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ABSTRACT. In this paper, we study the qualitative behavior of
the Cauchy problem of a hyperbolic model

{
pt −∇· (pq) = ∆p, x ∈ Rd, t > 0,

qt −∇(ε|q|2 + p) = ε∆q,

which is transformed from a singular chemotaxis system describ-
ing the effect of a reinforced random walk in [17, 27]. When
d = 1 and the initial data are prescribed around a constant
ground state (p̄,0) with p̄ ≥ 0, we prove the global asymp-
totic stability of constant ground states, and identify the explicit
decay rate of solutions under very mild conditions on initial
data. Moreover, we study the diffusion (viscous) limit of solu-
tions as ε → 0 with convergence rates toward solutions of the
non-diffusible (inviscid) problem. While the existence of global
large solutions of the system in multi-dimensions remains an
outstanding open question, we show that the model exhibits a
strong parabolic smoothing effect: namely, solutions are spa-
tially analytic for a short time provided that the initial data be-
long to Lq(Rd) for any q > d ≥ 1. In fact, when d = 1, we
obtain that the solution remains real analytic for all time.
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1. INTRODUCTION

1.1. Background. Chemotaxis involves the cellular detection of a chemical
concentration gradient and the subsequent movement up (attractive chemotaxis)
or down (repulsive chemotaxis) the gradient. It is a common feature shared by
many cells and micro-organisms such as the well-studied bacteria Escherichia coli
and Salmonella typhimurium, the slime mold amoebae Dictyostelium discoideum,
neutrophils, and so on. The prototype of chemotaxis models, due to Keller and
Segel [13, 14], is a system of parabolic PDEs reading as

{
ut = ∇ · (D∇u− χu∇ϕ(v)),
vt = ε∆v + g(u,v),

where u and v denote the cell density and chemical concentration, respectively.
D > 0 and ε ≥ 0 are cell and chemical diffusion coefficients, respectively. The
chemotaxis is called to be attractive if χ > 0 and repulsive if χ < 0 with |χ|
measuring the strength of the chemical signal. The potential function ϕ(v), also
called the chemotactic sensitivity function, describes the signal detection mecha-
nism, and g(u,v) characterizes the chemical growth and degradation. Most of
the studies on chemotaxis deal with the classical attractive chemotaxis model where
χ > 0, ϕ(v) = v, and g(u,v) = u − v (see [11]). By contrast, the studies of
repulsive chemotaxis were much less. A few results on repulsive chemotaxis have
been developed recently (see [2, 30] and the references therein). In this paper, we
consider a chemotaxis model with logarithmic sensitivity,

(1.1)

{
ut = D∆u−∇ · (χu∇ lnv),

vt = ε∆v +uv − µv,

which was derived in [17, 27] to model the reinforced random walk. The loga-
rithmic sensitivityϕ(v) = lnv indicates that the cell chemotactic response to the
chemical signal follows the Weber-Fechner law which has prominent applications
in biological modelings (cf. [3,15]). The term uv entails that the chemical grows
exponentially with the rate depending on the cell density. Moreover, µ > 0 is a
natural degradation rate of the chemical.

In this paper, we consider the repulsive (χ < 0) case for (1.1). To overcome
the possible singularity caused by lnv, by using a Cole-Hopf type transformation
(see [17])

(1.2) q = ∇v
v

= ∇ lnv,

and scalings t̃ = −χt/D, x̃ = x√−χ/D, q̃ = q√−χ, p = u, one can remove the
logarithmic singularity and transform (1.1) into a new system of hyperbolic type
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PDEs with viscosity

(1.3)





pt −∇· (pq) = ∆p,

qt −∇
(
ε

−χ |q|
2 + p

)
= ε

D
∆q.

We comment that the characteristic field associated with the flux in (1.3) is hyper-
bolic. This is in contrast to the case when χ > 0, in which the characteristic field
may change type (cf. [17]). The exclusive feature of the transformed model (1.3)
is that the parameter ε > 0 is not only a viscosity constant but also a coefficient
of nonlinear advection term with quadratic nonlinearity, which distinguishes itself
from other (general) hyperbolic systems (e.g., see [1, 9, 28]).

1.2. Literature review and goals. To put things into perspective, we now
briefly survey the literature on (1.3) in connection with this work.

When ε = 0, many results concerning the qualitative behavior of solutions to
(1.3) have been achieved in a series of recent works:

• one-dimensional explicit and numerical solutions on finite intervals [17]

• local well-posedness and blowup criteria of multi-dimensional and large-
amplitude classical solutions on Rn [5, 19]

• global well-posedness and long-time behavior of multi-dimensional small-
amplitude classical solutions on Rn [8, 19]

• global well-posedness and long-time behavior of one-dimensional small-
amplitude classical solutions on finite intervals [34]

• global well-posedness of one-dimensional large-amplitude classical solu-
tions on R [7]

• global well-posedness of one-dimensional large-amplitude classical solu-
tions on finite intervals [4] through directly working on the original model
(1.1)

• long-time behavior of one-dimensional large-amplitude classical solutions
on finite intervals [21, 22]

• long-time behavior of one-dimensional large-amplitude classical solutions
on R [20]

• long-time behavior of one-dimensional small-amplitude classical solutions
on R [35]

• local nonlinear stability of one-dimensional traveling wave solutions on R
[12, 23, 24]

• formation of one-dimensional shock waves in R [31].

Comparing with the magnitude of research conducted on (1.3) with ε = 0,
the chemically diffusible model (i.e., (1.3) with ε > 0) has been investigated rela-
tively less. The following results have been recently established:
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• Global well-posedness and long-time behavior of one-dimensional large-
amplitude classical solutions on finite intervals subject to the Dirichlet-
Dirichlet boundary conditions, p|∂Ω = p̄, q|∂Ω = q̄ [21]

• Global well-posedness, long-time behavior and diffusion limit of one-
dimensional large-amplitude classical solutions on finite intervals subject
to the Neumann-Dirichlet boundary conditions, px|∂Ω = 0, q|∂Ω = 0
[21, 29]

• Global well-posedness, long-time behavior and diffusion limit of small-
amplitude classical solutions in RN (N = 2,3) [32]

• Existence and nonlinear stability of one-dimensional traveling wave solu-
tions on R [18, 25, 26].

To the best of our knowledge, the qualitative behavior of classical solutions to
the Cauchy problem of (1.3) under general conditions on initial data has not been
studied in the literature. In this paper, we are interested in the dynamics of (1.3)
for fixed values of D and χ. Hence, for simplicity, we take D = −χ = 1, and the
resulting equations read as





pt −∇· (pq) = ∆p, x ∈ Rd, t > 0,

qt −∇(ε|q|2 + p) = ε∆q,
(p,q)(x,0) = (p0, q0)(x), x ∈ Rd,

(1.4)

where the initial data are prescribed around a constant ground state (p̄,0) where
p̄ ≥ 0. The purpose of the paper is to study the qualitative behavior of classical
solutions to the Cauchy problem (1.4).

1.3. Motivation. Next, we would like to point out the facts that motivate
the present work:

(1) Recently, the local nonlinear stability of one-dimensional traveling wave
solutions to (1.4) was established in [25, 26]. It was shown that traveling
wave solutions with large strength are asymptotically stable under suffi-
ciently small perturbations. Numerical simulations in [26] indicated that
traveling waves are asymptotically stable even under large perturbations.
However, a rigorous justification of the global stability of one-dimensional
traveling wave solutions to the model is still missing. As a matter of fact,
even the global stability of constant equilibrium states is still completely
unknown. In this paper, we investigate the global stability of constant
equilibrium states to (1.4) which, we hope, can shed some light on the
study of global stability of traveling waves.

(2) It has been observed in previous works that one major issue encountered
in the study of the global well-posedness and long-time behavior of large-
amplitude classical solutions to (1.4) is the quadratic non-linearity in the
first equation. In [29, 33], such an issue was resolved by employing the



On Hyperbolic Systems Arising from Biology 1387

weak Lyapunov functional associated with the system which involves a
logarithmic function of the cell density function, and deriving special
(Poincaré type) inequalities by taking advantage of the compactness of
the domain and conservation of total mass (cf. (3.25) in [29], (2.10) in
[33]). However, for the Cauchy problem under consideration, the cru-
cial approaches developed in [29, 33] are no longer valid because of the
non-compactness of R. This raises a significant mathematical challenge.

(3) It is a common belief that linear diffusion usually has a stabilizing effect.
Taking this into consideration, one would expect that any analytical re-
sult on the chemically non-diffusible model, that is, (1.1) with ε = 0,
could be naturally extended to the chemically diffusible model without
spending extra effort. Whether this is true for the case considered in this
paper is, however, not clear. In fact, from the preliminary mathematical
treatment of (1.1), we see that after applying the Cole-Hopf transforma-
tion (cf. (1.2)), in addition to the linear diffusion term ∆q, a new qua-
dratic nonlinearity ∇(|q|2) is present in the system (cf., (1.3)). From
a mathematical point of view, quadratic (or higher-order) nonlinearities
usually do not have significant impacts on the long-time dynamics of
small-amplitude solutions to nonlinear PDEs. However, the story is com-
pletely opposite in the regime of large-amplitude solutions. Therefore,
a natural question for (1.3) is, Can the linear diffusion ∆q dominate the
quadratic nonlinearity ∇(|q|2) in the regime of large-amplitude solutions?
As mentioned before, such a question has been partially answered in one
space dimension when the size of the domain under consideration is finite
(cf. [29,33]). However, the case of infinite domain (Cauchy problem) has
largely remained open.

(4) It has been shown in [29, 33] that on finite one-dimensional intervals
subject to the Neumann-Dirichlet boundary conditions, large-amplitude
classical solutions of (1.3) with ε > 0 converge to those of (1.3) with ε = 0
as ε → 0. The results indicate that the chemically diffusible model is con-
sistent with the non-diffusible model on finite one-dimensional intervals
subject to the Neumann-Dirichlet boundary conditions. However, such a
phenomenon has not been investigated for the Cauchy problem (1.4).

(5) It is well documented that solutions to the incompressible Navier-Stokes
equations are analytic in space at least for short time (cf. [16] and refer-
ences therein). In fact, in two dimensions, the radius of spatial analyticity
grows like

√
t. This property can be viewed as a strong expression of the

parabolic regularization effect derived from its linear part. It immediately
follows that the solutions experience exponential spectral decay at least for
a short time. Inspired by such a classic result in mathematical fluid me-
chanics, and because of the parabolic nature of the equations, in the last
part of this paper, we explore the spatial analyticity of solutions to (1.4)
under minimal regularity assumptions on the initial data.
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To contribute to this contemporary body of knowledge, in the present paper,
we derive delicate energy estimates to study the global well-posedness, long-time
behavior, and zero chemical diffusion limit of large-amplitude classical solutions
to (1.4). The approach developed in the current paper is essentially indepen-
dent of the size of spatial domain and conservation of total mass, and therefore
is more general than that utilized in [29, 33] for the finite domain case. Indeed,
it can be readily checked that this approach can be applied directly to the initial-
boundary value problems considered in [29, 33]. By using this approach, we can
show that positive constant ground states for the Cauchy problem are globally
asymptotically stable, which means that classical solutions to the Cauchy prob-
lem always converge to positive constant ground states regardless of the strength
of initial perturbations. We also show that large-amplitude classical solutions of
(1.4) are convergent with respect to the chemical diffusion coefficient ε with a
certain convergence rate. Furthermore, we derive explicit algebraic decay rates of
solutions under very mild conditions on initial data. The above-mentioned results
are derived only in one dimension (d = 1). For d > 1, by adapting a technique
for establishing space-analyticity of solutions to the incompressible Navier-Stokes
equations (cf. [6]), we show that the model (1.4) also exhibits this strong parabolic
smoothing effect in any dimension: namely, its solutions are spatially analytic for
a short time provided that the initial data belong to Lq(Rd) for any q > d ≥ 1.
We underscore that the global existence of large-amplitude solutions of (1.4) in
multi-dimensions (d > 1) still remains open as of this date.

The rest of this paper is organized as follows. In Section 2, we state our
main results for the transformed chemotaxis model (1.4). Section 3 is devoted to
the studies of global well-posedness, long-time behavior, and diffusion limits of
large-amplitude classical solutions to (1.4). In Section 4, we compute the explicit
decay rate of the perturbations under mild conditions on initial data. In Section
5, we study the parabolic smoothing effect of the model. In Section 6, we show
numerical simulations to illustrate our theoretical results, and launch some new
interesting problems for further study based on some numerical results for a case
not proved in this paper.

2. MAIN RESULTS AND IDEAS

We now state the main results derived in the paper. In the sequel, we always
assume d = 1 (one dimension) unless otherwise stated. We first introduce some
notation for convenience.

Notation. Throughout this paper, ‖ · ‖, ‖ · ‖∞, and ‖ · ‖Hs denote the norms
of the usual Lebesgue measurable function spaces L2, L∞, and the Hilbert space
Hs, respectively. The functional spaces under consideration are L∞([0, T ];Hs)
and L2([0, T ];Hs). Unless otherwise specified, C and Ci denote generic constants
which are independent of the unknown functions. The values of the constants
may vary line by line according to the context.
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In [29, 33], the authors studied the global dynamics of one-dimensional large
amplitude classical solutions to (1.4) on finite intervals. However, as mentioned
before, the methods developed for the initial-boundary value problems are not
directly accessible for the Cauchy problem, because of the non-compactness of
the domain. The first theorem addresses the global well-posedness and long-time
behavior of large-amplitude classical solutions to the Cauchy problem (1.4) when
the initial cell density function is perturbed around a positive constant ground
state.

Theorem 2.1. Consider the one-dimensional version of (1.4). Assume that
p0(x) ≥ 0 and (p0 − p̄, q0) ∈ H2(R) for some constant ground state p̄ > 0.
Then, for any fixed 0 < ε ≤ 1, there exists a unique global classical solution (p, q) to
the Cauchy problem (1.4) such that

(p − p̄, q) ∈ C([0,∞);H2(R)), (px , qx) ∈ L2([0,∞);H2(R)),

with the following estimate:

∥∥(p − p̄)(t)
∥∥2
H2 +

∥∥q(t)
∥∥2
H2

+
∫ t

0

(∥∥px(τ)
∥∥2
H2 +

∥∥qx(τ)
∥∥2
H1 + ε

∥∥qx(τ)
∥∥2
H2

)
dτ ≤ C0,

where the constant C0 > 0 depends only on p0, q0, and p̄. In addition,

lim
t→∞

(∥∥(p − p̄)(t)
∥∥2
C1 +

∥∥q(t)
∥∥2
C1

) = 0.

Remark 2.2. From the proof of Theorem 2.1 we will see that the upper bound
for ε can be any fixed finite number. We take it to be one for simplicity in the
paper.

The next question we shall explore is the diffusion (viscous) limit of (1.4) as
ε → 0. In [29,33], the authors studied the diffusion limits of large-amplitude clas-
sical solutions to the one-dimensional Neumann-Dirichlet boundary value prob-
lem of (1.4) as ε → 0, and identified the convergence rates of the diffusible prob-
lem toward the non-diffusible problem. Our next theorem addresses these two
topics for the Cauchy problem (1.4).

Theorem 2.3. Let the conditions of Theorem 2.1 hold. Let (pε, qε) be the
unique classical solutions to (1.4) with ε > 0. Then, for any fixed t > 0, the pair of
limiting functions (p0, q0) = limε→0(pε, qε) is a unique classical solution to the non-
diffusive problem, that is, (1.4) with ε = 0. Moreover, (pε, qε) approaches (p0, q0)
with the following convergence rate:

∥∥(pε − p0)(t)
∥∥2
H1 +

∥∥(qε − q0)(t)
∥∥2
H1 ≤ α1e

β1tε,

where α1, β1 are positive constants which depend only on p0, q0, and p̄.
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Remark 2.4. Theorem 2.3 and the results in [29, 33] indicate that the fully
parabolic system and the parabolic-hyperbolic system are consistent on the entire
real line or on one-dimensional finite intervals with Neumann-Dirichlet boundary
conditions: px|∂Ω = 0, q|∂Ω = 0. On the other hand, numerical simulations in
[21] showed that the consistency does not hold true on one-dimensional finite
intervals with Dirichlet boundary conditions: p|∂Ω = p̄, q|∂Ω = q̄ when ε > 0,
while p|∂Ω = p̄ when ε = 0. Indeed, the emergence of boundary layers has been
numerically observed in [21] and subsequently rigorously justified in [10]. This is
due to the mismatch of the boundary conditions between the diffusible and non-
diffusible problems. The scenario is similar to the vanishing viscosity limit of the
incompressible Navier-Stokes equations under the no-slip boundary conditions.

Now, we would like to briefly explain the ideas of the proofs of Theorems
2.1–2.3. The results are proved by energy methods. Regarding the proof of The-
orem 2.1, since our goal is to prove the convergence of the solution to the positive
constant ground state, uniform-in-time estimation of the solution is necessary. It
turns out that the most difficult part in building the uniform-in-time estimation
comes from the control of the low frequency part (L2-norm) of the solution. This
is mainly due to the quadratic nonlinearity in the first equation of (1.4). We reach
our goal by first employing the weak Lyapunov functional (entropy-entropy flux
pair) associated with the equations in (1.4) which involves a logarithmic func-
tion of the cell density function p. The Lyapunov functional provides a strong
monotonicity formula for the low frequency part of the solution, and lays down a
foundation for the global existence of large-amplitude solutions.

Next, in order to control the first-order dissipation ‖∂xp‖L2 , a natural step is
to perform an L2-type energy estimate on the first equation of (1.4). However,
this operation produces the integral of the cubic term, ppxq, which is difficult
to deal with in the regime of large-amplitude solutions. To resolve this issue, we
first “complicate” the problem by performing higher-order Lr -type (r > 2) energy
estimates, and then obtain the control of the dissipation ‖∂xp‖L2 by coupling
the higher-order estimates with the weak Lyapunov functional. After coupling
the Lr -estimates together, we discover that some of the resulting non-linear terms
cancel each other and compensate the cubic term obtained from the L2-estimate.
It turns out there is a highly non-trivial intrinsic balance between the higher-order
non-linearities. It should be mentioned that a similar idea was applied in [20] to
study the global dynamics of large amplitude classical solutions to the chemically
non-diffusive problem, that is, (1.4) with ε = 0. In particular, it was shown that
the L2, L3, L4 norms of p − p̄ are uniformly bounded with respect to time. In
this paper, we further generalize this method to incorporate the uniform-in-time
estimates of all the Lr norms of p − p̄ for r ranging from 2 to 2k for any fixed
2 ≤ k < ∞. This requires a significant amount of efforts for manipulating the
higher-order non-linearities.

We will see that the energy estimation of the low frequency part of the solution
is independent not only of time, but also of the chemical diffusion coefficient ε.
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The ε-independent energy estimation plays a key role in proving the diffusion
limit and convergence rate of the solution stated in Theorem 2.3.

To proceed with estimating the spatial derivatives of the solution so as to estab-
lish the diffusion limit and convergence rate (Theorem 2.3), we follow the spirit
of [20] to derive a damping equation for the spatial derivatives of the q-function.
However, because of the presence of the non-linear convective-like term ε(q2)x ,
the derivation of the ε-independent energy estimates of the spatial derivatives is
complicated, which makes the analysis in this paper much more involved than that
in [20]. We achieve the goal by making use of the linear chemical diffusion and
the ε-independent energy estimation of the low frequency part of the solution.
It turns out that the ε-independent estimates for the spatial derivatives of the q-
function play a crucial role in taking the chemical diffusion limit and establishing
the convergence rate.

The aforementioned results (Theorems 2.1–2.3) are concerned with the qual-
itative behavior of large-amplitude classical solutions to (1.4) when the constant
ground state is strictly positive. Using a similar idea as in [20], we can prove
the global well-posedness of large-amplitude classical solutions to (1.4) when the
ground state p̄ = 0. The idea is to lift the cell density function from the zero
ground by a positive distance, and make the entropy expansion of the lifted func-
tion around the positive ground state. To be precise, we consider the following
Cauchy problem:





p̃t − (p̃q)x + qx = p̃xx ,
qt − p̃x = εqxx + ε(q2)x ;

(p̃, q)(x,0) = (p0 + p̂, q0)(x),

where p̃ = p + p̂, p̂ > 0 is a constant, and (p, q) denotes the solution to (1.4)
when p̄ = 0, p0 ≥ 0, and (p0, q0) ∈ H2(R). In other words, we lift p to be
positive by a positive distance p̂. Such a treatment, together with the arguments
on page 2197 of [20], yields that ‖q(t)‖2 ≤ C(t), where C(t) can be explicitly
expressed as

C(t) = et/p̂
(

2
∫

R

[p̃0 ln(p̃0)− p̃0]− [p̂ ln(p̂)− p̂]− ln(p̂)(p̃0− p̂)dx+‖q0‖2
)
.

Then, by combining the proof of Theorem 2.1 in this paper and the arguments
on pages 2197–2198 of [20], we can show that the Cauchy problem of (1.4) is
globally well posed when p̄ = 0, p0 ≥ 0, and (p0, q0) ∈ H2(R). Here, we
only present the result without going through the technical details. The result is
recorded in the following proposition.

Proposition 2.5. Let the conditions of Theorem 2.1 hold with the exception that
p̄ = 0. Then, for any fixed 0 < ε ≤ 1, there exists a unique global classical solution
(p, q) to the Cauchy problem (1.4) such that

(p, q) ∈ C([0,∞);H2(R)), (px , qx) ∈ L2([0,∞);H2(R)).



1392 VINCENT R. MARTINEZ, ZHIAN WANG & KUN ZHAO

Remark 2.6. We point out that in the zero ground state case if one assumes
that the initial total mass of the cell population is finite, then the total mass of cell
population is finite and conserved for all time (since p ≥ 0), which can be seen by
integrating the first equation of (1.4) overR. This makes the zero ground state case
more biologically meaningful than the positive ground state case. However, we are
currently unable to rigorously capture the long-time behavior of the solution in
the zero ground state case, because the energy bounds derived in this case are
increasing functions of time. We leave the investigation for the future. However,
our numerical simulations indicate that (p, q) converge to (0,0) with a very slow
decay rate as t becomes large (see details in Section 6).

So far, the results presented in this section do not assume any smallness con-
dition on the strength of the initial perturbations. However, they (especially The-
orem 2.1) also provide no information about the explicit decay rate of the pertur-
bations. Our next goal is to compute the explicit decay rate of classical solutions
to (1.4) under mild conditions on the initial data. We identify the decay rate
by following a standard approach, which is to define anti-derivatives of the per-
turbations and perform time-weighted energy estimates. To state the result, we
introduce the following anti-derivatives:

(2.1) ϕ(x, t) =
∫ x

−∞
(p(y, t)− p̄)dy, ψ(x, t) =

∫ x

−∞
q(y, t)dy,

for t ≥ 0, where p̄ > 0 is any given constant ground state. Then, we have the
following result.

Theorem 2.7. With (2.1), we assume that the initial data satisfy

(ϕ0,ψ0)(x) ∈ H3(R)

and there exists a sufficiently small constant η0 > 0 such that ‖ϕ0‖2 + ‖ψ0‖2 ≤ η0.
Then, there also exists a unique global solution to the Cauchy problem (1.4) satisfying
(p − p̄, q) ∈ C([0,∞);H2(R))∩ L2([0,∞);H3(R)). Moreover, there exists a con-
stant ζ0 > 0 which is independent of time, such that for any t > 0, it holds that

2∑

k=0

[
(t + 1)k+1(‖∂kx(p(t)− p̄)‖2 + ‖∂kxq(t)‖2)

]+

+
3∑

m=0

[∫ t

0
(τ + 1)m(‖∂mx p(τ)‖2 + ‖∂mx q(τ)‖2)dτ

]
≤ ζ0.

Remark 2.8. It is worth mentioning that in Theorem 2.7, only the L2-level
energy of the initial anti-derivatives is assumed to be small. This is because of
the fact that Theorem 2.1 holds for large energy of p0 and q0. Moreover, in
[20], a similar result is obtained for (1.4) when ε = 0 under the assumption that
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‖ϕ0‖2 + ‖ψ0‖2 + ‖q0‖2 is small. Comparing the situation to that result, we see
that the smallness of ‖q0‖2 is removed when ε > 0. This is due to the parabolic
nature of the model.

The last result of this paper is concerned with the parabolic smoothing effect
of the model. We show that the solution to (1.4) becomes instantaneously spatially
analytic as long as the initial data belong to Lq(Rd), for any q > d ≥ 1. The
approach we employ is the one developed by Grujic-Kukavica in [6], where spatial
analyticity was established for the Navier-Stokes equations. The method relies on
approximations to the original system by the heat equation, whose solutions are
known to be analytic for such data. By considering a suitable self-map, one can
then show that analyticity of the approximation propagates to analyticity of the
limiting function for a short time, depending only on the Lq-norm of the initial
data.

Theorem 2.9. Let d ≥ 1 and q ∈ (d,∞). Suppose there is a constant Mq
depending on q such that ‖p0‖Lq+‖q0‖Lq ≤ Mq. Then, there exist absolute constants
C1,C2 > 0 such that, for T0 > 0 given by

T0 :=min

{
ε

C1
,

1
(C2Mq)2/(1−d/q)

}
,

the Cauchy problem (1.4) has a solution (p,q) which satisfies

p ∈ C([0, T0);Lq(Rd)), q ∈ C([0, T0);Lq(Rd)d)

with the following property: for every t ∈ (0, T0), p,q are restrictions of the analytic
functions p(x,y, t) + iπ(x,y, t), and q(x,y, t) + iu(x,y, t), respectively, in the
region

Dt := {(x,y) ∈ Cd : |y| ≤ C∗t1/2 min{1,√ε}},
for some absolute constant C∗ > 0, depending only on C1. Moreover, we have

‖p(· ,y, t)‖Lq + ‖π(· ,y, t)‖Lq(2.2)

+ ‖q(· ,y, t)‖Lq + ‖u(· ,y, t)‖Lq ≤ 4Mq,

for each t ∈ (0, T0) and (x,y) ∈ Dt.
Before concluding this section, we point out that all results obtained above for

the transformed system (1.4) can be transferred to the original chemotaxis system
(1.1) by inverting the Cole-Hopf transformation (1.2). Since this process is quite
standard and has been done in many previous works (e.g., see [18,21,32,33]), we
omit the details and focus our attention on the transformed system (1.4) only.

3. QUALITATIVE BEHAVIOR OF LARGE SOLUTIONS

In this section, we study the long-time dynamics and diffusion limit of large-
amplitude classical solutions to the Cauchy problem (1.4).
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3.1. Long-time dynamics of transformed system (proof of Theorem 2.1).
Now, we consider the global dynamics of the transformed system

{
pt = pxx + (pq)x ,
qt = εqxx + ε(q2)x + px ,

(3.1)

with the initial condition



(p, q)(x,0) = (p0, q0)(x),

(p0 − p̄, q0) ∈ H2(R),

p0(x) ≥ 0, x ∈ R,
(3.2)

where p̄ > 0 is a constant ground state.
First, by using the arguments in [7], one can show the local existence result as

follows.

Proposition 3.1 (Local Existence). Assume that the initial data satisfy (3.2).
Then, there exists a unique local solution (p, q) to (3.1)–(3.2) such that p ≥ 0,
(p− p̄, q) ∈ C([0, T0);H2(R)) and (px , qx) ∈ L2([0, T0);H2(R)) for some finite
T0 > 0.

To get a global solution, we derive a priori energy estimates of the local solu-
tion.

Proposition 3.2 ( A priori Estimates). Let (p, q) be a solution to (3.1)–(3.2).
Then, it holds that

∥∥p(t)− p̄
∥∥2
H2 +

∥∥q(t)
∥∥2
H2+(3.3)

+
∫ t

0

(∥∥px(τ)
∥∥2
H2 +

∥∥qx(τ)
∥∥2
H1 + ε

∥∥qx(τ)
∥∥2
H2

)
dτ ≤ C0,

where the constant C0 > 0 is independent of t and ε.
For the sake of readability, we divide the proof of Proposition 3.2 into four

steps which are stated in a sequence of lemmas. We begin with a basic energy
estimate based on the weak Lyapunov functional associated with the system (3.1).

Lemma 3.3 (Weak Lyapunov Functional). Let (p, q) be a solution to (3.1)–
(3.2). Then, there is a constant d1 such that

‖q(t)‖2 +
∫ t

0

(∫

R

(px)2

p
dx + ε‖qx‖2

)
dτ(3.4)

≤ C1 = 1
2
‖q0‖2 + d1‖p0 − p̄‖2.

Proof. Because of the conservation of total mass, after taking the L2 inner
product of (3.1)1 with ln(p)− ln(p̄), we have

(3.5)
d

dt

(∫

R

η(p)− η(p̄)− η′(p̄)(p − p̄)dx
)
+
∫

R

(
pxq + (px)

2

p

)
dx = 0,
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where η(z) = z ln(z)−z which is a convex function. Taking the L2 inner product
of (3.1)2 with q, we have

(3.6)
1
2

d

dt
‖q‖2 −

∫

R

pxq dx + ε‖qx‖2 = 0.

Adding (3.6) to (3.5), we get

d

dt

(∫

R

η(p)− η(p̄)− η′(p̄)(p − p̄)dx + 1
2
‖q‖2

)
+(3.7)

+
∫

R

(px)2

p
dx + ε‖qx‖2 = 0.

Integrating (3.7) over [0, t], we have
(∫

R

η(p)− η(p̄)− η′(p̄)(p − p̄)dx + 1
2
‖q‖2

)
(t)+(3.8)

+
∫ t

0

(∫

R

(px)2

p
dx

)
+ ε‖qx‖2

dτ

=
(∫

R

η(p0)− η(p̄)− η′(p̄)(p0 − p̄)dx + 1
2
‖q0‖2

)
.

By the convexity of η(·) and the non-negativity of p, we have
∫

R

η(p)− η(p̄)− η′(p̄)(p − p̄)dx ≥ 0.

On the other hand, since 0 < p̄ < +∞ and p0 ≥ 0, we have
∫

R

η(p0)− η(p̄)− η′(p̄)(p0 − p̄)dx ≤ d1‖p0 − p̄‖2,(3.9)

where the constant d1 depends only on p̄. Thus, (3.8) and (3.9) complete the
proof. ❐

Although the Lyapunov functional provides a uniform-in-time estimate for
‖q‖2, the logarithmic expansion of the p-function is too weak for the subsequent
energy estimates. Next, we derive a uniform-in-time estimate for ‖p − p̄‖2. It
turns out that the standard procedure (L2-type energy estimate) is not sufficient to
achieve our goal, and we need to employ higher-order estimates. Since the proof
of the next lemma is quite lengthy, we divide it into three steps.

Lemma 3.4 (L2-Estimate). Let (p, q) be a solution to (3.1)–(3.2). Then, it
follows that

(3.10) ‖p(t)− p̄‖2 + ‖q(t)‖2 +
∫ t

0
(‖px(τ)‖2 + ε‖qx(τ)‖2)dτ ≤ C2,

where the constant C2 > 0 is independent of t and ε.
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Proof. Step 1. We first reformulate the system (3.1). Let p̃ = p − p̄. Substi-
tuting p̃ into (3.1), we have

(3.11)

{
p̃t − (p̃q)x − p̄qx = p̃xx ,
qt − p̃x = εqxx + ε(q2)x .

Taking the L2 inner products of (3.11)1 with p̃, (3.11)2 with p̄q, and integrating
by parts, we have

(3.12)
d

dt

(
1
2
‖p̃‖2 + p̄

2
‖q‖2

)
+ ‖p̃x‖2 + εp̄‖qx‖2 = −

∫

R

p̃qp̃x dx.

We discover that the cubic term on the righthand side of (3.12) is hard to deal with
in building the desired uniform-in-time estimate for ‖p̃‖2, and so we eliminate
such a term. For this purpose, by taking the L2 inner product of (3.11)1 with

− 1
2(p̃)

2 and integrating by parts, we have

(3.13)
d

dt

(
−1

6

∫

R

(p̃)3 dx

)
−
∫

R

p̃(p̃x)
2
dx =

∫

R

(p̃)2qp̃x dx+ p̄
∫

R

p̃qp̃x dx.

Note that the last term on the righthand side of (3.13) and the cubic term on the
righthand side of (3.12) have opposite signs, and they differ by a constant multiple.
Therefore, multiplying (3.12) by p̄, and then adding the resulting equation to
(3.13), we get

d

dt

(
p̄

2
‖p̃‖2 − 1

6

∫

R

(p̃)3 dx + (p̄)
2

2
‖q‖2

)
+ p̄‖p̃x‖2(3.14)

−
∫

R

p̃(p̃x)
2
dx + ε(p̄)2‖qx‖2 =

∫

R

(p̃)2qp̃x dx.

Next, observe that in (3.14) the quantity inside of the temporal derivative is not
necessarily positive, since the estimate of the L∞-norm of p̃ is unknown at this
stage. Therefore, we need to move on to the L4-estimate of p̃ in order to compen-
sate the third-order power of p̃. For this purpose, we take the L2 inner product of
(3.11)1 with − 1

3(p̃)
3, multiply (3.14) by p̄, then add the two resulting equations

to get

d

dt

(
(p̄)2

2
‖p̃‖2 − p̄

6

∫

R

(p̃)3 dx + 1
12

∫

R

(p̃)4 dx + (p̄)
3

2
‖q‖2

)
+ (p̄)2‖p̃x‖2

− p̄
∫

R

p̃(p̃x)
2
dx +

∫

R

(p̃)2(p̃x)
2
dx + ε(p̄)3‖qx‖2 = −

∫

R

(p̃)3qp̃x dx.

We would like to note that a similar idea was used in [21] to study the global
dynamics of large-amplitude classical solutions to an initial-boundary value prob-
lem of (1.4) on finite one-dimensional intervals. However, the proof constructed
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in [21] only provides a uniform-in-time estimate of the L2, L3, and L4 norms of
p − p̄. Here, we can show in one stroke that the Lr norm of p − p̄ is uniformly
bounded with respect to time for any 2 ≤ r ≤ 2k < ∞ without appealing to the
estimate of spatial derivatives of the perturbation, which cannot be achieved by
using the argument in [21]. Indeed, for any fixed integer 2 ≤ k < ∞, by repeating
the above procedure, we deduce that

d

dt

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
+(3.15)

+
( 2k−2∑

j=0

∫

R

(p̄)2k−2−j(−p̃)j(p̃x)2 dx + ε(p̄)2k−1‖qx‖2
)

= −
∫

R

(p̃)2k−1qp̃x dx.

Step 2. This step is to get a proper control of the righthand side of (3.15). How-
ever, before doing so we need to examine the two terms on the lefthand side of the
equation. First, by using the decomposition

(3.16)
2k∑

j=2

(p̄)2k−j(−p̃)j
(j − 1)j

= 1
4
(p̄)2k−2(p̃)2

+ 1
2

k−1∑

i=1

(
(p̄)2k−2i(p̃)2i

(2i− 1)2i
− 2(p̄)2k−2i−1(p̃)2i+1

2i(2i+ 1)
+ (p̄)

2k−2i−2(p̃)2i+2

(2i+ 1)(2i+ 2)

)

+ 1
2(2k− 1)2k

(p̃)2k,

and noticing that, for any integer 1 ≤ i ≤ k−1, the middle term on the righthand
side of (3.16) can be computed as

(p̄)2k−2i(p̃)2i

(2i− 1)2i
− 2(p̄)2k−2i−1(p̃)2i+1

2i(2i+ 1)
+ (p̄)

2k−2i−2(p̃)2i+2

(2i+ 1)(2i+ 2)

= (p̄)2k−2i−2(p̃)2i
{

1
(2i− 1)2i

(
p̄ − 2i− 1

2i+ 1
p̃

)2

+ 2(p̃)2

2i(2i+ 1)2(2i+ 2)

}
> 0,

we deduce that

2k∑

j=2

(p̄)2k−j(−p̃)j
(j − 1)j

>
1
4
(p̄)2k−2(p̃)2 + 1

2(2k− 1)2k
(p̃)2k.
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It follows, by the Young’s inequality, that

(3.17)
2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx > R
p̄,k
1

k∑

m=1

∥∥p̃
∥∥2m
L2m ,

where Rp̄,k1 is a positive constant depending only on p̄ and k.
Second, by a similar argument, we have

2k−2∑

j=0

(p̄)2k−2−j(−p̃)j > 1
2
(p̄)2k−2 + 1

2
(p̃)2k−2,

which implies

(3.18)
2k−2∑

j=0

∫

R

(p̄)2k−2−j(−p̃)j(p̃x)2 dx > Rp̄,k2

k−1∑

n=0

‖(p̃)np̃x‖2,

where R
p̄,k
2 is another positive constant depending only on p̄ and k.

Step 3. We now go back to and deal with the righthand side of (3.15). By the
Cauchy-Schwarz inequality and (3.4), we have

∣∣∣∣−
∫

R

(p̃)2k−1qp̃x dx

∣∣∣∣ ≤
R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + 1

2Rp̄,k2

‖(p̃)kq‖2(3.19)

≤ R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + 1

2R
p̄,k
2

∥∥p̃
∥∥2k
∞ ‖q‖2

≤ R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + C1

2Rp̄,k2

∥∥p̃
∥∥2k
∞ .

Substituting (3.19) into (3.15), we then have

(3.20)
d

dt

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
+

+
( 2k−2∑

j=0

∫

R

(p̄)2k−2−j(−p̃)j(p̃x)2 dx −
R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + ε(p̄)2k−1‖qx‖2

)

≤ C1

2R
p̄,k
2

∥∥p̃
∥∥2k
∞ .
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Note that the quantity inside the second parenthesis on the lefthand side of (3.20)
is positive, because of (3.18). To control the L∞ norm of p̃ on the righthand side
of (3.20), we observe that

(p̃)2k(x, t) = 2k
∫ x

−∞
(p̃)2k−1p̃x dx

≤ 2k
(∫

R

(p̃)4k−2(p̃ + p̄)dx
)1/2(∫

R

(p̃x)2

p̃ + p̄ dx

)1/2

≤ 2k
∥∥p̃
∥∥k∞
(∫

R

(p̃)2k−2(p̃ + p̄)dx
)1/2(∫

R

(p̃x)2

p̃ + p̄ dx

)1/2

≤ k
∥∥p̃
∥∥k∞
(

2
∫

R

[(p̃)2k + (1+ 2p̄)(p̃)2k−2]dx

)1/2(∫

R

(p̃x)2

p̃ + p̄ dx

)1/2

≤ 1
2

∥∥p̃
∥∥2k
∞ + k2

(∥∥p̃
∥∥2k
L2k + (1+ 2p̄)

∥∥p̃
∥∥2k−2
L2k−2

) ∫

R

(p̃x)2

p̃ + p̄ dx.

Then, we have

(3.21)
∥∥p̃
∥∥2k
∞ ≤ 2k2

(∥∥p̃
∥∥2k
L2k + (1+ 2p̄)

∥∥p̃
∥∥2k−2
L2k−2

) ∫

R

(p̃x)2

p̃ + p̄ dx.

Substituting (3.21) into (3.20), we get

d

dt

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
+(3.22)

+
( 2k−2∑

j=0

∫

R

(p̄)2k−2−j(−p̃)j(p̃x)2 dx

− R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + ε(p̄)2k−1‖qx‖2

)

≤ C1k2

R
p̄,k
2

(∥∥p̃
∥∥2k
L2k + (1+ 2p̄)

∥∥p̃
∥∥2k−2
L2k−2

)( ∫

R

(p̃x)2

p̃ + p̄ dx

)
.

By virtue of (3.17), we see that

C1k2

R
p̄,k
2

(∥∥p̃
∥∥2k
L2k + (1+ 2p̄)

∥∥p̃
∥∥2k−2
L2k−2

)

≤ C3

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
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for some constant C3 which is independent of t and ε. Thus, we update (3.22) as

d

dt

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
+(3.23)

+
( 2k−2∑

j=0

∫

R

(p̄)2k−2−j(−p̃)j(p̃x)2 dx

− R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + ε(p̄)2k−1‖qx‖2

)

≤ C3

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)∫

R

(p̃x)2

p̃ + p̄ dx.

Note that p̃x = px , p̃+p̄ = p. Then, applying the Gronwall inequality to (3.23),
and by (3.4), we have, for any t ≥ 0,

(3.24)
( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
(t) ≤ C4,

where the constant C4 > 0 is independent of t and ε. Substituting (3.24) into the
righthand side of (3.23), and then integrating over [0, t] for any t > 0, we have

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
(t)+

+
∫ t

0

( 2k−2∑

j=0

∫

R

(p̄)2k−2−j(−p̃)j(p̃x)2 dx

− R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + ε(p̄)2k−1‖qx‖2

)
dτ ≤ C5.

By (3.17) and (3.18), we have, for any fixed integer 1 ≤ k < ∞,

(3.25)
( k∑

m=1

∥∥p̃
∥∥2m
L2m + ‖q‖2

)
(t)+

∫ t

0

( k−1∑

n=0

‖(p̃)np̃x‖2 + ε‖qx‖2
)
dτ ≤ C6,

for some constant C6 independent of t and ε. This completes the proof. ❐

Now, we move on to estimating spatial derivatives of the solution. The fol-
lowing lemma gives the estimate of the first-order spatial derivatives. Since the
proof is lengthy again, we divide it into three steps.
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Lemma 3.5 (H1-Estimate). Let (p, q) be a solution to (3.1)–(3.2). Then, it
follows that

‖(p̃x , qx)(t)‖2 +
∫ t

0
(‖p̃xx(τ)‖2 + ‖qx(τ)‖2 + ε‖qxx(τ)‖2)dτ ≤ C7

where the constant C7 > 0 is independent of t and ε.

Proof. For convenience, we spilt our proof into four steps.

Step 1. To control the first-order spatial derivative of solutions, a natural step
is to perform the standard L2-type energy estimate. However, we find that by
doing so one cannot obtain the ε-independent estimate of the second-order spatial
derivative of q, because the energy estimation involves the temporal integral of
‖qx‖2 which is inversely proportional to ε (cf. (3.10)).

To overcome such a technical barrier, we derive a damping equation for qx ,
from which we can establish an estimate such that the temporal integral of ‖qx‖2

is independent of ε. For this purpose, by taking the spatial derivative of (3.11)2

and using equation (3.11)1, we have

(3.26) qxt = −(p̃q)x − p̄qx + p̃t + εqxxx + ε(q2)xx .

Taking the L2 inner product of (3.26) with qx , we have

d

dt

(
1
2
‖qx‖2

)
+ p̄‖qx‖2 + ε‖qxx‖2

= −
∫

R

(p̃q)xqx dx +
∫

R

p̃tqx dx + ε
∫

R

(q2)xxqx dx

= −
∫

R

(p̃q)xqx dx +
d

dt

∫

R

p̃qx dx −
∫

R

p̃qxt dx − ε
∫

R

(q2)xqxx dx

= −
∫

R

(p̃q)xqx dx +
d

dt

∫

R

p̃qx dx + ‖p̃x‖2

+ ε
∫

R

[qxx + (q2)x]p̃x dx − 2ε
∫

R

qqxqxx dx,

where we have used the equation

qxt = p̃xx + εqxxx + ε(q2)xx .

After rearranging terms, we have

d

dt

(
1
2
‖qx‖2 −

∫

R

p̃qx dx

)
+ p̄‖qx‖2 + ε‖qxx‖2

= −
∫

R

(p̃q)xqx dx + ε
∫

R

[qxx + 2qqx]p̃x dx − 2ε
∫

R

qqxqxx dx + ‖p̃x‖2.
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We estimate the first three terms on the right side of the above equation as follows:

−
∫

R

(p̃q)xqx dx ≤ p̄2 ‖qx‖
2 + 1

p̄
(‖p̃qx‖2 + ‖qp̃x‖2),

ε

∫

R

[qxx + 2qqx]p̃x dx ≤ ε8‖qxx‖
2 + 2ε‖p̃x‖2 + ε‖q‖2

∥∥qx
∥∥2
∞ + ε‖p̃x‖2

≤ ε
8
‖qxx‖2 + 3ε‖p̃x‖2 + 2C1ε‖qx‖‖qxx‖

≤ ε
4
‖qxx‖2 + 3ε‖p̃x‖2 + 8C2

1ε‖qx‖2,

and

−2ε
∫

R

qqxqxx dx ≤ ε8‖qxx‖
2 + 8ε‖q‖2

∥∥qx
∥∥2
∞(3.27)

≤ ε
4
‖qxx‖2 + 512C2

1ε‖qx‖2,

where we have used (3.4) for the estimate of ‖q‖2, the inequality ‖qx‖2∞ ≤
2‖qx‖‖qxx‖, and the Cauchy-Schwarz inequality at various places. We thus have

d

dt

(
1
2
‖qx‖2 −

∫

R

p̃qx dx

)
+ p̄

2
‖qx‖2 + ε

2
‖qxx‖2(3.28)

≤ 1
p̄
(‖p̃qx‖2 + ‖qp̃x‖2)+ (3ε + 1)‖p̃x‖2 + 520C2

1ε‖qx‖2

≤ 1
p̄
(‖p̃qx‖2 + ‖qp̃x‖2)+ 4‖p̃x‖2 + 520C2

1ε‖qx‖2,

where we have used the condition 0 < ε ≤ 1. To control the first term on the
righthand side of (3.28), we deduce

‖p̃qx‖2 + ‖qp̃x‖2 ≤
∥∥p̃
∥∥2
∞ ‖qx‖2 +

∥∥q
∥∥2
∞ ‖p̃x‖2(3.29)

≤ 2(‖p̃‖‖p̃x‖‖qx‖2 + ‖q‖‖qx‖‖p̃x‖2)

≤ C8‖p̃x‖‖qx‖(‖qx‖ + ‖p̃x‖)

≤ C9(‖p̃x‖2 ‖qx‖2 + ‖p̃x‖2)+ p̄
2

4
‖qx‖2,

using the inequality ‖f‖2∞ ≤ 2‖f‖‖fx‖ and the uniform estimates of ‖q‖2 and
‖p̃‖2 due to (3.4) and (3.25), respectively. Substituting (3.29) into (3.28), we get

d

dt

(
1
2
‖qx‖2 −

∫

R

p̃qx dx

)
+ p̄

4
‖qx‖2 + ε

2
‖qxx‖2(3.30)

≤ C10‖p̃x‖2 ‖qx‖2 + (4+ C10)‖p̃x‖2 + 520C2
1ε‖qx‖2.

Step 2. In this step, we shall make a coupling of the estimates (3.30) and (3.23).
For this purpose, we let

ρ = 2

R
p̄,k
1

.
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After multiplying (3.23) by ρ and adding the result to (3.30), we have

d

dt
L(t)+M(t) ≤ C10‖p̃x‖2 ‖qx‖2(3.31)

+ ρC3

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)(∫

R

(p̃x)2

p̃ + p̄ dx

)

+ (4+ C10)‖p̃x‖2 + 520C2
1ε‖qx‖2,

where

(3.32) L(t) =

= ρ
( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)
+ 1

2
‖qx‖2 −

∫

R

p̃qx dx

≥ 2
k∑

m=1

∥∥p̃
∥∥2m
L2m + (p̄)

2k−1

R
p̄,k
1

‖q‖2 + 1
2
‖qx‖2 −

∫

R

p̃qx dx

= 2
k∑

m=2

∥∥p̃
∥∥2m
L2m + ‖p̃‖2 + (p̄)

2k−1

R
p̄,k
1

‖q‖2 + 1
4
‖qx‖2 +

∥∥∥∥p̃ −
1
2
qx

∥∥∥∥
2

,

where we have used (3.17), and

M(t) = ρ
( 2k−2∑

j=0

∫

R

(p̄)2k−2−j(−p̃)j(p̃x)2 dx

− R
p̄,k
2

2
‖(p̃)k−1p̃x‖2 + ε(p̄)2k−1‖qx‖2

)
+ p̄

4
‖qx‖2 + ε

2
‖qxx‖2.

From (3.32) we can see that

L(t) ≅
k∑

m=1

∥∥p̃
∥∥2m
L2m + ‖q‖2 + ‖qx‖2,

where ≅ stands for the equivalence of quantities up to a multiplication by a con-
stant. Then, there is a constant C10 which is independent of t and ε, such that

C9‖p̃x‖2 ‖qx‖2+

+ ρC3

( 2k∑

j=2

∫

R

(p̄)2k−j(−p̃)j
(j − 1)j

dx + (p̄)
2k−1

2
‖q‖2

)(∫

R

(p̃x)2

p̃ + p̄ dx

)

≤ C10

(
‖p̃x‖2 +

∫

R

(p̃x)2

p̃ + p̄ dx

)
L(t).
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It follows from (3.31) that

d

dt
L(t)+M(t) ≤ C11

(
‖p̃x‖2 +

∫

R

(p̃x)2

p̃ + p̄ dx

)
L(t)(3.33)

+ (4+ C10)‖p̃x‖2 + 520C2
1ε‖qx‖2.

Applying Gronwall inequality to (3.33) and using the uniform estimates (3.4) and
(3.25), we have in particular,

(3.34) ‖qx(·, t)‖2+
∫ t

0
‖qx(·, τ)‖2+ ε(‖qx(·, τ)‖2+‖qxx(·, τ)‖2)dτ ≤ C12.

We observe that the constants C8, . . . , C12 are independent of t and ε. This will
later allow us to take the zero diffusion limit to obtain the solution to the non-
diffusible problem.

Step 3. In this step we derive a uniform-in-time estimate for p̃x . By taking the L2

inner products of the two equations in (3.11) with p̃xx and p̄qxx , respectively,
we have

d

dt

(
1
2
‖p̃x‖2 + p̄

2
‖qx‖2

)
+ 1

2
‖p̃xx‖2 + εp̄‖qxx‖2

≤ ‖p̃qx‖2 + ‖qp̃x‖2 − 2εp̄
∫

R

qqxqxx dx

≤ C13(‖p̃x‖2 + ‖qx‖2)+ εp̄
2
‖qxx‖2 + 64p̄C2

1ε‖qx‖2,

where we have used an argument similar to that used in deriving (3.27) and (3.29),
and the uniform estimate of ‖qx‖2 obtained from (3.34). From the above esti-
mate, we have

d

dt

(
1
2
‖p̃x‖2 + p̄

2
‖qx‖2

)
+ 1

2
‖p̃xx‖2 + εp̄

2
‖qxx‖2(3.35)

≤ C13

(
‖p̃x‖2 + ‖qx‖2

)
+ 64p̄C2

1ε‖qx‖2.

Integrating (3.35) with respect to t and using (3.25) and (3.34), we have in par-
ticular

(3.36) ‖p̃x(t)‖2 +
∫ t

0
‖p̃xx(τ)‖2

dτ ≤ C14,

where the constant C14 is independent of t and ε. The combination of (3.34) and
(3.36) completes the proof. ❐

The next lemma gives the uniform-in-time estimate of the second-order spa-
tial derivatives of the solution. The proof is similar to that of Lemma 3.3 by using
previously established energy estimates. We shall only give a sketch of the proof.
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Lemma 3.6 (H2-Estimate). Let (p, q) be a solution to (3.1)–(3.2). Then, it
holds that

‖p̃xx(t)‖2 + ‖qxx(t)‖2(3.37)

+
∫ t

0

(‖p̃xxx(τ)‖2 + ‖qxx(τ)‖2 + ε‖qxxx(τ)‖2
)
dτ ≤ C15,

where the constant C15 > 0 is independent of t and ε.

Proof. Using a standard L2-based energy method and (3.26), we can show that

d

dt
V(t)+W(t) ≤ C16(‖p̃xx‖2 + ‖p̃x‖2 + ‖qx‖2 + ε‖qxx‖2)+ C17‖p̃x‖2V(t)

where the constants C16 and C17 > 0 are independent of t and ε, and

V(t) = 1
2
‖qxx‖2 −

∫

R

p̃xqxx dx + 2‖p̃xx‖2

+ 2p̄‖qxx‖2 + 2‖p̃x‖2 + 2p̄‖qx‖2

= 1
4
‖qxx‖2 + 1

4
‖qxx − 2p̃x‖2 + 2‖p̃xx‖2

+ 2p̄‖qxx‖2 + ‖p̃x‖2 + 2p̄‖qx‖2,

W(t) = 2‖p̃xxx‖2 + p̄
2
‖qxx‖2 + ε

(
2p̄ + 1

2

)
‖qxxx‖2

+ 2‖p̃xx‖2 + 2εp̄‖qxx‖2.

Applying a Gronwall inequality to the above estimate, and using the uniform-
in-time integrability of ‖p̃xx‖2, ‖p̃x‖2, ‖qx‖2, and ε‖qxx‖2, we have obtained
(3.37). This completes the proof. ❐

Using the uniform-in-time estimates obtained in the preceding lemmas and
maximum principle, we know that the function p(x, t) is bounded away from
zero for any time. Then, the combination of the L2, H1, and H2 estimates de-
rived above proves Proposition 3.2 which, along with the local existence result in
Proposition 3.1, yields a global-in-time solution to (3.1)–(3.2). The uniqueness
of the solution can be proved by using a standard argument (cf. [22]). Next, we
show the asymptotic behavior. Indeed, from the proof of Lemmas 3.5–3.6, we
can show that

∣∣∣∣
d

dt

(∥∥p̃x
∥∥2
H1 + p̄

∥∥qx
∥∥2
H1

)∣∣∣∣ ≤ C18
(∥∥p̃x

∥∥2
H2 + ε

∥∥qx
∥∥2
H2

)

for some t-independent constant C18. Then it holds that, by virtue of (3.3),

∫ t

0

∣∣∣∣
d

dτ

(‖p̃x‖2
H1 +

∥∥qx
∥∥2
H1

)∣∣∣∣ dτ ≤ C18.
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Thus, it follows (also by (3.3)) that

(∥∥p̃x
∥∥2
H1 + p̄

∥∥qx
∥∥2
H1

)
(t) ∈ W 1,1(0,∞),

which implies

lim
t→∞

(∥∥p̃x
∥∥2
H1 +

∥∥qx
∥∥2
H1

)
(t) = 0.

Since ‖f‖2∞ ≤ 2‖f‖‖fx‖, and ‖p−p̄‖2 and ‖q‖2 are uniformly bounded because
of (3.3), it holds that

lim
t→∞

(∥∥p − p̄
∥∥2
C1 +

∥∥q
∥∥2
C1

)
(t) = 0

with the help of Sobolev’s embedding theorem.

3.2. Diffusion limit of transformed system (proof of Theorem 2.3). First
of all, we observe that by essentially repeating the arguments in Sections 3.1–3.2,
one can show there exists a unique solution (p0, q0) to the non-diffusible problem
(i.e., (1.4) with ε = 0), which satisfies

∥∥(p0 − p̄)(t)
∥∥2
H2 +

∥∥q0(t)
∥∥2
H2(3.38)

+
∫ t

0

(∥∥p0
x(τ)

∥∥2
H2 +

∥∥q0
x(τ)

∥∥2
H1

)
dτ ≤ C19,

for some constant C19 > 0 which is independent of t. (See also [20].) Let pε

be the solution to the diffusible problem, and let p̃ = p0 − p̄, p̂ = p0 − pε and
q̂ = q0 − qε. Then, we have the following Cauchy problem:

(3.39)





p̂t − (p̃q̂)x − p̄q̂x − (p̂qε)x = p̂xx ,
q̂t − p̂x = −εqεxx − ε[(qε)2]x ,
(p̂, q̂)(x,0) = (0,0).

Taking the L2 inner products of (3.39)1 with p̂ and (3.39)2 with p̄q̂, we have

1
2

d

dt
(‖p̂‖2 + p̄‖q̂‖2)+ ‖p̂x‖2(3.40)

= −
∫

R

(p̃q̂ + p̂qε)p̂x dx − εp̄
∫

R

(qεxx + qεqεx)q̂ dx

≤ 1
2
‖p̂x‖2 + (

∥∥p̃
∥∥2
∞ ‖q̂‖2 +

∥∥qε
∥∥2
∞ ‖p̂‖2

)

+ p̄
2

2
‖q̂‖2 + ε2

(‖qεxx‖2 + 4
∥∥qε

∥∥2
∞ ‖qεx‖2

)

≤ 1
2
‖p̂x‖2 + C20(‖q̂‖2 + ‖p̂‖2)+ C21ε

2(‖qεxx‖2 + ‖qεx‖2)
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where we have used the Cauchy-Schwarz inequality, the Sobolev inequality
‖f‖2∞ ≤ 2‖f‖‖fx‖, and the uniform-in-time estimates of p̃ and qε, due to (3.38)
and (3.3), respectively.

Taking the spatial derivatives of the two equations in (3.39), we get

(3.41)

{
p̂xt − (p̃q̂)xx − p̄q̂xx − (p̂qε)xx = p̂xxx ,
q̂xt − p̂xx = −εqεxxx − ε[(qε)2]xx .

Taking the L2 inner products of (3.41)1 with p̂x and (3.41)2 with q̂x , and using
arguments similar to those used in deriving (3.40), we have

1
2

d

dt
(‖p̂x‖2 + p̄‖q̂x‖2)+ ‖p̂xx‖2(3.42)

= −
∫

R

[(p̃q̂)x + (p̂qε)x]p̂xx dx + ε
∫

R

[qεxxx + 2(qεqεx)x]q̂x dx

≤ 1
2
‖p̂xx‖ + C22(‖p̂x‖ + ‖q̂x‖ + ‖p̂‖ + ‖q̂‖)
+ C23ε

2(‖qεxxx‖2 + ‖qεxx‖2 + ‖qεx‖2).

By coupling (3.40) and (3.42) together, we have

d

dt

(∥∥p̂
∥∥2
H1 + p̄

∥∥q̂
∥∥2
H1

)+
∥∥p̂x

∥∥2
H1(3.43)

≤ C24
(∥∥p̂

∥∥2
H1 + p̄

∥∥q̂
∥∥2
H1

)+ C25ε
2
∥∥qεx

∥∥2
H2 .

The Gronwall inequality then implies that

∥∥p̂(t)
∥∥2
H1 + p̄

∥∥q̂(t)
∥∥2
H1 ≤ (eC24tC25)ε

(∫ t

0
ε
∥∥qεx

∥∥2
H2 dτ

)

where we have used the fact that (p̂, q̂)(x,0) = (0,0). Using the uniform tempo-
ral integrability of ε‖qεx‖2

H2 due to (3.3), we get

(3.44)
∥∥p̂(t)

∥∥2
H1 +

∥∥q̂(t)
∥∥2
H1 ≤ C26e

C24tε, ∀ t > 0.

Furthermore, by plugging (3.44) into (3.43), we have

∫ t

0

∥∥p̂x(τ)
∥∥2
H1 dτ ≤ C27(e

C24t + 1)ε.

This completes the proof of Theorem 2.3.
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4. ALGEBRAIC DECAY RATE (PROOF OF THEOREM 2.7)

This section is devoted to further investigation of the qualitative behavior of the
solution obtained in Theorem 2.1. Although Theorem 2.1 gives a definite an-
swer to the question of global well-posedness and long-time behavior of classical
solutions to (1.4), it provides no information about the explicit decay rate of the
perturbations, which is physically important and mathematically challenging. In
this section, we compute the explicit decay rate of the solution with respect to
time under mild conditions on initial data.

The proof relies heavily on the energy framework developed in Section 3.1.
Let (p̄,0) be any given constant state satisfying p̄ > 0. Without loss of generality,
we assume p̄ = 1. Upon integrating the perturbed system with respect to x from
−∞ to x, we have the following initial value problem:

(4.1)





ϕt −ϕxψx −ψx = ϕxx ,
ψt −ϕx = εψxx + ε(ψx)2,
(ϕ,ψ)(x,0) = (ϕ0,ψ0)(x),

where

ϕ(x, t) =
∫ x

−∞
(p(y, t)− 1)dy, ψ(x, t) =

∫ x

−∞
q(y, t)dy

denote the anti-derivatives of the perturbed functions p−1 and q−0, respectively.
Following a standard procedure, we carry out energy estimates under the a priori
assumption:

(4.2) sup
0≤t≤T

(‖ϕ(t)‖2 + ‖ψ(t)‖2) ≤ η,

for some small constant η > 0 which will be determined later.

Remark 4.1. Since we are concerned with the explicit decay rate of the so-
lution for fixed ε, throughout this section we use Di to denote generic constants
which are independent of t and the unknown functions, but may depend on ε, in
order to distinguish such constants from those in the previous sections.

Proof of Theorem 2.7. For convenience, we divide the proof into four steps.

Step 1. Taking the L2 inner products of the equations in (4.1) with ϕ and ψ,
respectively, then adding the results, we have

1
2

d

dt
(‖ϕ‖2 + ‖ψ‖2)+ ‖ϕx‖2 + ε‖ψx‖2(4.3)

=
∫

R

ϕxψxϕ dx + ε
∫

R

(ψx)
2ψdx

≤ 1
2
‖ϕ‖∞(‖ϕx‖2 + ‖ψx‖2)+ ε‖ψ‖∞ ‖ψx‖2

≤ ‖ϕ‖1/2 ‖ϕx‖1/2(‖ϕx‖2 + ‖ψx‖2)+ 2ε‖ψ‖1/2 ‖ψx‖1/2 ‖ψx‖2.
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By definition and Theorem 2.1, we know that

‖ϕx‖1/2 = ‖p − 1‖1/2 ≤ D1 and ‖ψx‖1/2 = ‖q‖1/2 ≤ D2

for some constants D1 and D2 which are independent of t and ε. Thus, we update
(4.3) as

1
2

d

dt
(‖ϕ‖2 + ‖ψ‖2)+ ‖ϕx‖2 + ε‖ψx‖2

≤ D1η
1/4(‖ϕx‖2 + ‖ψx‖2)+ εD2η

1/4‖ψx‖2,

where we have used (4.2). We observe that when

η ≤ min

{(
1

2D1

)4

,

(
ε

2(D1 + εD2)

)4
}
,

it holds that

1
2

d

dt
(‖ϕ‖2 + ‖ψ‖2)+ 1

2
‖ϕx‖2 + ε

2
‖ψx‖2 ≤ 0,

which implies

(4.4) ‖ϕ(t)‖2+‖ψ(t)‖2+
∫ t

0
(‖ϕx(τ)‖2+ε‖ψx(τ)‖2)dτ ≤ ‖ϕ0‖2+‖ψ0‖2.

From a standard continuation argument, we know that (4.2) holds true for all
time, provided that

‖ϕ0‖2 + ‖ψ0‖2 ≤ 1
2

min

{(
1

2D1

)4

,

(
ε

2(D1 + εD2)

)4
}
.

Next, we carry out weighted-in-time energy estimates and identify the explicit
decay rate by a bootstrap argument.

Step 2. Taking ∂x to the equations in (4.1), we have

(4.5)

{
ϕxt −ϕxxψx −ϕxψxx −ψxx = ϕxxx,
ψxt −ϕxx = εψxxx + 2εψxψxx .

The operation

∫

R

[(4.5)1 × (t + 1)ϕx + (4.5)2 × (t + 1)ψx]dx
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then yields

1
2

d

dt
[(t + 1)(‖ϕx‖2 + ‖ψx‖2)]+ (t + 1)‖ϕxx‖2 + ε(t + 1)‖ψxx‖2(4.6)

= 1
2
(‖ϕx‖2 + ‖ψx‖2)+ (t + 1)

∫

R

(ϕxxψx +ϕxψxx)ϕx dx.

We estimate the nonlinear term on the right-hand side of (4.6) as follows:

t + 1
∫

R

(ϕxxψx +ϕxψxx)ϕx dx

= (t + 1)
2

∫

R

ϕ2
xψxx dx ≤

t + 1
4δ

∥∥ϕxb
∥∥4
L4 + δ(t + 1)

4
‖ψxx‖2,

where δ > 0 is a constant to be determined. With the help of the Gagliardo-
Nirenberg inequality

‖∇f‖L4 ≲
∥∥f
∥∥1/2
∞ ‖∇2f‖1/2, ∀f ∈ W 2,2(Rn)∩ L∞(Rn),

we update (4.6) (by choosing δ = 2ε) as

1
2

d

dt
[(t + 1)(‖ϕx‖2 + ‖ψx‖2)]+ (t + 1)‖ϕxx‖2 + ε(t + 1)‖ψxx‖2

≤ 1
2
(‖ϕx‖2 + ‖ψx‖2)+ D3(t + 1)

8ε

∥∥ϕ
∥∥2
∞ ‖ϕxx‖2 + ε(t + 1)

2
‖ψxx‖2

≤ 1
2
(‖ϕx‖2 + ‖ψx‖2)+ D3(t + 1)

4ε
‖ϕ‖‖ϕx‖‖ϕxx‖2 + ε(t + 1)

2
‖ψxx‖2

≤ 1
2
(‖ϕx‖2 + ‖ψx‖2)+ D4(t + 1)

4ε
η1/2‖ϕxx‖2 + ε(t + 1)

2
‖ψxx‖2,

where we have applied (4.2) and the uniform estimate of ‖ϕx‖ = ‖p−1‖ obtained

from Theorem 2.1. It then follows that, when η ≤
(

2ε
D4

)2

, it holds that

1
2

d

dt
[(t + 1)(‖ϕx‖2 + ‖ψx‖2)]+ (t + 1)

2
‖ϕxx‖2 + ε

2
(t + 1)‖ψxx‖2

≤ 1
2
(‖ϕx‖2 + ‖ψx‖2).

Integrating the above inequality over time and using (4.4), we get for ∀ t > 0

(4.7) (t + 1)(‖ϕx‖2 + ‖ψx‖2)+
∫ t

0
(τ + 1)(‖ϕxx(τ)‖2 + ‖ψxx(τ)‖2)dτ

≤ D5
(∥∥ϕ0

∥∥2
H1 +

∥∥ψ0

∥∥2
H1

)
.
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This gives the first-order algebraic decay rate of the perturbations.

Step 3. By repeating the above procedure, and using the uniform-in-time estimates
of ‖ϕx‖2∞ = ‖p − 1‖2∞ and ‖ψx‖2∞ = ‖q‖2∞ obtained from Theorem 2.1, we can
show that

1
2

d

dt
[(t + 1)(‖ϕxx‖2 + ‖ψxx‖2)](4.8)

+ (t + 1)
2

‖ϕxxx‖2 + ε(t + 1)
2

‖ψxxx‖2

≤ 1
2
(‖ϕxx‖2 + ‖ψxx‖2)

+ D6(t + 1)
(∥∥ϕx

∥∥2
∞ +

∥∥ψx
∥∥2
∞
)
(‖ϕxx‖2 + ‖ψxx‖2)

≤ 1
2
(‖ϕxx‖2 + ‖ψxx‖2)+D7(t + 1)(‖ϕxx‖2 + ‖ψxx‖2),

which, together with (4.7) and Theorem 2.1, implies that

(t + 1)(‖ϕxx‖2 + ‖ψxx‖2)+(4.9)

+
∫ t

0
(τ + 1)(‖(ϕxxx(τ)‖2 + ‖ψxxx(τ)‖2)dτ ≤ D8, ∀ t > 0.

Next, we push the decay rate of the second-order derivatives further.

Step 4. Indeed, as a consequence of (4.7), (4.9), and the inequality ‖f‖2∞ ≤
2‖f‖‖fx‖, we have

(4.10)
∥∥ϕx

∥∥2
∞ ≲ (t + 1)−1 and

∥∥ψx
∥∥2
∞ ≲ (t + 1)−1.

Then, multiplying (4.8) by (t + 1), we infer that

1
2

d

dt
[(t + 1)2(‖ϕxx‖2 + ‖ψxx‖2)]+(4.11)

+ (t + 1)2

2
‖ϕxxx‖2 + ε(t + 1)2

2
‖ψxxx‖2

≤ (t + 1)(‖ϕxx‖2 + ‖ψxx‖2)

+ D6(t + 1)2
(∥∥ϕx

∥∥2
∞ +

∥∥ψx
∥∥2
∞
)
(‖ϕxx‖2 + ‖ψxx‖2)

≤ (t + 1)(‖ϕxx‖2 + ‖ψxx‖2)+D7(t + 1)(‖ϕxx‖2 + ‖ψxx‖2)

where we have used (4.10). Integrating (4.11), we get

(t + 1)2(‖ϕxx‖2 + ‖ψxx‖2)

+
∫ t

0
(τ + 1)2(‖(ϕxxx(τ)‖2 + ‖ψxxx(τ)‖2)dτ ≤ D9, ∀ t > 0.
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The decay rate of the third-order derivatives can be proved in a completely similar
fashion, and we omit further details. This completes the proof of Theorem 2.7. ❐

5. PARABOLIC SMOOTHING EFFECT (PROOF OF THEOREM 2.9)

5.1. Setup. Consider the following approximation to (1.4): let p(0) ≡ 0 and
q(0) ≡ 0, for n = 0, and

p(n)t −∆p(n) = ∇· (p(n−1)q(n−1)), p(n)(x,0) = p0(x),

q
(n)
t − ε∆q(n) = ∇(ε|q(n−1)|2 + p(n−1)), q(n)(x,0) = q0(x),

for n > 0. By properties of the heat equation, we know that for all n ≥ 0,
(p(n),q(n)) is a real analytic pair of functions on Rd for all t > 0. To show
that the limiting function (p,q) is real analytic and solves (1.4), we consider the
complex extension of (1.4) and obtain uniform estimates in Lq. Indeed, let us
consider

p ֏ p + iπ, q֏ q+ iu, x֏ x+ iy ∈ Cd.
Then (1.4) becomes the system of inhomogeneous heat equations:

(5.1)





p(n)t −∆p(n) = ∇· (p(n−1)q(n−1) −π (n−1)u(n−1)),

p(n)(x,0) = p0(x),

π (n)t −∆π (n) = ∇· (p(n−1)u(n−1) +π (n−1)q(n−1)),

π(x,0) = 0,

q
(n)
t − ε∆q(n) = ε∇(|q(n−1)|2 + |u(n−1)|2)+∇p(n−1),

q(x,0) = q0(x),

u
(n)
t − ε∆u(n) = ∇π (n−1), u(x,0) = 0.

For ~α ∈ Rd, let us make the following change of variables:

(5.2)
P (n)α (x, t) := p(n)(x, ~αt, t), Π(n)α (x, t) := π (n)(x, ~αt, t),
Q(n)α (x, t) := q(n)(x, ~αt, t), U(n)α (x, t) := u(n)(x, ~αt, t).

Observe that given f (x, ~αt, t)+ ig(x, ~αt, t) analytic, then by the chain rule and
Cauchy-Riemann equations, we have

∂t(f (x, ~αt, t)) = ~α· (∇yf )(x, ~αt, t)+ (∂tf )(x, ~αt, t)
= −~α· (∇xg)(x, ~αt, t)+ (∂tf )(x, ~αt, t),

∂t(g(x, ~αt, t)) = ~α· (∇yg)(x, ~αt, t)+ (∂tg)(x, ~αt, t)
= ~α· (∇xf )(x, ~αt, t)+ (∂tg)(x, ~αt, t).
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Thus, upon integrating by parts and applying Duhamel’s formula, the solution of
the corresponding system can be expressed in the following way:

P (n)α (x, t) = et∆p0(x) −
∫ t

0
~α·∇e(t−s)∆Π(n)α ds(5.3a)

+
∫ t

0
∇e(t−s)∆· (P (n−1)

α Q(n−1)
α −Π(n−1)

α U(n−1)
α )ds,

Π(n)α (x, t) =
∫ t

0
~α·∇e(t−s)∆P (n)α ds(5.3b)

−
∫ t

0
∇e(t−s)∆· (P (n−1)

α U(n−1)
α +Π(n−1)

α Q(n−1)
α )ds

Q(n)α (x, t) = etε∆q0(x) −
∫ t

0
~α·∇e(t−s)ε∆U(n)α ds,(5.3c)

− ε
∫ t

0
∇e(t−s)ε∆(|Q(n−1)

α |2 + |U(n−1)
α |2)ds

−
∫ t

0
∇e(t−s)ε∆P (n−1)

α ds,

U(n)α (x, t) =
∫ t

0
~α·∇e(t−s)ε∆Q(n)α ds −

∫ t

0
∇e(t−s)ε∆Π(n−1)

α ds.(5.3d)

Let d < q <∞. We define the functional ϕ(n) by

ϕ(n)(t) := ‖P (n)α (· , t)‖Lqx + ‖Π(n)α (· , t)‖Lqx
+ ‖Q(n)α (· , t)‖Lqx + ‖U(n)α (· , t)‖Lqx .

Given T > 0, define
Φ(n)T := sup

0≤t≤T
ϕ(n)(t).

To prove Theorem 2.9, we show the following:

(1) Φ(n)T <∞, for some |~α|, T sufficiently small.
(2) (p(n), π (n),q(n),u(n)) → (p,π,q,u) uniformly on compact subsets of

a domain in Cd × (0, T ).
(3) (p,q) are classical solutions to (1.4), which are real-analytic for short

time.

5.2. A priori estimates for approximate solutions. We will establish the

following uniform bounds for Φ(n)T .

Lemma 5.1. Let d < q <∞ and T > 0. Suppose that

(5.4) ‖p0‖Lq + ‖q0‖Lq ≤Mq.
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Then, there exists an absolute constant C1 > 0 such that if ~α ∈ Rd satisfies

(5.5) 2C1|~α|T 1/2 < min{1, ε1/2},

it holds that

Φ(n)T ≤ 2Mq + 2C1ε
−1/2T 1/2Φ(n−1)

T + 2C2T
(1−d/q)/2(Φ(n−1)

T )2, n ≥ 1,

for some absolute constant C2 > 0 (given by (5.9) below). In particular, if

(5.6) T ≤ min

{
ε

64C2
1

,
1

(32C2Mq)2/(1−d/q)

}
,

then

(5.7) Φ(n)T ≤ 4Mq, n ≥ 1.

Since (p(n), π (n),q(n),u(n)) is real analytic on Rd, for all t > 0, we immedi-
ately have the following result from Lemma 5.1 and the definition (5.2).

Corollary 5.2. Let d < q < ∞ and T > 0. Suppose that (5.4), (5.5), and (5.6)
hold. Then, for

(5.8) |y| ≤ 1
2
C−1

1 T
1/2 min{1, ε1/2},

we have

‖p(n)(· ,y, t)‖Lqx + ‖π (n)(· ,y, t)‖Lqx
+ ‖q(n)(· ,y, t)‖Lqx + ‖u(n)(· ,y, t)‖Lqx ≤ 4Mq, n ≥ 1,

for each t ∈ (0, T ).
To prove Lemma 5.1, we will make use of the following elementary lemma

regarding estimates for the heat kernel. Note that we have rescaled the heat kernel
by a factor of γ (cf. [6]).

Lemma 5.3. Let T > 0. Then, the heat kernel eγt∆ satisfies

sup
t>0

‖eγt∆‖L1(Rd) ≤ 1,

and there exists an absolute constant C = C(r) such that

γ

∫ T

0
‖∇eγt∆‖Lr (Rd) dt ≤ C(r)(γT)(r+d−dr)/(2r), 1 ≤ r < d

d− 1
.
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Next, we prove Lemma 5.1 by using Lemma 5.3.

Proof of Lemma 5.1. Let 1/q + 1/q′ = 1 with q > d, and fix T > 0. We
estimate (5.3) by applying Young’s convolution inequality (with 1+1/q = 1/q′+
2/q), Lemma 5.3, and the Cauchy-Schwarz inequality to obtain

‖P (n)α (· , t)‖Lqx ≤ ‖p0‖Lqx + C(1)|~α|T 1/2‖Π(n)α ‖L∞T Lqx
+ 2C(q′)T 1/2−d/2+d(q−1)/(2q)

× (‖P (n−1)
α ‖L∞T Lqx ‖Q

(n−1)
α ‖L∞T Lqx

+ ‖Π(n−1)
α ‖L∞T Lqx ‖U

(n−1)
α ‖L∞T Lqx

)
,

‖Π(n)α (· , t)‖Lqx ≤ C(1)|~α|T 1/2‖P (n)α ‖L∞T Lqx
+ 2C(q′)T 1/2−d/2+d(q−1)/(2q)

× (‖P (n−1)
α ‖L∞T Lqx ‖U

(n−1)
α ‖L∞T Lqx

+ ‖Π(n−1)
α ‖L∞T Lqx ‖Q

(n−1)
α ‖L∞T Lqx

)
.

We also estimate Q(n)α , U(n)α similarly:

‖Q(n)α (· , t)‖Lqx ≤ ‖q0‖Lqx + C(1)|~α|ε−1/2T 1/2‖U(n)α ‖L∞T Lqx
+ 2C(q′)T 1/2−d/2+d(q−1)/(2q)

× (
∥∥Q(n−1)

α

∥∥2
L∞T L

q
x
+
∥∥U(n−1)

α

∥∥2
L∞T L

q
x

)

+ C(1)ε−1/2T 1/2‖P (n−1)
α ‖L∞T Lqx ,

‖U(n)α (· , t)‖Lqx ≤ C(1)|~α|ε−1/2T 1/2‖Q(n)α ‖L∞T Lqx
+ C(1)ε−1/2T 1/2‖Π(n−1)

α ‖L∞T Lqx .

Therefore, by adding the above inequalities, using the fact that ~α satisfies (5.5)
with C0 satisfying (5.9), and taking the supremum over t ∈ [0, T ], we obtain

1
2
Φ(n)T ≤Mq + C1ε

−1/2T 1/2Φ(n−1)
T + C2T

(1−d/q)/2(Φ(n−1)
T )2,

where

(5.9) C1 = C(1), C2 = 6C(q′).

By induction, we suppose that Φ(n−1)
T ≤ 4Mq. Then, Φ(n)T ≤ 4Mq, provided that

(5.6) holds. ❐
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5.3. Contraction. In this section, we show that the map, T , induced by
Duhamel’s formula applied to (p(n), π (n),q(n),u(n)) of (5.1), is a contraction in
the ball Z defined by

Z = {z ∈ C([0, T );Lq(Rd)2+2d) : ‖z − et∆(p0,0,q0,0)‖L∞T Lqx ≤ 4Mq},

for T > 0 sufficiently small.

Lemma 5.4. Let C1, C2 be absolute constants given by (5.9). Suppose that T > 0
satisfies

T ≤ min

{
ε

256C2
1

,
1

(64C2Mq)2/(1−d/q)

}
.(5.10)

Then, T : Z → Z defines a self-map and is a contraction.

Proof. First, we show that T (n) is a self-map. Indeed, observe that by (5.10)
and Corollary 5.2, we have

‖p(n) − et∆p0‖L∞T Lqx ≤ 2C(q′)T 1/2−d/2+d(q−1)/(2q)

× (‖p(n−1)‖L∞T Lqx ‖q
(n−1)‖L∞T Lqx

+ ‖π (n−1)‖L∞T Lqx ‖u
(n−1)‖L∞T Lqx

)

≤ 4C(q′)T 1/2−d/(2q)M2
q ≤ Mq.

We have similar estimates for π (n),q(n),u(n), which imply that T is a self-map.
To show that T is a contraction, observe that

p(n) − p(n−1) =
∫ t

0
∇e(t−s)∆(p(n−1)

α − p(n−2))q(n−1)
ds

+
∫ t

0
∇e(t−s)∆∇p(n−2)(q(n−1) −q(n−2))ds

−
∫ t

0
∇e(t−s)∆· (π (n−1) −π (n−2))u(n−1)

ds

−
∫ t

0
∇e(t−s)∆·π (n−2)(u(n−1) −u(n−2))ds.

Thus, it follows that

‖p(n) − p(n−1)‖L∞T Lqx
≤ 4C(q′)MqT (q−d)/(2q)‖p(n−1) − p(n−2)‖L∞T Lqx

+ 4C(q′)MqT (q−d)/(2q)
(‖q(n−1) −q(n−2)‖L∞T Lqx

+ ‖π (n−1) −π (n−2)‖L∞T Lqx + ‖u
(n−1) −u(n−2)‖L∞T Lqx

)
.
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Similarly,

‖π (n)α −π (n−1)
α ‖L∞T Lqx

≤ 4C(q′)MqT (q−d)/(2q)‖p(n−1) − p(n−2)‖L∞T Lqx
+ 4C(q′)MqT (q−d)/(2q)

(‖Q(n−1)
α −Q(n−2)

α ‖L∞T Lqx
+ ‖π (n−1)

α −π (n−2)‖L∞T Lqx + ‖u
(n−1) −u(n−2)‖L∞T Lqx

)
.

On the other hand, we have

‖q(n) − q(n−1)‖L∞T Lqx
≤ C(1)ε−1/2T 1/2‖p(n−1) − p(n−2)‖L∞T Lqx + 8C(q′)MqT (q−d)/(2q)

× (‖q(n−1) − q(n−2)‖L∞T Lqx + ‖u
(n−1) − u(n−2)‖L∞T Lqx

)
,

and

‖u(n) − u(n−1)‖L∞T Lqx ≤ C(1)ε
−1/2T 1/2‖π (n−1)

α −π (n−2)‖L∞T Lqx .

Therefore, by summing the estimates, we have

‖T (n) −T (n−1)‖L∞T Lqx
≤ 4(C(1)ε−1/2T 1/2 + 8C(q′)MqT (1−d/q)/2)‖T (n−1) −T (n−2)‖L∞T Lqx .

Observe that by (5.9) and (5.10), we have

4(C1ε
−1/2T 1/2 + 4C2MqT

(1−d/q)/2) ≤ 1
2
,

as desired. This completes the proof. ❐

5.4. Proof of Theorem 2.9. Finally, we are ready to prove Theorem 2.9.
We will require the following lemma, which guarantees that the limiting function
from the contraction mapping theorem is analytic. It can be found in [6].

Lemma 5.5. Let F be the set of all functions f which are analytic in an open set
Ω ⊂ Cd and for which

∫

Ω
|f (x,y)|q dx dy ≤ M0 <∞.

Then, F is a normal family.
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Proof. First, Lemma 5.4 implies that the sequence

T (n) = (p(n), π (n),q(n),u(n))

converges to a unique point (p,π,q,u) ∈ C([0, T0);Lq(Rd)2+2d). On the other
hand, (p,π,q,u) is a classical solution of (1.4). Indeed, we may argue exactly as
in [6]. By Lemma 5.5, one can extract a subsequence, which converges uniformly
to (p̃, π̃ , q̃, ũ) on compact sets of the domain defined by

D := {(x,y, t) ∈ Cd × (0, T0) | y satisfies (5.8) and T0 satisfies (5.10)}.

By uniqueness of the limits, we must have (p̃, π̃, q̃, ũ) = (p,π,q,u). Since the
family is normal, all derivatives ∂kt ∂

ℓ
x exist, and they are uniformly bounded be-

cause of the inhomogeneous heat equations (5.1). We again may show that these
derivatives converge to the derivatives of the limiting function from the contrac-
tion mapping theorem. Therefore, (p,q) is a classical solution of (1.4). Since the
(p(n), π (n),q(n),u(n)) are analytic and form a normal family over D, it follows
that (p,q, π,u) is analytic overD. By applying Fatou’s lemma to (5.7), we obtain
(2.2). This completes the proof of Theorem 2.9 with C1 = 256C2

1 , C2 = 64C2,
and C∗ = 1/(2C1). ❐

6. NUMERICAL ILLUSTRATIONS

The chemotaxis model (1.1) is generally difficult to solve by using routine numer-
ical schemes, because of the singularity term ∇ ln(v) = ∇v/v. The Cole-Hopf
transformation (1.2) converts the original chemotaxis model (1.1) to a parabolic
system (1.4) where the cell density u = p remains the same but the logarithmic
singularity is removed. We solve system (1.4) to obtain the numerical value of u
which is of the most interest in the model.

It is important to note that the long-time behavior results obtained in this
paper have a prominent assumption p̄ > 0. It is unknown if the results still hold
true when p̄ = 0. Hence, we have two goals in this section:

• numerical illustration of the long-time behavior result obtained in Theo-
rem 2.1

• numerical simulation of the zero ground state case, and comparison with
the p̄ > 0 case.

Since the domain under consideration is infinite, we choose a large domain
Ω = (−100,100) to mimic the infinite domain with appropriate initial condi-
tions. Since (p0 − p̄, q0) ∈ H2(R), which implies that p0 = p̄ and q0 = 0 at the
infinite boundary, we impose compatible boundary conditions on the initial data
such that p0|∂Ω ≈ p̄ and q0|∂Ω ≈ 0. We employ the Matlab PDE solver, which
is based on the finite difference scheme, to simulate the model (1.4). Here, we set
the time step size ∆t = 1 and spatial step size ∆x = 0.1. In Figure 6.1, we choose
p̄ = 1 and p0(x) = 1+ exp(−x − exp(−x)) and q0(x) = exp(−x − exp(−x)),
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FIGURE 6.1. Numerical solutions to system (1.4) with initial
data p0(x) = 1 + exp(−x − exp(−x)), q0(x) = exp(−x −
exp(−x)), ε = 0.1, and p̄ = 1. Figure (a) plots the initial distri-
bution (p0(x), q0(x)), (b) plots the time evolution of the solu-
tion (p(x, t), q(x, t)) at x = 20, (c) and (d) are the magnified
visualizations of p(20, t) and q(20, t), respectively, and (e) and
(f ) plot the solution profiles of p(x, t) and q(x, t) at several large
time steps.
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FIGURE 6.2. Numerical solutions to system (1.4) with initial
data p0(x) = q0(x) = exp(−x − exp(−x)) and ε = 0.1, p̄ = 0.
Figure (a) plots the initial distribution (p0(x), q0(x)), (b) plots
the evolution of the solution (p(x, t), q(x, t)) at spatial point
x = 20, (c) and (d) are the magnified visualizations of p(20, t)
and q(20, t), respectively, and (e) and (f ) plot the solution pro-
files of p(x, t) and q(x, t) at several large time steps.
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as plotted in Figure 6.1 (a), such that (p0−1, q0) satisfies the conditions in Theo-
rem 2.1. To illustrate the fact that the solution converges to the ground state (1,0)
as time tends to infinity, we arbitrarily choose one spatial point and visualize the
time evolution of the solution at that point. Figure 6.1 (b) plots the evolution
of the functions p(x, t) and q(x, t) at x = 20, respectively. To better visualize
the converging process of the solution, we present magnified views of p(20, t)
and q(20, t), which are plotted in Figure 6.1 (c) and (d), respectively, from which
we see that the solution approaches the ground state oscillatorily. Moreover, the
evolution of the functions over the whole region at several time steps is plotted in
Figure 6.1 (e) and (f ).

In Figure 6.2, we choose a new set of initial data, as plotted in Figure 6.2 (a),
with the ground state being (0,0). We point out that, since the total mass of
the cell population is conserved and finite when the ground state is zero, this case
is more biologically relevant and meaningful than the positive ground state case.
However, analytical results for this case largely remain open, especially regarding
the long-time asymptotic behavior of the solution. Therefore, it is worthwhile
to explore the long-time behavior of the solution numerically first, and predict
some qualitative behavior of the model for future investigation. From the sim-
ulations shown in Figures 6.2 (b), (c), and (d) we see that the solution gradually
approaches the zero ground state, which is similar to the scenarios presented in
Figure 6.1. However, we have several observations which are distinct from those
for the positive ground state case, as follows:

(1) Although the solution seems to approach the ground state (0,0) as time
proceeds, the converging time (≳ 20000) is much longer than that for
the positive ground state case (≲ 3000). Indeed, from the simulations
we see that even after t ≈ 20000, the solution still stays away from zero.
This suggests that, in the ideal case (Ω = R), the solution might become
homogeneously distributed over the whole region with conserved total
mass. The analysis of this case is considerably more difficult than that of
the positive ground state case.

(2) From the simulations we see that the solution approaches (0,0)monoton-
ically at each spatial point, while the convergence in the case of positive
ground state case is in an oscillatory fashion. This is also difficult to prove
based on the method in this paper.

The aforementioned observations motivate us to make the following conjec-
ture: When initial data are perturbations of the ground state (0,0), global solutions
to the Cauchy problem (1.4) monotonically approach the ground state as time tends to
infinity with certain decay rate. This is an interesting question to examine, but the
method in this paper does not apply directly. However, the numerical simulations
in Figure 6.2 provide some useful information about the dynamics of solutions for
this case, which leaves a new problem for the future. Another challenging open
question we would like to mention is the global well-posedness of (1.4) for large
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data in higher dimensions when ε > 0. The main difficulty is that the weak Lya-
punov functional (3.7) is valid only in one-dimensional space, and hence some a
priori estimates cannot be established in higher dimensions.
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