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We consider the attraction–repulsion chemotaxis system
8><
>:

ut = ∆u −∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ Ω, t > 0,

τvt = ∆v + αu − βv, x ∈ Ω, t > 0,

τwt = ∆w + γu − δw, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions in a bounded domain Ω ⊂ R
n with

smooth boundary, where χ ≥ 0, ξ ≥ 0, α > 0, β > 0, γ > 0, δ > 0 and τ = 0, 1. We
study the global solvability, boundedness, blow-up, existence of non-trivial stationary
solutions and asymptotic behavior of the system for various ranges of parameter val-
ues. Particularly, we prove that the system with τ = 0 is globally well-posed in high
dimensions if repulsion prevails over attraction in the sense that ξγ − χα > 0, and that
the system with τ = 1 is globally well-posed in two dimensions if repulsion dominates
over attraction in the sense that ξγ −χα > 0 and β = δ. Hence our results confirm that
the attraction–repulsion is a plausible mechanism to regularize the classical Keller–Segel
model whose solution may blow up in higher dimensions.

Keywords: Chemotaxis; attraction–repulsion; boundedness; stationary solutions; conver-
gence; entropy inequality.
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1. Introduction

Chemotaxis describes oriented movement of cells along the concentration gradient
of a chemical signal produced by the cells. A well-known chemotaxis model was ini-
tially proposed by Keller and Segel27 and has been extensively studied in the past
four decades from various perspectives.19,22,44,18,25,26,51,53 Among the theoretical
results, the blow-up of solutions in finite time is a striking indication of the spon-
taneous formation of cell aggregates. However, in many biological processes, cells
often interact with a combination of repulsive and attractive signaling chemicals to
produce various interesting biological patterns.8,12,16,39 This work aims to under-
stand the competition between attractive and repulsive signals, and we consider the
following dimensionless attraction–repulsion chemotaxis system




ut = ∆u−∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ Ω, t > 0,

τvt = ∆v + αu − βv, x ∈ Ω, t > 0,

τwt = ∆w + γu− δw, x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τv(x, 0) = τv0(x),

τw(x, 0) = τw0(x), x ∈ Ω,

(1.1)

where u = u(x, t) denotes the cell density, v = v(x, t) represents the concentration
of an attractive cue, and w = w(x, t) is the concentration of a repulsive signal;
χ ≥ 0, ξ ≥ 0, α > 0, β > 0, γ > 0, δ > 0 and τ = 0, 1 are parameters. The
first cross-diffusive (i.e. chemotactic) term in the first equation implies that the cell
movement is directed toward the increasing chemoattractant concentration, whereas
the second cross-diffusive term indicates that cells move away from the increasing
chemorepellent concentration. The parameters χ and ξ measure the strength of the
attraction and repulsion, respectively. The second and third equations in (1.1) state
that chemoattractant and chemorepellent are released by cells and undergo decay.

The attraction–repulsion chemotaxis model (1.1) with τ = 1 was proposed in
Ref. 33 to describe the aggregation of microglia observed in Alzheimer’s disease
and in Ref. 39 to address the quorum effect in the chemotactic process. In their
approaches, it is assumed that there exists a secondary chemical, denoted by w,
which behaves as a chemorepellent to mediate the cell’s chemotactic response to
the chemoattractant v accordingly. In general chemicals diffuse much faster than
cells since the chemical molecules are much smaller than cells in size. Hence the
attraction–repulsion chemotaxis model (1.1) can be approximated by setting τ = 0.
Such quasi-steady-state approximation was extensively employed in the past to
study the classical chemotaxis model without repulsive signal (cf. Refs. 26, 40
and 46).

In the absence of chemorepulsive chemical (i.e. chemorepellent), namely ξ = 0,
w is decoupled from the system (1.1) and first two equations of (1.1) comprises a
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classical Keller–Segel model


ut = ∆u−∇ · (χu∇v), x ∈ Ω, t > 0,

τvt = ∆v + αu − βv, x ∈ Ω, t > 0,
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τv(x, 0) = τv0(x), x ∈ Ω,

(1.2)

whose solution behavior has been extensively studied by various researchers (see
Ref. 22 for detailed results). In summary, the solution of system (1.2) never blows up
when n = 1 (see Ref. 38) whereas there is finite-time or infinite-time blow-up when
n ≥ 3 (see Ref. 53). The case n = 2 is a borderline. Nagai35 showed that when Ω is a
ball in R

2, the radial solution of (1.2) with τ = 0 blows up in finite time at the origin
if the initial mass

∫
Ω
u0(x) > 8π/(χα) and

∫
Ω
u0(x)|x|2 is sufficiently small. For a

general domain Ω, Nagai36 further showed that finite-time blow-up of non-radial
solutions occurs under the condition

∫
Ω
u0(x)|x−y|2dx is sufficiently small provided

that
∫
Ω
u0(x) > 8π/(χα) if y is an interior point of Ω or

∫
Ω
u0(x) > 4π/(χα) if y

is on ∂Ω. If n = 2 and the initial mass
∫
Ω
u0(x) is large in some sense, then the

solution of (1.2) with τ = 1 blows up either in finite or in infinite time provided Ω
is simply connected;24 in the particular framework of radially symmetric solution
in a planar disk, solutions may even blow up in finite time.18

Since the blow-up is an extreme case, a large amount of efforts were devoted
to modifying the classical Keller–Segel model (1.2) such that the modified models
allow global bounded solutions and hence generate pattern formation which are
applicable in reality. These modified models are referred to as regularized models.
The existing regularized models were extensively reviewed by Hillen and Painter19 in
which the attraction–repulsion chemotaxis model was, however, not included. The
attraction–repulsions mechanism was proposed previously in Ref. 39, but has not
been mathematically confirmed. Recently, Liu and Wang32 studied the global exis-
tence of solutions and non-trivial steady states of the attraction–repulsion model
(1.1) with τ = 1 in one dimension. However, the result of Liu and Wang32 does
not exclude the possibility of blow-up at infinity time. More importantly the clas-
sical Keller–Segel intrinsically does not blow up in one dimension either. Hence
to confirm whether or not the attraction–repulsion mechanism may regularize the
classical Keller–Segel model, it is crucial to prove whether the blow-up occurs in two
or higher dimensions, which is the purpose of present paper. We shall show that
attraction–repulsion chemotaxis model (1.1) with τ = 0 has a unique uniformly
bounded global solution in high dimensions if the repulsion prevails over attraction
in the sense that ξγ−χα > 0, and that the attraction–repulsion chemotaxis model
(1.1) with τ = 1 in two dimensions has a unique uniformly bounded global classical
solution if the repulsion prevails over attraction in the sense ξγ−χα > 0 and β = δ.
Hence our results confirm that the attraction–repulsion chemotaxis model can pre-
vent blow-up if the repulsion is strong enough. Therefore the attraction–repulsion
mechanism may regularize the classical Keller–Segel model. We should mention that
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the global existence of the attraction–repulsion chemotaxis model (1.1) has been
previously attempted in Ref. 20 without giving definite answer. In this paper, we
give the affirmative results not only on the global existence, but also on the blow-up,
boundedness, stationary solutions and large-time behavior of solutions. A number
of mathematical techniques, such as Moser iteration, Lyapunov functional, energy
estimates, maximum principle and variable transformations, will be employed to
derive our results. We should also note that the flux-limited chemotaxis model
recently proposed by Bellomo et al.4 might be regarded as a regularized model of
the classical Keller–Segel model (1.2) with τ = 1, since the diffusion and chemotaxis
fluxes of the population are both uniformly bounded. However, the mathematical
analysis of the model in Ref. 4 is very challenging due to degeneracy and strong
nonlinearity.

We should mention a previous mathematical work10 on a parabolic–parabolic
repulsion chemotaxis model. For the space dimension n = 2, the authors in Ref. 10
asserted the global existence of smooth solutions and the convergence to steady
states based on a Lyapunov functional approach; for n = 3, 4, they proved global
existence of weak solutions. Before concluding this section, we want to mention
some mathematical works related to chemotaxis models with multi-species and/or
multi-stimuli (i.e. chemical signals). The works can be classified into three cate-
gories: (i) multi-species and one stimulus, e.g. see Refs. 30, 31 and 13; (ii) one
species and multi-chemicals, e.g. see Refs. 6, 42 and 41; (iii) multi-species and
multi-stimuli, e.g. see Refs. 14 and 56. More references may be found in Ref. 23
where general multi-species chemotaxis models have been proposed, and Lyapunov
functions and steady states of proposed models were discussed. In the case (ii),
most of models considered one species responding to multiple chemoattractive sig-
nals, such as Refs. 6 and 42. The model (1.1) considered in the present paper is
mostly closed to a recent model studied in Ref. 41, where one species reacting two
opposite signals (i.e. one chemoattractant and one chemorepellent). But there are
two significant differences. First, Ref. 41 employed the volume-filling mechanism
to the chemoattractive flux, which is however not included in the present paper.
Second, Ref. 41 studied the traveling wave solutions, but we consider the global and
blow-up solutions here. As far as we know, the results in Ref. 41 and in the present
paper as well as some results in Ref. 23 are only mathematical works considering
the time-dependent solutions of chemotaxis models with multi-species and multi-
stimuli, in contrast to only stationary problems considered in previous works (see
Ref. 23 and references therein). It is also worth pointing out that some numerics
of chemotaxis models with multi-stimuli have been explored in Refs. 42 and 41 to
generate traveling wave solutions.

2. Main Results

Before presenting our main results, we shall introduce some notations. For simplic-
ity, the variable of integration in an integral will be omitted without ambiguity, e.g.
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the integral
∫
Ω
f(x)dx is written as

∫
Ω
f(x). Hereafter, ci denotes a generic constant

which may change from one section to another, where i = 1, 2, 3, . . . .
Our first result is

Theorem 2.1. Suppose that u0(x) ∈W 1,∞(Ω) is a non-negative function. Assume
that

ξγ − χα > 0. (2.1)

Then, for any n ≥ 2, there exists a unique triple (u, v, w) of non-negative bounded
functions belonging to C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)), which solves (1.1) with
τ = 0 classically.

In Theorem 2.1, we need a restriction that ξγ − χα > 0 for the boundedness
of solutions of (1.1) with τ = 0. This restriction is necessary in the sense that if
ξγ − χα < 0, then the solution of (1.1) with τ = 0 might blow up in finite time.
Actually, as a consequence of Nagai’s results in Ref. 36, we will have the following
result.

Proposition 2.2. Let Ω be a bounded domain in R
2 with smooth boundary ∂Ω,

and let x0 ∈ Ω be a fixed point. Assume that

ξγ − χα < 0 and β = δ (2.2)

and that
∫
Ω u0(x) > 8π/(χα− ξγ). If

∫
Ω u0(x)|x−x0|2dx is sufficiently small, then

the solution component u of (1.1) with τ = 0 blows up in finite time.

The existence or non-existence of non-trivial stationary solutions to (1.1) is
mathematically and biologically interesting. In respect of this, we have the following
result.

Proposition 2.3. (1) If ξγ − χα < 0 and β = δ, then for any n ≥ 1, there exist
non-trivial stationary solutions (u, v, w) to (1.1) with γv = αw.

(2) If ξγ − χα ≥ 0 and β = δ, then, for any n ≥ 1, problem (1.1) has only one
trivial stationary solution (u0,

α
β u0,

γ
βu0), where

u0 :=
1
|Ω|

∫
Ω

u0(x). (2.3)

When ξγ − χα > 0, Theorem 2.1 warrantees the global existence and bound-
edness of classical solutions to (1.1) with τ = 0, and Proposition 2.3 asserts that
(1.1) has only one trivial positive stationary solution under an additional assump-
tion that β = δ. The above two results raise the following interesting question:
Can we establish some connection between the global solution and the unique
positive trivial stationary solution? The following proposition will address this
question.
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Proposition 2.4. Let Ω be a bounded domain in R
2 or R

3 with smooth boundary
∂Ω. Assume that

u0(x) ∈W 1,∞(Ω), u0 > 0 in Ω̄ (2.4)

and that

ξγ − χα > 0 and β = δ. (2.5)

Then the global solution (u, v, w) obtained in Theorem 2.1 converges to
(u0,

α
β u0,

γ
βu0) exponentially as t→ +∞.

Remark 2.5. Propositions 2.3 and 2.4 imply that when repulsion dominates over
attraction (in the sense that ξγ − χα > 0), there is no pattern formation since the
solution converges to a constant. This is consistent with the biological intuitions
since the repulsion acts as a diffusion which helps to stabilize the system. However
if attraction dominates over repulsion, non-trivial stationary solutions arise and
pattern formation may be expected.

The above results can be generalized to the full attraction–repulsion chemotaxis
model (1.1) in two dimensions. Precisely, we have the following result.

Proposition 2.6. Let Ω be a bounded domain in R
2 with smooth boundary ∂Ω. In

addition to (2.4) and (2.5), we also assume that

v0(x) ∈W 1,∞(Ω), w0(x) ∈ W 1,∞(Ω), v0 ≥ 0 and w0 ≥ 0 in Ω̄. (2.6)

Then there exists a unique triple (u, v, w) of non-negative bounded functions belong
to C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)) which solves (1.1) with τ = 1 classically.
Moreover, this global solution converges to (u0,

α
β u0,

γ
βu0) exponentially as t→ +∞.

Proposition 2.6 says that if repulsion dominates over attraction in the sense that
ξγ − χα > 0 and β = δ, then (1.1) with τ = 1 admits a unique uniformly bounded
global solution for arbitrarily large initial data u0. However, if β �= δ, we will need
an additional smallness assumption on the initial data u0 for the global solvability
of (1.1) with τ = 1. In this regard, we have the following result.

Theorem 2.7. Let Ω be a bounded domain in R
2 with smooth boundary ∂Ω. In

addition to (2.1), (2.4) and (2.6), we assume that

χ2α2(β − δ)2

2β2(ξγ − χα)
·
∫

Ω

u0(x) ≤ C(Ω), (2.7)

where C(Ω) is some positive constant depending only on Ω. Then there exists
a unique triple (u, v, w) of non-negative functions belong to C0(Ω̄ × [0,∞)) ∩
C2,1(Ω̄ × (0,∞)) which solve (1.1) with τ = 1 classically.

Remark 2.8. It should be stressed that the results of Theorem 2.1 and Proposi-
tions 2.4 and 2.6 can be readily extended to the borderline case:

ξγ − χα = 0 and β = δ. (2.8)
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Indeed, if we set z := ξw − χv, then we obtain from (2.8) and (1.1) that a pair
(u, z) satisfies



ut = ∆u+ ∇ · (u∇z), x ∈ Ω, t > 0,

τzt = ∆z − βz, x ∈ Ω, t > 0,
∂u

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τz(x, 0) = τ(ξw0(x) − χv0(x)), x ∈ Ω.

(2.9)

From the maximum principle and β > 0, we infer that z ≡ 0 for τ = 0. This
in conjunction with (2.9) yields that u actually satisfies a standard heat equation
with the Neumann boundary condition. Hence, Theorem 2.1 and Proposition 2.4
can include the borderline case (2.8). Since the z-equation in (2.9) is decoupled
with the variable u, it is easy to obtain that∫ t

0

∫
Ω

|∇z|4 ≤ C for all t > 0,

for τ = 1 (see Sec. 6 below) and therefore Proposition 2.6 can also include the
borderline case (2.8). For simplicity, we do not particularly address this trivial case
in Theorem 2.1 and Propositions 2.4 and 2.6 and in their proofs.

3. Local Existence and Preliminaries

The local solvability of (1.1) for u0(x) ∈ C0(Ω̄), τv0(x) ∈ W 1,p(Ω) and τw0(x) ∈
W 1,p(Ω) (p > n) can be proved by adapting approaches that are well-established in
the context of classical chemotaxis models (cf. Refs. 9, 11, 25 and 57). However, in
order to unify and simplify the proofs of our local existence for both the case τ = 1
and the case τ = 0, we shall assume that (u0(x), τv0(x), τw0(x)) ∈ (W 1,∞(Ω))3.
The present proof of local existence is inspired by an approach developed in Ref. 47.

Lemma 3.1. Assume that u0 ∈ W 1,∞(Ω), τv0(x) ∈ W 1,∞(Ω) and τw0(x) ∈
W 1,∞(Ω) are non-negative. Then there exist Tmax ∈ (0,∞] and a unique triple
(u, v, w) of non-negative functions from C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax))
solving (1.1) classically in Ω × (0, Tmax). Moreover

if Tmax <∞, then ‖u(·, t)‖L∞(Ω) → ∞ as t↗ Tmax. (3.1)

Proof. We give only the proof for the case τ = 1, because the proof for the case
τ = 0 can be proceeded similarly.

(i) Existence and uniqueness. Define

R := ‖u0‖L∞(Ω) + 1.

With this R and T ∈ (0, 1) to be specified below, in the Banach space

X := C0(Ω̄ × [0, T ]),
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we consider the closed convex set

ST := {u ∈ X | ‖u(·, t)‖L∞(Ω) ≤ R for all t ∈ [0, T ]}

and introduce a mapping Φ : ST �→ ST such that given ũ ∈ ST ,Φ(ũ) = u where u
is the solution to


ut = ∆u+ ∇ · [(−χ∇v + ξ∇w)u], x ∈ Ω, t ∈ (0, T ),
∂u

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(3.2)

with v being the solution of

vt − ∆v + βv = αũ, x ∈ Ω, t ∈ (0, T ),
∂v

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),

v(x, 0) = v0(x), x ∈ Ω

(3.3)

and w defined the solution of

wt − ∆w + δw = γũ, x ∈ Ω, t ∈ (0, T ),
∂w

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),

w(x, 0) = w0(x), x ∈ Ω.

(3.4)

We shall show that for T small enough Φ has a unique fixed point. From the
standard Lp and Schauder theories of linear parabolic equation29 we infer that there
exists a unique solution v(x, t) ∈ C1+θ, 1+θ

2 (Ω × (0, T )) to (3.3) for each θ ∈ (0, 1).
Similarly, there is a unique solution w(x, t) ∈ C1+θ, 1+θ

2 (Ω × (0, T )) to (3.4). Since
(−χ∇v+ξ∇w) ∈ L∞(Ω×(0, T )), and since u0 was assumed to be Hölder continuous
in Ω̄ due to the Sobolev embedding: W 1,∞(Ω) ↪→ Cθ(Ω̄) for each θ ∈ (0, 1) (see
Ref. 17), we may apply Ref. 29 to conclude that there is a unique solution u ∈
Cθ, θ

2 (Ω̄ × [0, T ]) to (3.2) and

‖u‖
Cθ, θ

2 (Ω̄×[0,T ])
≤ K, (3.5)

for some θ ∈ (0, 1) and K > 0, where K depends on ‖∇v‖L∞((0,T ); Cθ(Ω̄))

and ‖∇w‖L∞((0,T ); Cθ(Ω̄)). Since the latter two quantities can be controlled by
‖ũ‖L∞(Ω) ≤ R, it follows that K = K(R). So, we have

‖u(·, t) − u0‖L∞(Ω) ≤ K(R)t
θ
2

and thus

‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +K(R)t
θ
2 .
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From this we deduce that if we fix T = T0 < ( 1
K(R) )

2
θ , then we have

‖u(·, t)‖L∞(Ω) ≤ R := ‖u0‖L∞(Ω) + 1 for all t ∈ [0, T0]. (3.6)

Hence, u ∈ ST and this proves that Φ maps ST into itself. By a straightforward
adaptation of the above reasoning, one can easily deduce that if T is further dimin-
ished then Φ in fact becomes a contraction on ST . For such T we therefore conclude
from the contraction mapping principle17 that there exists a unique u ∈ ST such
that Φ(u) = u.

(ii) Regularity and non-negativity. By u ∈ Cθ, θ
2 (Ω̄ × [0, T ]) and the classical regu-

larity of parabolic equations29 we obtain v(x, t), w(x, t) ∈ C2+θ,1+ θ
2 (Ω̄ × [η, T ]) for

all η ∈ (0, T0]. This in conjunction with the first equation in (1.1) further entails
that

u(x, t) ∈ C2+θ,1+ θ
2 (Ω̄ × [η, T ]) for all η ∈ (0, T0].

The solution may be prolonged in the interval [0, Tmax) with either Tmax = ∞ or
Tmax <∞, where in the latter case

‖u(·, t)‖L∞(Ω) → ∞ as t↗ Tmax.

Finally, the non-negativity of u, v and w follows from the classical maximum prin-
ciple since (u, v, w) is a smooth solution of (1.1).

The following important property on mass can be easily derived.

Lemma 3.2. The solution (u, v, w) of (1.1) satisfies the following properties:

‖u(·, t)‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ (0, Tmax), (3.7)

‖v(·, t)‖L1(Ω) ≤ τ‖v0‖L1(Ω) +
α

β
‖u0‖L1(Ω) for all t ∈ (0, Tmax), (3.8)

‖w(·, t)‖L1(Ω) ≤ τ‖w0‖L1(Ω) +
γ

δ
‖u0‖L1(Ω) for all t ∈ (0, Tmax), (3.9)

where the equalities in (3.8) and (3.9) hold when τ = 0. Moreover, under the addi-
tional assumption that u0 > 0, we have

u > 0 for all x ∈ Ω, t > 0. (3.10)

Proof. Integrating each equation of (1.1) with respect to x ∈ Ω, we get that
d
dt

∫
Ω u ≡ 0, τ d

dt

∫
Ω v + β

∫
Ω v = α

∫
Ω u, and that τ d

dt

∫
Ωw + δ

∫
Ωw = γ

∫
Ω u for

t ∈ (0, Tmax). These yield (3.7)–(3.9). Inequality (3.10) follows from the maximum
principle.

The proofs of our main results (Theorems 2.1 and 2.7) will be based on some
a priori estimates. To derive these estimates, we shall use the Gagliardo–Nirenberg
interpolation inequality. For readers’ convenience, let us recall it15: Let Ω ⊂ R

n
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be a bounded domain with smooth boundary, let l, k be any integers satisfying
0 ≤ l < k, and let 1 ≤ q, r ≤ ∞, and p ∈ R

+, l
k ≤ a ≤ 1 such that

1
p
− l

n
= a

(
1
q
− k

n

)
+ (1 − a)

1
r
. (3.11)

Then, for any u(x) ∈ W k,q(Ω)∩Lr(Ω), there exist two positive constants c1 and c2
depending only on Ω, q, k, r and n such that the following inequality holds:

‖Dlu‖Lp(Ω) ≤ c1‖Dku‖a
Lq(Ω)‖u‖1−a

Lr(Ω) + c2‖u‖Lr(Ω) (3.12)

with the following exception: If 1 < q <∞ and k− l− n
q is a non-negative integer,

then (3.11) holds only for a satisfying l
k ≤ a < 1.

Taking l = 0, k = 1 and q = 2, we infer from (3.12) that for any u(x) ∈
W 1,2(Ω) ∩ Lr(Ω),

‖u‖Lp(Ω) ≤ c1‖∇u‖a
L2(Ω)‖u‖1−a

Lr(Ω) + c2‖u‖Lr(Ω), (3.13)

with a ∈ (0, 1) satisfying

n

p
= a

(
n

2
− 1

)
+
n

r
(1 − a). (3.14)

The Gagliardo–Nirenberg inequality (3.13) will be frequently used in our analysis
below.

We shall also need to use (3.12) involving the second-order derivative of u.
Taking l = 0 and k = 2, we infer from (3.12) that for u ∈W 2,q(Ω) ∩ Lr(Ω),

‖u‖Lp(Ω) ≤ c1‖D2u‖a
Lq(Ω)‖u‖1−a

Lr(Ω) + c2‖u‖Lr(Ω), (3.15)

with a ∈ (0, 1) satisfying

n

p
= a

(
n

q
− 2

)
+
n

r
(1 − a). (3.16)

We shall also need the following variation of the standard Gagliardo–Nirenberg
inequality involving Lr space with r < 1 (see Ref. 37): Let Ω ⊂ R

n be a bounded
domain with smooth boundary, let p > 1 and r ∈ (0, p). Then, for any u(x) ∈
W 1,2(Ω) ∩ Lr(Ω), there exist two positive constants c1 and c2 depending only on
Ω, r and n such that the inequality (3.13) holds, with a ∈ (0, 1) satisfying (3.14).

Finally, we mention that, based on Hölder inequality, Winkler52 also proved a
variation of the standard Gagliardo–Nirenberg inequality involving Lr space with
r < 1 in the whole space R

n.

4. Boundedness for ξγ − χα > 0

The following lemma is the core of the argument concerning global existence and
boundedness.
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Lemma 4.1. Let (2.1) hold. Then, for any p > max(n
2 , 1), there exists a constant

C > 0 such that the solution of (1.1) with τ = 0 satisfies∫
Ω

up ≤ C for all t ∈ (0, Tmax). (4.1)

Proof. Using up−1 as a test function for the first equation in (1.1), integrating by
parts and employing the second and the third equations in (1.1) with τ = 0, we
obtain

1
p

d

dt

∫
Ω

up =
∫

Ω

up−1∆u−
∫

Ω

up−1∇ · (χu∇v) +
∫

Ω

up−1∇ · (ξu∇w)

= −(p− 1)
∫

Ω

up−2|∇u|2 + χ(p− 1)
∫

Ω

up−1∇u · ∇v

− ξ(p− 1)
∫

Ω

up−1∇u · ∇w

= −4(p− 1)
p2

∫
Ω

|∇u p
2 |2 +

χ(p− 1)
p

∫
Ω

∇up · ∇v − ξ(p− 1)
p

∫
Ω

∇up · ∇w

= −4(p− 1)
p2

∫
Ω

|∇u p
2 |2 +

p− 1
p

·
∫

Ω

up(−χ∆v + ξ∆w)

= −4(p− 1)
p2

∫
Ω

|∇u p
2 |2 +

p− 1
p

·
∫

Ω

up[ξδw − (ξγ − χα)u − χβv]

for all t ∈ (0, Tmax). This, along with v ≥ 0, yields

d

dt

∫
Ω

up ≤ −(ξγ − χα)(p− 1)
∫

Ω

up+1 + ξδ(p− 1)
∫

Ω

upw for all t ∈ (0, Tmax).

(4.2)

We need to further estimate the last term in (4.2). By (2.1) and the Young
inequality:

ab ≤ εaq + (εq)−
r
q r−1br for any a, b ≥ 0, ε > 0, q, r > 0,

1
q

+
1
r

= 1,

we see that

ξδ

∫
Ω

upw ≤ ξγ − χα

2
·
∫

Ω

up+1

+ ξδ ·
[

2ξδp
(ξγ − χα)(p+ 1)

]p 1
p+ 1

∫
Ω

wp+1 for all t ∈ (0, Tmax). (4.3)

Collecting (4.2) and (4.3) we obtain

d

dt

∫
Ω

up ≤ − (ξγ − χα)(p− 1)
2

∫
Ω

up+1 + c1

∫
Ω

wp+1 for all t ∈ (0, Tmax), (4.4)

where c1 := ξδ · [ 2ξδp
(ξγ−χα)(p+1) ]

p · p−1
p+1 .
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In the following we will show that
∫
Ωw

p+1 can be controlled by ε
∫
Ω u

p+1 + c

for sufficiently small ε > 0 and some constant c > 0. Noting that w solves

−∆w + δw = γu, x ∈ Ω, t ∈ (0, Tmax),
∂w

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

where δ > 0, and applying the Agmon–Douglis–Nirenberg Lp estimates1,2 on linear
elliptic equations with the (zero) Neumann boundary condition, we find that there
exists some constant c2 > 0 such that

‖w(·, t)‖W 2,p(Ω) ≤ c2‖u(·, t)‖Lp(Ω) for all t ∈ (0, Tmax). (4.5)

We interpolate using the Gagliardo–Nirenberg inequality15 (3.9) and (4.5) to obtain
some constants c3 > 0 and c4 > 0 such that∫

Ω

wp+1 = ‖w‖p+1
Lp+1(Ω)

≤ c3‖D2w‖(p+1)θ
Lp(Ω) ‖w‖(p+1)(1−θ)

L1(Ω) + c3‖w‖p+1
L1(Ω)

≤ c4‖u‖(p+1)θ
Lp(Ω) + c4 for all t ∈ (0, Tmax), (4.6)

where

θ :=
1 − 1

p+1

1 + 2
n − 1

p

=
np2

(p+ 1)[(n+ 2)p− n]
∈ (0, 1)

due to p > n
2 . Furthermore, by p > n

2 again, it is easily checked that

(p+ 1)θ < p. (4.7)

Therefore, we use the Young inequality to further estimate∫
Ω

wp+1 ≤ c4‖u‖(p+1)θ
Lp(Ω) + c4

≤ c4(‖u‖p
Lp(Ω) + 1) + c4

= c4

∫
Ω

up + 2c4

≤ c4

(
ε

∫
Ω

up+1 +
[

p

ε(p+ 1)

]p

· 1
p+ 1

|Ω|
)

+ 2c4

=: εc4
∫

Ω

up+1 + c5(ε) for all t ∈ (0, Tmax). (4.8)

Taking

ε =
(ξγ − χα)(p− 1)

4c1c4
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and inserting (4.8) into (4.4), we obtain

d

dt

∫
Ω

up ≤ − (ξγ − χα)(p− 1)
4

∫
Ω

up+1 + c6 for all t ∈ (0, Tmax), (4.9)

where c6 := c1c5. Now, adding the term
∫
Ω u

p on both sides of (4.9) yields

d

dt

∫
Ω

up +
∫

Ω

up ≤ − (ξγ − χα)(p− 1)
4

∫
Ω

up+1 +
∫

Ω

up + c6 for all t ∈ (0, Tmax).

(4.10)

Again, using the Young inequality we have∫
Ω

up ≤ (ξγ − χα)(p− 1)
4

∫
Ω

up+1 +
[

4p
(ξγ − χα)(p2 − 1)

]p

· 1
p+ 1

|Ω| (4.11)

for all t ∈ (0, Tmax). Combining (4.10) and (4.11) we obtain

d

dt

∫
Ω

up +
∫

Ω

up ≤ c7 for all t ∈ (0, Tmax), (4.12)

where c7 := c6 +[ 4p
(ξγ−χα)(p2−1) ]

p · 1
p+1 |Ω|. This, together with the Gronwall inequal-

ity, yields∫
Ω

up ≤ e−t

∫
Ω

up
0 + c7(1 − e−t) ≤

∫
Ω

up
0 + c7 for all t ∈ (0, Tmax)

and the proof of (4.1) is complete.

We are now in the position to prove Theorem 2.1.

Proof of Theorem 2.1. First, it follows from Lemma 4.1 and the Lp estimate
(4.5) that there exists some c1 > 0 such that

‖w(·, t)‖W 2,p(Ω) ≤ c1 for all t ∈ (0, Tmax). (4.13)

This, along with the Sobolev embedding17: W 2,p(Ω) ↪→ C1
B(Ω) := {u ∈ C1(Ω) |

Du ∈ L∞(Ω)} if p > n, yields some c2 > 0 such that

‖∇w(·, t)‖L∞(Ω) ≤ c2 for all t ∈ (0, Tmax). (4.14)

Similarly, we can obtain some c3 > 0 such that

‖∇v(·, t)‖L∞(Ω) ≤ c3 for all t ∈ (0, Tmax). (4.15)

Next, using up−1 as a test function for the first equation in (1.1), integrating over
Ω, noting (4.14) and (4.15) and applying the Cauchy–Schwarz inequality, we obtain

1
p

d

dt

∫
Ω

up = −4(p− 1)
p2

∫
Ω

|∇u p
2 |2 + (p− 1)

∫
Ω

up−1∇u · (χ∇v − ξ∇w)

≤ −4(p− 1)
p2

∫
Ω

|∇u p
2 |2 + (p− 1)(χc3 + ξc2)

∫
Ω

up−1|∇u|
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= −4(p− 1)
p2

∫
Ω

|∇u p
2 |2 + (p− 1)(χc3 + ξc2) · 2

p

∫
Ω

u
p
2 · |∇u p

2 |

≤ −4(p− 1)
p2

∫
Ω

|∇u p
2 |2 + (χc3+ ξc2) · 2(p− 1)

p

(
1

(χc3 + ξc2)p

∫
Ω

|∇u p
2 |2

+
(χc3 + ξc2)p

4

∫
Ω

up

)

= −2(p− 1)
p2

∫
Ω

|∇u p
2 |2 +

(χc3 + ξc2)2

2
(p− 1)

∫
Ω

up (4.16)

for all t ∈ (0, Tmax), where c2, c3 and in what follows ci (i ≥ 4) are constants being
independent of p. This further yields

d

dt

∫
Ω

up + p(p− 1)
∫

Ω

up ≤ −2(p− 1)
p2

∫
Ω

|∇u p
2 |2 + c4p(p− 1)

∫
Ω

up (4.17)

for all t ∈ (0, Tmax) and for all p ≥ 2, where c4 := 1 + (χc3+ξc2)
2

2 . Then, it follows
from (4.17) and the well-known Moser–Alikakos iteration procedure (cf. Ref. 3 or
Ref. 45) that there exists a constant c > 0 such that

‖u(·, t)‖L∞(Ω) ≤ c for all t ∈ (0, Tmax). (4.18)

For completeness, we give the details of the proof of (4.18) here. In fact, we shall
show that the last term on the right-hand side of (4.17) can be controlled by
ε
∫
Ω
|∇u p

2 |2 and (
∫
Ω
u

p
2 )2 for some small ε > 0. To this end, we need the following

interpolation inequality29: For any U ∈W 1,2(Ω),

‖U − Ū‖2
L2(Ω) ≤ c5‖∇U‖2b

L2(Ω)‖U‖2(1−b)
L1(Ω) ,

where Ū = 1
|Ω|

∫
Ω
U , b = n

n+2 , and c5 is a constant depending only on n and Ω. This,

along with Young’s inequality (yz ≤ εyp + cε−
q
p zq, y, z > 0, p, q > 0, 1

p + 1
q = 1),

entails that

‖U‖2
L2(Ω) ≤ ε‖∇U‖2

L2(Ω) + c6(1 + ε−
n
2 )‖U‖2

L1(Ω) for any ε > 0, (4.19)

where c6 > 0 depends on n and Ω, but is independent of ε. Applying interpolation
inequality (4.19) with U = u

p
2 and ε = 2

p2c4
, we obtain

c4p(p− 1)
∫

Ω

up ≤ 2(p− 1)
p

∫
Ω

|∇u p
2 |2 + c7p(p− 1)(1 + pn)

(∫
Ω

u
p
2

)2

, (4.20)

where c7 := c4 max{1, ( c4
2 )

n
2 }. Inserting (4.20) into (4.17) and noting 1 + pn ≤

(1 + p)n, we obtain

d

dt

∫
Ω

up + p(p− 1)
∫

Ω

up ≤ c7p(p− 1)(1 + p)n

(∫
Ω

u
p
2

)2

. (4.21)
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Thus,

d

dt

[
ep(p−1)t

∫
Ω

up

]
≤ c7e

p(p−1)tp(p− 1)(1 + p)n

(∫
Ω

u
p
2

)2

. (4.22)

Integrating (4.22) over the time interval [0, t] for 0 < t < Tmax, we obtain

∫
Ω

up(x, t) ≤
∫

Ω

up
0(x) + c7(1 + p)n sup

0≤t≤Tmax

(∫
Ω

u
p
2 (x, t)

)2

. (4.23)

Define

K(p) := max

{
‖u0‖L∞(Ω), sup

0≤t≤Tmax

(∫
Ω

up(x, t)
) 1

p

}
.

Then, (4.23) entails

K(p) ≤ [c8(1 + p)n]
1
pK

(p
2

)
for all p ≥ 2, (4.24)

where c8 := |Ω| + c7. Taking p = 2j, j = 1, 2, . . . , one obtains

K(2j) ≤ c2
−j

8 (1 + 2j)2
−jnK(2j−1)

...

≤ c2
−j+···+2−1

8 (1 + 2j)2
−jn · · · (1 + 2)2

−1nK(1)

≤ c8[2j2−jn(2−j + 1)2
−jn] · · · [22−1n(2−1 + 1)2

−1n]K(1)

≤ c82[j2−j+(j−1)2−(j−1)+···+2−1]n · 2(2−j+2−(j−1)+···+2−1)nK(1)

≤ c823nK(1).

Letting j → ∞ and using (3.7), we finally conclude that

‖u(·, t)‖L∞(Ω) ≤ c823nK(1) ≤ c823n max{‖u0‖L∞(Ω), ‖u0‖L1(Ω)} ≤ c.

This proves (4.18). Finally, the assertion of Theorem 2.1 is an immediate conse-
quence of (4.18), Lemma 3.1 and the extensibility criterion therein.

Next, we prove Proposition 2.2.

Proof of Proposition 2.2. Introducing the following scalings

t̃ = βt, x̃ =
√
βx,

setting

z := χv − ξw
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and using (2.2), we obtain from (1.1) with τ = 0 that


ut = ∆u−∇ · (u∇z), x ∈ Ω, t > 0,

0 = ∆z − z +
χα− ξγ

β
u, x ∈ Ω, t > 0,

∂u

∂ν
=
∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(4.25)

where the tildes have been dropped without confusion. Noticing that χα− ξγ > 0
and the scaling x̃ =

√
βx, then the assertion of Proposition 2.2 is an immediate

consequence of Ref. 36 applied to system (4.25).

Since the finite-time blow-up is a very important issue in chemotaxis, let us
recall the main ideas of the proof in Ref. 36, which is based on a so-called moment
method.

We divide the proof into four steps.

Step 1. We choose an appropriate weight function Ψ(x) for a moment of u.
Let 0 < r1 < r2 < dist(x0, ∂Ω), where dist(x0, ∂Ω) is the distance between x0

and ∂Ω. We define the function ψ ∈ C1([0,∞)) ∩W 2,∞((0,∞)) by

ψ(r) =



r2, if 0 ≤ r ≤ r1,

a1r
2 + a2r + a3, if r1 ≤ r ≤ r2,

r1r2, if r > r2,

(4.26)

where

a1 = − r1
r2 − r1

, a2 =
2r1r2
r2 − r1

, a3 = − r21r2
r2 − r1

.

Next we define Ψ ∈ C1(R2) ∩W 2,∞(R2) by

Ψ(x) = ψ(|x|).
Then one can check that Ψ(x) has the following properties (cf. Ref. 36):

|∇Ψ(x)| ≤ 2(Ψ(x))
1
2 , (4.27)

|∆Ψ(x)| ≤ 4, (4.28)

{∇Ψ(x) −∇Ψ(y)} · ∇N(x− y) = − 1
π

for (x, y) ∈ B1 ×B1, (4.29)

{∇Ψ(x) −∇Ψ(y)} · ∇N(x− y) ≤ r1
π(r2 − r1)

for (x, y) /∈ B1 ×B1, (4.30)

∂Ψ(x)
∂ν

= 0 on ∂Ω, (4.31)

where Bj := {x ∈ R
2 : |x| < rj} for j = 1, 2 and N(x− y) := − 1

2π ln |x− y|.
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Step 2. We derive a basic integral inequality.
Multiplying the first equation in (4.25) by Ψ and integrating over Ω, we obtain

d

dt

∫
Ω

u(x, t)Ψ(x)dx =
∫

Ω

u(x, t)∆Ψ(x)dx +
∫

Ω

u(x, t)∇Ψ(x) · ∇z(x, t)dx.

This, in conjunction with (4.28) and
∫
Ω
u(x, t)dx =

∫
Ω
u0dx, entails that

d

dt

∫
Ω

u(x, t)Ψ(x)dx ≤ 4
∫

Ω

u0dx+
∫

Ω

u(x, t)∇Ψ(x) · ∇z(x, t)dx. (4.32)

Step 3. We derive a moment differential inequality.
The moment of u is defined by

MΨ(t) :=
∫

Ω

u(x, t)Ψ(x)dx.

The crucial technical ingredient is to estimate the last integral in (4.32). To this
end, we note that z solves a Poisson equation: −∆z = −z+ σu, where σ := χα−ξγ

β ,
and therefore it has an integral representation with an integrated function involv-
ing u, z and a Green function G(x, t) of −∆ on a ball with zero Dirichlet boundary
conditions (here we need to introduce a cutoff function on the ball; cf. Ref. 36 for
details). Making full use of this fact, recalling (4.27)–(4.30) and using the sym-
metry properties of some related integral, one can estimate properly the integral∫
Ω
u(x, t)∇Ψ(x) · ∇z(x, t)dx to obtain that∫
Ω

u(x, t)∇Ψ(x) · ∇z(x, t)dx ≤ − σ

2π

(∫
Ω

u0dx

)2

+ c1

(∫
Ω

u0dx

)
·
(∫

Ω

u(x, t)Ψ(x)dx
)

+ c2

(∫
Ω

u0dx

) 3
2

·
(∫

Ω

u(x, t)Ψ(x)dx
) 1

2

, (4.33)

for some c1 > 0 and c2 > 0. Inserting (4.33) into (4.32) and recalling the definition
of MΨ(t) we obtain

d

dt
MΨ(t) ≤ H(MΨ(t)), (4.34)

where H(s) is the continuous function on [0,∞) defined by

H(s) :=
σ

2π

(∫
Ω

u0dx

) (
8π
σ

−
∫

Ω

u0dx

)
+ c1

(∫
Ω

u0dx

)
· s

+ c2

(∫
Ω

u0dx

) 3
2

· s 1
2 . (4.35)

Step 4. We prove the finite-time blow-up.
It seems that there was a gap in the original proof in Ref. 36 in this step. So we

provide here more details to fill this gap.
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We note that

H(0) =
σ

2π

(∫
Ω

u0dx

) (
8π
σ

−
∫

Ω

u0dx

)
< 0 (4.36)

under the assumption that
∫
Ω u0(x)dx > 8π

σ . For any given 0 ≤ ε < 1
4 , if we take

r1 = ε and r2 = 2ε, then a straightforward calculation yields

a1 = −1, a2 = 4ε, a3 = −2ε2.

This, along with (4.26) and the definition of Ψ(x), entails

0 ≤ Ψ(x) ≤ 5ε2. (4.37)

For this Ψ(x), it is easily checked that

0 ≤MΨ(0) =
∫

Ω

u(x, 0)Ψ(x)dx ≤ 5ε2
∫

Ω

u0(x)dx. (4.38)

From (4.38), (4.36) and the continuity of the function H(s), we infer that if we take
ε > 0 sufficiently small, then we have

H(MΨ(0)) < 0. (4.39)

By this, (4.34) and the fact that H(s) is increasing on [0,∞), we assert that the
solution of (4.25) must blow up in a finite time.

In fact, suppose, on the contrary, that the solution (u, z) of (4.25) exists for all
t > 0. Then, we easily derive from (4.39), (4.34) and the monotonicity of H(s) that

H(MΨ(t)) < 0 for all t > 0 (4.40)

and thus

d

dt
MΨ(t) < H(MΨ(t)) < 0 for all t > 0.

Hence,

MΨ(t) ≤MΨ(0) for all t > 0. (4.41)

From this, (4.34) and the monotonicity of H(s) we find that

MΨ(t) ≤ MΨ(0) +
∫ t

0

H(MΨ(s))ds

≤ MΨ(0) +
∫ t

0

H(MΨ(0))ds

= MΨ(0) +H(MΨ(0)) · t→ −∞ as t→ ∞,

thanks to (4.39), a contradiction to the fact that MΨ(t) =
∫
Ω u(x, t)Ψ(x)dx ≥ 0.
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5. Stationary Solutions and Convergence

In this section we assume β = δ and begin with studying the stationary solutions
of system (1.1). For readability, we introduce the following scalings

ṽ =
β

α
v, w̃ =

β

γ
w, t̃ = βt, x̃ =

√
βx, χv =

χα

β
, χw =

ξγ

β
. (5.1)

Substitute them into system (1.1) and dropping the tildes for convenience, we obtain


ut = ∆u−∇ · (χvu∇v) + ∇ · (χwu∇w), x ∈ Ω, t > 0,

τvt = ∆v + u− v, x ∈ Ω, t > 0,

τwt = ∆w + u− w, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τv(x, 0) = τv0(x), τw(x, 0) = τw0(x), x ∈ Ω,

whose stationary problem is


0 = ∆u−∇ · (χvu∇v) + ∇ · (χwu∇w), x ∈ Ω,

0 = ∆v + u− v, x ∈ Ω,

0 = ∆w + u− w, x ∈ Ω,
∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω.

(5.2)

We are now in the position to prove Proposition 2.3.

Proof of Proposition 2.3. Solving the first equation of (5.2) subject to the Neu-
mann boundary conditions gives

u = λ exp(χvv − χww), (5.3)

where λ > 0 is a constant of integration satisfying

λ =

∫
Ω
udx∫

Ω
eχvv−χwwdx

. (5.4)

Let φ = v − w. It then follows from (5.2) that


∆φ− φ = 0, x ∈ Ω,
∂φ

∂ν
= 0, x ∈ ∂Ω.

(5.5)

By the maximum principle, one infers that

φ ≡ 0 for all x ∈ Ω,

which indicates that

v(x) = w(x) for all x ∈ Ω. (5.6)
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Hence it follows from (5.3) that

u = λe(χv−χw)w. (5.7)

Substituting (5.7) into the third equation of (5.2) yields


∆w − w + λeηw = 0, x ∈ Ω,
∂w

∂ν
= 0, x ∈ ∂Ω,

(5.8)

where

η := χv − χw =
χα− ξγ

β
.

We have three cases to proceed as below:

Case 1: η > 0. For this case, the existence of non-trivial radially symmetric solu-
tions for problem (5.8) in Ω ⊂ R

n has been shown in Ref. 5. The existence of
non-trivial non-radial solutions of (5.8) for Ω ⊂ R

2 were proved in Refs. 43, 21
and 50 for λη > 4π and for λη < 4π in Ref. 21.

Case 2: η = 0. In this case, it follows from the maximum principle that problem
(5.8) has only trivial solution w = λ. Hence by (5.5) and (5.7), we have u = v =
w = λ. From the cell mass conservation (3.7), we immediately derive that λ = ū0

and thus u = v = w = ū0. In terms of the original variables in the model (1.1), we
have u = ū0, v = α

β ū0 and w = γ
β ū0 by using (5.1).

Case 3: η < 0. We claim in this case that problem (5.8) has only one trivial
solution. In fact, in this case we infer from (5.2) and v(x) = w(x) that



0 = ∆u + ∇ · (κu∇v), x ∈ Ω,

0 = ∆v + u− v, x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
, x ∈ ∂Ω,

(5.9)

where κ := −η > 0. Therefore, we conclude from Ref. 10 that (5.9) has only one
trivial solution. The proof in Ref. 10 was based on a Lyapunov functional along
with the Jensen, Sobolev, Poincaré and Hölder inequalities. Here we would like to
give an alternative simpler proof. Our proof easily follows from two steps as follows.

Step 1. Existence. Since f(w) := w is continuous and increasing in w ∈ [0,∞) with
f(0) = 0 and limw→+∞ f(w) = +∞, and g(w) := λeηw is continuous and decreasing
in w ∈ [0,∞) with g(0) = λ > 0 and limw→+∞ g(w) = 0 due to η < 0, we infer
that problem (5.8) has one trivial positive solution w∗ which solves equation

w∗ = λeηw∗
. (5.10)



November 5, 2012 6:24 WSPC/103-M3AS 1250044

Competing Effects of Attraction vs. Repulsion in Chemotaxis 21

Step 2. Uniqueness. Suppose that w1 and w2 are two solutions of (5.8). By sim-
ple calculation and the Lagrange intermediate value theorem: λeηw1 − λeηw2 =
ληeηw̃(w1 − w2) for some w̃ being between w1 and w2, we obtain


∆(w1 − w2) − h(x)(w1 − w2) = 0, x ∈ Ω,

∂(w1 − w2)
∂ν

= 0, x ∈ ∂Ω,
(5.11)

where

h(x) := 1 − ληeηw̃(x).

Since λ > 0 and η < 0, we find that

h(x) > 0. (5.12)

Hence, we can apply the maximum principle to conclude from (5.11) and (5.12) that
w1 − w2 ≡ 0. Hence (5.8) has only a trivial (i.e. constant) solution w∗ satisfying
(5.10). Now we explicitly derive this solution. Indeed by (5.5), (5.7) and (5.10), we
have u = v = w = w∗. Due to the preservation of cell mass, see (3.7), we have
w∗ = ū0 and hence u = v = w = ū0. Returning v and w back to the original ones
using (5.1), we complete the proof.

Throughout the rest of this section we assume that Ω is a bounded domain in
R

2 or R
3 with smooth boundary ∂Ω. Under the assumption that ξγ − χα > 0,

Theorem 2.1 asserts the existence of global bounded classical solution to (1.1) with
τ = 0. In the remainder of this section we study the asymptotic behavior of solutions
to (1.1) with τ = 0 under an additional assumption that β = δ. To this end, we set

s := ξw − χv

and obtain from (1.1) with τ = 0 that


ut = ∆u+ ∇ · (u∇s), x ∈ Ω, t > 0,

0 = ∆s+ (ξγ − χα)u − βs, x ∈ Ω, t > 0,

∂u

∂ν
=
∂s

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(5.13)

We are now in the position to prove Proposition 2.4.

Proof of Proposition 2.4. Noting ξγ−χα > 0, we find that (5.13) is a parabolic–
elliptic repulsive chemotaxis model. Our Theorem 2.1 has asserted that no blow-up
can take place. Furthermore, it was proved in Ref. 34 that the global solutions of
(5.13) converge to the steady state exponentially. This fact in conjunction with
Proposition 2.3 yields that there exist some constants µ > 0 and c > 0 such that

‖u(·, t) − u0‖L∞(Ω) ≤ ce−µt for all t > 0. (5.14)
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Next, from the second equation in (1.1) with τ = 0 we infer that ψ(x, t) := v(x, t)−
α
β u0 satisfies 


−∆ψ + βψ = α(u− u0), x ∈ Ω, t > 0,

∂ψ

∂ν
= 0, x ∈ ∂Ω, t > 0.

(5.15)

Upon the application of the elliptic maximum principle17 and (5.14), we obtain
from (5.15) that∥∥∥∥v(x, t) − α

β
u0

∥∥∥∥
L∞(Ω)

= ‖ψ‖L∞(Ω) ≤ α

β
‖u(·, t) − u0‖L∞(Ω)

≤ α

β
ce−µt for all t > 0.

Similarly, we can prove the convergence of w.

6. Extension to the Two-Dimensional Full Model

In this section we consider the attraction–repulsion chemotaxis model (1.1) with
τ = 1 in two dimensions and aim to prove Proposition 2.6 and Theorem 2.7. For
this purpose, we set

s := ξw − χv

and obtain from (1.1) with τ = 1 and assumption β = δ in (2.5) that


ut = ∆u+ ∇ · (u∇s), x ∈ Ω, t > 0,

st = ∆s+ (ξγ − χα)u − βs, x ∈ Ω, t > 0,

∂u

∂ν
=
∂s

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), s(x, 0) = ξw0(x) − χv0(x) := s0(x), x ∈ Ω.

(6.1)

We are now in the position to prove Proposition 2.6.

Proof of Proposition 2.6. Noting ξγ − χα > 0, we find that (6.1) is a repulsion
chemotaxis model which is closely related to a model studied in Ref. 10. However,
we should emphasize that the initial data s0(x) := ξw0(x) − χv0(x) might be neg-
ative for our present setting. Luckily, the analysis in Ref. 10 strongly depends on a
Lyapunov function

F (u, s) :=
∫

Ω

(
u lnu+

|∇s|2
2β

)

and its initial value F (u0, s0), and the latter is independent of the sign of s0(x).
Hence, we can refer to known results10 to conclude that the solutions (u, s) of (6.1)



November 5, 2012 6:24 WSPC/103-M3AS 1250044

Competing Effects of Attraction vs. Repulsion in Chemotaxis 23

globally exist and they converge to the steady state exponentially. This fact in
conjunction with Proposition 2.3 yields that there exists some constants µ > 0 and
c1 > 0 such that

‖u(·, t) − u0‖L∞(Ω) ≤ c1e
−µt for all t > 0. (6.2)

Let us recall the main ideas of the proof of convergence in Ref. 10. We divide the
proof into four steps.

Step 1. We introduce a Lyapunov functional and derive a functional identity.
Introducing the Lyapunov functional

G(u, s) :=
∫

Ω

u ln
u

ū
+

1
2β

∫
Ω

|∇s|2,

where ū := 1
|Ω|

∫
Ω
u = 1

|Ω|
∫
Ω
u0 = ū0 thanks to (3.7), we easily check that (cf.

Ref. 10)

d

dt
G(u(t), s(t)) = −D(u(t), s(t)), (6.3)

where

D(u, s) :=
∫

Ω

|∇u|2
u

+
1
β

∫
Ω

|∆s|2 +
ξγ − χα

β

∫
Ω

|∇s|2.

Step 2. We chain D(u, s) to G(u, s).
Applying the preliminary inequality

r ln r + r − 1 ≤ (r − 1)2 for any r ≥ 0,

with r = u
ū and using the Poincaré and Hölder inequalities, we can obtain some

c0 > 0 such that (cf. Ref. 10)∫
Ω

u ln
u

ū
≤ c0

∫
Ω

|∇u|2
u

and thus

G(u, s) ≤ 1
2µ
D(u, s) for some constant µ > 0. (6.4)

Step 3. We prove the L1-convergence of u.
Combining (6.3) and (6.4), we get

d

dt
G(u(t), s(t)) ≤ −2µG(u(t), s(t)) (6.5)

and thus

G(u(t), s(t)) ≤ G(u0, s0)e−2µt.
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In particular, we have ∫
Ω

u ln
u

ū
≤ G(u0, s0)e−2µt.

This, along with the Csiszár–Kullback–Pinsker inequality (see, e.g. Ref. 7)

1
2ū

‖u− ū‖2
1 ≤

∫
Ω

u ln
u

ū
,

yields

‖u− ū‖2
1 ≤ 2ū0G(u0, s0)e−2µt. (6.6)

Step 4. We prove (6.2).
The L∞-convergence (6.2) can be proved by (6.6) and the Moser–Alikakos iter-

ation procedure as in the proof of Theorem 2.1.
Next, from the second equation in (1.1) with τ = 1 we infer that ψ(x, t) :=

v(x, t) − α
β u0 satisfies



ψt − ∆ψ + βψ = α(u − u0), x ∈ Ω, t > 0,

∂ψ

∂ν
= 0, x ∈ ∂Ω, t > 0,

ψ(x, 0) = v0(x) − α

β
u0 := ψ0(x), x ∈ Ω.

(6.7)

Let ψ∗(t) be the solution of the following initial value problem:{
ψ∗

t + βψ∗ = c1e
−µt, t > 0,

ψ∗(0) = ‖ψ0‖L∞(Ω).
(6.8)

Upon the application of the comparison principle15 we find that ψ∗(t) is a super-
solution of problem (6.7) and thus

ψ(x, t) ≤ ψ∗(t) for all x ∈ Ω, t > 0.

Similarly, we can prove that ψ(x, t) ≥ −ψ∗(t) for all x ∈ Ω, t > 0. Hence, we have

|ψ(x, t)| ≤ ψ∗(t) for all x ∈ Ω, t > 0. (6.9)

On the other hand, straightforward computation shows that there exist some c2 > 0
and c3 > 0 such that

0 ≤ ψ∗(t) ≤ c2(1 + t)e−min{β,µ}t ≤ c3e
−min{β,µ}

2 t for all t > 0. (6.10)

Using this and (6.9) and recalling the definition of ψ, we prove the desired expo-
nential convergence of v. Finally, the convergence of w can be similarly proven.

We note that the proof of the global existence and boundedness in Proposi-
tion 2.6 can also be proved by an approach developed in the proof of Theorem 2.7
as shown below and that the convergence in Proposition 2.6 can also be proved by
a new method recently developed in Ref. 49.
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We next turn to consider the case β �= δ and prove Theorem 2.7. To this end,
we set s := ξw − χv as before and obtain from (1.1) with τ = 1 that



ut = ∆u+ ∇ · (u∇s), x ∈ Ω, t > 0,

st = ∆s− δs+ (ξγ − χα)u+ χ(β − δ)v, x ∈ Ω, t > 0,

vt = ∆v + αu − βv, x ∈ Ω, t > 0,

∂u

∂ν
=
∂s

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), s(x, 0) = ξw0(x) − χv0(x) := s0(x),

v(x, 0) = v0(x), x ∈ Ω.

(6.11)

The proof of Proposition 2.6 is based on a Lyapunov functional approach developed
in Ref. 10. Unfortunately, this method cannot be applied to (1.1) with τ = 1 and
β �= δ since (6.11) does not possess a Lyapunov functional for the case β �= δ.
Therefore, we are motivated to turn to the following entropy-type inequality which
is the cornerstone of our mathematical analysis of (6.11). This type of entropy
inequality also plays an important role in a recent study of a chemotaxis system
with consumption of chemoattractant.49

Lemma 6.1. Let (2.1), (2.4) and (2.6) hold. Then the solution of (6.11) satisfies
the entropy inequality

d

dt

{∫
Ω

u lnu+
1

2(ξγ − χα)

∫
Ω

|∇s|2 +
χ2(β − δ)2

2β(ξγ − χα)

∫
Ω

v2

}

+ 4
∫

Ω

|∇u 1
2 |2 +

1
2(ξγ − χα)

∫
Ω

|∆s|2 ≤ χ2α2(β − δ)2

2β2(ξγ − χα)

∫
Ω

u2 (6.12)

for all t ∈ (0, Tmax).

Proof. First, testing the first equation in (6.11) by lnu and integrating over Ω
yield

d

dt

∫
Ω

u lnu+ 4
∫

Ω

|∇u 1
2 |2 = −

∫
Ω

∇u · ∇s for all t ∈ (0, Tmax). (6.13)

Then, testing the second equation in (6.11) by − 1
ξγ−χα∆s, integrating over Ω and

using the Cauchy’s inequality entail that

1
2(ξγ − χα)

d

dt

∫
Ω

|∇s|2 +
1

ξγ − χα

∫
Ω

|∆s|2 +
δ

ξγ − χα

∫
Ω

|∇s|2

=
∫

Ω

∇u · ∇s− χ(β − δ)
ξγ − χα

∫
Ω

v∆s

≤
∫

Ω

∇u · ∇s+
1

2(ξγ − χα)

∫
Ω

|∆s|2 +
χ2(β − δ)2

2(ξγ − χα)

∫
Ω

v2
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for all t ∈ (0, Tmax). After rearrangement, we obtain

1
2(ξγ − χα)

d

dt

∫
Ω

|∇s|2 +
1

2(ξγ − χα)

∫
Ω

|∆s|2 ≤
∫

Ω

∇u · ∇s+
χ2(β − δ)2

2(ξγ − χα)

∫
Ω

v2

(6.14)

for all t ∈ (0, Tmax). Finally, testing the third equation in (6.11) by v and using the
Cauchy’s inequality yield

1
2
d

dt

∫
Ω

v2 + β

∫
Ω

v2 +
∫

Ω

|∇v|2

= α

∫
Ω

uv ≤ β

2

∫
Ω

v2 +
α2

2β

∫
Ω

u2 for all t ∈ (0, Tmax),

which leads to

χ2(β − δ)2

2β(ξγ − χα)
d

dt

∫
Ω

v2 +
χ2(β − δ)2

2(ξγ − χα)

∫
Ω

v2 ≤ χ2α2(β − δ)2

2β2(ξγ − χα)

∫
Ω

u2 (6.15)

for all t ∈ (0, Tmax). Now, adding (6.13)–(6.15) proves (6.12).

Lemma 6.2. Let (2.1), (2.4), (2.6) and (2.7) hold. Then for each T0 > 0 there
exists C(T ) > 0, which may depend on T := min{T0, Tmax}, such that the solution
of (6.11) satisfies

∫
Ω

|∇s(·, t)|2 ≤ C(T ) for all t ∈ (0, T ) (6.16)

and
∫ t

0

∫
Ω

|∆s|2 ≤ C(T ) for all t ∈ (0, T ). (6.17)

Proof. The proof is based on the entropy inequality (6.12). When n = 2, the
Gagliardo–Nirenberg inequality and (3.7) assert that there is c1(Ω) > 0 such that

∫
Ω

u2 = ‖u 1
2 ‖4

L4(Ω) ≤ c1(Ω)‖∇u 1
2 ‖2

L2(Ω)‖u
1
2 ‖2

L2(Ω) + c1(Ω)‖u 1
2 ‖4

L2(Ω)

= c1(Ω)‖u0‖L1(Ω)‖∇u 1
2 ‖2

L2(Ω) + c1(Ω)‖u0‖2
L1(Ω) (6.18)

for all t ∈ (0, T ). Thus, if ‖u0‖L1(Ω) is sufficiently small such that

χ2α2(β − δ)2

2β2(ξγ − χα)
· c1(Ω)‖u0‖L1(Ω) ≤ 4, (6.19)
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then integrating both sides of (6.12) over (0, t) and using (6.18)–(6.19) we obtain
some c2 > 0 such that

1
2(ξγ − χα)

∫
Ω

|∇s(·, t)|2 +
χ2(β − δ)2

2β(ξγ − χα)

∫
Ω

v2(·, t) +
1

2(ξγ − χα)

∫ t

0

∫
Ω

|∆s|2

≤ 1
2(ξγ − χα)

∫
Ω

|∇s0|2 +
χ2(β − δ)2

2β(ξγ − χα)

∫
Ω

v2
0

+
∫

Ω

u0 lnu0 −
∫

Ω

u lnu+ c2 · T for all t ∈ (0, T ).

Since
∫
Ω
v2(·, t) ≥ 0 for all t ∈ (0, T ) and −u lnu ≤ 1

e for all u > 0, this shows

1
2(ξγ − χα)

∫
Ω

|∇s(·, t)|2 +
1

2(ξγ − χα)

∫ t

0

∫
Ω

|∆s|2

≤ 1
2(ξγ − χα)

∫
Ω

|∇s0|2 +
χ2(β − δ)2

2β(ξγ − χα)

∫
Ω

v2
0

+
∫

Ω

u0 lnu0 +
|Ω|
e

+ c2 · T for all t ∈ (0, T ). (6.20)

Therefore, (6.16)–(6.17) result from (6.20) and ξγ − χα > 0.

Lemma 6.3. Let (2.1), (2.4), (2.6) and (2.7) hold. Then for each T0 > 0 there
exists C(T ) > 0, which may depend on T := min{T0, Tmax}, such that the solution
of (6.11) satisfies the inequality∫ t

0

∫
Ω

|∇s|4 ≤ C(T ) for all t ∈ (0, T ). (6.21)

Proof. When n = 2, the Gagliardo–Nirenberg inequality15 leads to∫
Ω

|∇s|4 = ‖∇s‖4
L4(Ω) ≤ c1‖∆s‖2

L2(Ω) · ‖∇s‖2
L2(Ω) + c1‖∇s‖4

L2(Ω)

≤ c2(T )(‖∆s‖2
L2(Ω) + 1) (6.22)

for some c1 > 0, c2(T ) > 0 and all t ∈ (0, T ), where (6.16) has been used. This
yields (6.21) upon the integration over time interval (0, t] in both sides of (6.22)
and the application of (6.17).

Lemma 6.4. Let (2.1), (2.4), (2.6) and (2.7) hold. Then for any p > 1 and for
each T0 > 0 there exists C(T ) > 0, which may depend on T := min{T0, Tmax}, such
that the solution of (6.11) fulfills the inequality∫

Ω

up(x, t)dx ≤ C(T ) for all t ∈ (0, T ). (6.23)
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Proof. With the estimate (6.21) at hand, (6.23) can be proved with the idea of
Ref. 54. We multiply the first equation in (6.11) by up−1 and apply Young’s inequal-
ity to find c1 > 0 such that

1
p

d

dt

∫
Ω

up +
p− 1

2

∫
Ω

up−2|∇u|2 ≤ c1

∫
Ω

up|∇s|2 for all t ∈ (0, T ). (6.24)

By the Hölder inequality, it follows that∫
Ω

up|∇s|2 ≤
(∫

Ω

u2p

) 1
2

·
(∫

Ω

|∇s|4
) 1

2

.

The Gagliardo–Nirenberg inequality provides c2 > 0 such that(∫
Ω

u2p

) 1
2

= ‖u p
2 ‖2

L4(Ω) ≤ c2(‖∇u
p
2 ‖L2(Ω) · ‖u

p
2 ‖L2(Ω) + ‖u p

2 ‖2
L2(Ω)),

where we have used the fact that the spatial dimension n = 2. Then employing the
idea of Ref. 52, we obtain by the Hölder inequality

‖f‖2
L2 ≤ ‖f‖4b

L4 · ‖f‖
2(1−b)

p

L
2
p

, (6.25)

where

b :=
p− 1
2p− 1

.

Then using (6.25) and the Young inequality, we further find that

‖f‖2
L2 ≤ ε‖f‖2

L4 + c(ε)‖f‖2

L
2
p
.

Setting f := u
p
2 and let ε small such that c2ε < 1, we can find a constant c3 such

that

‖u p
2 ‖2

L4(Ω) ≤ c3

(
‖∇u p

2 ‖L2(Ω) · ‖u
p
2 ‖L2(Ω) + ‖u p

2 ‖2

L
2
p (Ω)

)
.

Since ‖u p
2 ‖

L
2
p (Ω)

= (
∫
Ω u)

p
2 ≡ (

∫
Ω u0)

p
2 , we can pick c4 > 0 such that

c1

∫
Ω

up|∇s|2 ≤ p− 1
2

∫
Ω

up−2|∇u|2 + c4

(∫
Ω

|∇s|4
)
·
(∫

Ω

up + 1
)
.

Let y(t) :=
∫
Ω
up(x, t)dx, t ∈ [0, T ). Then from (6.24), we see that y(t) satisfies the

differential inequality

y′(t) ≤ c5

(∫
Ω

|∇s|4
)
· (y(t) + 1) for all t ∈ (0, T ),

with some c5 > 0. Upon integration we infer that

y(t) + 1 ≤ (y(0) + 1) · ec5
R

t
0

R
Ω |∇s|4 for all t ∈ (0, T ),

whereupon an application of (6.21) completes the proof.

We are now in the position to prove Theorem 2.7.
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Proof of Theorem 2.7. Noting that w solves


wt − ∆w + δw = γu, x ∈ Ω, t ∈ (0, T ),

∂w

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),

w(x, 0) = w0(x), x ∈ Ω,

where δ > 0, using the assumption that w0(x) ∈ W 1,∞(Ω) and the estimate (6.23)
with p > n and applying the solution estimates for the heat equation with zero
Neumann boundary condition (cf. Refs. 28 and 25), we obtain some c1(T ) > 0 such
that

‖∇w‖L∞(Ω) ≤ c1(T ) for all t ∈ (0, T ). (6.26)

Similarly, there exists some c2(T ) > 0 such that

‖∇v‖L∞(Ω) ≤ c2(T ) for all t ∈ (0, T ). (6.27)

With the estimates (6.26) and (6.27) at hand, we then can carry out the Moser–
Alikakos iteration procedure exactly as in the proof of Theorem 2.1 to obtain some
c3(T ) > 0 such that

‖u(·, t)‖L∞(Ω) ≤ c3(T ) for all t ∈ (0, T ). (6.28)

Finally, the assertion of Theorem 2.7 is an immediate consequence of (6.28) and
the extensibility criterion provided by Lemma 3.1.

Before concluding this section we remark that in the proofs of Theorems 2.1
and 2.7, there are two crucial steps. One step is to derive an Lp estimate on u with
p > n. In the derivation of this estimate, we essentially use the standard Gagliardo–
Nirenberg inequalities (3.13) and (3.15) and a variation of (3.13) involving Lr space
with r < 1. Therefore, for readers’ convenience, we recall these inequalities in Sec. 3.
The other step is to establish an L∞ estimate on u by the Moser–Alikakos iteration
procedure. Since we use three times this procedure, we present the details of it in
the proof of Theorem 2.1. Finally, we mention that a generalized Moser–Alikakos
iteration procedure for quasilinear non-uniformly parabolic equations was also given
in Ref. 48.

7. Numerical Illustrations

In this section, we will numerically illustrate the competing effects of chemotactic
attraction and repulsion for the cell movement to explain our analytical results.
Without loss of generality, we consider the model (1.1) with τ = 1 and perform
the numerical simulations in one dimension Ω = (0, 20) with Neumann boundary
conditions. The main purposes of this section include: (i) to show the solution
behaviors and pattern formations of the model (1.1) with and without repulsion;
(ii) to show the difference between strong and weak repulsion. The finite-difference-
based Matlab Pde solvers are employed to perform the numerical computations.
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We first explore the numerical solutions of model (1.1) without repulsion (i.e.
ξ = 0) which is equivalent to the classical model (1.2). Figure 1 shows the numerical
solution profiles u and v (left panel) and pattern formation of cell density u (right
panel), where the initial data are chosen to be a small perturbation of the homoge-
neous steady state. The simulations demonstrate the chemotactic aggregation (i.e.
peak solutions) and merging process of pattern formation, which are characteristic
features of chemotaxis models.19

Then we include the repulsion into the model and consider the full model (1.1)
with ξ > 0. The numerical results are shown in Fig. 2, where parameters fulfill con-
dition (2.2) which asserts that the attraction prevails over repulsion. In this case
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Fig. 1. Numerical simulations of model (1.1) without chemorepellent (i.e. ξ = 0). The left panel
is a numerical plot of solution profile u and v at final time step t = 400 and right panel illustrates
the pattern formation of cell density u. The parameter values are α = β = γ = δ = 1, χ = 10, ξ =
0, u0 = 0.3, v0 = 0.3 + r(x), where r(x) is a 1% random spatial perturbation of the homogeneous
steady state.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Space x 

S
ol

ut
io

ns

u
v
w

Fig. 2. Numerical simulations of model (1.1) with both chemoattractant and chemorepellent,
where the attraction is stronger than the repulsion. The left panel is a numerical plot of solution
profiles at time step t = 400 and right panel shows the pattern formation of cell density u. The
parameter values are chosen as α = β = γ = δ = 1, χ = 10, ξ = 2, u0 = 0.3, v0 = w0 =

0.3+ r(x), where r(x) is a 1% random spatial perturbation of the homogeneous steady state. Here
the stationary profile of v (dashed line) and w (dotted line) coincide due to β = δ.



November 5, 2012 6:24 WSPC/103-M3AS 1250044

Competing Effects of Attraction vs. Repulsion in Chemotaxis 31

the solution globally exists in one dimension and blows up in finite time if cell mass
is larger than some threshold, see Proposition 2.2. For the sake of comparison, we
choose parameter values same as those in Fig. 1 except that a repulsive chemotac-
tic coefficient ξ is incorporated. We find the qualitatively analogous aggregations
and pattern formation as in Fig. 1. However a quantitative variation can also be
explicitly observed, where the maximum of cell density u in Fig. 2 is smaller than
that in Fig. 1. This manifests that the repulsion is a dispersal effect in chemotactic
movement in contrast to the aggregation effect of attraction. In conclusion, if the
attraction prevails over repulsion, the model still retains the qualitative characteris-
tics of the classical attractive Keller–Segel model. It should be noted that in Fig. 2
solutions are stable, and hence concentration v = w due to β = δ which is consistent
with Proposition 2.3. If we continuously increase the value of ξ such that inequality
in (2.2) is reversed (i.e. condition (2.5) is satisfied), namely the repulsion prevails,
numerical simulations in Fig. 4 illustrate that no pattern formation develops and
all solutions u, v and w stabilize to constant steady states, which is in accordance
with Proposition 2.4.

In the present paper, many results, such as Propositions 2.2, 2.3(2), 2.4 and 2.6,
have to assume β = δ. The results for β �= δ largely remain open and demand to
be explored in the future. Figure 3 shows one example of the numerical solutions
for the case β �= δ where the attraction prevails. Compared with Fig. 2, similar
qualitative solution profiles and pattern formations in Fig. 3 are observed except a
quantitative difference where concentration of chemorepellent w is smaller than that
of chemoattractant v due to more consumption of w than v (i.e. δ > β). Figure 4
shows another example for the case β �= δ where the repulsion prevails. It illustrates
the same qualitative behavior as for the case β = δ when repulsion prevails, see
Proposition 2.4, where the solutions converge to constant steady states.
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Fig. 3. Numerical simulations of model (1.1) with both chemoattractant and chemorepellent,
where the attraction is stronger than the repulsion. The left panel is a numerical plot of solution
profiles at time step t = 400 and right panel is the pattern formation of cell density u. The

parameter values are α = β = γ = 1, δ = 2, χ = 10, ξ = 2, u0 = 0.3, v0 = 0.3 + r(x), w0 =
0.15 + r(x), where r(x) is a 1% random spatial perturbation of the homogeneous steady state.
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Fig. 4. Numerical simulations of model (1.1) with both chemoattractant and chemorepellent,
where the attraction is weaker than the repulsion. The left panel is a plot of solution profiles at
time step t = 400 and right panel shows no pattern formation for cell density u. The parameter
values are α = 2, β = 1, γ = 3, δ = 2, χ = 10, ξ = 12, u0 = 0.3, v0 = 0.6 + r(x), w0 = 0.45 + r(x),
where r(x) is a 1% random spatial perturbation of the homogeneous steady state.

8. Conclusions and Suggestions

The attraction–repulsion chemotaxis system includes not only a chemoattractant
but also a second chemical as a chemorepellent. Hence, this system is actually a
generalization of the well-known Keller–Segel model that includes only a chemoat-
tractant, which has already been studied in many works. A striking feature of the
classical chemotaxis system is the finite-time blow-up of solutions (cf. Ref. 18 for
the case n = 2 and Ref. 55 for the case n ≥ 3, for instance). However, our results
(Theorem 2.1 and Proposition 2.4) confirm that the attraction–repulsion chemo-
taxis model can prevent blow-up if the repulsion is strong enough. Another striking
feature of the classical chemotaxis model is the pattern formation (cf. Ref. 19). How-
ever, our numerical simulation (Fig. 4) shows that no pattern can be developed when
the repulsion strongly prevails over attraction. Therefore, the attraction–repulsion
mechanism may regularize the classical Keller–Segel model.

However, from the viewpoint of mathematical analysis, this work is only an
early start to the study of the attraction–repulsion chemotaxis system, because
there remain a few important problems unexplored. Among these open problems, in
authors’ opinion, the following four problems are most challenging and interesting.

Problem 1. To study the finite-time blow-up of solutions to (1.1) assuming ξγ −
χα < 0, β �= δ, τ = 1 and n ≥ 3.

Problem 2. To study the global existence of solutions to (1.1) assuming ξγ−χα >
0, β �= δ, τ = 1 and n ≥ 3.

Problem 3. Can one remove the smallness assumption on the initial data u0(x)
for the global existence of solutions to (1.1) assuming ξγ − χα > 0, β �= δ, τ = 1
and n = 2?
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Problem 4. To study the existence or non-existence of non-trivial stationary solu-
tions to (1.1) assuming β �= δ.

As aforementioned, the finite-time blow-up is a very interesting problem
for the classical chemotaxis model. However, most of existing results are only
for a parabolic–elliptic simplification of the fully parabolic Keller–Segel model
(cf. Refs. 36 and 35, for instance). So far the only existing result on the finite-
time blow-up for the fully parabolic Keller–Segel model is that in Ref. 18, where
an example of finite-time blow-up in two dimensions is shown. Here we should
also mention the result in Ref. 9, where the finite-time blow-up of solutions to a
one-dimensional quasilinear parabolic–parabolic Keller–Segel system with appro-
priately nonlinear diffusion of cells is proved. The breakthrough of the proof of the
finite-time blow-up for the fully parabolic Keller–Segel model in space dimensions
n ≥ 3 has been made recently in Ref. 55 by inventing a new method, which strongly
depends on the existence of a Lyapunov functional. However, there does not exist
a Lyapunov functional for (1.1) with ξγ−χα < 0 and β �= δ. Therefore, Problem 1
becomes very challenging.

In Ref. 10 the authors proved the global existence of weak solutions to a model
of chemorepulsion in space dimension n = 3, 4. Again, their proof strongly depends
on the existence of a Lyapunov functional. The assumption that ξγ−χα > 0 implies
that the repulsion prevails over attraction to some extent, so we might expect the
global existence of solutions. However, there does not exist a Lyapunov functional
for (1.1) with ξγ − χα > 0 and β �= δ. So, Problem 2 is interesting.

Our proof of Theorem 2.7 needs a smallness assumption (2.7) on the initial data
u0 for the global solvability of (1.1) with ξγ − χα > 0, β �= δ, τ = 1 and n = 2.
However, we do not know whether this assumption is indispensable for the global
existence. Therefore, Problem 3 deserves further studying.

Proposition 2.3 addresses the existence or non-existence of nontrivial station-
ary solutions to (1.1) with β = δ, and the corresponding steady-state problem is
equivalent to a single semi-linear elliptic problem (5.8). However, Problem 4 will
be equivalent to the study of an elliptic system which consists of two coupled semi-
linear elliptic equations. To our knowledge, this problem remains open and therefore
deserves exploring.
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