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Abstract. This paper deals with the chemotaxis system{
ut = Duxx − χ[u(ln v)x]x, x ∈ (0, 1), t > 0,

vt = εvxx + uv − µv, x ∈ (0, 1), t > 0,

under Neumann boundary condition, where χ < 0, D > 0, ε > 0 and µ > 0

are constants.
It is shown that for any sufficiently smooth initial data (u0, v0) fulfilling u0 ≥ 0,

u0 6≡ 0 and v0 > 0, the system possesses a unique global smooth solution that
enjoys exponential convergence properties in L∞(Ω) as time goes to infinity,

which depend on the sign of µ− ū0, where ū0 :=
∫ 1
0 u0dx. Moreover, we prove

that the constant pair (µ, (µ
λ

)
D
χ ) (where λ > 0 is an arbitrary constant) is the

only positive stationary solution. The biological implications of our results will

be given in the paper.

1. Introduction. Directional cell migration, namely chemotaxis, plays a central
role in a wide spectrum of physiological and pathological processes, including em-
bryo development, wounding healing, immunity, and cancer metastasis. The process
of chemotaxis is characterized by the sustained migration of cells in the direction
of an increasing concentration of chemoattractant or decreasing concentration of
chemorepellent, where the former is referred to as attractive chemotaxis and the
latter to repulsive chemotaxis. The prototype of the population-based chemotaxis
model was proposed by Keller and Segel in the 1970s [15] to describe the aggregation
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of cellular slime molds Dictyostelium discoideum in response to the chemical cyclic
adenosine monophosphate (cAMP). A general form of Keller-Segel model reads

{
ut = D∆u−∇ · (χu∇φ(v)),

vt = ε∆v + g(u, v),
(1.1)

where u and v denote the cell density and chemical concentration, respectively. D >
0 and ε ≥ 0 are cell and chemical diffusion coefficients, respectively. The chemotaxis
is called to be attractive if χ > 0 and repulsive if χ < 0 with |χ| measuring the
strength of the chemical signal. The potential function φ(v), also called chemotactic
sensitivity function, describes the signal detection mechanism and g(u, v) character-
izes the chemical growth and degradation. Most of studies on chemotaxis deal with
the classical attractive chemotaxis model where χ > 0, φ(v) = v, g(u, v) = u−v, see
[14]; we also note that when ε > 0, χ > 0, φ(v) = ln v and g(u, v) = u−v, (1.1) with
Neumann boundary conditions possesses the spike-layer steady states, see a review
paper [27]. In contrast, the studies of repulsive chemotaxis were much less. A few
results on repulsive chemotaxis have been developed recently, see [6, 26, 35] and
references therein. In this paper, we consider a chemotaxis model with logarithmic
sensitivity {

ut = D∆u−∇ · (χu∇ ln v),

vt = ε∆v + uv − µv,
(1.2)

which was proposed in [18, 32] to model the reinforced random walk. The logarith-
mic sensitivity φ(v) = ln v indicates that cell chemotactic response to the chemical
signal follows the Weber-Fechner law which had prominent specific applications in
biological modelings, cf. [16], [33] and [13]. Since ∇ ln v = ∇v

v , the logarithmic
sensitivity means that cell chemotactic movement is inhibited by the high chemical
concentration. The term uv entails that the chemical grows exponentially [32] where
the rate depends on cell density u, which is much faster than the linear growth in
the classical chemotaxis model. Here we further note that the migration of cells
is a fundamental process in health and disease. Migratory cells in vivo adhere to
surrounding extracellular matrix (ECM) molecules via specific receptors such as
integrins, together with cytokine and growth-factor signals, to produce and secrete
proteases ([30], [31]). The nonlinear signal production term, such as uv in (1.2),
reflects the fact that protease production in vivo is tightly confined to the immedi-
ate pericellular environment through signals transduced by the interaction of ECM
with specific cellular receptors (cf. [30], [31] and the references therein).

When ε = 0 and χ > 0, the dynamical behaviors of model (1.2) including the
aggregation, blow up and collapse was extensively discussed in [18] and the solv-
ability was subsequently followed in [43, 44]. When ε = 0 and χ < 0, the global
existence of classical solution to (1.2) and convergence to constant states for small
perturbations were established in [8]. When χ < 0, the existence and nonlinear
stability of traveling wave solutions with small perturbations of model (1.2) were
recently studied in [37, 21, 22] for ε = 0 and in [23] for ε > 0, based on a Hopf-Cole
type transformation

w =
∇v
v

= ∇ ln v
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and scalings t̃ = −χt/D, x̃ =
√
−χx, w̃ = w/

√
−χ, which transform (1.2) into a

system of conservation laws{
ut −∇ · (uw) = ∆u,

wt −∇(εw2 + u) = ε∆w.
(1.3)

When ε = 0, the initial-boundary value problem and Cauchy problem of (1.3) in
one dimension was studied in [45] and in [12], respectively. Furthermore the Cauchy
problem of (1.3) in multi-dimensional spaces for initial data being sufficiently close
to some constant ground states was investigated in [19], and the large-time behavior
of classical solutions for the initial-boundary value problem of (1.3) in one space
dimension with large initial data and in multi-dimensional spaces for small initial
data were established in [20]. The results of model (1.3) for ε > 0 largely remain
open. Recently the authors of [38] consider the initial-boundary value problem of
one-dimensional model (1.3), as follows

ut − (uw)x = uxx, x ∈ (0, 1), t > 0,

wt − (εw2 + u)x = εwxx, x ∈ (0, 1), t > 0,

(u,w)(x, 0) = (u0, w0)(x), x ∈ [0, 1],

ux|x=0,1 = w|x=0,1 = 0, t > 0.

(1.4)

The global well-posedness and large time behavior of model (1.4) were established
in [38] for small ε > 0 based on a series of L2-energy estimates. In the present
paper, we shall: (1) by employing a Lyapunov functional approach inspired by [6],
remove the smallness assumption of ε in [38] and simplify the proof of the theorem
on the asymptotic behavior of solutions; (2) show that the repulsive chemotaxis
model (1.2) (χ < 0) has only constant positive steady states. Our first main result
is the following:

Theorem 1.1. Assume that u0 ≥ 0, u0 6≡ 0 and w0 are two functions in W 2,p0((0,
1)) for some p0 > 3. Then, for any ε > 0, there exists a unique pair (u,w)
of bounded functions from C0([0, 1] × [0,∞)) ∩ C2,1([0, 1] × (0,∞)) solving (1.4)
classically in (0, 1)× (0,∞). Moreover, u > 0 in (0, 1)× (0,∞) and

lim
t→+∞

(u,w)(·, t) = (ū0, 0) exponentially in L∞((0, 1))× L∞((0, 1))

with ū0 =
∫ 1

0
u0dx.

Transferring the above result back to the original chemotaxis model (1.2), we
have the following result.

Theorem 1.2 (Long-time dynamics). Consider the following initial-boundary value
problem for the one-dimensional chemotaxis model (1.2)

ut = Duxx − χ[u(ln v)x]x, x ∈ (0, 1), t > 0,
vt = εvxx + uv − µv, x ∈ (0, 1), t > 0,
(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, 1],
ux|x=0,x=1 = vx|x=0,x=1 = 0, t > 0,

(1.5)

where χ < 0, µ > 0. Suppose that the initial data satisfy u0 ≥ 0, u0 6≡ 0, v0 > 0.
Then for any ε > 0, there exists a unique global-in-time classical solution (u, v) to
(1.5) such that as t→∞:

‖u(·, t)− ū0‖L∞((0,1)) → 0,
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and

‖v(·, t)‖L∞((0,1)) → 0, if ū0 < µ,

infx∈(0,1) v(x, t)→ +∞, if ū0 > µ,

‖v(·, t)− v∗‖L∞((0,1)) → 0, if ū0 = µ,

where the convergence rates are exponential in time and v∗ ≥ exp(
∫ 1

0
ln v0) is some

constant.

Theorem 1.2 provides precise conclusions on the final distributions of cells and
chemicals, which essentially depends on the strength of the chemical decay rate µ
and the cell mass ū0. The following statement addresses the biological implications
of Theorem 1.2.

Corollary 1. (i) if the chemical decay rate is the same as the cell mass (i.e. ū0 =
µ), then both the chemical and the cells will eventually evolve to a constant steady
state;
(ii) if the decay rate of the chemical is strong compared with ū0 (i.e. ū0 < µ), then
the chemical will eventually vanish and the cells distribute uniformly in the domain;
(iii) if the chemical growth rate is stronger than the decay rate (i.e. ū0 > µ),
then the chemical will be produced exponentially by cells, which eventually leads to
the blow up of the chemical concentration. However the cells are still eventually
uniformly distributed in the domain due to the repulsion.

Since the above theorem asserts the asymptotic behavior of solutions, it is very
relevant to study the stationary solutions of (1.5) for χ < 0 and explore the relation-
ship between the large-time behavior of time-dependent solution and the stationary
solutions. Observe that in (1.5), the total cell mass is conserved (cf. Lemma 2.2).
To consider the steady sates of (1.5), we consider the following elliptic system:

Duxx − χ[u(ln v)x]x = 0, 0 < x < 1,
εvxx + uv − µv = 0, 0 < x < 1,
ux = 0 = vx, x = 0, 1∫ 1

0
u(x)dx = ū0, 0 < x < 1

(1.6)

for which we have the following result.

Theorem 1.3. Suppose that χ < 0. If ū0 = µ, then (µ, (µλ )
D
χ ) is the only positive

solution to (1.6), where λ > 0 is an arbitrary constant. If ū0 6= µ, then (1.6) has
neither constant solution nor non-constant solution.

Theorem 1.3 implies that if χ < 0, then (1.6) does not possess any non-constant
solution, and therefore Theorem 1.3 indicates that the stationary distributions of
cells and the chemical are uniform within the spatial domain for the repulsion case.

On the other hand, if u = uc = constant, then the condition
∫ 1

0
udx = ū0 yields

that uc = ū0. To better understand the above last case, we further underline that,
as afore-mentioned, the logarithmic sensitivity means that cell movement towards
higher chemical concentration is intrinsically inhibited by the high chemical con-
centration due to the fact that (ln v)x = vx

v . Mathematically, if vx is bounded and
v → ∞, then vx

v → 0 which indicates that cell movement is eventually governed
by the diffusion process only and therefore cells tend to distribute uniformly (i.e.
u→ ū0). However in the case of ū0 6= µ, the asymptotic states of both cells and the
chemical are not the steady states, which implies the eventual distribution of cells
and the chemical critically depends on the initial cell mass.
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Before concluding this section, we should mention some works on attraction
chemotaxis models with logarithmic sensitivity but with linear chemical production
and degradation g(u, v) := u − v: all classical solutions are global in time when
n = 1 [29], or when n = 2 and χ > 0 is small [3], or when n ≥ 3 and χ > 0 is small
[40]; moreover, when n ≥ 2, global-in-time weak solutions were recently shown to
exist regardless of the size of χ > 0 in [34].

2. Local existence, an extensibility criterion and preliminaries. To deal
with the nonlinear term (w2)x and the term ux in the second equation in (1.4) and
prove the local well-posedness of (1.4), we shall need a regularity assumption on ini-
tial data which is stronger than that for the local solvability of classical chemotaxis
models (cf. [5], [41] and [42], for instance). A proof of the local existence of (1.4)
based on a straightforward fixed point argument can be found in the appendix.

Lemma 2.1. Assume that u0 ≥ 0, u0 6≡ 0 and w0 are two functions in W 2,p0((0, 1))
for some p0 > 3. Then there exist Tmax ∈ (0,∞] and a unique pair (u,w) of bounded
functions from C0([0, 1]× [0, Tmax))∩C2,1([0, 1]×(0, Tmax)) solving (1.4) classically
in (0, 1)× (0, Tmax). Moreover, u > 0 in (0, 1)× (0, Tmax) and

if Tmax <∞, then ‖u(·, t)‖W 2,p0 ((0,1)) + ‖w(·, t)‖W 2,p0 ((0,1)) →∞ as t↗ Tmax.
(2.1)

The following important property on mass can be easily derived.

Lemma 2.2. The solution (u,w) of (1.4) satisfies the following property

‖u(·, t)‖L1((0,1)) = ‖u0‖L1((0,1)) for all t ∈ (0, Tmax). (2.2)

Proof. Integrating the first equation of (1.4) with respect to x ∈ [0, 1], we get that
d
dt

∫ 1

0
u ≡ 0 for t ∈ (0, Tmax), which yields (2.2).

The proof of our main result (Theorems 1.1) will be based on some a priori
estimates. To derive these estimates, we shall need to use the following Gagliardo-
Nirenberg interpolation inequality: Let Ω ⊂ Rn be a bounded domain with smooth
boundary, let p, q ≥ 1 satisfying (n − q)p ≤ nq, and let r ∈ (0, p). Then, for any
u(x) ∈W 1,q(Ω) ∩ Lr(Ω),

‖u‖Lp(Ω) ≤ c1‖∇u‖aLq(Ω)‖u‖
1−a
Lr(Ω) + c2‖u‖Lr(Ω) (2.3)

with a ∈ (0, 1) satisfying
n

p
= a

(n
q
− 1
)

+
n

r
(1− a). (2.4)

(In fact, the classical version in Theorem I.10.1 in [9] is stated only for r ≥ 1, but
this restriction can easily be removed upon an application of Hölder’s inequality;
cf. [39, Lemma 3.2] or [28], for instance).

To derive our desired a priori estimates, we shall also need the following Gron-
wall’s lemma (cf. [7, p. 624]).

Lemma 2.3. Let f(t) be a nonnegative, absolutely continuous function on [0, T ],
which satisfies for a.e. t the differential inequality

f ′(t) ≤ h(t)f(t) + g(t),

where h(t) and g(t) are nonnegative, summable functions on [0, T ]. Then

f(t) ≤ e
∫ t
0
h(s)ds

(
f(0) +

∫ t

0

g(s)ds

)
.
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To derive the L∞ estimate on u, we shall employ the following simplified version
of the Moser-Alikakos iteration technique (cf. [1] or [36, Lemma 4.1]).

Lemma 2.4. Suppose that T ∈ (0,∞], that b(x, t) ∈ L∞((0, T );Lq((0, 1))) for
some q > 3, and that u ∈ L∞((0, T );L1((0, 1))) . Then if u ∈ C0([0, 1] × [0, T )) ∩
C2,1([0, 1]× (0, T )) is a nonnegative function satisfying{

ut = uxx + (b(x, t))x, x ∈ (0, 1), t > 0,

ux|x=0,1 = 0, t > 0,

then there exists c > 0, only depending on ‖b‖L∞((0,T );Lq((0,1))), ‖u‖L∞((0,T );L1((0,1)))

and ‖u0‖L∞([0,1]), such that

‖u(t)‖L∞([0,1]) ≤ c for all t ∈ (0, T ).

3. Global dynamics.

3.1. Boundedness. Notation. Throughout the remainder of this paper, the norm
in the space Lp([0, 1]), 0 ≤ p ≤ ∞, is simply denoted by ‖ · ‖Lp .

We observe that (1.4) possesses a Lyapunov functional

F (u,w) :=

∫ 1

0

(
u lnu+

w2

2

)
dx,

which is the cornerstone of our analysis.

Lemma 3.1. The classical solution (u,w) to (1.4) satisfies the equality

d

dt
F (u(t), w(t)) = −E(u(t), w(t)) for all t ∈ (0, Tmax), (3.1)

where

E(u,w) :=

∫ 1

0

(
u2
x

u
+ εw2

x

)
dx.

Proof. By the first two equations in (1.4), straightforward computation yields

d

dt
F (u(t), w(t)) =

∫ 1

0

(
(lnu+ 1)ut + wwt

)
dx

= −
∫ 1

0

u2
x

u
dx−

∫ 1

0

uxwdx− ε
∫ 1

0

w2
xdx+

2

3
ε

∫ 1

0

(w3)xdx

+

∫ 1

0

uxwdx

= −
∫ 1

0

(
u2
x

u
+ εw2

x

)
dx+

2

3
εw3|1x=0

= −
∫ 1

0

(
u2
x

u
+ εw2

x

)
dx,

where we have used the boundary conditions ux|x=0,1 = w|x=0,1 = 0. This com-
pletes the proof of (3.1).

The following statement is an immediate consequence of (3.1).
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Corollary 2. The classical solution (u,w) to (1.4) has the property

∫ t

0

∫ 1

0

u2
x

u
dxds ≤ F (u0, w0) +

1

e
for all t ∈ (0, Tmax), (3.2)∫ t

0

∫ 1

0

w2
xdxds ≤ c0(ε) :=

1

ε

(
F (u0, w0) +

1

e

)
for all t ∈ (0, Tmax), (3.3)∫ 1

0

w2dx ≤ C0 := 2F (u0, w0) +
2

e
for all t ∈ (0, Tmax). (3.4)

Proof. Integrating (3.1) over t ∈ (0, Tmax) we obtain

∫ 1

0

w2

2
dx+

∫ t

0

∫ 1

0

(
u2
x

u
+ εw2

x

)
dxds ≤ F (u0, w0)−

∫ 1

0

u(·, t) lnu(·, t)dx

for all t ∈ (0, Tmax). Since −ξ ln ξ ≤ 1
e for all ξ > 0, this proves (3.2), (3.3) and

(3.4).
With the estimate (3.3) at hand, we now turn to establish Lp-estimate on u for

any given p ≥ 2.

Lemma 3.2. For any given p ≥ 2, there exists some c(ε, p) > 0 such that the
classical solution (u,w) to (1.4) satisfies

∫ 1

0

up(x, t)dx ≤ c(ε, p) for all t ∈ (0, Tmax). (3.5)

Proof. Multiplying the first equation in (1.4) by pup−1, integrating over [0, 1] and
using the Hölder inequality, we obtain

d

dt

∫ 1

0

updx = −4(p− 1)

p

∫ 1

0

|(u
p
2 )x|2dx− p(p− 1)

∫ 1

0

up−1uxwdx

≤ −2

∫ 1

0

|(u
p
2 )x|2dx− (p− 1)

∫ 1

0

(up)xwdx

= −2

∫ 1

0

|(u
p
2 )x|2dx+ (p− 1)

∫ 1

0

upwxdx

≤ −2

∫ 1

0

|(u
p
2 )x|2dx+ (p− 1)

(∫ 1

0

u2pdx

) 1
2

·
(∫ 1

0

w2
xdx

) 1
2

(3.6)

for all t ∈ (0, Tmax), where we have used the fact that w|x=0,1 = 0. The Gagliardo-
Nirenberg inequality provides c1 > 0 such that

(∫ 1

0

u2pdx

) 1
2

= ‖u
p
2 ‖2L4 ≤ c1

(
‖(u

p
2 )x‖

1
2

L2 · ‖u
p
2 ‖

3
2

L2 + ‖u
p
2 ‖2L2

)
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where we have used the fact that the spatial dimension n = 1. Then employing the
Cauchy inequality, we find some c2 > 0 such that

(p− 1)

(∫ 1

0

u2pdx

) 1
2

·
(∫ 1

0

w2
xdx

) 1
2

= (p− 1)‖u
p
2 ‖2L4 · ‖wx‖L2

≤ (p− 1)c1

(
‖(u

p
2 )x‖

1
2

L2‖u
p
2 ‖

1
2

L2 · ‖u
p
2 ‖L2‖wx‖L2 + ‖u

p
2 ‖L2 · ‖u

p
2 ‖L2‖wx‖L2

)
≤ ‖(u

p
2 )x‖2L2 + ‖u

p
2 ‖2L2 + c2‖u

p
2 ‖2L2‖wx‖2L2 (3.7)

for all t ∈ (0, Tmax). Adding
∫ 1

0
updx in both sides of (3.6) and using (3.7), we

obtain

d

dt
‖u

p
2 ‖2L2 + ‖u

p
2 ‖2L2 ≤ −‖(u

p
2 )x‖2L2 + 2‖u

p
2 ‖2L2 + c2‖u

p
2 ‖2L2‖wx‖2L2 (3.8)

for all t ∈ (0, Tmax). Again, the Gagliardo-Nirenberg inequality provides c3 > 0
such that

2‖u
p
2 ‖2L2 ≤ c3

(
‖(u

p
2 )x‖

2(p−1)
p+1

L2 · ‖u
p
2 ‖

4
p+1

L
2
p

+ ‖u
p
2 ‖2
L

2
p

)
.

Noting ‖u
p
2 ‖
L

2
p

=
( ∫ 1

0
udx

) p
2

=
( ∫ 1

0
u0dx

) p
2

by (2.2) and using the Young in-

equality, we can pick some c4(p) > 0 and c5(p) > 0 such that

2‖u
p
2 ‖2L2 ≤ c4(p)‖(u

p
2 )x‖

2· (p−1)
p+1

L2 + c4(p)

≤ ‖(u
p
2 )x‖2L2 + c5(p).

This in conjunction with (3.8) entails that

d

dt
‖u

p
2 ‖2L2 + ‖u

p
2 ‖2L2 ≤ c2‖wx‖2L2 · ‖u

p
2 ‖2L2 + c5(p) (3.9)

for all t ∈ (0, Tmax). Thus, y(t) := et‖u
p
2 ‖2L2 satisfies the differential inequality

y′(t) ≤ c2‖wx‖2L2 · y(t) + c5e
t for all t ∈ (0, Tmax).

This, along with the Gronwall Lemma 2.3 and (3.3), yields

y(t) ≤ ec2
∫ t
0
‖wx(·,s)‖2

L2ds

(
y(0) +

∫ t

0

c5e
sds

)
≤ ec2·c0(ε)

(
‖u

p
2
0 ‖2L2 + c5e

t

)
:= c6 + c7e

t for all t ∈ (0, Tmax).

Thus,∫ 1

0

updx = ‖u
p
2 ‖2L2 = e−ty(t) ≤ c6e−t + c7 ≤ c6 + c7 for all t ∈ (0, Tmax).

This proves (3.5).
To derive the L∞ estimate on u, we need to establish some Lq estimate on w

with q > n+ 2 = 3 because n = 1 for our present setting.
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Lemma 3.3. There exists some c(ε) > 0 such that the classical solution (u,w) to
(1.4) satisfies ∫ 1

0

w4(x, t)dx ≤ c(ε) for all t ∈ (0, Tmax). (3.10)

Proof. Multiplying the second equation in (1.4) by w3, integrating over [0, 1] and
using the Cauchy inequality, we can pick some c1 > 0 and c2(ε) > 0 such that

1

4

d

dt

∫ 1

0

w4dx = ε

∫ 1

0

w3wxxdx+

∫ 1

0

w3(εw2 + u)xdx

= −3ε

∫ 1

0

w2w2
xdx− 3ε

∫ 1

0

w4wxdx− 3

∫ 1

0

w2wxudx

= −3ε

4

∫ 1

0

|(w2)x|2dx− 3ε

∫ 1

0

wwx · w3dx− 3

∫ 1

0

wwx · wudx

≤ −ε
4

∫ 1

0

|(w2)x|2dx+ c1

∫ 1

0

w6dx+ c2

∫ 1

0

w2u2dx

≤ −ε
4

∫ 1

0

|(w2)x|2dx+ c1

∫ 1

0

w6dx

+c2

∫ 1

0

w4dx+ c2

∫ 1

0

u4dx (3.11)

for all t ∈ (0, Tmax). Adding 1
4

∫ 1

0
w4dx in both sides of (3.11) and using (3.5) and

the Young inequality we can find some c3(ε) > 0 such that

d

dt

∫ 1

0

w4dx+

∫ 1

0

w4dx ≤ −ε
∫ 1

0

|(w2)x|2dx+ c3

∫ 1

0

w6dx+ c3 (3.12)

for all t ∈ (0, Tmax). The Gagliardo-Nirenberg inequality, the estimate (3.4) and
the Young inequality yield some c4 > 0, c5 > 0 and c6(ε) > 0 such that

c3

∫ 1

0

w6dx = c3‖w2‖3L3 ≤ c4

(
‖(w2)x‖

4
3

L2 · ‖w2‖
5
3

L1 + ‖w2‖3L1

)
≤ c5‖(w2)x‖

4
3

L2 + c5

≤ ε‖(w2)x‖2L2 + c6(ε) (3.13)

for all t ∈ (0, Tmax). Combining (3.12) and (3.13) yields some c7 > 0 such that

d

dt

∫ 1

0

w4dx+

∫ 1

0

w4dx ≤ c7 for all t ∈ (0, Tmax). (3.14)

Hence, (3.10) holds.
We are now in the position to derive the uniform-in-time boundedness of u.

Lemma 3.4. There exists some c(ε) > 0 such that the classical solution (u,w) to
(1.4) has the property

‖u(·, t)‖L∞ ≤ c(ε) for all t ∈ (0, Tmax). (3.15)

Proof. For each q ∈ (3, 4), it follows from Lemma 3.2, Lemma 3.3 and the Hölder
inequality that there exists some c1(q, ε) > 0 such that

‖uw‖Lq≤ ‖u‖
L

4q
4−q
‖w‖L4 ≤ c1(q, ε) for all t ∈ (0, Tmax). (3.16)
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This in conjunction with Moser-Alikakos iteration technique (Lemma 2.4) proves
(3.15).

With (3.10) and (3.15) at hand, we now can further improve the estimate on w.

Lemma 3.5. For any p > 6, there exists some c(ε, p) > 0 such that the classical
solution (u,w) to (1.4) satisfies∫ 1

0

wp(x, t)dx ≤ c(ε, p) for all t ∈ (0, Tmax). (3.17)

Proof. Multiplying the second equation in (1.4) by pwp−1, integrating over [0, 1],
using the Young inequality and employing the estimate (3.15), we can pick some
c1(p) > 0, c2(ε, p) > 0 and c3(ε, p) > 0 such that

d

dt

∫ 1

0

wpdx = εp

∫ 1

0

wp−1wxxdx+ p

∫ 1

0

wp−1(εw2 + u)xdx

= −εp(p− 1)

∫ 1

0

wp−2w2
xdx− εp(p− 1)

∫ 1

0

wpwxdx

−p(p− 1)

∫ 1

0

wp−2wxudx

≤ −4ε(p− 1)

p

∫ 1

0

|(w
p
2 )x|2dx− εp(p− 1)

∫ 1

0

w
p
2 +1 · w

p
2−1wxdx

+c1

∫ 1

0

|w|
p
2−1 · |w|

p
2−1|wx|dx

≤ −2ε(p− 1)

p

∫ 1

0

|(w
p
2 )x|2dx+ c2

∫ 1

0

wp+2dx+ c2

∫ 1

0

wp−2dx+ c2

≤ −ε
∫ 1

0

|(w
p
2 )x|2dx+ c3

∫ 1

0

wp+2dx+ c3 (3.18)

for all t ∈ (0, Tmax). Adding
∫ 1

0
wpdx in both sides of (3.18) and using the Young

inequality we can find some c4(ε, p) > 0 such that

d

dt

∫ 1

0

wpdx+

∫ 1

0

wpdx ≤ −ε
∫ 1

0

|(w
p
2 )x|2dx+ c4

∫ 1

0

wp+2dx+ c4 (3.19)

for all t ∈ (0, Tmax). The Gagliardo-Nirenberg inequality, the estimate (3.10) and
the Young inequality yield some c5(p) > 0, c6(ε, p) > 0 and c7(ε, p) > 0 such that

c4

∫ 1

0

wp+2dx =c4‖w
p
2 ‖

2(p+2)
p

L
2(p+2)
p

≤c5
(
‖(w

p
2 )x‖

2(p+2)
p · p(p−2)

(p+2)(p+4)

L2 · ‖w
p
2 ‖

2(p+2)
p · 8(p+1)

(p+2)(p+4)

L
8
p

+ ‖w
p
2 ‖

2(p+2)
p

L
8
p

)
≤c6‖(w

p
2 )x‖

2· p−2
p+4

L2 + c6

≤ε‖(w
p
2 )x‖2L2 + c7 for all t ∈ (0, Tmax),
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where we have used the fact that ‖w
p
2 ‖
L

8
p

=
( ∫ 1

0
w4dx

) p
8 ≤ (c(ε))

p
8 . This in

conjunction with (3.19) yields some c8(ε, p) > 0 such that

d

dt

∫ 1

0

wpdx+

∫ 1

0

wpdx ≤ c8 for all t ∈ (0, Tmax). (3.20)

Thus, (3.17) holds.

Lemma 3.6. There exists some c(ε) > 0 such that the classical solution (u,w) to
(1.4) has the property

‖w(·, t)‖L∞ ≤ c(ε) for all t ∈ (0, Tmax). (3.21)

Proof. For any q > 3, it follows from Lemma 3.4 and Lemma 3.5 that there exists
some c1(q, ε) > 0 such that

‖εw2 + u‖Lq ≤ c1(q, ε) for all t ∈ (0, Tmax). (3.22)

This in conjunction with Moser-Alikakos iteration technique (Lemma 2.4) proves
(3.21).

3.2. Decay estimate. Our proof of the convergence result is inspired by an argu-
ment developed in [6]. We modify the Lyapunov functional F (u,w) a little bit and
define

G(u,w) :=

∫ 1

0

(
u ln

u

ū
+

1

2
w2

)
dx,

where, thanks to (2.2), ū :=
∫ 1

0
udx =

∫ 1

0
u0dx = ū0.

To prove the decay estimate of u, we first establish the decay estimate of the
functional G.

Lemma 3.7. Suppose that (u,w) is the classical solution to (1.4). Then the func-
tional G satisfies the following decay property

0 ≤ G(u(t), w(t)) ≤ G(u0, w0)e−αt for all t ∈ (0, Tmax), (3.23)

where the positive constant α depends only on u0 and ε.

Proof. For clarity, we divide the proof into four steps.
Step 1. We prove the non-negativity of G.
Since the function s ln s is convex for s > 0 and ū = ū0, it follows from Jensen’s
inequality ([7, p. 621]) that∫ 1

0

u ln
u

ū
dx = ū0 ·

∫ 1

0

u

ū
ln
u

ū
dx

≥ ū0 ·
(∫ 1

0

u

ū
dx

)
ln

(∫ 1

0

u

ū
dx

)
= 0.

Thus, G(u,w) ≥ 0.
Step 2. We derive a functional identity.
Proceeding the computations as in the proof of Lemma 3.1, we obtain

d

dt
G(u(t), w(t)) = −E(u(t), w(t)). (3.24)
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Step 3. We chain E(u,w) to G(u,w).
Applying the preliminary inequality

r ln r ≤

{
0, for 0 ≤ r < 1

r − 1 + 1
2 (r − 1)2 for r ≥ 1

with r = u/ū, noting
∫ 1

0
(u/ū − 1)dx ≡ 0 and using the Poincaré inequality ([7, p.

275]) we find some c1 > 0 such that∫ 1

0

u(t) ln
u(t)

ū
dx = ū

∫ 1

0

u(t)

ū
ln
u(t)

ū
dx = ū

∫ 1

0

[
u(t)

ū
ln
u(t)

ū
−
(
u(t)

ū
− 1

)]
dx

≤ ū

∫ 1

0

1

2

(
u(t)

ū
− 1

)2

dx

=
1

2ū

∫ 1

0

(u− ū)2dx

≤ c1

∫ 1

0

[(u− ū)x]2dx

= c1

∫ 1

0

u2
xdx

for all t ∈ (0, Tmax). This in conjunction with (3.15) yields some c2(ε) > 0 such
that ∫ 1

0

u(t) ln
u(t)

ū
dx ≤ c1

∫ 1

0

u2
xdx ≤ c1‖u‖L∞

∫ 1

0

u2
x

u
dx

≤ c2(ε)

∫ 1

0

u2
x

u
dx for all t ∈ (0, Tmax). (3.25)

On the other hand, since w|x=0,1 = 0, Poincaré’s inequality provides some c3 > 0
such that ∫ 1

0

w2dx ≤ c3
∫ 1

0

w2
xdx for all t ∈ (0, Tmax). (3.26)

Collecting (3.25)-(3.26) and noting the definitions of G and E, we find

G(u(t), w(t)) ≤ max
(
c2(ε),

c3
2ε

)
· E(u(t), w(t)). (3.27)

Step 4. We prove the decay estimate (3.23).
Denote

α :=
1

max
(
c2(ε), c32ε

) > 0.

Then, combining (3.24) and (3.27) entails that

d

dt
G(u(t), w(t)) ≤ −αG(u(t), w(t)) for all t ∈ (0, Tmax).

This yields (3.23).

Lemma 3.8. The only stationary solution (us, ws) with us > 0 to (1.4) in W 2,p0((0,
1)) for p0 > 3 are the constant pairs (ū, 0) for ū ∈ (0,∞), where ū denotes the cell
mass.
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Proof. Assume that (us, ws) ∈
(
W 2,p0((0, 1))

)2
for p0 > 3 with us > 0 is a station-

ary solution to (1.4). Noting that (us, ws) is also a solution to the time-dependent
problem (1.4), we have

0 =
d

dt
G(us, ws) = −

∫ 1

0

(
[(us)x]2

us
+ ε[(ws)x]2

)
dx

which indicates that

us = C1, and ws = C2

since us > 0, where C1 and C2 are both constant. The boundary condition of w

immediately implies that C2 = 0 and the cell mass ū =
∫ 1

0
usdx entails that C1 = ū.

This completes the proof.

3.3. Proof of Theorem 1.1. We are now in the position to prove Theorem 1.1.

Proof (of Theorem 1.1). Global existence. For any given T1 > 0, let T := min{T1,
Tmax}. From (1.4) we find that u solves

ut − uxx − wux = uwx, x ∈ (0, 1), t ∈ (0, T ),

ux|x=0,1 = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, 1].

(3.28)

From (3.10), (3.3) and (3.15) we readily find some c1 > 0 such that

‖w(·, t)‖L4((0,1)) ≤ c1 for all t ∈ (0, T ), (3.29)

‖uwx‖L2((0,1)×(0,T )) ≤ c1, (3.30)

where 4 > n + 2 = 3 due to the fact that n = 1. Then we can apply parabolic
Lp-theory (cf. [17, Theorem IV.9.1 and Section V.7] ) to obtain some c2(T ) > 0
such that

‖u‖W 2,1,2(QT ) ≤ c2(T ). (3.31)

This in conjunction with the fact that n = 1 and the Sobolev imbedding Theorem
([17, Lemma II.3.3] yields some c3 > 0 such that

‖ux‖L6(QT ) ≤ c3‖u‖W 2,1,2(QT ) ≤ c3 · c2(T ). (3.32)

From (1.4) we find that w solves
wt − εwxx − 2εw · wx = ux, x ∈ (0, 1), t ∈ (0, T ),

w|x=0,1 = 0, t ∈ (0, T ),

w(x, 0) = w0(x), x ∈ [0, 1].

(3.33)

Noting (3.29), (3.32) and w0 ∈ W 2,p0 for some p0 > 3 and applying parabolic
Lp-theory as above, we obtain some c4(T ) > 0 such that

‖w‖W 2,1,p0 (QT ) ≤ c4(T ). (3.34)

This, together with the Sobolev imbedding Theorem ([17, Lemma II.3.3]), yields
some c5(T ) > 0 such that

‖w‖C1+θ,(1+θ)/2(Q̄T ) ≤ c5(T ) where θ := 1− 3
p0

. (3.35)

Using this and the classical regularity of parabolic equations ([17, Theorem V.6.1])
we can obtain some c6(T ) > 0 such that

‖u(x, t)‖C2+θ,(1+θ)/2([0,1]×[η,T ]) + ‖w(x, t)‖C2+θ,(1+θ)/2([0,1]×[η,T ]) ≤ c6(T )
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for all η ∈ (0, T ). Particularly,

‖u(·, t)‖W 2,p0 ((0,1)) + ‖w(·, t)‖W 2,p0 ((0,1)) ≤ c7(T ) for all t ∈ [η, T ] (3.36)

for some c7(T ) > 0. This in conjunction with the extensibility criterion (2.1) yields
Tmax = +∞.
Convergence. For clarity, we divide the proof into three steps.

Step 1. We prove the exponential convergence of u in L1((0, 1)). From (3.23) and
the definition of G we infer that∫ 1

0

u ln
u

ū
dx ≤ G(u0, w0)e−αt, (3.37)∫ 1

0

w2dx ≤ G(u0, w0)e−αt. (3.38)

Then inequality (3.37), along with the Csiszár-Kullback-Pinsker inequality (cf. [4])

1

2ū
‖u− ū‖2L1((0,1)) ≤

∫ 1

0

u ln
u

ū
dx,

yields

‖u− ū‖2L1((0,1)) ≤ 2ū0G(u0, w0)e−αt. (3.39)

Step 2. We prove the boundedness of ‖(u − ū)x‖L2((0,1)). First, (3.2) in con-
junction with (3.15) yields c8 > 0 such that∫ t

0

∫ 1

0

u2
xdxds ≤ ‖u‖L∞

∫ t

0

∫ 1

0

u2
x

u
dxds ≤ c8 for all t > 0. (3.40)

Then, since ū is a constant, (u− ū) satisfies
(u− ū)t = (u− ū)xx + (uw)x, x ∈ (0, 1), t > 0,

(u− ū)(x, 0) = u0(x)− ū, x ∈ [0, 1],

(u− ū)x|x=0,1 = 0, t > 0.

(3.41)

Testing the first equation in (3.41) against −(u−ū)xx and using Cauchy’s inequality,
we obtain

1

2

d

dt

∫ 1

0

(u− ū)2
xdx+

∫ 1

0

(u− ū)2
xxdx = −

∫ 1

0

(u− ū)xx(uw)xdx

≤ 1

2

∫ 1

0

(u− ū)2
xxdx+

1

2

∫ 1

0

(uw)2
xdx

for all t > 0. That is

d

dt

∫ 1

0

(u− ū)2
xdx+

∫ 1

0

(u− ū)2
xxdx ≤

∫ 1

0

(uw)2
xdx for all t > 0.

This, along with the basic fact that (uw)2
x ≤ 2(w2u2

x + u2w2
x) and the boundedness

of u and w in (3.15) and (3.21), yields c9 > 0 such that

d

dt

∫ 1

0

(u− ū)2
xdx+

∫ 1

0

(u− ū)2
xxdx ≤ c9

∫ 1

0

(u2
x + w2

x)dx for all t > 0.

Upon integration over the time t, we find∫ 1

0

(u− ū)2
xdx ≤

∫ 1

0

(u0− ū)2
xdx+c9

∫ t

0

∫ 1

0

(u2
x+w2

x)dxds for all t > 0. (3.42)
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From this, (3.40) and (3.3), we obtain c10 > 0 such that∫ 1

0

(u− ū)2
xdx ≤ c10 for all t > 0. (3.43)

Step 3. We prove the exponential convergence of u in L∞((0, 1)). The Gagliardo-
Nirenberg inequality yields c11 > 0 such that

‖u− ū‖L∞((0,1)) ≤ c11‖(u− ū)x‖
2
3

L2((0,1)) · ‖u− ū‖
1
3

L1((0,1)) + c11‖u− ū‖L1((0,1)).

This, together with (3.39) and (3.43), yields some c12 > 0 such that

‖u− ū‖L∞((0,1)) ≤ c12e
−α3 t for all t > 0. (3.44)

This completes the proof of u in L∞((0, 1)).
Finally, the exponential convergence of w in L∞((0, 1)) can be similarly proved as
above.

3.4. Results for original model. Proof of Theorem 1.2. From Theorem 1.1
we obtain some constants α1 and c > 0 such that

‖u− ū‖L∞((0,1)) ≤ ce−α1t for all t > 0. (3.45)

This will be the starting point towards the proof of the convergence for v.
We begin with proving the convergence of v when µ 6= ū0.

Lemma 3.9. The solution component v of (1.5) has the property

‖v(·, t)‖L∞((0,1)) → 0, if ū0 < µ,

infx∈(0,1) v(x, t)→ +∞, if ū0 > µ.

Proof. Noticing that vxx
v = wx +w2, we can rewrite the second equation of (1.5) as

(ln v)t = u− µ+ εwx + εw2

where w = (ln v)x. Integrating the above equation over [0, 1]× [0, t] we get∫ 1

0

ln vdx =

∫ 1

0

ln v0dx+ (ū0 − µ)t+ ε

∫ t

0

‖w(·, τ)‖2L2dτ,

where we have used (2.2) and the boundary condition w|x=0,1 = 0. Define

ξ(x, t) = ln v −
∫ 1

0

ln v0dx− (ū0 − µ)t− ε
∫ t

0

‖w(·, τ)‖2L2dτ. (3.46)

It is straightforward to check that

ξx = w, and

∫ 1

0

ξ(x, t)dx = 0.

Thus, by the Poincaré inequality we have ‖ξ‖2L2 ≤ ‖w‖2L2 . This, along with ‖ξx‖2L2 =
‖w‖2L2 , n = 1, Theorem 1.1 and the Sobolev inequality, yields

‖ξ(t)‖L∞ ≤ c1e−βt (3.47)

for some positive constants c1 and β which are independent of t.
Now from (3.46) we see that

v(x, t) = exp

{
ξ(x, t) +

∫ 1

0

ln v0dx+ ε

∫ t

0

‖w(·, τ)‖2L2dτ

}
·exp {(ū0 − µ)t} . (3.48)
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If ū0 6= µ, it then follow from Lemma 3.7, the non-negativity of
∫ 1

0
u ln u

ūdx and
(3.47) that

c2 exp {(ū0 − µ)t} ≤ v(x, t) ≤ c3 exp {(ū0 − µ)t}
for some positive constants c2 and c3 which are independent of t. Thus

‖v(·, t)‖L∞((0,1)) → 0 as t→∞, when ū0 < µ,

infx∈(0,1) v(x, t)→ +∞ as t→∞, when ū0 > µ.

This completes the proof of Lemma 3.9.
We next turn to prove the convergence of v when µ = ū0. The proof in this case

appears to be very interesting and involves serval technical steps. We first establish
positive lower and upper bounds of v for sufficiently large t, which will be used
twice in Lemmas 3.12 and 3.13 below.

Lemma 3.10. If ū0 = µ, then there exists a sufficiently large T > 0 such that the
solution component v of (1.5) has positive lower and supper bounds

1

2
exp

{∫ 1

0

ln v0dx

}
≤ v(x, t) ≤ exp

{
c+

∫ 1

0

ln v0dx+
ε

α
G(u0, v0)

}
, (3.49)

for all x ∈ (0, 1) and t > T , with some constant c > 0.

Proof. If ū0 = µ, then again from Lemma 3.7, the non-negativity of
∫ 1

0
u ln u

ūdx,
(3.46) and (3.47) we have

exp

{
−c1e−βt +

∫ 1

0

ln v0dx

}
≤ v(x, t) ≤

exp

{
c1e
−βt +

∫ 1

0

ln v0dx+ εG(u0, v0)

∫ t

0

e−αsds

}
. (3.50)

This, along with the fact that exp
{
−c1e−βt

}
→ 1 as t→∞, yields (3.49).

For t > T + 2, we set Q1 := [0, 1]× [t− 1, t+ 1] and Q2 := [0, 1]× [t− 2, t+ 2].
Suppose (x, s), (y, s) and (y, τ) ∈ Q1, we denote

Cγ,γ/2(Q1) :=
{
h(x, t) ∈ C(Q1)

∣∣∣ |hx(x, s)− hx(y, s)| ≤ c|x− y|γ

and |h(y, s)− h(y, τ)| ≤ c|s− τ |γ/2
}

where γ > 0, c > 0 are constants. To proceed our proof, we need the following
technical lemma concerning local Hölder estimates for linear parabolic equations.

Lemma 3.11. Suppose that h(x, t) solves the equation

ht = εhxx + fx, x ∈ (0, 1), t > 0, (3.51)

with zero Dirichlet boundary condition or homogeneous Neumann boundary condi-
tion, where f(x, t) is a given function.
(i) If f ∈ L∞(Q2), then there exist some 0 < γ < 1 and c1 > 0 depending only on
ε such that

[h]Cγ,γ/2(Q1) ≤ c1
(
‖h‖L2(Q2) + ‖f‖L∞(Q2)

)
; (3.52)

(ii) If f ∈ Cγ,γ/2(Q2), then there exists some c2 > 0 depending only on ε such that

[hx]Cγ,γ/2(Q1) ≤ c2
(
‖h‖L∞(Q2) + ‖f‖Cγ,γ/2(Q2)

)
. (3.53)
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Proof. (3.52) follows from [24, Theorem 6.44] and it is also implicitly proved in [17,
Theorem V.1.1], whereas (3.53) is implicitly proved in [2, Theorem 5.4].

With the estimate (3.45) at hand, we now can establish a decay estimate on vx
in Cγ,γ/2(Q1).

Lemma 3.12. If ū0 = µ, then the solution component v of (1.5) has the property

[vx]Cγ,γ/2(Q1) ≤ ce−α2t for all t > T , (3.54)

with some constants 0 < γ < 1, c > 0 and α2 > 0. In particular, we have

‖vx‖L∞((0,1)) ≤ ce−α2t for all t > T . (3.55)

Proof. Taking derivative with respect to x in both sides of the second equation in
(1.5) and using µ = ū0 = ū we obtain{

(vx)t = ε(vx)xx +
(
(u− ū)v

)
x
, x ∈ (0, 1), t > 0,

vx = 0, x = 0, 1.
(3.56)

Testing the first equation in (3.56) by vx, using Cauchy’s inequality and Poincaré

inequality:
∫ 1

0
v2
x ≤ c1

∫ 1

0
v2
xx for some c1 > 0 thanks to vx|x=0,1 = 0, and employing

(3.45) and (3.49), we obtain c2 > 0 and c3 > 0 such that

1

2

d

dt

∫ 1

0

v2
xdx = −ε

∫ 1

0

v2
xxdx−

∫ 1

0

(u− ū)vvxxdx

≤ −ε
2

∫ 1

0

v2
xxdx+ c2

∫ 1

0

(u− ū)2v2dx

≤ − ε

2c1

∫ 1

0

v2
xdx+ c3e

−2α1t for all t > 0.

From this we can obtain some c4 > 0 such that∫ 1

0

v2
xdx ≤ c4e−c5t for all t > 0, (3.57)

where c5 := min{ εc1 , 2α1}. We now apply Lemma 3.11 (see (3.52) ) to (3.56) to
obtain c6 > 0 such that

[vx]Cγ,γ/2(Q1) ≤ c6
(
‖vx‖L2(Q2) + ‖(u− ū)v‖L∞(Q2)

)
for all t > T .

This, along with (3.45), (3.49) and (3.57), yields c7 > 0 such that

[vx]Cγ,γ/2(Q1) ≤ c6

{(∫ t+2

t−2

∫ 1

0

v2
xdxds

) 1
2

+ c7e
−α1t

}
≤ c6

(
2c

1
2
4 e
− c52 t + c7e

−α1t

)
≤ c6

(
2c

1
2
4 + c7

)
e−min(

c5
2 ,α1)t for all t > T .

Hence, (3.54) holds with α2 := min( c52 , α1).
With the estimate (3.54) at hand, we can improve the estimate (3.45).

Lemma 3.13. If ū0 = µ, then the solution component u of (1.5) has the property

[u− ū]Cγ,γ/2(Q1) ≤ ce−α3t for all t > T , (3.58)

with some constants c > 0 and α3 > 0.
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Proof. Since ūt = ūxx = 0, we can rewrite the first equation in (1.5) as

(u− ū)t = D(u− ū)xx − χ
(u
v
vx

)
x
, x ∈ (0, 1), t > 0. (3.59)

We apply Lemma 3.11 (see (3.52) ) to (3.59) to find some c1 > 0 such that

[u− ū]Cγ,γ/2(Q1) ≤ c1
(
‖u− ū‖L2(Q2) + ‖u

v
vx‖L∞(Q2)

)
.

Using this in conjunction with (3.45) and (3.55) and noting v has a positive lower
bound for all t > T (see (3.49)), we obtain c2 > 0 and c3 > 0 such that

[u− ū]Cγ,γ/2(Q1) ≤ c2e
−α1t + c2e

−
∫ 1
0

ln v0dx · ‖u‖L∞((0,1)) · ‖vx‖L∞(Q2)

≤ c2e
−α1t + c3e

−α2t

≤ (c2 + c3)e−min(α1,α2)t for all t > T .

Thus, (3.58) holds with α3 := min(α1, α2).
With the estimates (3.54) and (3.58), we can further improve the estimate on vx.

Lemma 3.14. If ū0 = µ, then the solution component v of (1.5) has the property

[vxx]Cγ,γ/2(Q1) ≤ ce−α4t for all t > T , (3.60)

with some constants c > 0 and α4 > 0.

Proof. We go back to the problem (3.56) and apply Lemma 3.11 (see (3.53)) to
obtain c1 > 0 such that

[(vx)x]Cγ,γ/2(Q1) ≤ c1
(
‖vx‖L∞(Q2) + [(u− ū)vx]Cγ,γ/2(Q2)

)
.

This in conjunction with (3.55), (3.54) and (3.58) yields some c2 > 0 such that

[(vx)x]Cγ,γ/2(Q1) ≤ c2e
−α2t + c2e

−min(α2,α3)t

≤ 2c2e
−min(α2,α3)t for all t > T .

This proves (3.60) with α4 := min(α2, α3).
Next, we can establish the exponential convergence of v when ū0 = µ.

Lemma 3.15. If ū0 = µ, then there exists constants c > 0 and v∗ ≥ exp{
∫ 1

0
ln v0} >

0 such that the solution component v of (1.5) has the property

‖v − v∗‖L∞((0,1)) ≤ ce−α4t for all t > T . (3.61)

Proof. From the second equation in (1.5) and µ = ū0 = ū we infer that

vt − (u− ū)v = εvxx, x ∈ (0, 1), t > 0. (3.62)

By this and the fact that u(x, t)− ū→ 0 uniformly for x ∈ (0, 1) as t→∞ thanks
to (3.45), we find that(

e
∫∞
t

(u(·,s)−ū)dsv

)
t

= εe
∫∞
t

(u(·,s)−ū)dsvxx. (3.63)

This in conjunction with (3.45) and (3.60) yields c1 > 0 and c2 > 0 such that∥∥∥∥(e∫∞t (u(·,s)−ū)dsv

)
t

∥∥∥∥
L∞((0,1))

≤ εe
∫∞
t
c1e
−α1sds · c2e−α4t

≤ c2εe
c1
α1 · e−α4t

:= c4e
−α4t for all t > T . (3.64)
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For notational simplicity, we set g(x, t) := e
∫∞
t

(u(·,s)−ū)dsv for each fixed x ∈ (0, 1)
and all t > T . By (3.64) we find that for any t+ 1 > s > t > T there holds

‖g(·, s)− g(·, t)‖L∞((0,1)) = ‖gt(·, t̃) · (s− t)‖L∞((0,1))

≤ ‖gt(·, t̃)‖L∞((0,1))

≤ c4e
−α4 t̃

≤ c4e
−α4t → 0 as t→∞, (3.65)

thanks to 0 < s− t < 1, where t̃ ∈ (t, s) ⊂ (t, t+ 1). From (3.65) we assert that for
any time sequence {tn}: T < t1 < t2 < · · · < tn → +∞ satisfying tn − tn−1 < 1,
g(x, tn) is a Cauchy’s sequence for each fixed x ∈ (0, 1). Therefore, there exists a
function v̄(x) such that

‖g(x, t)− v̄(x)‖L∞((0,1)) → 0 as t→ +∞,
that is,

‖e
∫∞
t

(u(x,s)−ū)dsv(x, t)− v̄(x)‖L∞((0,1)) → 0 as t→ +∞. (3.66)

On the other hand, from (3.45) we obtain c5 > 0 such that

1← e−
c5
α1
e−α1t ≤ ‖e

∫∞
t

(u(x,s)−ū)ds‖L∞((0,1)) ≤ e
c5
α1
e−α1t → 1 as t→∞,

which implies

e
∫∞
t

(u(x,s)−ū)ds → 1 uniformly for x ∈ (0, 1), as t→∞. (3.67)

Combining (3.66) and (3.67) entails that

‖v(x, t)− v̄(x)‖L∞((0,1)) → 0 as t→ +∞. (3.68)

Now it remains to prove that v̄(x) = const.. To this end, we infer from (3.55) that
for any x1, x2 ∈ (0, 1), there holds

|v(x1, t)− v(x2, t)| = |vx(x̃, t)(x1 − x2)|

≤ ‖vx(·, t)‖L∞((0,1))

≤ c5e
−α2t → 0 as t→∞, (3.69)

where c5 > 0 is a constant and x̃ is between x1 and x2. This in conjunction with
(3.68) yields

|v̄(x1)− v̄(x2)| ≤ |v(x1, t)− v̄(x1)|+ |v(x2, t)− v(x1, t)|+ |v̄(x2)− v(x2, t)|

→ 0 as t→ +∞.
Hence,

v̄(x1) = v̄(x2) for any x1, x2 ∈ (0, 1)

and thus

v̄(x) = const. := v∗. (3.70)

Finally, (3.61) is an immediate consequence of (3.68), (3.70), (3.65) and (3.50).
Moreover, from (3.46), (3.48), (3.68) and (3.70) we infer that

v∗ = e
∫ 1
0

ln v0dx+ε
∫∞
0
‖w(·,τ)‖2

L2((0,1))
dτ
.

We are now in the position to prove Theorem 1.2.
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Proof (of Theorem 1.2). Theorem 1.2 is an immediate consequence of (3.45), Lem-
mas 3.9 and 3.15.

3.5. Stationary solutions. Proof (of Theorem 1.3). Using the boundary condi-
tions in (1.6), we can solve the first equation in (1.6) to obtain

u(x) = λv
χ
D (x) (3.71)

where λ > 0 is arbitrary.
Inserting (3.71) into the second equation in (1.6) gives{

εvxx − µv + λv1+ χ
D = 0, 0 < x < 1,

vx = 0, x = 0, 1,
(3.72)

where χ < 0. Setting ε̃ = ε
µ , η = (λµ )

D
χ and ṽ = ηv, we see that{

ṽxx − ṽ + ṽp = 0, 0 < x < 1,
ṽx = 0, x = 0, 1,

(3.73)

where the tilde over ε has been dropped without confusion, and thanks to χ < 0,

p := 1 +
χ

D
< 1. (3.74)

It is easy to show that ṽc = 1 is the unique positive constant solution to (3.73).
Hence,

vc =
1

η
ṽc =

1

η
=
(µ
λ

)D
χ

and thus by (3.71),

uc = λv
χ
D
c = λ ·

[(µ
λ

)D
χ
] χ
D

= λ · µ
λ

= µ.

Actually, ṽc = 1 is the only positive solution to (3.73). To prove this assertion, we
distinguish the following two cases.
Case 1: 0 < p < 1. In this case, the assertion was already given in [25]. However,
for completeness, we here present a direct proof.
Suppose, on the contrary, that there exists a positive non-constant classical solution
ṽ(x) to (3.73). Denote ṽ(x0) := minx∈[0,1] ṽ(x) > 0. Since{

−εṽxx + ṽ = ṽp > 0, 0 < x < 1,
ṽx = 0, x = 0, 1,

(3.75)

from the strong maximum principle we infer that x0 6= 0, 1. Thus x0 ∈ (0, 1) and
therefore

ṽxx(x0) ≥ 0. (3.76)

We first assert that
ṽ(x0) = min

x∈[0,1]
ṽ(x) ≥ 1. (3.77)

In fact, if 0 < ṽ(x0) < 1, then this in conjunction with (3.76) and the fact that
0 < p < 1 yields

εṽxx(x0)− ṽ(x0) + ṽp(x0) ≥ ṽp(x0)− ṽ(x0) = ṽp(x0)(1− ṽ1−p(x0)) > 0,

which contradicts the first equation in (3.73). So, (3.77) holds.
Next, we define ṽ(x∗) := maxx∈[0,1] ṽ(x) > 0. When x∗ ∈ (0, 1), we claim that

ṽ(x∗) = max
x∈[0,1]

ṽ(x) ≤ 1. (3.78)
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In fact, if ṽ(x∗) > 1, then using this and noting ṽxx(x∗) ≤ 0 and the fact that
0 < p < 1 we obtain

εṽxx(x∗)− ṽ(x∗) + ṽp(x∗) ≤ −ṽ(x∗) + ṽp(x∗) = −ṽp(x∗)(ṽ1−p(x∗)− 1) < 0,

which contradicts the first equation in (3.73) again. Hence,

ṽ(x) ≤ 1 for all x ∈ (0, 1). (3.79)

This, along the continuity of ṽ(x) on [0, 1], proves (3.78). Combining (3.77) and
(3.78), we have

ṽ(x) ≡ 1,

which contradicts the assumption that ṽ(x) is non-constant.
Case 2: p ≤ 0. Suppose that ṽ1 and ṽ2 are two positive solutions to (1.6). The
mean value theorem yields some ξ(x) satisfying 0 < min{ṽ1(x), ṽ2(x)} ≤ ξ(x) ≤
max{ṽ1(x), ṽ2(x)} such that

ṽp1(x)− ṽp2(x) = pξ
χ
D (x)(ṽ1(x)− ṽ2(x)).

This, along with a straightforward computation, yields that v̄ := ṽ1 − ṽ2 solves{
εv̄xx −

[
1− pξ

χ
D (x)

]
v̄ = 0, 0 < x < 1,

v̄x = 0, x = 0, 1.
(3.80)

Thanks to p ≤ 0 and ξ(x) > 0, we see that

1− pξ
χ
D (x) ≥ 1 > 0. (3.81)

Hence, we can apply the elliptic maximum principle to (3.80) to conclude that v̄ ≡ 0
which indicates that ṽ1 ≡ ṽ2. This proves that ṽc ≡ 1 is the only positive solution

to (3.73). Considering the constant positive solution (µ, (µλ )
D
χ ) of (1.6) must satisfy

the restriction
∫ 1

0
u(x)dx = ū0, the proof of Theorem 1.3 is complete.

3.6. Numerical simulations. The chemotaxis model (1.5) is very difficult to solve
using the routine numerical scheme due to the singularity occurring in the flux term
(ln v)x = vx/v. Noticing that the u in (1.5) is the same as one in the transformed
system (1.4), which no longer has logarithm’s singularity. Hence we can solve system
(1.4) to obtain the solution u of the original chemotaxis model (1.5) for χ < 0.

We shall implement the finite-difference based Matlab PDE solver to solve sys-
tems (1.4) in (0, 1), where the time step size ∆t = 0.01 and spatial step size
∆x = 0.01. In Fig. 1, we show the large time behavior of the solution u to system
(1.4), where Fig. 1(a) plots the initial distribution u0(x) = 1 + cos(4πx) which is a
perturbation of cell mass ū0 = 1. Fig. 1(b) shows the time evolution of u(x, t) at
x = 0.4 where we see that the solution u quickly converges to the cell mass ū0 = 1
in time t < 1. This indicates that the convergence rate may be exponential and
illustrate our results in Theorem 1.1.

4. Appendix. Proof of Lemma 2.1. Denote

R := ‖u0‖W 2,p0 ((0,1)) + ‖w0‖W 2,p0 ((0,1)) + ‖u0‖C1([0,1]) + ‖w0‖C1([0,1]) + 1.

With this R and T ∈ (0, 1) to be specified below, in the Banach space

X := C1,0(Q̄T )× C1,0(Q̄T ),

we consider the closed convex set

ST :=
{

(u,w) ∈ X
∣∣∣ ‖u(·, t)‖C1,0(Q̄T ) ≤ R and ‖w(·, t)‖C1,0(Q̄T ) ≤ R

}
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Figure 1. Numerical solutions to the transformed repul-
sive chemotaxis model (1.4) with initial data u0(x) = 1 +
cos(4πx), w0(x) = sin(2πx), where ε = 1. (a) plots the initial dis-
tribution u0(x) and (b) plots the time evolution of solution u(x, t)
at spatial position x = 0.4.

and introduce a mapping Φ : ST 7−→ ST such that given (ũ, w̃) ∈ ST ,Φ((ũ, w̃)) =
(u,w) where u is the solution to

ut − uxx − wux − wxu = 0, x ∈ (0, 1), t ∈ (0, T ),

ux|x=0,1 = 0, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ [0, 1],

(4.1)

and w defined the solution of
wt − εwxx = (εw̃2 + ũ)x, x ∈ (0, 1), t ∈ (0, T ),

w|x=0,1 = 0, t ∈ (0, T ),

w(x, 0) = w0(x), x ∈ [0, 1].

(4.2)

We shall show that for T small enough Φ has a unique fixed point.
Let QT := (0, 1)×(0, T ). For consistency, throughout the remainder of this paper

we denote

W 2,1,p(QT ) := {u | u, ux, uxx, ut ∈ Lp(QT )}
for p ≥ 1, equipped with the norm

‖u‖W 2,1,p(QT ) = ‖u‖Lp(QT ) + ‖ux‖Lp(QT ) + ‖uxx‖Lp(QT ) + ‖ut‖Lp(QT ).

Since w0(x) ∈ W 2,p0((0, 1)) and ‖(εw̃2 + ũ)x‖L∞(QT ) ≤ R(1 + 2εR) thanks to
(ũ, w̃) ∈ ST , from parabolic Lp-theory (cf. [10, Theorem 2.3] and [17, Theorem
IV.9.1]) we infer that there exists a unique solution w(x, t) ∈ W 2,1,p0(QT ) to (4.2)
and that there exists some constant c1 > 0 such that

‖w‖W 2,1,p0 (QT ) ≤ c1(‖(εw̃2 + ũ)x‖Lp0 (QT ) + ‖w0‖Lp0 (QT )

+‖(w0)x‖Lp0 (QT ) + ‖(w0)xx‖Lp0 (QT ))

≤ c1T
1
p0 · (‖(εw̃2 + ũ)x‖L∞(QT ) + ‖w0‖W 2,p0 ((0,1)))

≤ c1T
1
p0 · [R(1 + 2εR) +R]

≤ c2(R) := c1 · [R(1 + 2εR) +R] (4.3)
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thanks to the facts that T ∈ (0, 1) and ‖w0‖W 2,p0 ((0,1)) < R. This in conjunction
with the Sobolev imbedding Theorem ([17, Lemma II. 3.3]) yields some c3 > 0 such
that

‖w‖C1+θ,(1+θ)/2(Q̄T ) ≤ c3‖w‖W 2,1,p0 (QT ) ≤ c4(R) := c3 · c2(R) (4.4)

where θ := 1− 3
p0

and particularly

‖w‖C1,0(Q̄T ) ≤ c4(R). (4.5)

We next turn to consider (4.1). Since ‖u0‖W 2,p0 ((0,1)) < R and ‖w‖L∞(QT ) ≤
c4(R), ‖wx‖L∞(QT ) ≤ c4(R) by (4.5), from parabolic Lp-theory (cf. [10, Theorem
2.3] and [17, Theorem IV.9.1 and Section V.7]) we infer that there exists a unique
solution u(x, t) ∈ W 2,1,p0(QT ) to (4.1). Moreover, proceeding as in the derivation
of (4.4), we can obtain some c5(R) > 0 such that

‖u‖C1+θ,(1+θ)/2(Q̄T ) ≤ c5(R). (4.6)

Thus,

‖u‖C1,0(Q̄T ) ≤ ‖u(x, t)− u(x, 0)‖C1,0(Q̄T ) + ‖u(x, 0)‖C1,0(Q̄T )

≤ T
1+θ
2 · ‖u‖C0,(1+θ)/2(Q̄T ) + ‖u0‖C1([0,1])

≤ T
1+θ
2 · c5(R) + ‖u0‖C1([0,1]).

From this we deduce that if we take T > 0 sufficiently small that T ≤
(

1
c5(R)

) 2
1+θ

,

then we have

‖u‖C1,0(Q̄T ) ≤ 1 + ‖u0‖C1([0,1]) ≤ R. (4.7)

Similarly, if T is further diminished, say

T ≤ T0 = T0(R) ≤
(

1

c5(R)

) 2
1+θ

, (4.8)

then we also have

‖w‖C1,0(Q̄T ) ≤ R. (4.9)

This, along with (4.7), proves (u,w) ∈ ST . Thus, Φ maps ST into itself. By a
straightforward adaptation of the above reasoning, one can easily deduce that if T
is further diminished then Φ in fact becomes a contraction on ST . For such T we
therefore conclude from the contraction mapping principle ([11, Theorem 5.1]) that
there exists a unique (u,w) ∈ ST such that Φ((u,w)) = (u,w).
By (4.1), w,wx ∈ Cθ,θ/2(Q̄T ) and the classical regularity of parabolic equations
([17, Theorem V. 6.1]) we obtain

u(x, t) ∈ C2+θ,(1+θ)/2([0, 1]× [η, T ]) for all η ∈ (0, T0].

Similarly,

w(x, t) ∈ C2+θ,(1+θ)/2([0, 1]× [η, T ]) for all η ∈ (0, T0].

This proves the regularity of the solution (u,w) to (1.4). The solution may be
prolonged in the interval [0, Tmax) with either Tmax = ∞ or Tmax < ∞, where in
the latter case

‖u(·, t)‖W 2,p0 ((0,1)) + ‖w(·, t)‖W 2,p0 ((0,1)) →∞ as t↗ Tmax,

because T0 depends only on R by (4.8), and ‖u0‖C1([0,1]) ≤ c6‖u0‖W 2,p0 ((0,1)) and
‖w0‖C1([0,1]) ≤ c6‖w0‖W 2,p0 ((0,1)) for some c6 > 0 by the Sobolev embedding:
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W 2,p0((0, 1)) ↪→ C1([0, 1]) for p0 > 3. Finally, the positivity of u results from
the strong parabolic maximum principle, because u0 6≡ 0 ensures that u 6≡ 0.
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