx

= 2(p− 1)

∫
Rd

ρp/2 U · ∇ρp/2 dx.

(5.20)

For the term on the right-hand side of (5.11), we employ the Cauchy–Schwarz
inequality to get

2(p− 1)

∫
Rd

ρp/2 U · ∇ρp/2 dx ≤ p− 1

p

∫
Rd

|∇ρp/2|2dx+ p(p− 1)

∫
Rd

ρp |U |2dx,

which updates (5.20) as

d

dt

∫
Rd

ρpdx +
3(p− 1)

p

∫
Rd

|∇ρp/2|2 dx ≤ p(p− 1)

∫
Rd

ρp |U |2 dx

≤ p(p− 1)A2
0

∫
Rd

ρp |∇S|2 dx,
(5.21)

where we have used (1.2) for the last inequality. With the Sobolev inequality

‖ρ‖
L

dp
d−p (Rd)

≤ C1(d, p) ‖∇ρ‖Lp(Rd) ,
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for some constant C1(d, p) > 0, we have that

‖ρ‖p/2
L

dp
d−2 (Rd)

=
[( ∫

Rd

ρ
dp

d−2 dx
) d−2

dp
]p/2

=
[ ∫

Rd

(ρp/2)
2d

d−2 dx
] d−2

2d

=
∥∥ρp/2∥∥

L
2d

d−2 (Rd)
≤ C1(d, p)

∥∥∇ρp/2
∥∥
L2(Rd)

.

This together with (5.21) gives

d

dt

∫
Rd

ρpdx+ C2(d, p) ‖ρ‖p
L

dp
d−2 (Rd)

≤ p(p− 1)A2
0

∫
Rd

ρp|∇S|2dx.(5.22)

By Hölder the inequality, we have∫
Rd

ρp|∇S|2dx ≤
[ ∫

Rd

(ρp)
d

d−2 dx
] d−2

d
(∫

Rd

(|∇S|2) d
2 dx

)2/d

≤ ‖ρ‖p
L

dp
d−2 (Rd)

‖∇S‖2Ld(Rd) ,

which updates (5.22) as

(5.23)
d

dt

∫
Rd

ρpdx+C2(d, p) ‖ρ‖p
L

dp
d−2 (Rd)

≤ p(p− 1)A2
0 ‖ρ‖p

L
dp

d−2 (Rd)
‖∇S‖Ld(Rd) .

Now we apply the inequality (A.3) with q = d (i.e., dp
d−p = d and hence p = d/2)

and get

‖∇S‖Ld(Rd) ≤c(d, p) ‖ρ‖Ld/2(Rd) ≤ C(d, p) ‖ρ‖2/d
L1(Rd)

‖ρ‖1−2/d

L∞(Rd)
≤ C3(d)M

2/d.

Substituting the above inequality into (5.23), one has

(5.24)
d

dt

∫
Rd

ρpdx+C2(d, p) ‖ρ‖p
L

dp
d−2 (Rd)

≤ C4(d, p)p(p−1)A2
0M

4/d ‖ρ‖p
L

dp
d−2 (Rd)

,

where C4(d, p) = C3(d)p(p− 1). Let B = C2(d, p)−C4(d, p)A
2
0M

4/d > 0 for small
M > 0, it follows from (5.24) that

d

dt

∫
Rd

ρpdx+B ‖ρ‖p
L

dp
d−2 (Rd)

≤ 0.(5.25)

By an interpolation inequality, we know

‖ρ‖Lp(Rd) ≤ ‖ρ‖
2

d(p−1)+2

L1(Rd) ‖ρ‖
d(p−1)

d(p−1)+2

L
dp

d−2 (Rd)
= M

2
d(p−1)+2 ‖ρ‖

d(p−1)
d(p−1)+2

L
dp

d−2 (Rd)
,

which implies ( ∫
Rd

ρpdx
) d(p−1)+2

d(p−1)

M− 2p
d(p−1) ≤ ‖ρ‖p

L
dp

d−2 (Rd)
.

This together with (5.25) gives

d

dt

∫
Rd

ρpdx+BM− 2p
d(p−1)

(∫
Rd

ρpdx
) d(p−1)+2

d(p−1) ≤ 0.
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Then solving above ODE gives

‖ρ‖Lp(Rd) ≤ C(d, p,M)(1 + t)−
d(p−1)

2p ≤ C(d, p,M)(1 + t)−
d
2 (1−1/p), 1 < p ≤ ∞,

for some constant C(d, p,M) > 0.

6. Conclusion and open questions

Motivated both by the properties of solutions as traveling pulses and some specific
derivations from kinetic models, we have considered the flux-limited Keller–Segel
(FLKS) system (1.1) on the whole domain Rd. First, we have introduced a new
generic rescaling which allows a systematic derivation as the limit of kinetic systems
describing the chemotactic motion thanks to a run-and-tumble process. Then, since
solutions exist globally in time, we have investigated the long time asymptotic
of FLKS and shown that when the degradation coefficient α > 0, diffusion takes
the advantage over attraction and solutions decays in time with the same rate as
solutions to the heat equation. When α = 0, we investigated radially symmetric
steady states and established that the total mass to the system M is an important
parameter. Indeed, in dimension d = 2, radial symmetric solutions exist if and
only if M > 8π/φ(0). In dimension d > 2 there is no positive radial steady state
with finite mass.

However, we have been able to prove the long time convergence towards the
radial steady state only in the particular case of dimension d = 1. Then, we
leave open the question of convergence of solutions to FLKS in dimension d > 1.
In particular, we established in Theorem 5.1 that, for d = 2, 3, α = 0, and τ = 0,
solutions decay in time when M is small enough. An interesting issue is to prove
that the critical mass for this behaviour in dimension d = 2 is given by M∗ =
8π/φ(0). We also leave as an open question the case τ = 1 and α = 0, for which
our approach may not be applied.

Finally, in a recent work [39], it has been proved that kinetic system for chemo-
taxis may be derived from a more elaborated system at mesoscopic scale including
internal variables describing for instance the methylation level within cells. Then
we may expect that the FLKS system may be derived directly from such system.
The proof of such derivation is also an interesting continuation of this work.

A. Technical lemma

For the sake of completeness, we present in this appendix some useful technical
estimations on the parabolic/elliptic equation satisfied by the chemical concentra-
tion S in system (1.1). We recall the notation of the heat kernel

G(t, x) =
1

(4πt)d/2
exp

(
− |x|2

4t

)
, x ∈ R

d, t > 0.
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With simple calculations, we verify the following estimates:

(A.1) ‖∂l
t∂

k
xG(t)‖Lp(Rd) ≤ C t−

d
2 (1−1/p)−l−k/2, 1 ≤ q ≤ q ≤ ∞.

Define

(etΔf)(x) = G(t) ∗ f(x) =
∫
Rd

G(t, x− y)f(y) dy.

Then using (A.1) and Young’s convolution inequality, the following Lp-Lq estimates
for the operator etΔ can be easily proved.

Lemma A.1. Let 1 ≤ q ≤ p ≤ ∞ and f ∈ Lp(Rd). Then

1. ‖etΔf‖Lp(Rd) ≤ C t−
d
2 (1/q−1/p) ‖f‖Lq(Rd);

2. ‖∇(
etΔf

)‖Lp(Rd) ≤ C t−
d
2 (1/q−1/p)−1/2 ‖f‖Lq(Rd).

Using classical analysis on convolution kernel [29], we may obtain the following
useful estimates.

Lemma A.2. Let ρ be given and let S be a solution, for τ ∈ {0, 1} and α ≥ 0, to

τ ∂tS −ΔS + αS = ρ, S(0, x) = S0(x) if τ = 1.

Then there is a constant C > 0 such that the following hold :

(1) When α > 0, then

(A.2)
‖∇S(t)‖Lp(Rd) ≤ C ‖ρ(t)‖Lq(Rd), for τ = 0;

‖∇S(t)‖Lp(Rd) ≤ e−αt‖∇S0‖Lp(Rd) + C Γ(β) sup
0<s<t

‖ρ(s)‖Lq(Rd), for τ = 1,

where 1 ≤ q ≤ p ≤ ∞, 1/q < 1/p+ 1/d and β = 1/2− d
2 (1/q − 1/p) > 0, and Γ is

the gamma function.

(2) When α = 0, then

(A.3) ‖∇S(t)‖Lp(Rd) ≤ C ‖ρ(t)‖Lq(Rd),
1

q
=

1

p
+

1

d
, for τ = 0;

and

(A.4) ‖∇S(t)‖Lp(Rd) ≤ ‖∇S0‖Lp(Rd) + C tβ sup
0<s<t

‖ρ(s)‖Lq(Rd), for τ = 1;

where 1 ≤ q ≤ p ≤ ∞, 1/q < 1/p+ 1/d and β = 1/2− d
2 (1/q − 1/p) > 0.

Lemma A.3 (Singular Gronwall’s inequality [32]). Suppose T > 0, b ≥ 0 and
β > 0. Let a(t) and f(t) be two nonnegative functions locally integrable on 0 ≤ t <
T < ∞ with

f(t) ≤ a(t) + b

∫ t

0

(t− s)β−1f(s) ds, 0 ≤ t < T.

Then there is a constant Cβ depending on β such that

f(t) ≤ a(t) + bΓ(β)Cβ

∫ t

0

(t− s)β−1a(s) ds, 0 ≤ t < T.
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