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This paper is concerned with a parabolic-elliptic Keller–Segel system where both
diffusive and chemotactic coefficients (motility functions) depend on the chem-
ical signal density. This system was originally proposed by Keller and Segel to
describe the aggregation phase of Dictyostelium discoideum cells in response
to the secreted chemical signal cyclic adenosine monophosphate (cAMP), but
the available analytical results are very limited by far. Considering system in
a bounded smooth domain with Neumann boundary conditions, we establish
the global boundedness of solutions in any dimensions with suitable general
conditions on the signal-dependent motility functions, which are applicable to
a wide class of motility functions. The existence/nonexistence of non-constant
steady states is studied and abundant stationary profiles are found. Some open
questions are outlined for further pursues. Our results demonstrate that the
global boundedness and profile of stationary solutions to the Keller–Segel system
with signal-dependent motilities depend on the decay rates of motility func-
tions, space dimensions and the relation between the diffusive and chemotactic
motilities, which makes the dynamics immensely wealthy.
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1 INTRODUCTION

To describe the aggregation phase of Dictyostelium discoideum (Dd) cells in response to the chemical signal cyclic
adenosine monophosphate (cAMP) secreted by Dd cells, Keller and Segel1 proposed the following model{

ut = ∇ · (𝛾(v)∇u − u𝜙(v)∇v), x ∈ Ω, t > 0,
𝜏vt = dΔv + u − v, x ∈ Ω, t > 0 (1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary, u denotes the cell density and v is the concentration of
the chemical signal emitted by cells; 𝜏 ∈ {0, 1} and d> 0 is the chemical diffusion rate; 𝛾(v)> 0 and 𝜙(v) are diffusive and
chemotactic coefficients (called motility functions in the sequel), respectively, and both of them depend on the chemical
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signal concentration correlated through the following relation

𝜙(v) = (𝛼 − 1)𝛾 ′(v), (1.2)

and 𝛼 denotes the ratio of effective body length (i.e. distance between receptors) to step size. In a special case 𝛼 = 0,
namely, the distance between receptors is zero and the chemotaxis occurs because of an undirected effect on activity due
to the presence of a chemical sensed by a single receptor (cf. Keller and Segel1, p.228), the system (1.1) is reduced to{

ut = Δ(𝛾(v)u), x ∈ Ω, t > 0,
𝜏vt = dΔv + u − v, x ∈ Ω, t > 0. (1.3)

The Keller–Segel system (1.1) with constant 𝛾(v) and 𝜙(v) is called the minimal chemotaxis model (cf.2), which has
been extensively studied in the past few decades and a vast number of results have been obtained (cf. previous works3-7

and references therein). In contrast, the results of (1.1) with non-constant 𝛾(v) and 𝜙(v) are very few and to the best of our
knowledge the existing results are available only for the special case 𝜙(v) = −𝛾 ′(v), that is, 𝛼 = 0 in (1.2), which simplifies
the Keller–Segel system (1.1) into (1.3). Recently, to describe the stripe pattern formation observed in the experiment of
previous work,8 a so-called density-suppressed motility model was proposed in previous work9 as follows{

ut = Δ(𝛾(v)u) + 𝜇u(1 − u), x ∈ Ω, t > 0,
𝜏vt = dΔv + u − v, x ∈ Ω, t > 0 (1.4)

with 𝛾 ′(v)< 0 and 𝜇≥ 0 denotes the intrinsic cell growth rate. Clearly the density-suppressed motility model (1.4) with
𝜇 = 0 coincides with the simplified Keller–Segel model (1.3). Indeed the density-suppressed motility has been previously
used in the predator-prey system to describe the inhomogeneous co-existence distributions of ladybugs (predators) and
aphids (prey) populations in the field (see10 for modeling and11 for mathematical analysis).

When the Neumann boundary conditions are imposed, namely 𝜕𝜈u|𝜕Ω = 𝜕𝜈v|𝜕Ω = 0 where 𝜕𝜈 = 𝜕

𝜕𝜈
with 𝜈 denoting the

unit outward normal vector of 𝜕Ω, there are some results available to (1.3) and (1.4). For the system (1.3), it was shown in12

that globally bounded solutions exist in two-dimensional spaces if the motility function 𝛾(v)∈C3([0,∞)∩W1,∞(0,∞)) has
both positive lower and upper bounds. It appears that this uniform boundedness assumption on 𝛾(v) is unnecessary for
the global boundedness of solutions. For example, if 𝛾(v) = c0

vk (i.e. 𝛾(v) decays algebraically), it was proved in13 that global
bounded solutions exist in all dimensions provided c0 > 0 is small enough. The global existence result was extended to the
parabolic-elliptic case model (i.e. system (1.3) with 𝜏 = 0) in Ahn and Yoon 14 for any 0 < k < 2

n−2
and c0 > 0. Recently

the global existence of weak solutions of (1.3) with 𝜏 = 1 with large initial data was established in previous work.15 When
𝛾(v) = exp(−𝜒v), a critical mass phenomenon has been shown to exist in16 in two dimensions: If n = 2, there is a critical
number m = 4𝜋∕𝜒 > 0 such that the solution of (1.3) with 𝜏 = d = 1 may blow up if the initial cell mass ||u0||L1(Ω) > m
while global bounded solutions exist if ||u0||L1(Ω) < m. This result was further refined in previous work17 showing that the
blowup occurs at the infinity time. Recently, the existence and uniqueness of global weak solutions in all dimensions as
well as blow-up of solution to (1.3) with 𝜏 = 1 were discussed in.18 For the system (1.4) with logistic growth (i.e., 𝜎 > 0),
the blowup in two dimensions was ruled out for a large class of motility function 𝛾(v). Precisely, it is shown in previous
work19 that the system (1.4) has a unique global classical solution in two-dimensional spaces if 𝛾(v) satisfies the following:
𝛾(v) ∈ C3([0,∞)), 𝛾(v) > 0 and𝛾 ′(v) < 0 on [0,∞), lim

v→∞
𝛾(v) = 0 and lim

v→∞
𝛾 ′(v)
𝛾(v)

exists. Moreover, the constant steady state

(1, 1) of (1.4) is proved to be globally asymptotically stable if 𝜇 >
K0
16

where K0 = max
0≤v≤∞

|𝛾 ′(v)|2
𝛾(v)

. Recently, similar results

have been extended to higher dimensions (n≥ 3) for large 𝜇 > 0 in20 and to more relaxed conditions on 𝛾(v) in previous
work.21 On the other hand, for small 𝜇 > 0, the existence/nonexistence of nonconstant steady states of (1.4) was rigorously
established under some constraints on the parameters in22 and the periodic pulsating wave is analytically obtained by the
multi-scale analysis. When 𝛾(v) is a constant step-wise function, the dynamics of discontinuity interface was studied in a
previous work. 23

By far, as recalled above, the study of the original Keller–Segel system (1.1) was confined to the special case 𝛼 = 0 (cf.
previous works13,14,16), namely, the reduced system (1.3), for some special form of 𝛾(v). The results for the case of 𝛼 ≠ 0
remains entirely unknown. The objective of this paper is to establish the global boundedness of solutions to (1.1) with
suitable conditions on 𝛾(v) and 𝜙(v) by keeping them as general as possible, and then apply the results to a variety of 𝛾(v)
and 𝜙(v) including but beyond the relation (1.2). As first step, we consider the parabolic-elliptic case of (1.1). That is, we
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consider the following problem ⎧⎪⎨⎪⎩
ut = ∇ · (𝛾(v)∇u − u𝜙(v)∇v), x ∈ Ω, t > 0,
0 = dΔv + u − v, x ∈ Ω, t > 0,
𝜕𝜈u = 𝜕𝜈v = 0 x ∈ 𝜕Ω,
u(x, 0) = u0(x), x ∈ Ω.

(1.5)

Except providing a general global boundedness result (see Theorem 2.1), in this paper we develop a framework leading
to the global boundedness of solutions by fully capturing the parabolic-elliptic structure to constructing a positive-definite
quadratic form for gradients∇u and∇v to achieve necessary regularity/estimates (see Lemma 3.6). It is unknown whether
the results of (1.5) can be wholly or partially carried over to the parabolic-parabolic case model of (1.1) (i.e., 𝜏 = 1).
Recently, the global existence of classical solutions of (1.1) with 𝜏 = 1 was obtained under different conditions in.24

The rest of this paper is organized as follows. In Section 2, we state our main results and give some remarks on the
implications/applications of our results. In Section 3, we present the proof of our main results. The stationary solutions
will be discussed in Section 4. In Section 5, we summarize our results and outline some open questions for further pursues.

2 STATEMENT OF MAIN RESULTS

In this section, we shall state a general global existence result and present several specific applications. For the motility
functions 𝛾(v) and 𝜙(v), we prescribe the following hypotheses

(H1) 𝛾(v)∈C2([0,∞)) and 𝛾(v)> 0 for all v∈ [0,∞).
(H2) (a) 𝜙(v)∈C2([0,∞)), 𝜙(v)≥ 0 and 𝜙′(v)< 0 for v∈ [0,∞);

(b) lim
v→∞

v𝜙(v) < ∞ if n> 3.

(H3) inf
v≥0

𝛾(v)|𝜙′(v)||𝜙(v)|2 > n
2

.

The conditions (H1) and (H2) give the basic requirement on 𝛾(v) and 𝜙(v), respectively, and (H3) imposes the constraint
on the relation between 𝛾(v) and 𝜙(v). Note that the monotonicity of 𝛾(v) is not required, this is different from the existing
results in previous works.13,14,16

In the sequel, we say that (u, v) is a classical solution to (1.5) in Ω̄ × [0,T) for some T∈ (0,∞] if and only if

u ∈ C(Ω̄ × [0,T)) ∩ C2,1(Ω̄ × (0,T)), v ∈ C2,1(Ω̄ × (0,T))

and (u, v) satisfies Equations 1.5 pointwise. Then our main results are stated in the following theorems.

Theorem 2.1. Let Ω ⊂ Rn(n ≥ 1) be a bounded domain with smooth boundary. Assume u0 ≩ 0 and u0 ∈W1,∞(Ω). If
one of the following holds

(i) n = 1, 𝛾(v) and 𝜙(v) satisfy hypotheses (H1) and (H2)-(a);
(ii) n≥ 2, 𝛾(v) and 𝜙(v) satisfy hypotheses (H1)-(H3) such that

∫Ω
𝜙(v)−pdx < ∞ for some p >

n
2
, (2.1)

then the system (1.5) admits a unique classical solution (u, v) ∈ Ω̄ × [0,∞) satisfying

||u(·, t)||L∞(Ω) + ||v(·, t)||W1,∞(Ω) ≤ C0, (2.2)

where C0 is a constant independent of t.

While assumptions (H1)–(H2) cover a wide range of motility functions 𝛾(v) and 𝜙(v), we note that the global bound-
edness of solutions in one dimension (n = 1) does not need the hypotheses (H2)-(b), (H3), and (2.1) which comprise the
main structural constraints on 𝛾(v) and 𝜙(v) in multi-dimensions. If 𝛾(v) and 𝜙(v) are explicitly given, the conditions (H3)
and (2.1) can be specified. Since the multi-dimensional problem is genuinely interesting in real world, below we assume
n≥ 2 and explore the applications of Theorem 2.1 for motility functions with algebraic or exponential decay.
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Before proceeding, we note by the integration of the first equation of (1.1) that

||u(t)||L1(Ω) = ||u0||L1(Ω) ∶= m for all t > 0, (2.3)

which indicates that the cell mass is conserved. Furthermore the local existence of classical solutions of (1.5) can be
obtained under hypotheses (H1) and (H2-(a)) only (see Lemma 3.1). Then from a known result of Ahn and Yoon14,
Corollary 2.3 (see also previous work25), there is a positive constant C(n,Ω)> 0 such that

inf
x∈Ω

v(x, t) ⩾ 𝜂, for all 0 < t < Tmax (2.4)

holds for a maximal existence time Tmax ∈ (0,∞], where 𝜂 = C(n,Ω)||u0||L1(Ω). That is, the existence of priori positive
number 𝜂 can be obtained under the hypotheses (H1)–(H2) without imposing other conditions. Keeping this in mind, we
consider the following two classes of motility functions 𝛾(v) and 𝜙(v)

𝛾(v) = 𝜎1

v𝜆1
, 𝜙(v) = 𝜎2

v𝜆2
, 𝜎1, 𝜎2 > 0, 𝜆1 > 0, 𝜆2 > 1 (I)

and
𝛾(v) = exp(−𝜒1v), 𝜙(v) = 𝛿 exp(−𝜒2v), 𝜒1 > 0, 𝜒2 > 0, 𝛿 > 0. (II)

Then we have the following results.

Theorem 2.2. Let Ω ⊂ Rn(n ≥ 2) be a bounded domain with smooth boundary, and assume u0 ≩ 0 with u0 ∈W1,∞(Ω).
Then the system (1.5) admits a unique classical solution (u, v) in Ω̄ × [0,∞) satisfying (2.2) if

(i) 𝛾(v) and 𝜙(v) are given by (I) with

𝜆2 ≥ 𝜆1 + 1 and min
{

𝜆2

𝜆2 − 1
,
𝜎1𝜆2

𝜎2
𝜂𝜆2−𝜆1−1

}
>

n
2

(2.5)

or

(ii) 𝛾(v) and 𝜙(v) given by (II) with n = 2 such that

𝜒2 ≥ 𝜒1 and n𝛿
2

exp{(𝜒1 − 𝜒2)𝜂} < 𝜒2 <
4𝜋d
m

. (2.6)

Remark 2.1. We should remark that the results of Theorem 2.2 are not simple applications of Theorem 2.1. Indeed
the validation of the key condition (2.1) is quite technical and a lot additional efforts are needed depending on the
specific form of 𝜙(v) (see Section 3.3).

Note that the conditions 𝜆2 ≥ 𝜆1 + 1, 𝜎1𝜆2
𝜎2

𝜂𝜆2−𝜆1−1 > n
2

in (2.5) and conditions in (2.6) stem from the hypothesis (H3),

while the condition (2.1) leads to 𝜆2
𝜆2−1

> n
2

in (2.5) and requirement n = 2 for (II). Next we further explore the application
of results in Theorem 2.2 to the relation (1.2) originally derived by Keller and Segel in.1

Corollary 2.3. Let Ω ⊂ Rn(n ≥ 2) be a bounded domain with smooth boundary and u0 ≩ 0 with u0 ∈W1,∞(Ω). If 𝛾(v)
and 𝜙(v) satisfy the relation (1.2) with 𝛼 < 1 and one of the following assumptions holds

(i) 𝛾(v) = 𝜎

v𝜆
(𝜎 > 0) such that

0 < 𝜆 <

{ 2
n−2

if 0 ≤ 𝛼 < 1
2

n(1−𝛼)−2
if 𝛼 < 0; (2.7)

(ii) 𝛾(v) = exp(−𝜒v) with n = 2, 𝜒 < 4𝜋d
m

and 0<𝛼 < 1;

then the system (1.5) has a unique classical solution (u, v) in Ω̄ × [0,∞) satisfying (2.2).

Remark 2.2. We have several remarks regarding the results of Corollary 2.3.
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1. With relation (1.2) and function 𝛾(v) with algebraic or exponential decay as in Corollary 2.3, the lower bound
value 𝜂 for v does not play a role since 𝜆2 = 𝜆1 + 1 or 𝜒2 = 𝜒1.

2. If 𝛼 = 0, the result of Corollary 2.3 (i) recovers the global existence result of Ahn and Yoon.14 When 𝛾(v)= e−𝜒v and
n = 2, it was shown recently in16,21 that the system (1.3) with 𝜏 = d = 1 possesses a critical mass mc = 4𝜋∕𝜒 > 0
such that the solution may blow up if ||u0||L1(Ω) > m while globally exist if ||u0||L1(Ω) < mc. Our results in Corollary
2.3 (ii) extend the same global boundedness results to the case 0<𝛼 < 1.

Remark 2.3. It is worthwhile to note that the monotonicity of 𝛾(v) and relation (1.2) are not required in Theorem 2.1,
and hence the applications of our results are far more than those motility functions 𝛾(v) and 𝜙(v) discussed above. For
example, one can consider the following motility functions

𝛾(v) = ln(v + 1), 𝜙(v) = 𝜎

(v + 1)𝜆
(or = e−𝜒v)

and follow the results of Theorem 2.1 to find the appropriate conditions for the global boundedness of solutions.

3 PROOF OF MAIN RESULTS

In this section, we first give the local existence of solutions and recall some well-known results for later use. Then we
derive a global boundedness criterion for the system (1.5) and show a sufficient condition ensuring such criterion. Finally
we proceed to prove our main results stated in Section 1. In the sequel, when appropriate, we use ci or Ci (i = 1, 2, … ) to
denote a generic positive constant varying in the context.

3.1 Preliminaries
The local existence of solutions of (1.3) and (1.4) was proved in Ahn and Yoon14 and Jin et al.,19 respectively, by the
Schauder fixed point theorem, and the uniqueness was proved by a direct argument. We can employ the exact procedures
as in previous works14,19 with slight modifications to get the local existence and uniqueness of solutions to (1.5). The local
existence can also be obtained by Amann's theorem on the triangular system (cf. previous works11,26). Below we shall
state the results only and omit the proof for brevity.

Lemma 3.1 (Local existence). Let Ω be a bounded domain in Rn(n ≥ 1) with smooth boundary and assume 𝛾(v) and
𝜙(v) satisfy the hypotheses (H1) and (H2-(a)). If u0 ≩ 0 and u0 ∈W1,∞(Ω), then there exist Tmax ∈ (0,∞] such that the
problem (1.1) has a unique classical solution (u, v) ∈ [C0(Ω̄×[0,Tmax))∩C2,1(Ω̄×(0,Tmax))]×C2,1(Ω̄×(0,Tmax)) satisfying
u, v> 0 in Ω × (0,Tmax). Moreover if Tmax < ∞, then

lim
t↗Tmax

||u(·, t)||L∞(Ω) = ∞.

For convenience, we recall a well-known result below (cf. previous work27).

Lemma 3.2. LetΩ be a bounded domain inRn(n ≥ 1)with smooth boundary and u∈L1(Ω) be a non-negative function.
If v≥ 0 satisfies {

−dΔv + v = u, x ∈ Ω,
𝜕𝜈v = 0, x ∈ 𝜕Ω,

then

v ∈
⎧⎪⎨⎪⎩

L∞, if n = 1,
Lq(1 ≤ q < ∞), if n = 2,
Lr

(
1 ≤ r < n

n−2

)
, if n > 2.

Lemma 3.3. Let Ω be a bounded domain in R2 with smooth boundary. Consider the following problem{
−dΔv + v = u, x ∈ Ω,
𝜕𝜈v = 0, x ∈ 𝜕Ω
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where u∈L1(Ω) with ||u||L1(Ω) = m. If 0<Λ< 4𝜋d/m, then there is a constant C> 0 such that the solution of the above
problem satisfies

∫Ω
eΛvdx ≤ C.

Proof. The proof is inspired by a previous work,28, Theorem 1 (see also another work29, Theorem A.3). For preciseness of our
results, we present a proof similar to the one in the work.29, Theorem A.3 Let G(x, y) denote the Green's function of dΔ+ 1
in Ω subject to the homogeneous Neumann boundary condition. Then it follows that (cf. previous works30,31)

|G(x, 𝑦)| ≤ 1
2𝜋d

ln 1|x − 𝑦| + K for all x, 𝑦 ∈ Ω with x ≠ 𝑦 (3.1)

where K is positive constant. Then v can be represented as

v(x) = ∫Ω
G(x, 𝑦)u(𝑦)d𝑦,

which yields from (3.1) that

v(x) ≤ ∫Ω

(
1

2𝜋d
ln 1|x − 𝑦| + K

)
· |u(𝑦)|d𝑦 ≤ 1

2𝜋d∫Ω
ln 1|x − 𝑦| · |u(𝑦)|d𝑦 + Km.

The by Jensen's inequality and Fubini's theorem, we have

∫Ω
eΛv(x)dx ≤ eΛKm∫Ω

e
Λm
2𝜋d

·∫Ω ln 1|x−𝑦| · |u(𝑦)|m
d𝑦dx

≤ A∫Ω

(
∫Ω

e
Λm
2𝜋d

·ln 1|x−𝑦| · |u(𝑦)|
m

d𝑦
)

dx

= A∫Ω∫Ω
|x − 𝑦|− Λm

2𝜋d · |u(𝑦)|
m

d𝑦dx

≤ A∫Ω∫Ω
|x − 𝑦|− Λm

2𝜋d · |u(𝑦)|
m

d𝑦dx

= A∫Ω

(
∫Ω

|x − 𝑦|− Λm
2𝜋d dx

)
· |u(𝑦)|

m
d𝑦

where A= eΛKm. Since Ω is bounded, if Λm
2𝜋d

< 2 (i.e., Λ< 4𝜋d/m), then there is a constant c0 > 0 such that

∫Ω|x − 𝑦|− Λm
2𝜋d dx < c0 and hence

∫Ω
eΛv(x)dx ≤ c0A∫Ω

|u(𝑦)|
m

d𝑦 = c0A.

This completes the proof.

Lemma 3.4 (Trudinger–Moser inequality32). Let Ω be a bounded domain in Rn(n ≥ 2) with smooth boundary. Then
for any u∈W1, n(Ω) and any 𝜀> 0, there exists a positive constant C𝜀 depending on 𝜀 and Ω such that

∫Ω
exp |u|dx ≤ C𝜀 exp

{(
1
𝛽n

+ 𝜀

) ||∇u||nLn(Ω) +
1|Ω| ||u||nL1(Ω)

}

where 𝛽n = n
(

n𝛼n
n−1

)n−1
and 𝛼n = n𝜔1∕(n−1)

n−1 with 𝜔n− 1 denoting the (n− 1)-dimensional surface area of the unit sphere in
Rn.
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3.2 A boundedness criterion
Lemma 3.5. Let the assumptions in Lemma 3.1 hold and (u, v) be a solution obtained in Lemma 3.1 with a maximal
time Tmax. If there exists constant C0 > 0 independent of t such that the following inequality holds for any 0 < t < Tmax

||u(·, t)||Lp(Ω) ≤ C0 for some p >
n
2
, (3.2)

then the system (1.5) has a unique classical solution (u, v) satisfying

||u(·, t)||L∞(Ω) + ||v(·, t)||W1,∞(Ω) ≤ C,

where C is a constant independent of t.

Proof. The proof consists of two steps. In step 1, we derive a Lp-bound of u for any n< p<∞. Then we derive the
L∞-bound for u in step 2.

Step 1 (Lp-estimates). We first claim for any p>n there is a constant c0(p)> 0 depending on p but independent of
t such that ||u||Lp(Ω) ≤ c0(p), p > n (3.3)

holds all t ∈ (0,Tmax) subject to the condition (3.2). To this end, we multiply the first equation of (1.5) by up− 1 (p> 1)
and integrate the resulting equation by parts to get

1
p

d
dt∫Ω

updx = − (p − 1)∫Ω
up−2∇u(𝛾(v)∇u − u𝜙(v)∇v)dx

= − (p − 1)∫Ω
𝛾(v)up−2|∇u|2dx + (p − 1)∫Ω

𝜙(v)up−1∇u∇vdx.
(3.4)

Thanks to the elliptic regularity theorem applied to the second equation of (1.5), we have v∈W2, p(Ω) given
u∈Lp(Ω). Then by the Sobolev embedding and (3.2), we find a constant c1 > 0 such that

||v||L∞(Ω) ≤ c1 for all t ∈ (0,Tmax). (3.5)

Then we can find two constants c2, c3 > 0, thanks to (2.4) and hypotheses (H1)-(H2), such that

𝛾(v) ≥ c2, 𝜙(v) ≤ c3.

Then it follows from (3.4) that

1
p

d
dt∫Ω

updx + c2(p − 1)∫Ω
up−2|∇u|2dx ≤ c3(p − 1)∫Ω

up−1∇u∇vdx. (3.6)

Resorting to the Young inequality, we have

c3(p − 1)∫Ω
up−1∇u∇vdx ≤ c2

2
(p − 1)∫Ω

up−2|∇u|2dx + c4(p − 1)∫Ω
up|∇v|2dx

where c4 = 1
2c2

is a constant independent of p. This, upon a substitution into (3.6) along with the fact up−2|∇u|2 =
4

p2 |∇u
p
2 |2, gives

1
p

d
dt∫Ω

updx +
2c2(p − 1)

p2 ∫Ω
|∇u

p
2 |2dx ≤ c4(p − 1)∫Ω

up|∇v|2dx. (3.7)
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Next we estimate the term on the right hand side of (3.7). First the Young inequality gives

∫Ω
up|∇v|2dx ≤ ∫Ω

up+1dx + ∫Ω
|∇v|2(p+1)dx. (3.8)

Below we shall use ci(p) for i≥ 5 to denote a generic constant depending on p. Then with the Gagliardo-Nirenberg
inequality with (3.5), one has

||∇v||2(p+1)
L2(p+1)(Ω) ≤ c5(p)||v||p+1

W2,p+1(Ω)||v||p+1
L∞(Ω) ≤ c6(p)||v||p+1

W2,p+1(Ω) ≤ c7(p)||u||p+1
Lp+1(Ω)

where the last inequality follows from the elliptic regularity applied to the second equation of (1.5). This along
with (3.8) updates (3.7) as

1
p

d
dt∫Ω

updx +
2c2(p − 1)

p2 ∫Ω
|∇u

p
2 |2dx ≤ c8(p)∫Ω

up+1dx (3.9)

with c8(p)= c4(p− 1)+ c7(p). Now adding 1
p
∫Ωupdx to both sides of (3.9) and using the fact

1
p∫Ω

updx ≤ ∫Ω
up+1dx + |Ω|

4p2

owing to the Young inequality, we have from (3.9) that

1
p

d
dt∫Ω

updx + 1
p∫Ω

updx +
2c2(p − 1)

p2 ∫Ω
|∇u

p
2 |2dx ≤ c9(p) + c10(p)∫Ω

up+1dx (3.10)

with c9(p) = |Ω|
4p2 and c10(p) = 1 + c8(p). Next we employ the Gagliardo-Nirenberg inequality again to have

c10(p)∫Ω
up+1dx = c10(p)

‖‖‖u
p
2
‖‖‖ 2(p+1)

p

L
2(p+1)

p (Ω)

⩽ c11(p)
(‖‖‖u

p
2
‖‖‖ 2(p+1)

p
(1−𝜃)

L1(Ω)
‖‖‖∇u

p
2
‖‖‖ 2(p+1)

p
𝜃

L2(Ω)
+ ‖‖‖u

p
2
‖‖‖ 2(p+1)

p

L1(Ω)

) (3.11)

with 𝜃 = n
n+2

p+2
p+1

∈ (0, 1) due to p>n. By (3.2), we know for p>n it holds that

||u p
2 ||L1(Ω) = ||u(·, t)|| p

2

L
p
2 (Ω)

≤ c12 for all t ∈ (0,Tmax) ,

which updates (3.11) as

c10(p)∫Ω
up+1dx ≤ c13(p)

(‖‖‖∇u
p
2
‖‖‖ 2(p+1)

p
𝜃

L2(Ω)
+ 1

)
≤ 2c2(p − 1)

p2
‖‖‖∇u

p
2
‖‖‖2

L2(Ω)
+ c14(p) (3.12)

where we have used the Young inequality with the fact 2(p+1)
p

𝜃 = 2(np+2n)
pn+2p

< 2 due to p>n. Then substituting (3.12)
into (3.10) gives

1
p

d
dt∫Ω

updx + 1
p∫Ω

updx ≤ c15(p),

which by the Gronwall inequality leads to the claim (3.3).
Step 2 (L∞-estimates). Now with (3.3) and the elliptic regularity theorem, we get from the second equation of (1.5)

that v ∈ W 2,p(Ω) → C1,1− n
p (Ω) by the Sobolev embedding theorem. Hence there exists a constant c16 > 0 independent

of t such that ||v||W1,∞(Ω) ≤ c16 for all t ∈ (0,Tmax). (3.13)
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Notice that the constant c4 in (3.7) is independent of t and p. Then substituting (3.13) into (3.7), we find a constant
c17 > 0 independent of t and p such that

d
dt∫Ω

updx +
2c2(p − 1)

p ∫Ω
|∇u

p
2 |2dx ≤ c17p(p − 1)∫Ω

updx. (3.14)

Adding p(p − 1)∫Ωupdx to both sides of (3.14) gives

d
dt∫Ω

updx + p(p − 1)∫Ω
updx +

2c2(p − 1)
p ∫Ω

|∇u
p
2 |2dx ≤ c18p(p − 1)∫Ω

updx (3.15)

with c18 = 1 + c17. By employing the following inequality (cf. 33 (4.19))

||𝑓 ||2L2 ≤ 𝜀||∇𝑓 ||2L2 + c19

(
1 + 𝜀−

n
2

) ||𝑓 ||2L1 , for any 𝜀 > 0

with 𝑓 = u
p
2 and 𝜀 = 2c2

c18p2 , we have

c18p(p − 1)∫Ω
updx ≤ 2c2(p − 1)

p ∫Ω
|∇u

p
2 |2dx + c20p(p − 1)(1 + pn)

(
∫Ω

u
p
2 dx

)2

(3.16)

where c19 > 0 is a constant and c20 = c18c19 max
{

1, c18
2c2

}
. Then substituting (3.16) into (3.15) yields

d
dt∫Ω

updx + p(p − 1)∫Ω
updx ≤ c20p(p − 1)(1 + p)n

(
∫Ω

u
p
2 dx

)2

(3.17)

where we have used the inequality (1+ pn)≤ (1+ p)n. Starting from (3.17), we can utilize the standard Moser iteration
(cf.34 or see the proof of Theorem 2.1 in33) to prove that

||u||L∞(Ω) ≤ c21 for all t ∈ (0,Tmax) (3.18)

holds for some constant c21 > 0. We omit the details here for brevity. Finally, the combination of (3.13) and (3.18)
completes the proof of Lemma 3.5.

By the result of Lemma 3.5, to prove our results, it is the key to drive the priori inequality (3.2). When n< 2, (3.2) directly
holds true by taking p = 1 due to (2.3). In the following we assume n≥ 2 and prove a useful inequality to show (3.2).

Lemma 3.6. Let Ω ⊂ Rn(n ≥ 2) be a bounded domain with smooth boundary. Let 𝛾(v) and 𝜙(v) satisfy hypotheses
(H1)-(H3) and (u, v) be a classical solution obtained in Lemma 3.1 with the maximal existence time Tmax ∈ (0,∞]. Then
there exists some p > n

2
such that

d
dt∫Ω

updx + ∫Ω
updx ≤ c0 + c1∫Ω

𝜙(v)−pdx for all t ∈ (0,Tmax) (3.19)

where c0 and c1 are positive constants depending only on p and d> 0.

Proof. Multiplying the first equation of (1.5) by up− 1 (p> 1) and recalling (3.4), we have

1
p

d
dt∫Ω

updx = −(p − 1)∫Ω
𝛾(v)up−2|∇u|2dx + (p − 1)∫Ω

𝜙(v)up−1∇u∇vdx. (3.20)
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Then we multiply the second equation of (1.5) by − p−1
pd

up𝜙(v) (p> 1) to get

0 = −
p − 1

pd ∫Ω
up𝜙(v)(dΔv + u − v)dx

=
p − 1

p ∫Ω
∇v(pup−1∇u𝜙(v) + up𝜙′(v)∇v)dx −

p − 1
pd ∫Ω

up𝜙(v)(u − v)dx

= (p − 1)∫Ω
𝜙(v)up−1∇u∇vdx +

p − 1
p ∫Ω

up𝜙′(v)|∇v|2dx

−
p − 1

pd ∫Ω
up𝜙(v)(u − v)dx.

(3.21)

Combining (3.20) with (3.21), one has

1
p

d
dt∫Ω

updx = − (p − 1)∫Ω
𝛾(v)up−2|∇u|2dx + 2(p − 1)∫Ω

𝜙(v)up−1∇u∇vdx

+
p − 1

p ∫Ω
up𝜙′(v)|∇v|2dx −

p − 1
pd ∫Ω

up𝜙(v)(u − v)dx.
(3.22)

Let's define

A = (p − 1)𝛾(v) > 0, B = −(p − 1)𝜙(v) < 0, C = −
p − 1

p
𝜙′(v) =

p − 1
p

|𝜙′(v)| > 0

and

z⃗1 = u
p
2
−1∇u, z⃗2 = u

p
2 ∇v.

Then (3.22) can be rewritten as

1
p

d
dt∫Ω

updx + ∫Ω
(A|z⃗1|2 + 2Bz⃗1z⃗2 + C|z⃗2|2)dx = −

p − 1
pd ∫Ω

up𝜙(v)(u − v)dx. (3.23)

Since A, C> 0, then

A|z⃗1|2 + 2Bz⃗1z⃗2 + C|z⃗2|2 ≥ 0 ⇐⇒ B2 − AC ≤ 0
⇐⇒ p|𝜙(v)|2 ≤ −𝛾(v)𝜙′(v) = 𝛾(v)|𝜙′(v)|

Under the hypothesis (H3), we let p be such that

n
2
< p ≤ inf

v≥0

𝛾(v)|𝜙′(v)||𝜙(v)|2 . (3.24)

With (3.24), if we define

𝜌1(v) =
AC − B2

2C
=

p − 1
2

|𝜙(v)|2|𝜙′(v)|
(
𝛾(v)|𝜙′(v)||𝜙(v)|2 − p

)
,

𝜌2(v) =
AC − B2

2A
=

p − 1
2p

|𝜙(v)|2
𝛾(v)

(
𝛾(v)|𝜙′(v)||𝜙(v)|2 − p

)
,

then 𝜌1(v)≥ 0 and 𝜌2(v)≥ 0 for all v≥ 0 such that

A|z⃗1|2 + 2Bz⃗1z⃗2 + C|z⃗2|2 ≥ 𝜌1(v)|z⃗1|2 + 𝜌2(v)|z⃗2|2.

10890



WANG

Thus it follows from (3.23) that

1
p

d
dt∫Ω

updx + ∫Ω
(𝜌1(v)up−2|∇u|2 + 𝜌2(v)up|∇v|2)dx

≤ −
p − 1

pd ∫Ω
up𝜙(v)(u − v)dx

≤ −
p − 1

pd ∫Ω
𝜙(v)up+1dx +

p − 1
pd ∫Ω

upv𝜙(v)dx.

With the fact 𝜌i(v) ≥ 0(i = 1, 2), we add 1
p
∫Ωupdx into the above inequality and obtain

d
dt∫Ω

updx + ∫Ω
updx ≤ −

p − 1
d ∫Ω

𝜙(v)up+1dx + ∫Ω
updx +

p − 1
d ∫Ω

upv𝜙(v)dx. (3.25)

Owing to the Young inequality, we have

∫Ω
updx ≤ p − 1

2d ∫Ω
𝜙(v)up+1dx + c1(p, d)∫Ω

𝜙(v)−pdx

which along with (3.25) leads to

d
dt∫Ω

updx + ∫Ω
updx +

p − 1
2d ∫Ω

𝜙(v)up+1dx ≤ p − 1
d ∫Ω

upv𝜙(v)dx + c1(p, d)∫Ω
𝜙(v)−pdx. (3.26)

Now we proceed to estimate the first term on the right hand side of (3.26).
Case 1 (2≤n≤ 3). In this case, we employ Young's inequality to have

∫Ω
upv𝜙(v)dx ≤ 1

4∫Ω
𝜙(v)up+1dx + c2(p)∫Ω

𝜙(v)vp+1dx (3.27)

where c2(p) = (4p)p

(p+1)p+1 . Then applying (3.27) into (3.26) yields

d
dt∫Ω

updx + ∫Ω
updx +

p − 1
4d ∫Ω

𝜙(v)up+1dx ≤ c1(p)∫Ω
𝜙(v)−pdx +

(p − 1)c2

d ∫Ω
𝜙(v)vp+1dx. (3.28)

Thanks to the hypothesis (H2-(a)) and (2.4), we can find a constant c3 > 0 so that |𝜙(v)| ≤ c3 = 𝜒(𝜂). Since n
2
< 2

n−2
for n = 2, 3, we can pick p = n

2
+ 𝜀 with small 𝜀> 0 satisfying p + 1 < n

n−2
. Therefore applying Lemma 3.2 with the

fact (2.3), we get a constant c5 > 0 such that

∫Ω
𝜙(v)vp+1dx ≤ c3∫Ω

vp+1dx ≤ c4, for p =
p
2
+ 𝜀

which, upon a substitution into (3.28), yields a constant c5(p) such that

d
dt∫Ω

updx + ∫Ω
updx ≤ c5(p) + c1(p)∫Ω

𝜙(v)−pdx.

This gives (3.19).
Case 2 (n> 3). In this case, we employ the hypothesis (H2-(b)) and (2.4) to find a constant c6 > 0 such that |v𝜙(v) |<c6

and hence

∫Ω
upv𝜙(v)dx ≤ c6∫Ω

updx ≤ 1
4∫Ω

𝜙(v)up+1dx + c7(p)∫Ω
𝜙(v)−pdx (3.29)
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where the Young inequality has been used and c7(p)> 0 is a positive constant. Substituting (3.29) into (3.26) yields a
constant c8(p) = c1(p, d) + (p−1)c7

d
> 0 such that

d
dt∫Ω

updx + ∫Ω
updx +

p − 1
4d ∫Ω

𝜙(v)up+1dx ≤ c8(p)∫Ω
𝜙(v)−pdx

which gives (3.19). The proof of Lemma 3.6 is completed.

3.3 Proof of main results
We are in a position to prove our main results.

Proof of Theorem 2.1. By Lemma 3.5, it remains only to show (3.2) holds. When 0<n< 2, (3.2) directly holds true by
taking p = 1 due to (2.3). Now we consider the case n≥ 2. Under the condition (2.1), we can find a constant C1 > 0 from
Lemma 3.6 such that

d
dt∫Ω

updx + ∫Ω
updx < C1.

This along with the Gronwall inequality gives

||u||Lp(Ω) < C2, for some p >
n
2

for some constant C2 > 0. Then Theorem 2.1 follows immediately from Lemma 3.5.
Proof of Theorem 2.2. We consider the case of algebraically and exponentially decay motility functions separately.
Case 1 (algebraic decay). For convenience, we rewrite (I) below

𝛾(v) = 𝜎1

v𝜆1
, 𝜙(v) = 𝜎2

v𝜆2
, 𝜎1, 𝜎2 > 0, 𝜆1 > 0, 𝜆2 > 1.

Then the relation (1.2) is recovered when 𝜎2 = (1 − 𝛼)𝜎1𝜆1 and 𝜆2 = 𝜆1 + 1.
Clearly the hypotheses (H1)-(H2) are satisfied. We next check the hypothesis (H3). Simple computation gives

𝛾(v)|𝜙′(v)||𝜙(v)|2 = 𝜎1𝜆2

𝜎2
v𝜆2−𝜆1−1.

Hence the hypothesis (H3) with (2.4) requires 𝜆2 ≥ 𝜆1 + 1 and

𝜎1𝜆2

𝜎2
>

{ n
2

if 𝜆2 = 𝜆1 + 1,
n
2
𝜂𝜆1+1−𝜆2 if 𝜆2 > 𝜆1 + 1. (3.30)

To get the global existence, it remains to verify the criterion (3.2). We proceed with the following.
Case a (n = 2). When n = 2, from Lemma 3.2, it clearly has that

∫Ω
𝜙(v)−pdx = 𝜎

−p
2 ∫Ω

v𝜆2pdx < ∞, for some p >
n
2
. (3.31)

Then substituting (3.31) into (3.19) and using the Gronwall inequality, we get (3.2) immediately.
Case b (n> 2). By the elliptic regularity theorem35,36 applied to the second equation of (1.5), we have ||v||W2,p(Ω) ≤

C0||u||Lp(Ω) for some constant C0 > 0, which along with the Sobolev embedding theorem yields

||v||L∞(Ω) ≤ C1||u||Lp(Ω), for some p >
n
2

(3.32)

with some constant C1 > 0. Next we split the analysis into two cases. (1) If 𝜆2 < 2
n−2

, then we can pick p = n
2
+ 𝜀 with

0 < 𝜀 < n
𝜆2(n−2)

− n
2

such that 𝜆2p < n
n−2

, which together with (2.3) and Lemma 3.2 gives ∫Ωv𝜆2pdx < C2 for some constant

C2 > 0. By the same argument as in Case a, we get (3.2). (2) If 𝜆2 ≥ 2
n−2

, we have 𝜆2p > n
n−2

since p > n
2

. Furthermore, if we

10892



WANG

let 𝜆2 < n
n−2

, then n
2
(𝜆2−1) < n

n−2
. Now choose q> 1 such that n

2
(𝜆2−1) ≤ q < n

n−2
, and one can check that 𝜃 = 𝜆2p−q < p

whenever p > n
2

. Thus by the Lp-interpolation inequality, we have

∫Ω
v𝜆2pdx = ||v||𝜆2p

L𝜆2p(Ω) ≤ ||v||qLq(Ω)||v||𝜃L∞(Ω).

This along with (3.32), Lemma 3.2 with the fact u∈L1(Ω) (see (2.3)) as well as the Young inequality gives

∫Ω
𝜙(v)−pdx = 𝜎

−p
2 ∫Ω

v𝜆2pdx ≤ C3||u||𝜃Lp(Ω) ≤ C4 +
1
2
||u||pLp(Ω) (3.33)

for some constants C3, C4 > 0. Then substituting (3.33) into (3.19) yields a constant C5 > 0 such that

d
dt∫Ω

updx + 1
2∫Ω

updx ≤ C5

which again by the Gronwall inequality gives (3.2). In summary, with (3.30) we get (3.2) for any 0 < 𝜆2 < n
n−2

. Noticing
that 𝜆2 < n

n−2
(n ≥ 2) is equivalent to 𝜆2

𝜆2−1
> n

2
, and combining with (3.30), we get the condition (2.5) for the global

existence of solutions to (1.5) with (I). This finishes the proof for Case 1.
Case 2 (exponential decay). For convenience, we recast (II) as follows

𝛾(v) = exp(−𝜒1v), 𝜙(v) = 𝛿 exp(−𝜒2v), 𝜒1 > 0, 𝜒2 > 0.

By a direct computation, we have
𝛾(v)|𝜙′(v)||𝜙(v)|2 =

𝜒2

𝛿
exp((𝜒2 − 𝜒1)v)

which subject to hypothesis (H3) and (2.4) impose the conditions on 𝜒i(i = 1, 2) as

𝜒2 ≥ 𝜒1, and𝜒2 >

{ n𝛿
2

if 𝜒1 = 𝜒2
n𝛿
2

exp{(𝜒1 − 𝜒2)𝜂} if 𝜒1 < 𝜒2.

Next we only need to estimate ∫Ω𝜙(v)−pdx = 𝛿−p∫Ωe𝜒2pvdx. In this scenario, we focus on the case n≤ 2 and the case n> 3
is still open.

When n< 2, we have ||∇v||Ln(Ω) ≤ C||u||L1(Ω) = C||u0||L1(Ω) (cf. previous work 37, (2.11)). Noticing that ||v||L1(Ω) is obtained
directly by integrating the second equation of (1.5)

||v||L1(Ω) = ||u||L1(Ω) = ||u0||L1(Ω).

Then by the Trudinger–Moser inequality (see Lemma 3.4), we obtain that

∫Ω
𝜙(v)−pdx = 𝛿−p∫Ω

exp(𝜒2pv)dx ≤ c0 exp(c1||∇v||nLn + c2||v||nL1 ) < ∞, n < 2 (3.34)

for some constant ci(i = 0, 1, 2) depending on n, p,𝜒2.

When n = 2, we let p = n
2
+ 𝜀 = 1 + 𝜀 with 0 < 𝜀 <

4𝜋d
m

−𝜒2

𝜒2
under the assumption 𝜒2 < 4𝜋d

m
. Then we have 𝜒2p =

𝜒2(1 + 𝜀) < 4𝜋d
m

and hence it follows from Lemma 3.3 that

∫Ω
𝜙(v)−pdx = 𝛿−p∫Ω

exp(𝜒2pv)dx < ∞, n = 2. (3.35)

Feeding (3.19) on (3.34) or (3.35) and applying the Gronwall inequality, we have ||u||Lp(Ω) ≤ c5 for some p > n
2

. This
along with Lemma 3.5 finishes the proof of Case 2 and hence of Theorem 2.2.
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Proof of Corollary 2.3. We consider two cases separately.
(i) If 𝜙(v) = (𝛼−1)𝛾 ′(v) with 𝛾(v) = 𝜎

v𝜆
, which is a particular case of (I) with 𝜆2 = 1+𝜆1, 𝜎2 = (1−𝛼)𝜆1𝜎1, 𝜆1 = 𝜆, 𝜎1 = 𝜎.

Then the condition (2.5) becomes
𝜆

1 + 𝜆
· n

2
< min

{
1, 1

1 − 𝛼

}
. (3.36)

If 𝛼 < 0, then (3.36) ⇐⇒ 𝜆

1+𝜆
· n

2
< 1

1−𝛼
⇐⇒ 𝜆 < 2

n(1−𝛼)−2
. While if 0≤ 𝛼 < 1, then (3.36) ⇐⇒ 𝜆

1+𝜆
· n

2
< 1 ⇐⇒ 𝜆 < 2

n−2
.

This gives (2.7) and hence completes the proof of case (i).
(ii) If 𝜙(v) = (𝛼 − 1)𝛾 ′(v) with 𝛾(v)= e−𝜒v, which corresponds to 𝜒2 = 𝜒1 = 𝜒, 𝛿 = (1 − 𝛼)𝜒 in (II). Then the condition

n𝛿
2

exp{(𝜒1 −𝜒2)𝜂} < 𝜒2 in (2.6) with n = 2 requires 0<𝛼 < 1. This along with the condition 𝜒2 < 4𝜋d
m

completes the proof
of case (ii).

4 STATIONARY SOLUTIONS

In this section, we shall explore the non-constant stationary solutions to the Keller–Segel system (1.5) with (1.2). First
notice that the cell mass is conserved in the time-dependent problem, see (2.3). Hence the relevant stationary problem
reads as ⎧⎪⎨⎪⎩

∇ · (𝛾(v)∇u − u𝜙(v)∇v) = 0, x ∈ Ω,
dΔv + u − v = 0, x ∈ Ω,
𝜕𝜈u = 𝜕𝜈v = 0 x ∈ 𝜕Ω,∫Ωu(x)dx = m

(4.1)

where m> 0 is a constant denoting the cell mass and

𝜙(v) = 𝛽𝛾 ′(v), 𝛽 = 𝛼 − 1. (4.2)

Substituting (4.2) into (4.1), we find that the first equation of (4.1) may be written as

∇ ·
(

u𝛾(v)∇ ln u
𝛾(v)𝛽

)
= 0. (4.3)

Multiplying (4.3) by ln u
𝛾(v)𝛽

and integrating the resulting equations by parts along with the Neumann boundary
conditions, we get

∫Ω
u𝛾(v)

||||∇ ln u
𝛾(v)𝛽

||||2dx = 0

which immediately yields ∇ ln u
𝛾(v)𝛽

= 0 and hence

u(x) = 𝜃𝛾(v)𝛽

where 𝜃 > 0 is a constant. With the mass constraint given in the fourth equation of (4.1), we integrate the above equation
and get

𝜃 = m
∫Ω𝛾(v)𝛽dx

.

We thus reduce the stationary system (4.1) into a non-local semi-linear problem{
dΔv − v + m

∫Ω𝛾(v)𝛽dx
𝛾(v)𝛽 = 0, x ∈ Ω,

𝜕𝜈v = 0 x ∈ 𝜕Ω
(4.4)

with
u(x) = m

∫Ω𝛾(v)𝛽dx
𝛾(v)𝛽 .
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In order to get some specific results, we need to specify the form of 𝛾(v) for which we consider two cases: algebraically
and exponentially decay functions. We have the following results.

Theorem 4.1. Let 𝛼 < 1. Then the following results hold.

(a) Consider 𝛾(v) = 𝜎

v𝜆
(𝜎, 𝜆 > 0). If (1− 𝛼)𝜆> 1 when n = 1, 2 and 1 < (1 − 𝛼)𝜆 < n+2

n−2
when n≥ 3, there are constants

0< d0 < d1 depending on the domain Ω such that (4.4) admits a non-constant solution whenever d< d0 and only
constant solution if d> d1. If 0< (1− 𝛼)𝜆≤ 1, then the constant v = m|Ω| is the only nonnegative solution of (4.4) for
any d> 0.

(b) Consider 𝛾(v)= e−𝜒v(𝜒 > 0) and let Ω be a disc in R2. Then the problem (4.4) admits a non-constant radial solution
if m > 8𝜋d

𝜒(1−𝛼)
, while the constant v = m|Ω| is the only radial solution to (4.4) if m < 8𝜋d

𝜒(1−𝛼)
.

4.1 Motility with algebraic decay
Assuming 𝛾(v) = 𝜎

v𝜆
(𝜎, 𝜆 > 0), the stationary problem (4.4) becomes

{
dΔv − v + m

∫Ωvkdx
vk = 0, x ∈ Ω,

𝜕𝜈v = 0 x ∈ 𝜕Ω
(4.5)

where assume that k = −𝜆𝛽 = 𝜆(1 − 𝛼) > 0. To the best of our knowledge, the existence of non-trivial solutions to
the non-local problem (4.5) was missing in the literature. Below we shall show the existence of solutions to (4.5) via the
following localized problem {

dΔw − w + wk = 0, x ∈ Ω,
𝜕𝜈w = 0, x ∈ 𝜕Ω (4.6)

which has been widely studied in the literature (cf.38-42). The most prominent feature of (4.5) is that its solutions possess
point condensation phenomena meaning that the solutions aggregate at finite number of points and tend to zero elsewhere
as d→ 0. Moreover when d is small, (4.6) has a non-constant least energy solution which has exactly one local maximum
on the boundary and is considered to be the most stable one among all possible non-constant solutions. We cite the
following well-known results (cf. previous works13,38).

Lemma 4.2. Let k> 1 if n = 1, 2 and 1 < k < n+2
n−2

if n≥ 3. Then there are constants 0< d0 < d1 depending on the domain
Ω such that (4.6) admits a non-constant solution whenever d< d0 and only constant solution if d> d1. If 0< k≤ 1, the
constant w = 1 is the only nonnegative solution to (4.5) for any d> 0.

Now we are in a position to prove Theorem 4.1(a).
Proof of Theorem 4.1(a). Let w be a solution of (4.6) with ∫Ωwdx = m0. If m0 =m, then w is a solution of (4.5) since

∫Ωwdx = ∫Ωwkdx by the integration of (4.6). Otherwise, if m0 ≠m, we define

V = m
m0

w.

Then ∫ΩVdx = m and from (4.6), we may check that V satisfies{
dΔV − V +

(
m
m0

)k−1
V k = 0, x ∈ Ω,

𝜕𝜈V = 0 x ∈ 𝜕Ω.
(4.7)

On the other hand, integrating (4.7) yields that ∫ΩVdx = ∫Ω
(

m
m0

)k−1
V kdx = m. Then

(
m
m0

)k−1

= m
∫ΩV kdx

. (4.8)

With (4.8) and (4.7), we see that V = m
m0

w is a solution to (4.5). With k = 𝜆𝛽 = (1 − 𝛼)𝜆 and existence results in Lemma
4.2 for w, we get the existence of solutions to (4.5) and hence prove the first part of Theorem 4.1(a). We proceed to prove
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that (4.5) has only constant solution if 0< (1− 𝛼)𝜆≤ 1 (namely 0< k≤ 1). Arguing by contradiction, we assume that there
is a non-constant solution to (4.5) in the case of 0< k≤ 1. Then v is a solution of the following problem{

dΔv − v + 𝜉vk = 0, x ∈ Ω,
𝜕𝜈v = 0 x ∈ 𝜕Ω

with 𝜉 = m
∫Ωvkdx

. A direct calculation will show w = 𝜉
1

k−1 v is also a (non-constant) solution to (4.6), which contradicts the
results of Lemma 4.2. This completes the proof of Theorem 4.1(a).

4.2 Motility with exponential decay
Now we consider 𝛾(v)= e−𝜒v(𝜒 > 0), which turns the stationary problem (4.4) to be{

dΔv − v + m
∫Ωe−𝜒𝛽vdx

e−𝜒𝛽v = 0, x ∈ Ω,
𝜕𝜈v = 0, x ∈ 𝜕Ω.

(4.9)

With a change of variable
ṽ = −𝜒𝛽v, m̃ = −𝜒𝛽m,

we can transform (4.9) into the following problem{
dΔṽ − ṽ + m̃

∫Ωeṽdx
eṽ = 0, x ∈ Ω,

𝜕𝜈 ṽ = 0 x ∈ 𝜕Ω.
(4.10)

The analysis of the nonlocal problem (4.10) is delicate and the geometry of domain Ω plays a role in determining the
existence of solutions. It was proved in previous work31 that in two dimensions (4.10) only admits constant solution if
0 < m̃ ≪ 1 while admits non-constant solutions if m̃ > 4𝜋d and m̃ ≠ 4k𝜋d for k = 1, 2, … . Similar results were obtained
in previous work.43 If Ω has some special geometry, non-constant solutions may also exist for m̃ < 4𝜋d (see31). When m̃
is sufficiently close to 4k𝜋d(k = 1, 2, … ) in two dimensions, blow-up solutions may exist (cf. previous work44), while in
three or higher dimensions, blow-up solutions may exist for any m̃ > 0 (cf. previous work45). For the radial symmetric
case, the following result (cf.31, Theorem 4) gives a threshold of mass in two dimensions.

Lemma 4.3. Let Ω be a disc in R2 and ṽ(x) = ṽ(|x|). Then the problem (4.10) admits a non-constant if m̃ > 8𝜋d, while
admits only constant solution ṽ = m̃|Ω| if m< 8𝜋d.

We remark for the radially symmetric domain Ω ⊂ R2, if the solution is only required to be constant on the boundary
(not necessarily radially symmetric), it was shown in previous work7 that (4.10) only admits a unique constant solution.

Proof of Theorem 4.1(b). Noticing that m̃ = 𝜒(1 − 𝛼)m, we obtain Theorem 4.1(b) immediately as a consequence of
Lemma 4.3.

5 SUMMARY AND DISCUSSION

In this paper, we consider the parabolic-elliptic Keller–Segel system (1.1) with 𝜏 = 0, where both cell diffusion rate
𝛾(v) and chemotactic coefficient 𝜙(v) are functions of the signal density. The prototypical relation between 𝛾(v) and 𝜙(v)
was given by (1.2) in.1 Although system (1.1) has been proposed almost 50 years, the mathematical results are still very
limited when both 𝛾(v) and 𝜙(v) are non-constant. The existing results were developed only for the special case 𝛼 = 0,
namely 𝜙(v) = −𝛾 ′(v), for which the system (1.1) was substantially reduced to (1.3). By far no results have been available
for the case 𝛼 ≠ 0 or general functions 𝛾(v) and 𝜙(v). This paper takes a step forward to find suitable conditions on 𝛾(v)
and 𝜙(v) (see hypotheses (H1)-(H3) and (2.1)) for the global boundedness of solutions in a smooth boundary domain of
any dimension with Neumann boundary conditions (see Theorem 2.1). These conditions include but have gone beyond
the relation (1.2). As an application, we give examples for motility functions with algebraic and exponential decay and
transform these conditions to the decay rates (see Theorem 2.2). By the results of Theorem 2.2, we obtain the global
boundedness of solutions to (1.5) with relation (1.2) for 𝛼 ≠ 0 (see Corollary 2.3). Lastly we give some results on the
existence/nonexistence of non-constant stationary solutions of (1.5) with (1.2) 𝛾(v) with algebraic or exponential decay.
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The results in the present paper with existing results in14,16,21 demonstrate that depending on the decay rate of
non-constant motility function 𝛾(v) and 𝜙(v), the relation between 𝛾(v) and 𝜙(v) and space dimensions, the Keller–Segel
system (1.1) with has very rich dynamics/patterns such as global boundedness, blow up, condensation patterns and so
on. Although some progresses have been made in this paper along with above-mentioned works, there are many inter-
esting questions left open. First, the asymptotic behavior of solutions is not explored in this paper, which will be an
intricate problem given the wealthy behavior of stationary solutions as shown in Section 4. Moreover the analytical tools
tackling (1.1) and its special case (1.3) may be very different. For example, the comparison principle is applicable to the
simplified (1.3) by some technical treatment as done in.21 However the method of21 essentially depends on the structure
of (1.3) and may not be directly applicable to the general case model (1.1) for which comparison principle fails in general
due to the cross diffusion. Even for the simplified Keller–Segel system (1.3), its understanding is far from being complete
in spite of some progresses made recently in.16,21 For example, in higher dimensions (n≥ 3), the global dynamics of solu-
tions to (1.3) is unknown for exponential decay 𝛾(v) = exp(−𝜒v) or algebraic decay 𝛾(v) = 𝜎

vk with k ≥ 2
n−2

. Turning to
the Keller–Segel system (1.1) with non-constant 𝛾(v) and 𝜙(v), the present paper establishes the global boundedness of
solutions for the parabolic–elliptic case model (1.5) under conditions (H1)-(H3) with (2.1), which cover a wide range of
motility functions 𝛾(v) and 𝜙(v). Whether these results can be extended to the parabolic–parabolic case model (i.e., (1.1)
with 𝜏 = 1) remains open. In particular, the global dynamics of solutions for exponentially decay motility functions in
three or higher dimensions still remain poorly understood. The hypotheses (H1)-(H3) plus (2.1) prescribe sufficient condi-
tions for the global boundedness of solutions. But to what extend these conditions are necessary is obscure. An immediate
relevant question is whether solutions blow up if some (or all) of these conditions fail. The answer seems elusive since
the global dynamics of solutions may critically depend on the decay rate of 𝛾(v) and 𝜙(v) and space dimensions as can be
seen from the specialized model (1.3). The results of Corollary 2.3 apply to the case 𝛼 < 1 only, while the results for 𝛼 > 1
remains open. By the relation (1.2), we see that 𝛼 = 1 is a critical number determining the sign of 𝜙(v). When 𝛼 > 1, the
Keller–Segel system will become a repulsive chemotaxis model if 𝛾 ′(v)< 0. This is opposite to the attractive case (𝛼 < 1)
that we explore in this paper. Therefore it is worthwhile to study the case 𝛼 > 1 for (1.1)-(1.2) to examine how the dynamics
will be different from the attractive case 𝛼 < 1. Though the foregoing questions are by no means exhaustive ones open for
the Keller–Segel system (1.1), the answer of these questions will certainly enhance the understanding of the immensely
rich dynamics encompassed in the Keller–Segel system (1.1) with non-constant motility functions 𝛾(v) and 𝜙(v).
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