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This paper is concerned with the Boussinesq–Burgers system which models the 
propagation of bores by combing the dissipation, dispersion and nonlinearity. We 
establish the global existence and asymptotical behavior of classical solutions of the 
initial value boundary problem of the Boussinesq–Burgers system with the help of 
a Lyapunov functional and the technique of Moser iteration. Particularly we show 
that the solution converges to the unique constant stationary solution exponentially 
as time tends to infinity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The water flows from the higher to lower elevation are termed bores which occur readily in nature. 
There are two classes of bores: strong and weak bores. The former refers to the rapid turbulent change 
of water level, while the latter have a gently sloping or oscillatory transition between the different water 
levels. Although there is a large number of literature that discusses the propagation of bores (cf. [20] and 
references therein), little is known mathematically about this phenomenon. While strong bores are hard 
to deal with mathematically due to the difficulty of modeling the wave breaks/turbulence, weak bores are 
relatively easier to handle. There are two well-known models describing the propagation of weak bores. One 
is the Korteweg–de Vries equation (KdV equation for short) which can be expressed in non-dimensional 
variables as

vt + vvx + vxxx = 0.

The other one is the Boussinesq system expressed as follows (cf. [21])
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{
ρt + wx + (wρ)x = 0,
wt + ρx + wwx − δwxxt = 0,

where ρ(x, t) and w(x, t) represent the height and the velocity of the free surface of the fluid above the 
bottom, respectively, and δ > 0 is a parameter measuring the strength of fluid dispersion. These two 
models contain the nonlinearity and dispersive effect. The Boussinesq system and its variants have been 
extensively studied in the literature (see [5,6] and references therein). However it was pointed out in [3,
12,13] that the dissipative effects must be included, at least in the laboratory scale, in order to accurately 
predict the wave propagation. The simplest way of incorporating the dissipation is to append a Burgers-type 
term to the KdV or Boussinesq system, which then yields the so-called KdV–Burgers equation or the 
Boussinesq–Burgers system, respectively. The KdV–Burgers equation has been well studied in the literature 
(see [23] and references therein). In this paper, we consider the Boussinesq–Burgers system which reads as

{
ρt + wx + (wρ)x = ερxx,

wt + ρx + wwx − wxxt = μwxx
(1.1)

with ε, μ > 0. Compared to the KdV–Burgers equation, the Boussinesq–Burgers system (1.1) is not so 
widely studied. There are a few results on its variants (e.g., see [8,18] and references therein) for the whole 
interval R. As we know, the only result of the Boussinesq–Burgers system (1.1) is the existence of traveling 
wave solutions obtained in [21] in the whole interval R with bore-like data, where ε = μ. The goal of 
this paper is to study the initial–boundary value problem of the Boussinesq–Burgers system in a bounded 
interval. To this end, we make a change of variable as in [21] by letting u(x, t) = 1 + ρ(x, t). Then the 
initial–boundary value problem of the Boussinesq–Burgers system considered in the present paper reads:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + (uw)x = εuxx, x ∈ (0, 1), t > 0,
wt + (u + w2

2 )x = μwxx + δwxxt, x ∈ (0, 1), t > 0,
(u,w)(x, 0) = (u0, w0)(x), x ∈ [0, 1],
ux|x=0,1 = w|x=0,1 = 0, t > 0

(1.2)

where ε, μ, δ > 0. It is noted that when the dissipation and dispersion are ignored (i.e. ε = μ = δ = 0), 
the system becomes the well-known water wave equation [9]. As δ = 0 and the nonlinear advection term is 
w2

2 is replaced by −μw2, the model becomes a system derived from the chemotactic movement considered 
in [16,17,22]. In this paper, we shall establish the global existence and asymptotic behavior of classical 
solutions to the initial–boundary value problem (1.2). We point out that it is physically meaningful to 
consider u(x, t) ≥ 0 since the bore is weak (i.e., |ρ| is small). The main results of this paper are given in the 
following theorem.

Theorem 1.1. Assume that (u0, w0) ∈ W 2,p(0, 1) with p > 3 and u0 ≥ 0, u0 �≡ 0. Then, for any ε, μ, δ > 0, 
the problem (1.2) has a unique classical solution (u, w) in (0, 1) × (0, ∞) with u > 0 such that (u, w) ∈
C0([0, 1] × [0, ∞)) ∩ C2,1([0, 1] × (0, ∞)). Moreover there is a constant β > 0 such that for all t > 0:

‖u− ū0‖L∞(0,1) + ‖w‖L∞(0,1) ≤ Ce−βt

where ū0 =
∫ 1
0 u0dx denotes the average of u0(x) over (0, 1).

2. Local existence

To deal with the nonlinear term (w2/2)x and prove the existence of local solutions of (1.2), we need some 
regularity assumptions on the initial data. Since the dispersion term wxxt contains the temporal derivative, 
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the proof of local existence will be somewhat different from the standard argument for the parabolic system. 
Here we shall employ the fact that the dispersion term wxxt has a stronger dissipative effect than the diffusion 
wxx to construct a contracting mapping to prove the local existence. Inspired by a result from [15], we depart 
with a linear problem

⎧⎪⎨
⎪⎩

wt − δwxxt = f(x, t), x ∈ (0, 1), t > 0,
w(0, t) = w(1, t) = 0, t > 0
w(x, 0) = w0(x), x ∈ [0, 1].

(2.1)

For this linear problem, we have the following result.

Lemma 2.1. Assume that w0 ∈ W 2,p(0, 1) and f ∈ Lp(0, 1) for p ≥ 1. Then the problem (2.1) has a unique 
solution in the cylinder QT = (0, 1) × (0, T ) for some T > 0, which satisfies

‖w‖C([0,T ];W 2,p(0,1)) ≤ ‖w0‖W 2,p(0,1) + c1T‖f‖C([0,T ];Lp(0,1)).

Proof. By a change of variable v(x, t) = wt(x, t), the linear problem (2.1) becomes an elliptic problem with 
the parameter t ∈ (0, T )

{
vx − δvxx = f(x, t), x ∈ (0, 1), t ∈ (0, T )
v(0, t) = v(1, t) = 0, t ∈ (0, T ).

(2.2)

If f ∈ Lp(0, 1), then by the Agmon–Douglas–Nirenberg theorem [1,2], the problem (2.2) has a unique 
solution v ∈ W 2,p(0, 1) such that ‖v‖W 2,p(0,1) ≤ c1‖f‖Lp(0,1) for some c1 > 0, which implies that the 
solution of (2.1) satisfies

∥∥wt(·, t)
∥∥
W 2,p(0,1) ≤ c1‖f‖Lp(0,1). (2.3)

Noticing that

w(x, t) = w0(x) +
t∫

0

ws(x, s)ds

we have

‖w‖C([0,T ];W 2,p(0,1)) ≤ ‖w0‖W 2,p(0,1) + T‖wt‖C([0,T ];Lp(0,1)).

Then the lemma is proved by applying (2.3) into the above inequality. �
Using the above results, we can prove the following local existence theorem.

Lemma 2.2 (Local existence). Assume that (u0, w0) ∈ W 2,p(0, 1) with p > 3 and u0 ≥ 0, u0 �≡ 0. Then 
there exists Tmax ∈ (0, ∞] such that (1.2) has a unique classical solution (u, w) ∈ C0([0, 1] × [0, Tmax)) ∩
C2,1([0, 1] × (0, Tmax)). Moreover, u > 0 in (0, 1) × (0, Tmax) and

if Tmax < ∞, then
∥∥u(·, t)

∥∥
L∞(0,1) +

∥∥w(·, t)
∥∥
L∞(0,1) → ∞ as t ↗ Tmax .
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Proof. Let T ∈ (0, 1) to be specified below and denote QT := (0, 1) × (0, T ). In the Banach space

X := C
(
[0, T ];W 2,p(0, 1)

)
× C

(
[0, T ];W 2,p(0, 1)

)
,

we define

XT :=
{
(u,w) ∈ X

∣∣ ∥∥u(·, t)
∥∥
C1,0(Q̄T ) ≤ R and

∥∥w(·, t)
∥∥
C1,0(Q̄T ) ≤ R

}
where

R := ‖u0‖W 2,p0 (0,1) + ‖w0‖W 2,p0 (0,1) + ‖u0‖C1[0,1] + ‖w0‖C1[0,1] + 1.

With this R, we introduce a mapping Φ : XT �−→ XT such that given (ũ, w̃) ∈ XT , Φ(ũ, w̃) = (u, w) where 
u is the solution of ⎧⎪⎨

⎪⎩
ut − εuxx + wux + wxu = 0, x ∈ (0, 1), t ∈ (0, T ),
ux|x=0,1 = 0, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ [0, 1],

(2.4)

and w is the solution of⎧⎪⎨
⎪⎩

wt − δwxxt = μw̃xx + (w̃2/2 + ũ)x, x ∈ (0, 1), t ∈ (0, T ),
w|x=0,1 = 0, t ∈ (0, T ),
w(x, 0) = w0(x), x ∈ [0, 1].

(2.5)

We shall show that for T small enough Φ has a unique fixed point.
For consistency, throughout the remainder of this section we denote

W 2,1,p(QT ) =
{
u
∣∣ u, ux, uxx, ut ∈ Lp(QT )

}
for p ≥ 1, equipped with the norm

‖u‖W 2,1,p(QT ) = ‖u‖Lp(QT ) + ‖ux‖Lp(QT ) + ‖uxx‖Lp(QT ) + ‖ut‖Lp(QT ).

Since (2.5) is an elliptic problem for wt, the solvability of this problem follows from Lemma 2.1. In-
deed, since (ũ, w̃) ∈ XT , then w̃xx(·, t) ∈ Lp(0, 1) for all t ∈ [0, T ]. That is there is a c2 > 0 such 
that supt∈[0,T ] ‖wxx(·, t)‖Lp(0,1) ≤ c2. Furthermore (ũ, w̃) ∈ XT , along with the Sobolev embedding the-
orem: W 2,p(0, 1) ↪→ C1,0(0, 1), implies that ũx ∈ L∞(0, 1) and (w̃2/2)x = w̃w̃x ∈ L∞(0, 1) such that 
‖(w̃2/2 + ũ)x‖L∞(0,1) ≤ R(1 + R). Then by Lemma 2.1, we obtain a unique solution w ∈ W 2,1,p(QT ) to 
(2.5) such that

‖w‖W 2,1,p(QT ) ≤ ‖w‖C([0,T ];W 2,p(0,1)) + ‖wt‖C([0,T ];W 2,p(0,1))

≤ ‖w0‖W 2,p(0,1) + c1(1 + T )
[
c2 + R(1 + R)

]
≤ R + 2c1

[
c2 + R(1 + R)

]
=: c3(R)

where we have used the fact T ∈ (0, 1) and ‖w0‖W 2,p(0,1) ≤ R. This, combined with the Sobolev embedding 
theorem [14, Lemma II.3.3], upgrades the regularity of the solution such that

‖w‖C1+θ,(1+θ)/2(Q̄ ) ≤ c4‖w‖W 2,1,p(QT ) ≤ c5(R) := c4 · c3(R) (2.6)

T
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where θ := 1 − 3
p (p > 3). Thus, we have

‖w‖C1,0(Q̄T ) ≤
∥∥w(x, t) − w(x, 0)

∥∥
C1,0(Q̄T ) +

∥∥w(x, 0)
∥∥
C1,0(Q̄T )

≤ T
1+θ
2 ‖w‖C0,(1+θ)/2(Q̄T ) + ‖w0‖C1,0(Q̄T )

≤ c5(R)T
1+θ
2 + ‖w0‖C1,0(Q̄T ).

If we let T be small such that T ≤ ( 1
c5(R) )

2
1+θ , then it follows that

‖w‖C1,0(Q̄T ) ≤ ‖w0‖C1,0(Q̄T ) + 1 = R. (2.7)

Now we turn to the problem (2.4). Note that (2.6) yields a constant c6(R) > 0 such that ‖w‖L∞(0,1) +
‖wx‖L∞(0,1) ≤ c6(R). Due to ‖u0‖W 2,p(0,1) ≤ R, from the linear parabolic Lp-theory [10, Theorem 2.3] and 
[14, Theorem IV.9.1], we conclude that the problem (2.4) has a unique solution u(x, t) ∈ W 2,1,p(QT ) such 
that

‖u‖W 2,1,p(QT ) ≤ c6(R)‖u0‖W 2,p(0,1) ≤ c6(R) ·R =: c7(R).

Using the same argument as deriving (2.6), we can find some constant c8(R) > 0 such that

‖u‖C1+θ,(1+θ)/2(Q̄T ) ≤ c8(R).

Then by the same idea used for w, if we let T be small such that T ≤ ( 1
c8(R) )

2
1+θ , we obtain

‖u‖C1,0(Q̄T ) ≤ ‖u0‖C1,0(Q̄T ) + 1 = R (2.8)

which, along with (2.7), asserts that (u, w) ∈ XT for some T > 0. Hence the function Φ maps XT into itself. 
By a direct adaptation of the above derivation, one can easily deduce that if T is further diminished then 
Φ in fact becomes a contraction on XT . For such T we therefore conclude from the contraction mapping 
principle [11, Theorem 5.1] that there exists a unique fixed point (u, w) ∈ XT such that Φ(u, w) = (u, w). 
This unique fixed point in XT corresponds to a unique solution of (1.2) in XT . This solution may be further 
prolonged in the interval [0, Tmax) with either Tmax = ∞ or Tmax < ∞, where in the latter case

∥∥u(·, t)
∥∥
L∞(0,1) +

∥∥w(·, t)
∥∥
L∞(0,1) → ∞ as t ↗ Tmax ,

because T0 depends only on R. Now it remains to derive the regularity of solutions to finish the proof. 
Indeed by (2.4), w, wx ∈ Cθ,θ/2(Q̄T ) and the classical regularity of parabolic equations [14, Theorem V.6.1], 
we obtain

u(x, t) ∈ C2+θ,(1+θ)/2([0, 1] × [η, T ]
)

for all η ∈ (0, T0].

Similar argument leads to

w(x, t) ∈ C2+θ,(1+θ)/2([0, 1] × [η, T ]
)

for all η ∈ (0, T0].

This proves the regularity of the solution (u, w) to (1.2). Finally, the positivity of u results from the 
strong parabolic maximum principle, because u0 �≡ 0 ensures that u �≡ 0. This completes the proof of 
Lemma 2.2. �
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3. Global dynamics

3.1. Global boundedness

Hereafter for simplicity, the norm of the space Lp(0, 1), 1 ≤ p ≤ ∞ will be denoted simply by ‖ · ‖Lp by 
omitting the interval (0, 1). The key in our analysis is the following Lyapunov functional

F(u,w) :=
1∫

0

(
u ln u + w2

2 + δ

2w
2
x

)
dx, (3.1)

for which we have the following result.

Lemma 3.1. The classical solution (u, w) to (1.2) satisfies the equality

d

dt
F
(
u(t), w(t)

)
= −

1∫
0

(
εu2

x

u
+ μw2

x

)
dx for all t ∈ (0, Tmax). (3.2)

Proof. From the first two equations in (1.2), we have with the integration by parts

d

dt
F
(
u(t), w(t)

)
=

1∫
0

(
(ln u + 1)ut + wwt

)
dx + δ

1∫
0

wxwxtdx

= −ε

1∫
0

u2
x

u
dx +

1∫
0

uxwdx− μ

1∫
0

w2
xdx− δ

1∫
0

wxwxtdx

+ 1
6

1∫
0

(
w3)

x
dx−

1∫
0

uxwdx + δ

1∫
0

wxwxtdx

= −
1∫

0

(
εu2

x

u
+ μw2

x

)
dx,

where we have used the boundary conditions ux|x=0,1 = w|x=0,1 = 0. This completes the proof of 
Lemma 3.1. �

Then the following result is an immediate consequence of Lemma 3.1.

Lemma 3.2. The classical solution (u, w) to (1.2) has the following properties for all t ∈ (0, Tmax):

1∫
0

(
w2 + δw2

x

)
dx ≤ 2F(u0, w0) + 2/e,

t∫
0

1∫
0

(
εu2

x

u
+ μw2

x

)
dxds ≤ F(u0, w0) + 1/e.
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Proof. Integrating (3.2) over t ∈ (0, Tmax) we obtain

1∫
0

(
w2

2 + δ

2w
2
x

)
dx +

t∫
0

1∫
0

(
εu2

x

u
+ μw2

x

)
dxds = F(u0, w0) −

1∫
0

u(x, t) ln u(x, t)dx

for all t ∈ (0, Tmax). The fact that −ξ ln ξ ≤ 1
e for all ξ > 0 completes the proof. �

To elongate the local solutions to the global ones, it suffices to show that ‖u‖L∞ and ‖w‖L∞ are bounded 
in time by the extension criterion in Lemma 2.2. Next we shall employ the method of Moser iteration to 
derive the a priori L∞-norm of solutions of the problem (1.2). Before embarking on this, we remark that 
the L1-norm of u is conserved by integrating the first equation of (1.2) with the boundary condition:

ū =
1∫

0

udx =
1∫

0

u0dx =: ū0, (3.3)

which will be essentially applied in our analysis. Moreover the following interpolation inequality will be used 
later.

Gagliardo–Nirenberg inequality [19]: Let Ω ⊂ R
n be a bounded domain with smooth boundary. Let p, q ≥ 1

satisfy (n − q)p ≤ nq and let r ∈ (0, p). Then, for any u(x) ∈ W 1,q(Ω) ∩ Lr(Ω), there exists a constant 
c1 > 0 such that

‖u‖Lp(Ω) ≤ c1‖∇u‖aLq(Ω)‖u‖1−a
Lr(Ω) + c2‖u‖Lr(Ω) (3.4)

with a ∈ (0, 1) satisfying

n

p
= a

(
n

q
− 1

)
+ n

r
(1 − a).

Then we are ready to prove the following global estimates on the solution component u.

Lemma 3.3. Assume that u0 ∈ L1 ∩ L∞. Then there is some constant c(ε, μ, δ) > 0 such that the classical 
solution (u, w) of (1.2) satisfies

‖u‖L∞ ≤ c for all t ∈ (0, Tmax).

Proof. Multiplying the first equation in (1.2) by pup−1 and integrating the result over [0, 1], we obtain with 
the Hölder inequality that

d

dt

1∫
0

updx = −p(p− 1)
1∫

0

up−2|∇u|2dx− p(p− 1)
1∫

0

up−1uxwdx

= −4(p− 1)
p

1∫
0

∣∣(u p
2
)
x

∣∣2dx + (p− 1)
1∫

0

upwxdx

≤ −4(p− 1)
p

1∫
0

∣∣(u p
2
)
x

∣∣2dx + (p− 1)
( 1∫

0

u2pdx

) 1
2

·
( 1∫

0

w2
xdx

) 1
2

≤ −4(p− 1)
p

1∫ ∣∣(u p
2
)
x

∣∣2dx +
√

C0

δ
(p− 1)

( 1∫
u2pdx

) 1
2

(3.5)

0 0
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for all t ∈ (0, Tmax), where we have used the fact that w|x=0,1 = 0 and the first inequality in Lemma 3.2. The 
Gagliardo–Nirenberg inequality (3.4) with inequality (a + b)2 ≤ 2(a2 + b2) yields that ‖f‖2

L4 ≤ 2c21(‖fx‖ ·
‖f‖L1 + ‖f‖2

L1), which entails that

( 1∫
0

u2pdx

) 1
2

=
[( 1∫

0

(
u

p
2
)4) 1

4
]2

=
∥∥u p

2
∥∥2
L4 ≤ 2c21

(∥∥(u p
2
)
x

∥∥ ·
∥∥u p

2
∥∥
L1 +

∥∥u p
2
∥∥2
L1

)
.

Then the above inequality with the Cauchy–Schwarz inequality gives rise to

( 1∫
0

u2pdx

) 1
2

≤ 2
c2p

∥∥(u p
2
)
x

∥∥2 + 2c21
(
1 + c21c2p

)∥∥u p
2
∥∥2
L1 (3.6)

where we choose c2 =
√

C0
δ . Then substituting (3.6) into (3.5) yields

d

dt

1∫
0

updx ≤ −2(p− 1)
p

1∫
0

∣∣(u p
2
)
x

∣∣2dx + c3

( 1∫
0

u
p
2 dx

)2

(3.7)

with c3 =
√

C0
δ (p − 1)2c21(1 + c21c2p). Now adding the term 

∫ 1
0 updx on both sides of (3.7), we get

d

dt

1∫
0

updx +
1∫

0

updx ≤ −2(p− 1)
p

1∫
0

∣∣(u p
2
)
x

∣∣2dx + c4

( 1∫
0

u
p
2 dx

)2

+
1∫

0

updx. (3.8)

Based on (3.8), we shall next use the Moser iteration procedure to derive that ‖u(·, t)‖L∞ is bounded 
uniformly in time. To this end, we need the following interpolation inequality [14, p. 63]: for any f ∈ W 1,2(Ω), 
it holds

‖f − f̄‖2
L2(Ω) ≤ c4‖∇f‖2α

L2(Ω)‖f‖
2(1−α)
L1(Ω) ,

where f̄ = 1
|Ω|

∫
Ω
fdx, α = n/(n + 2), and c4 is a constant depending only on n and Ω. Then applying the 

Young inequality: ab ≤ εap + (εp)−q/pq−1bq, a, b, ε, p, q > 0, 1
p + 1

q = 1 into above inequality and using the 

fact ‖f̄‖L2 =
∫
Ω
fdx = ‖f‖L1 gives

‖f‖2
L2(Ω) ≤ ε‖∇f‖2

L2(Ω) + c5
(
1 + ε−

n
2
)
‖f‖2

L1(Ω) for any ε > 0, (3.9)

where c5 > 0 depends on n and Ω, but is independent of ε. Then employing (3.9) with f = u
p
2 , ε = 2(p−1)

p , 
n = 1, Ω = (0, 1), we have for p ≥ 2

1∫
0

updx =
∥∥u p

2
∥∥2
L2 ≤ 2(p− 1)

p

∥∥(u p
2
)
x

∥∥2
L2 + c6(1 + p)

∥∥u p
2
∥∥2
L1 , (3.10)

with some constant c6 > 0. This, along with (3.8), yields

d

dt

1∫
updx +

1∫
updx ≤ c6(1 + p)

( 1∫
u

p
2 dx

)2
0 0 0
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which leads to

d

dt

(
et

1∫
0

updx

)
≤ c6e

t(1 + p)
( 1∫

0

u
p
2 dx

)2

.

Then the integration of above inequality over the time interval [0, t] for 0 < t < Tmax gives

1∫
0

updx ≤
1∫

0

up
0dx + c6(1 + p) sup

0≤t≤Tmax

( 1∫
0

u
p
2 dx

)2

. (3.11)

Now we define

Ap = max
{
‖u0‖L∞ , sup

0≤t≤Tmax

( 1∫
0

updx

) 1
p
}

for all p ≥ 2.

Then it follows from (3.11) that

Ap ≤
[
c7(1 + p)

] 1
pA p

2

for some constant c7 > 0. Now taking p = 2k, k = 1, 2, · · ·, one obtains

A2k ≤ c2
−k

7
(
1 + 2k

)2−k

A2k−1

≤ c2
−k+2−(k−1)

7
(
1 + 2k

)2−k(
1 + 2k−1)2−(k−1)

A2k−2

...

≤ c2
−k+2−(k−1)+···+2−1

7
(
1 + 2k

)2−k(
1 + 2k−1)2−(k−1)

· · · (1 + 2)2
−1
A1. (3.12)

Noticing that 2−k + 2−(k−1) + · · ·+ 2−1 ≤ 1 and the series k
2k + k−1

2k−1 + · · ·+ 1
2 is convergent, we can find a 

constant c8 > 0 such that

(
1 + 2k

)2−k(
1 + 2k−1)2−(k−1)

· · · (1 + 2)2
−1

= 2k2−k(
2−k + 1

) 1
2k · 2(k−1)2−(k−1)(

2−(k−1) + 1
) 1

2k−1 · · · 22−1(
2−1 + 1

)2−1

≤ 2
k

2k
+ k−1

2k−1 +···+ 1
2 · 2

1
2k

+ 1
2k−1 +···+ 1

2

≤ c8.

Thus letting k → ∞ in (3.12), we have

∥∥u(·, t)
∥∥
L∞ ≤ c9A1 = c9 max

{
‖u0‖L∞ , sup

0≤t≤Tmax

( 1∫
0

udx

)}

= c9 max
{
‖u0‖L∞ , ‖u0‖L1

}
where c9 = c7c8. The proof is completed. �
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3.2. Constant stationary solution

In this section, we shall employ the Lyapunov functional (3.1) to prove that the system (1.2) has only a 
unique constant stationary solution. The result is the following:

Lemma 3.4. The only classical stationary solution of (1.2) is the constant pairs (ū, 0) for ū ∈ (0, ∞), where 
ū denotes the average of u given in (3.3).

Proof. By noting that the stationary solution (us, ws) of (1.2) is also a solution to the time-dependent 
problem, we have

0 = d

dt
F(us, ws) = −

1∫
0

(
ε[(us)x]2

us
+ μ

[
(ws)x

]2)
dx

which indicates that us = C1, and ws = C2 since us > 0, where C1 and C2 are both constants. The boundary 
condition of ws immediately implies that C2 = 0 and the average ū =

∫ 1
0 usdx determines that C1 = ū. 

This completes the proof. �
3.3. Decay property

From the results derived above, we know that the problem (1.2) has only a constant stationary solution 
(ū, 0). The existence of the Lyapunov functional (3.1) indicates that the time-dependent solution of (1.2)
may converge to the constant stationary solution (ū, 0). To this end, we first derive some decay properties 
of the solution (u, w) of (1.2). By modifying the Lyapunov functional (3.1), we define

G(u,w) :=
1∫

0

(
u ln u

ū
+ w2

2 + δ

2w
2
x

)
dx

where ū is given in (3.3). Since the function ln s is convex for s > 0, ū = ū0 and hence 
∫ 1
0

u
ūdx = 1, it follows 

from the Jensen’s inequality [9, p. 621] that

1∫
0

u ln u

ū
dx = ū0 ·

1∫
0

u

ū
ln u

ū
dx ≥ ū0 ·

( 1∫
0

u

ū
dx

)
ln
( 1∫

0

u

ū
dx

)
= 0.

Thus, G(u, w) ≥ 0. Except for the non-negativity, the following property of G(u, w) can be proved inspired 
by the ideas of [7,22].

Lemma 3.5. Suppose that (u, w) is the classical solution to (1.2). Then the functional G(u, w) satisfies the 
following decay property

0 ≤ G
(
u(t), w(t)

)
≤ G(u0, w0)e−αt for all t ∈ (0, Tmax),

where the positive constant α depends only on u0, ε, μ and δ.

Proof. Using the first equation of (1.2) and the boundary condition, we obtain with a simple calculation 
that
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d

dt
G
(
u(t), w(t)

)
= d

dt
F
(
u(t), w(t)

)
− ln ū

1∫
0

utdx

= d

dt
F
(
u(t), w(t)

)
= −

1∫
0

(
εu2

x

u
+ μw2

x

)
dx. (3.13)

It can be readily verified that s ln s ≤ s −1 + 1
2 (s −1)2 for all s ≥ 0. Then with s = u/ū, noting 

∫ 1
0 (u/ū−1)dx ≡

0 and using the Poincaré inequality [9, p. 275], we find a constant c10 > 0 such that

1∫
0

u(t) ln u(t)
ū

dx = ū

1∫
0

[
u(t)
ū

ln u(t)
ū

−
(
u(t)
ū

− 1
)]

dx

≤ ū

1∫
0

1
2

(
u(t)
ū

− 1
)2

dx = 1
2ū

1∫
0

(u− ū)2dx

≤ c10

1∫
0

[
(u− ū)x

]2
dx = c10

1∫
0

u2
xdx.

By Lemma 3.3, for all t ∈ (0, Tmax) one has

1∫
0

u ln u

ū
dx ≤ c10

1∫
0

u2
xdx ≤ c10‖u‖L∞

1∫
0

u2
x

u
dx ≤ c11(ε, μ, δ)

1∫
0

u2
x

u
dx. (3.14)

With the boundary condition w|x=0,1 = 0, the Poincaré inequality provides some c12 > 0 such that ∫ 1
0 w2dx ≤ c12

∫ 1
0 w2

xdx for all t ∈ (0, Tmax), which, combined with (3.14), gives

G(u,w) ≤
1∫

0

[
u ln u

ū
+
(
c12
2 + δ

2

)
w2

x

]
dx

≤ c11
ε

1∫
0

εu2
x

u
+ c12 + δ

2μ

1∫
0

μw2
xdx ≤ γ

1∫
0

(
εu2

x

u
+ μw2

x

)
dx

where γ = c11
ε + c12+δ

2μ . Then with the above inequality, the integration of (3.13) yields

d

dt
G(u,w) ≤ −

1∫
0

(
εu2

x

u
+ μw2

x

)
dx ≤ − 1

γ
G(u,w)

which, upon the integration, gives

G(u,w) ≤ G(u0, w0)e−
1
γ t =: G(u0, w0)e−αt.

This completes the proof of Lemma 3.5. �
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3.4. Proof of Theorem 1.1

The first inequality in Lemma 3.2 along with the Sobolev embedding: W 1,2(0, 1) ↪→ C0(0, 1) asserts that 
‖w‖L∞(0,1) ≤ c13 for some constant c13 > 0. This, together with Lemma 3.3 and extensibility criterion in 
Lemma 2.2, indicates that Tmax = +∞. Hence the existence of global classical solutions is proved. Next we 
are devoted to proving the exponential convergence of the global solution by borrowing an idea from [22]. 
To this end, we first derive from the first equation of (1.2) that the quantity u − ū satisfies

⎧⎪⎨
⎪⎩

(u− ū)t = (u− ū)xx − (uw)x, x ∈ (0, 1), t > 0,
(u− ū)(x, 0) = u0(x) − ū, x ∈ [0, 1],
(u− ū)x|x=0,1 = 0, t > 0.

(3.15)

Then multiplying the first equation of (3.15) by −(u − ū)xx and using the Cauchy–Schwarz inequality, we 
get

1
2
d

dt

1∫
0

(u− ū)2xdx +
1∫

0

(u− ū)2xxdx =
1∫

0

(u− ū)xx(uw)xdx

≤ 1
2

1∫
0

(u− ū)2xxdx + 1
2

1∫
0

(uw)2xdx.

This, along with the inequality (uw)2x ≤ 2(w2u2
x + u2w2

x) and the boundedness of u and w, gives a constant 
c14 > 0 such that

d

dt

1∫
0

(u− ū)2xdx +
1∫

0

(u− ū)2xxdx ≤
1∫

0

(uw)2xdx ≤ c14

1∫
0

(
u2
x + w2

x

)
dx. (3.16)

Furthermore the second inequality of Lemma 3.2 with Lemma 3.3 yields a constant c15 such that

t∫
0

1∫
0

u2
xdxds ≤ ‖u‖L∞

t∫
0

1∫
0

u2
x

u
dxds ≤ c15 for all t > 0.

Then using the above inequality and integrating (3.16) with respect to t, one has

1∫
0

(u− ū)2xdx ≤
1∫

0

(u0 − ū)2xdx + c14(c15 + 1)
t∫

0

1∫
0

w2
xdx ≤ c16 (3.17)

for some constant c16 > 0, where the second inequality of Lemma 3.2 has been used.
Next we employ the Csiszár–Kullback–Pinsker inequality (cf. [4]) with Lemma 3.5 to obtain that

‖u− ū‖2
L1 ≤ 2ū

1∫
0

u ln u

ū
dx ≤ 2ūG(u0, w0)e−αt. (3.18)

Notice that the Gagliardo–Nirenberg inequality yields a constant c17 > 0 such that

‖u− ū‖L∞ ≤ c17
(∥∥(u− ū)x

∥∥ 2
3
2 · ‖u− ū‖

1
3
1 + ‖u− ū‖L1

)
.

L L
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Then the application of (3.17) and (3.18) to above inequality asserts that

‖u− ū‖L∞ ≤ c18e
−α

6 t for all t > 0

for some c18 > 0. Finally we prove that w converges to zero exponentially. This is obvious. Indeed from 
Lemma 3.5, we obtain a constant c19 such that

‖w‖2
L2 + ‖wx‖2

L2 ≤ c19G(u0, w0)e−αt.

Note that if f |x=0,1 = 0, then by the Hölder inequality one has

f2(x) =
x∫

0

[
f2(ξ)

]′
dξ = 2

x∫
0

f(ξ)f ′(ξ)dξ ≤ 2‖f‖L2‖fx‖L2 ≤ ‖f‖2
L2 + ‖fx‖2

L2 .

Therefore the application of above inequality gives

‖w‖L∞ ≤
(
‖w‖2

L2 + ‖wx‖2
L2

) 1
2 ≤

√
c19G(u0, w0)e−

α
2 t,

which completes the proof of Theorem 1.1 by choosing β = −α
6 . �
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