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Abstract
This paper is devoted to studying a reaction-diffusion-chemotaxis model with a
volume-filling effect in a bounded domain with Neumann boundary conditions.
We first establish the global existence of classical solutions bounded uniformly
in time. Then applying the asymptotic analysis and bifurcation theory, we
obtain both the local and global structure of steady states bifurcating from
the homogeneous steady states in one dimension by treating the chemotactic
coefficient as a bifurcation parameter. Moveover we find the stability criterion
of the bifurcating steady states and give a sufficient condition for the stability
of steady states with small amplitude. The pattern formation of the model
is numerically shown and the stability criterion is verified by our numerical
simulations.

Keywords: steady states, bifurcation theory, stability
Mathematics Subject Classification: 35K55, 35K57, 35K45, 35K50, 92C15,
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(Some figures may appear in colour only in the online journal)

1. Introduction

The mathematical modeling of chemotaxis was started from the pioneering works of Patlak in
1953 [19] and Keller and Segel in 1970 [14,13]. Since then, various chemotaxis models based
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on the Keller-Segel model have been proposed to describe the chemotactic aggregation process.
Many of these works treat the cells as point masses and hence the formation of cell aggregation
was interpreted as a finite-time blow-up of cell density [9,10]. To take into account cell sizes, a
so-called volume-filling chemotaxis was proposed in [18] so that arbitrarily high cell densities
can be precluded by setting an impassable threshold value for cell density. This idea was further
developed in [25,24] for generic cell types. A generalized form of volume-filling chemotaxis
model of [18, 25] reads

ut = ∇ · (d(u)∇u − χh(u)∇v) + µu(1 − u/uc), x ∈ �, t > 0,

vt = �v − v + u, x ∈ �, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1.1)

where the cell density-dependent diffusion coefficient d(u) and the chemotactic sensitivity
function h(u) are of the form

d(u) = D(1 − u)−α, h(u) = u(1 − u)β, u ∈ [0, 1), (1.2)

with constants D > 0, α, β ∈ R, and ν denotes the outward normal vector of ∂�. The number
1 in (1.2) is defined as crowding capacity, the maximal cell numbers that can be accommodated
in an unit volume of space. The cell has a logistic growth with growth rate µ > 0 and carrying
capacity uc with 0 < uc < 1 (see details in [25]), and χ > 0 is called the chemotactic
coefficient. The detailed derivation of (1.1)–(1.2) can be found in [24, 27]. The striking and
interesting feature of the model (1.1)–(1.2) is the possible singularity or degeneracy at where
u attains the threshold value 1 in either the diffusion coefficient or the chemotactic sensitivity
or both. Therefore whether the solution u attains 1 is the foremost theoretical question. When
the cell growth is neglected (i.e. µ = 0), the results of [27, 26] showed that if α + β > 1 or
α = 0, β = 1, the solution u satisfies 0 < u < 1 for any (x, t) ∈ R × (0, ∞) with initial data
(u0, v0) satisfying

(u0, v0) ∈ [W 1,∞(�)]2 and 0 � u0(x) < 1, v0(x) � 0, x ∈ �. (1.3)

In other regimes of parameters α and β, the singularity or degeneracy (meaning u attains 1)
may happen in either finite or infinite time, except for a borderline case α > 0, α + β = 1
which still remains unknown (see [27]).

The existence of non-constant steady states of (1.1) with µ > 0 for α + β > 1 has been
established by the authors in [17] by the degree theory. The purpose of this paper is to use
the global bifurcation theorem to find the local and global structures of non-constant steady
states of (1.1) with µ > 0 bifurcating from the constant steady state, and then find the stability
criterion of the bifurcating steady states. Since the singularity may occur when α + β � 1
(except for α = 0, β = 1), we restrict our attention in this paper to the case

α + β > 1, α, β ∈ R. (1.4)

While for the case α = 0, β = 1, many results are available. First without cell growth (µ = 0),
the existence of steady states of chemotaxis system (1.1) was rigorously established in [23]
in one dimension via the global bifurcation theorem in [22] while a detailed local bifurcation
analysis was performed previously in [20]. The global existence of classical solutions have
been obtained in [28, 29] for µ � 0 and the convergence of solutions to equilibria with
µ = 0 was studied in [12]. The pattern formation of (1.1) was numerically investigated
in [18, 25] for both µ = 0 and µ > 0. It was found that the model (1.1) with cell growth
(µ > 0) appears to typically exhibit merging and emerging chaotic patterns in contrast to single
merging aggregation patterns for µ = 0. Then an important question arise as whether or not
the volume-filling chemotaxis model for µ > 0 can develop stationary patterns. This question
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was first confirmed analytically in [16] by the degree theory, which differs from the bifurcation
approach used in [23, 20] where µ = 0 and the cell mass conservation is essentially used.
More delicate analysis of local dynamics of the aggregation patterns was performed recently
in [15].

The paper is organized as follows. In section 2, we establish the global existence of
classical solutions to (1.1)–(1.3) and show that the solution is bounded below and above by
constants. In section 3, the local and global bifurcation analysis will be performed to examine
the structure of bifurcating steady states. The analysis on the stability of bifurcating steady
states with small amplitude will be given in section 4. Finally in section 5, we shall show
numerical simulations of bifurcating patterns and verify our analytical results numerically.

2. Existence of global solutions

We first introduce some notations used in the paper for readers’ convenience. In the sequel,
we denote the measure of the set A by |A|; let Wm,p(�, R

N) for m � 1, 1 < p < +∞ be
Sobolev space of R

N -valued functions with norm ‖ · ‖m,p. When p = 2, Wm,2(�, R
N)

is written as Hm(�). Let Lp(�)(1 � p � ∞) denote the usual Lebesgue space in a

bounded domain � ⊂ R
n with norm ‖f ‖Lp(�) =

( ∫
�

|f (x)|pdx
)1/p

for 1 � p < ∞
and ‖f ‖L∞(�) = ess sup

x∈�

|f (x)|. When p ∈ (n, +∞), W 1,p(�, R
2) ↪→ C(�, R

2) which is

the space of R
2-valued continuous functions.

In this section, we shall show that the parabolic system (1.1)–(1.3) has an invariant region

X = {(u, v) : 0 � u < 1, 0 � v < 1} (2.1)

for any initial values u0 and v0 fulfilling (1.3). This is a consequence of the following theorem.

Theorem 2.1. Let (u0, v0) fulfill (1.3), and α and β satisfy (1.4). Then the problem (1.1)–(1.3)
with (1.4) has a global classical solution (u, v). Moreover, there exists a constant δ > 0 such
that

0 � u(x, t) � 1 − δ, 0 � v(x, t) � 1 − δ, for all (x, t) ∈ � × (0, ∞). (2.2)

For the case of no cell growth (µ = 0), the existence of the global in-time solutions was
proved in [27,26]. In this section we study the case for µ > 0. In order to prove theorem 2.1,
we shall first show the existence of local solutions, then verify (u, v) is uniformly bounded in
t . In particular, one needs to show that u(x, t) is separated from 1 for any t > 0.

Lemma 2.2 (Local existence). Suppose that (u0, v0) satisfies (1.3). There exists a positive
constant T0 depending on initial data (u0, v0) such that the initial-boundary problem (1.1)
with (1.2) has a unique maximal solution (u, v) defined on � × [0, T0) satisfying

(u, v) ∈ C(� × [0, T0); R
2) ∩ C2,1(� × (0, T0); R

2)

with 0 � u, v < 1. Furthermore if T0 < ∞, then

lim
t↗T0

sup ‖u(x, t)‖L∞(�) = 1. (2.3)

Proof. We shall apply the abstract theory developed by Amann [4] to prove this lemma. Let
ω = (u, v) ∈ R

2. Then the system (1.1) with (1.2) can be reformulated as
ωt = ∇ · (A(ω)∇ω) + G(ω), x ∈ �

∂w

∂ν
= 0, x ∈ ∂�,

ω(0, ·) = (u0, v0), x ∈ �,

(2.4)
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where

A(ω) =
(

D(1 − u)−α −χu(1 − u)β

0 1

)
, G(ω) =

(
µu(1 − u/uc)

u − v

)
.

Since the given initial conditions (1.3) satisfy 0 � u0 < 1 − δ0 for some 0 < δ0 < 1, it is
clear that the matrix A(ω) are positively definite at t = 0. Hence the system (2.4) is normally
parabolic and local existence of solution follows from [3, theorem 7.3], i.e. there exists a
T0 > 0 such that the unique solution (u, v) ∈ C(�× [0, T0); R

2)∩C1,2(�× (0, T0); R
2) with

u < 1 − δ0 exists. Next we apply the maximum principle to prove that u, v � 0. To this end,
we write the first equation of (1.1) as

ut = D(1 − u)−α�u + [Dα(1 − u)−1−α∇u − χ(1 − u)β∇v
(2.5)

+χβu(1 − u)β−1∇v]∇u − χu(1 − u)β�v + µu((1 − u/uc).

Then the strong maximum principle applied to (2.5) with the Neumann boundary condition
asserts that u > 0 for all (x, t) ∈ � × (0, T0) due to u0 	≡ 0. Similarly we have v > 0 for any
(x, t) ∈ � × (0, T0) by the strong maximum principle applied to the second equation of (1.1).
Next we prove that v = 1 − δ0 is an upper solution of the v equation. Define an operator T

by Tv = ∂v
∂t

− �v − u + v. Then Tv = −u + 1 − δ0 � 0. By the comparison principle, we
have 0 � v(x, t) � v � 1 − δ0 for all (x, t) ∈ � × [0, T ). Finally the assertion (2.3) follows
from [2, theorem 5.2] since A(w) is an upper triangular matrix. The proof of lemma 2.2 is
completed. �

To extend the local solutions to global ones in time, a priori estimates u(x, t) < 1 for
all t > 0 is needed. Due to the possible singularity/degeneracy in the diffusion, maximum
principle can not be used to achieve such a goal. Here we adopt the idea of [27,7] by deriving
that ‖ 1

1−u
‖L∞ < ∞ for all t > 0 using the Moser iteration. To this end, we need to establish

the Lp estimates for 1
1−u

with p > 1. Before embarking on this, we first present a result on the
cell mass M = ∫

�
u(x, t)dx, which enables us to employ the procedure of [27] to derive the

L∞ estimate of 1
1−u

.

Lemma 2.3. Let (u, v)(x, t) be a non-negative solution of (1.1)–(1.2) with 0 < uc < 1. Then
it holds that

M = ‖u(·, t)‖L1(�) < |�| for all t > 0.

Proof. Integrating the first equation of (1.1) and using the Neumann boundary condition, we
have

d

dt

∫
�

udx = µ

∫
�

u(1 − u/uc)dx.

Noticing thatu(1−u/uc) = 1
uc

u(uc−u), one can readily derives thatu(1−u/uc) � −u+uc

for all u � 0, which leads to

d

dt

∫
�

udx + µ

∫
�

udx � µuc|�|.

Then integration of above inequality yields∫
�

udx � e−µt

(∫
�

u0dx − uc|�|
)

+ uc|�|.
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Then we have

∫
�

udx �


uc|�|, if

∫
�

u0dx � uc|�|∫
�

u0dx, if
∫

�

u0dx > uc|�|.

That is
∫
�

udx � max{‖u0‖L1(�), uc|�|}. Since 0 � u0 < 1, we have
∫
�

u0dx < |�|.
Moreover uc|�| < |�| due to 0 < uc < 1. Then the proof is completed. �

Lemma 2.4. Assume α and β satisfy (1.4) and (u0, v0) satisfies (1.3). Let (u, v) be a solution
of (1.1)–(1.2) such that 0 � u < 1 in � × (0, T ) and v ∈ L∞((0, T ); C1(�)) satisfies ∂v

∂ν
= 0

on ∂� and |∇v| � K in � × (0, T ) with some constant K > 0. Then, for any p > 1, there
exists a constant C(K, p) > 0 such that∫

�

(1 − u)−p(x, t)dx � C(K, p), for all t ∈ (0, T ). (2.6)

Proof. Let w(x, t) = 1−u(x, t) and then multiple the first equation of (1.1) by w−p−1(p > 1)

and integrate it over �. Applying Green’s formula and the Neumann boundary condition, we
have
d

dt

∫
�

w−pdx + (p + 1)D

∫
�

w−p−2−α|∇w|2dx

= −(p + 1)χ

∫
�

uw−p−2+β∇v∇wdx + µ

∫
�

u(1 − u/uc)w
−p−1dx (2.7)

� (p + 1)χ

∫
�

uw−p−2+β |∇v∇w|dx + µ

∫
�

u(1 − u/uc)w
−p−1dx.

Let ε = χ

D
, a = w

−p−α−2
2 |∇w|, b = w

−p+α+2β−2
2 u|∇v|. Then Young’s inequality ab � a2

2ε
+ εb2

2
and the fact 0 � u < 1 yield

(p + 1)χ

∫
�

uw−p−2+β |∇v∇w|dx

(2.8)

� (p + 1)D

2

∫
�

w−p−2−α|∇w|2dx +
(p + 1)χ2K2

2D

∫
�

w−p+α+2β−2dx.

From p > 1 it follows that p � p + 1 � 2p. By (2.7) and (2.8), we have

d

dt

∫
�

w−pdx +
pD

2

∫
�

w−p−2−α|∇w|2dx

(2.9)

� pχ2K2

D

∫
�

w−p+α+2β−2dx + µ

∫
�

u(1 − u/uc)w
−p−1dx.

Since
∫
�

w−p−2−α|∇w|2dx = 4
(p+α)2

∫
�

|∇w− p+α

2 |2dx, the inequality (2.9) is equivalent to

d

dt

∫
�

w−pdx +
4p2D

(p + α)2

∫
�

|∇w− p+α

2 ||2dx

(2.10)

� p2χ2K2

D

∫
�

w−p+α+2β−2dx + µp

∫
�

u(1 − u/uc)w
−p−1dx

for all t ∈ (0, T ). To proceed, we let p > 1 to be sufficiently large to fulfill
p − α − 2β + 2

p + α
� 1

2
, for p > |α| and p > −nα

2
. (2.11)
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By the lemma 2.3, we have M = ∫
�

udx < |�|. Hence, for any a ∈ (1,
|�|
M

), we have
|{u(·, t) > aM

|�| }| � |�|
a

and hence

|{u(·, t) � aM/|�|}| � a − 1

a
|�|, for all t ∈ (0, T ). (2.12)

By (2.12) and (2.11), it is easy to check that∣∣∣∣{(1 − u)−
p+α

2 � (1 − auc)
− p+α

2

}∣∣∣ � a − 1

a
|�|, for all t ∈ (0, T ).

Then we can follow the proof of [27, lemma 5.1] with (2.11) to find constants c3, c4 > 0 such
that

d

dt

∫
�

w−pdx � c3 − p2D

(p + α)2

(
1

c4

∫
�

w−pdx − 1

) p+α

p

(2.13)

+ µ

∫
�

u(1 − u/uc)w
−p−1dx

for all t ∈ (0, T ). For brevity, we omit the details here. The last term in (2.13) can be
estimated as

µ

∫
�

u(1 − u/uc)w
−p−1dx � µ

∫
|{u�uc}|

u(1 − u/uc)w
−p−1dx (2.14)

� µuc(1 − uc)
−p−1|�|.

Therefore there exists a constant c5 > 0 such that

d

dt

∫
�

w−p � c3 − p2D

(p + α)2

(
1

c4

∫
�

w−pdx − 1

) p+α

p

. (2.15)

By the comparison argument of ordinary differential equations, it follows from (2.15) that

d

dt

∫
�

w−p � max

{∫
�

(1 − u0)
−p, c4

[(
(p + α)2c5

p2D

) p

p+α

+ 1

]}
(2.16)

for t ∈ (0, T ). The proof is completed. �

We continue to carry out the L∞ estimate of w−1 by applying a variant of the Moser-
Alikakos iterative developed in [1].

Lemma 2.5. Let the assumptions in lemma 2.4 hold. Then there exists a constant C(K) such
that

1

1 − u
� C(K). (2.17)

Proof. The proof of this lemma is similar to lemma 4.2 in [27]. Here we just sketch the
different parts and leave out the similar parts for brevity. We first construct a recursive
sequence {pk}k∈N by fixing p0 > 1 such that p0 >

n|α|
2 and p0 > 4(α + β − 1) − α. Set

pk = 2pk−1 − α, k � 1. It is clear that {pk}k∈N is strictly increasing and there are constants
σ1 and σ2 such that σ12k � pk � σ22k, for all k � 0. Let

qk = 2(pk − α − 2β + 2)

pk + α
≡ 2 − 4(α + β − 1)

pk + α
, k � 1.
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Then by the monotonicity of {pk}k∈N, we have 1 < qk � 2, k � 1. Furthermore,
set q̃k = 2pk

pk+α
, k � 1, we have 1 < q̃k � 2pk

pk−|α| � 2p0

p0−|α| , k � 1, and it follows that

q = 2p0

p0−|α| < 2n
(n−2)+

. Our goal is to derive upper bounds for

Ak = max

{
1,

∫
�

w−pk (x, t)dx

}
, k � 0,

where w(x, t) = 1 − u(x, t). To this end, we recall (2.10), which results in

d

dt

∫
�

w−pk dx + b1

∫
�

|∇w
pk+α

2 |2dx

(2.18)

� b2p
2
k

∫
�

w−pk+α+2β−2dx + µ

∫
�

u(1 − u/uc)w
−p−1dx

for b1 ∈ (0, 1], b2 > 0 and all t ∈ (0, T ), b1 and b2, and b3, b4 used later, may depend on K

but not on t , T or k. We note that (2.19) corresponds to (4.21) in [27]. Henceforward using
the same technique as in [27], we obtain

d

dt

∫
�

w−pk dx � −b3

(∫
�

w−pk dx

) pk+α

pk

+ b42(n+2)kA2
k−1

(2.19)

+µ

∫
�

u(1 − u/uc)w
−pk−1dx

for b3, b4 > 0 and all t ∈ (0, T ). Note that the last term in (2.19) is bounded. Since Ak−1 � 1,
then exists a constant b5 > 0 such that the last term in (2.19) can be bounded by b5A

2
k−1. Then

d

dt

∫
�

w−pk dx � −b3

(∫
�

w−pk dx

) pk+α

pk

+ [b5 + b42(n+2)k]A2
k−1. (2.20)

Then integrating (2.20) leads to∫
�

w−pk dx � max

{∫
�

(1 − u0)
−pk dx,

(
b42(n+2)k + b5

b3
A2

k−1

) pk
pk+α

}
, t ∈ (0, T )

by which, we have, for all k � 1,

Ak � max

{
1,

∫
�

(1 − u0)
−pk dx, bkA

2(1+δk)
k−1

}
with δk = | −α

pk+α
| and some constant b > 1 independent of k. Whereafter, the same argument

in the proof of [27, lemma 4.2] yields (2.17) by noting that A0 is finite from lemma 2.4. The
proof is completed. �

We are now in a position to prove theorem 2.1.

Proof of theorem 2.1. Since 0 � u � 1 and ∇v0 is bounded, the parabolic regularity applied to
the second equation of (1.1) asserts that there exists K > 0 such that |∇v| � K in �×(0, Tmax)

(see [30, proposition 1] for details). By lemma 2.5, we have

sup
T ∈(0,Tmax)

A0(T ) < ∞.

Then the results in theorem 2.1 immediately follow from lemmas 2.2 and 2.5. �
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3. Bifurcation analysis

System (1.1)–(1.2) has two constant steady states O = (0, 0) and ω̃ = (uc, uc). By a routine
linearized stability analysis, we find that O is always unstable, and ω̃ is globally stable provided
the parameter χ satisfies

χ � µ + d(uc) + 2
√

µd(uc)

h(uc)

def= χc. (3.1)

Furthermore, when χ > χc, ω̃ is locally unstable. The existence of non-constant steady state
system of (1.1)–(1.2) with (1.4) is established under certain conditions in [17]. In this section,
we shall choose χ as a bifurcation parameter and fix the rest of parameters to explore the
structure of non-constant steady states of (1.1) bifurcating from the constant steady state ω̃ in
one dimensional. Before proceeding, we present some properties about the negative Laplace
operator −�. Let

0 = λ1 < λ2 < λ3 < · · · (3.2)

be the eigenvalues of the operator −� on � with the homogeneous Neumann boundary
condition, E(λi) be the eigenspace corresponding to λi in H 1(�, R

2), {ϕij : j =
1, · · · , dim E(λi)} be an orthonormal basis of E(λi), and Xij = {cϕij : c ∈ R

2}. Let
X = H 1(�, R

2). Then we have

Xi =
dimE(λi )⊕

j=1

Xij , X =
∞⊕
i=1

Xi . (3.3)

Moreover, it is well-known that the following eigenvalue problem{−ϕ′′(x) = λϕ(x), x ∈ (0, l),

ϕ′(x) = 0, x = 0, l.
(3.4)

has a sequence of simple eigenvalues with corresponding eigenfunctions given by

λj = (πj/l)2, ϕj (x) =
{

1, j = 0,

cos(πjx/l), j > 0
(3.5)

where j = 0, 1, 2, · · ·. Clearly this set of eigenfunctions constitutes an orthonormal basis in
L2(0, l).

In one dimension, we let � = (0, l) with l > 0. Then a steady state of (1.1) is a positive
solution (u(x), v(x)) to the elliptic system:

−(d(u)u′)′ + χ(h(u)v′)′ = µu(1 − u/uc), x ∈ (0, l),

−v′′ = u − v, x ∈ (0, l),

u′(0) = u′(l) = 0, v′(0) = v′(l) = 0,

(3.6)

where ′ = d
dx

. Next we shall use χ as the bifurcation parameter and apply the bifurcation
theory to study the local and global structures of solutions to (3.6) in X define in (2.1). Finally
based on the solution structure, we shall explore the stability of bifurcating steady states and
find the stability conditions. Hereafter, (1.4) is assumed without mention anymore.

3.1. Local bifurcation

The standard bifurcation technique and asymptotic analysis method will be used to obtain
bifurcation points and a precise description for the structure of positive solutions of (3.6) near
the bifurcation points. We first define a Banach space X by

X = {(u, v) : u, v ∈ C2([0, l]), u′ = v′ = 0 at x = 0, l} (3.7)
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equipped with the usual C2-norm, and Hilbert space Y by Y = L2(0, l)×L2(0, l) with the inner
product (ω1, ω2)Y = (u1, u2)L2(0,l) + (v1, v2)L2(0,l) for ω1 = (u1, v1) ∈ Y , ω2 = (u2, v2) ∈ Y .
Define the map H : (0, ∞) × X −→ Y by

H(χ, ω) =
(

(d(u)u′)′ + χ(h(u)v′)′ + µu(1 − u/uc)

v′′ + u − v.

)
.

Then the solutions of (3.6) are just zeros of this map. Therefore, (3.6) is equivalent to

H(χ, ω̃) = 0 for all χ > 0.

Next we shall perform the asymptotic analysis for the non-constant solution ω∗(x) =
(u∗(x), v∗(x)) of (3.6) bifurcating from ω̃ with small amplitude. For this purpose, we assume

χ = χ0 +
∞∑

k=1

εkχk, (3.8)

where 0 < ε � 1. Then let u∗(x) and v∗(x) have expansions as power series in ε as follows:
u∗ = uc +

∞∑
k=1

εkuk

v∗ = uc +
∞∑

k=1

εkvk.

(3.9)

Substituting (3.8) and (3.9) into (3.6) and equating the O(ε) and O(ε2) terms, respectively,
we get two systems

d(uc)u
′′
1 + (χ0h(uc) − µ)u1 − χ0h(uc)v1 = 0, x ∈ (0, l),

v′′
1 + u1 − v1 = 0, x ∈ (0, l),

u′
1(0) = u′

1(l) = 0,

v′
1(0) = v′

1(l) = 0

(3.10)

and 
d(uc)u

′′
2 + (χ0h(uc) − µ)u2 − χ0h(uc)v2 = F1, x ∈ (0, l),

v′′
2 + u2 − v2 = 0, x ∈ (0, l),

u′
2(0) = u′

2(l) = 0,

v′
2(0) = v′

2(l) = 0,

(3.11)

where

F1 = −d ′(uc)(u1u
′
1)

′ + χ0h
′(uc)(u1v

′
1)

′ + χ1h(uc)v
′′
1 +

µ

uc

u2
1. (3.12)

Then we substitute the second equation of (3.10) into the first one, and obtain
d(uc)u

′′
1 − µu1 − χ0h(uc)v

′′
1 = 0, x ∈ (0, l),

v′′
1 + u1 − v1 = 0, x ∈ (0, l),

u′
1(0) = u′

1(l) = 0,

v′
1(0) = v′

1(l) = 0,

(3.13)

which has a matrix form of−µ + d(uc)
d2

dx2
−χ0h(uc)

d2

dx2

1 −1 +
d2

dx2

(
u1

v1

)
= 0. (3.14)
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We can solve (3.14) directly and get non-constant solutions as{
u1 = c1(j)ϕj , c1(j) = 1 + λj > 0,

v1 = ϕj ,
(3.15)

as long as χ0 is given by

χ0 =
(
µ + d(uc)λj

)
(1 + λj )

λjh(uc)

def= χ
j

0 , j = 1, 2, · · · (3.16)

where (λj , ϕj ) is given by (3.5). Here we note that the solution given in (3.15) is unique up
to a constant multiple for any positive integer j, and this constant can be absorbed into ε in
(3.9). In addition, the uniqueness of solution indicates that χ

j

0 	= χk
0 for any integer k 	= j .

Let us set

χmin = min
j∈Z+

χ
j

0 = min
j

{(
µ + d(uc)λj

)
(1 + λj )

λjh(uc)
, j = 1, 2, · · ·

}
= χ

j0
0

for a positive integer j0. That is, j0 is the wave mode minimizing χ
j

0 such that χ
j0
0 is the

bifurcation value. For convenience, we shall call j0 the principle wave mode. Hence the first
bifurcation will occur when the parameterχ crosses the bifurcation valueχmin. If the bifurcation
is stable, it will then yield the pattern solution (u∗, v∗) given in (3.9) and (3.15). Then we have
the following local bifurcation theorem which can also be proved by verifying the conditions
given in [8].

Theorem 3.1. If χ
j

0 	= χk
0 for any positive integer k 	= j , then χ

j

0 is a bifurcation value of
the equation H(χ, ω) = 0 with respect to the curve (χ, ω̃), χ > 0. Furthermore, there is
a one-parameter family of non-trivial solutions �(ε) = (χ(ε), u∗(ε), v∗(ε)) of (3.6) for |ε|
sufficiently small, where χ(ε), u(ε) and v(ε) are continuous functions such that χ(0) = χ

j

0
and

u∗(ε) = uc + εc1(j)ϕj + o(ε), v∗(ε) = uc + εϕj + o(ε).

The zero-point set of H(χ, ω) constitutes two curves (χ, ω̃) and �(ε) in a neighborhood
of the bifurcation point (χ

j

0 , ω̃).

Remark 3.1. The bifurcation value χ
j

0 has the following properties.

(i) When µ = 0 (i.e. no cell growth), then

χ
j

0 = d(uc)

h(uc)
(1 + λj ) = D

uc(1 − uc)α+β
(1 + λj ), for each j = 1, 2, · · ·

which attains the minimum at j = j0 = 1. That is, the bifurcation occurs at the first wave
mode j = j0 = 1.

(ii) If the interval length l is sufficiently small, then λj will be large and χ
j

0 attains the minimal
value also at j = j0 = 1. This can be seen from the fact

χ
j

0 =
(
d(uc)λj + µ

) (
1 + λj

)
h(uc)λj

∼ d(uc)

h(uc)
λj , for each j = 1, 2, · · · . (3.17)

(iii) By a simple computation, we have, for some positive integer j0,

χmin � χc,

where ‘=’ holds if and only if

j0 =
[

µ

d(uc)

] 1
4 l

π
and is an integer. (3.18)
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Here χc is defined in (3.1). Therefore we find that the first bifurcation value χmin is greater
than the critical value χc. They coincide only if the mode j0 at which χ

j

0 attains minimum is
given by (3.18).

Theorem 3.1 implies that (χ
j

0 , ω̃) is a bifurcation point with respect to the trivial branch
(χ, ω̃), and there are infinity such bifurcation points. Let C denote the closure of the non-
constant solution set of H(χ, ω) = 0, and �j the connected component of C ∪ {(χj

0 , ω̃)} to
which {(χj

0 , ω̃)} belongs. In a neighborhood of the bifurcation point (χ
j

0 , ω̃) the curve �j is
formulated by the eigenfunction ϕj . Obviously ϕj has j zero points in the interval (0, l). Thus
the non-constant solutions in �j are called mode j steady states.

Theorem 3.1 provides the detail information of the bifurcating curve �j near the bifurcation
point. In order to understand its global structure, the global bifurcation theory and the Leray-
Schauder degree for compact operators will be applied.

3.2. Global bifurcation

This subsection is to investigating the global nature of the curve of non-constant solutions �(ε)

in the χ − (u, v) plane. We first introduce the standard abstract bifurcation theorem from [5,6]
for readers’ convenience. Let X be a Banach space and let T : R × X → X be a compact,
continuously differentiable operator such that T (a, 0) = 0. Assume that T can be written as

T (a, U) = K(a)U + W(a, U), (3.19)

where K(a) is a linear compact operator and the Fréchet derivative WU(a, 0) = 0. Regarding
a as a bifurcation parameter, we will undertake a global bifurcation analysis for the equation

U = T (a, U). (3.20)

We suppose that I − K : X → X is a bijection. Then the Leray-Schauder degree
deg(I − K, B̂, 0) = (−1)p, where B̂ is a ball centered at 0 in X and p is the sum of the
algebraic multiplicities of the eigenvalues of K that are larger than 1. If x0 is an isolated fixed
point of the operator T and B is a ball centered at x0 such that x0 is the unique fixed point of
T in B, the index of T at x0 is defined as

index(T , x0) = deg(I − T , B, x0).

Moreover, if x0 is a fixed point of T and I − T ′(x0) is invertible, then x0 is an isolated
fixed point of T and

index(T , x0) = deg(I − T , B, x0) = deg(I − T ′(x0), B̂, 0),

where B and B̂ are sufficiently small.
We now state the result on the global bifurcation for the operator T defined by (3.19).

Lemma 3.2. (Theorem 3.2 in [5]) Let a0 be such that I −K(a) is invertible if 0 < |a−a0| < ε

for ε > 0. Assume that index(T (a, ·), 0) is constant on (a0 − ε, a0) and on (a0, a0 + ε);
moreover, if a0 − ε < a1 < a0 < a2 < a0 + ε, then index(T (a1, ·), 0) 	= index(T (a2, ·), 0).
Then there exists a continuum C in the a-U plane of solutions of (3.20) such that one of the
following alternatives is true

(i) C joins (a0, 0) to (â, 0) where I − K(â) is not invertible.
(ii) C joins (a0, 0) to ∞ in R × X.

This theorem is essentially the same as [21, theorem 1.3]. In order to conveniently apply
lemma 3.2 to the system (3.6), we first rewrite (3.6) as

−u′′ = f (u, v), x ∈ (0, l)

−v′′ = g(u, v), x ∈ (0, l)

u′ = v′ = 0, x = 0, l,

(3.21)
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where g(u, v) = u − v and

f (u, v) = α(1 − u)−1|u′|2 +
1

D
(1 − u)α[χu(1 − u)β(u − v)

− χ(1 − u)β−1(1 − u − βu)u′v′ + µu(1 − u/uc)].

Then, let ũ = u − uc, ṽ = v − uc. (3.21) becomes
−ũ′′ = f0ũ + f1ṽ + f2(ũ, ṽ), x ∈ (0, l)

−ṽ′′ = ũ − ṽ, x ∈ (0, l)

ũ′ = ṽ′ = 0, x = 0, l,

(3.22)

where f2 is higher-order terms of ũ and ṽ, and

f0 = f ′
u(uc, uc) = χh(uc) − µ

d(uc)
, f1 = f ′

v(uc, uc) = −χh(uc)

d(uc)
. (3.23)

The constant solution (uc, uc) of (3.6) is transformed to the zero solution O = (0, 0) of (3.22).
Let Gχ and G denote the inverse of the operators f0 − d2

dx2 and 1 − d2

dx2 with homogeneous
Neumann boundary condition, respectively. Set

U = (ũ, ṽ), K(χ)U =
(

2f0Gχ(ũ) + f1Gχ(ṽ), G(ũ)

)
, and W(χ, U) = (

Gχ(f2(ũ, ṽ)), 0
)
.

Then the boundary value problem (3.22) is equivalent to the equation

U = K(χ)U + W(χ, U)
def= T (χ, U), K(χ) =

(
2f0Gχ f1Gχ

G 0

)
(3.24)

in X defined in (3.7). Clearly K(χ) is a compact linear operator on X for any given χ > 0,
and W(χ, U) = o(‖U‖) for U near zero uniformly on closed χ sub-intervals of (0, ∞) and
is also a compact operator on X.

For a fixed integer j , the matrix K(χ
j

0 ) has the following property which plays a crucial
role in the proof of the results of the global bifurcation:

Lemma 3.3. Suppose that (1.4) holds. If χ
j

0 	= χk
0 for any integer k 	= j . Then 1 is an

eigenvalue of K(χ
j

0 ) with algebraic multiplicity one.

Proof. Assume that � = (ϕ, ψ), and ϕ = ∑∞
i=0 aiϕi, ψ = ∑∞

i=0 biϕi . Let(
K(χ

j

0 ) − I
)

� = 0,

which leads to −µ + d(uc)
d2

dx2
−χ

j

0 h(uc)
d2

dx2

1 −1 +
d2

dx2

� = 0.

This system is same as (3.14) with χ0 = χ
j

0 . Hence from (3.15)–(3.16) and the paragraph
following (3.16), we know that 1 is an eigenvalue of K(χ

j

0 ) with the unique eigenfunction

� =
(

1 + λj

1

)
ϕj which indicates dim ker(K(χ

j

0 )−I ) = 1. Next we shall show the eigenvalue 1

is simple. Since the algebraic multiplicity of the eigenvalue 1 is the dimension of the generalized
null space

⋃∞
i=1 ker(K(χ

j

0 )−I )i , it is sufficient to verify ker(K(χ
j

0 )−I )∩R(K(χ
j

0 )−I ) = {0}.
Denote K(χ

j

0 ) by K . Let K∗ be the adjoint of K . We now compute ker(K∗ −I ). Assume
(ϕ, ψ) ∈ ker(K∗ − I ), we have from (3.24) that{

2f
j

0 Gχ(ϕ) + G(ψ) = ϕ,

f
j

1 Gχ(ϕ) = ψ,
(3.25)
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where f
j

0 = µ

λj d(uc)
+ 1 + λj and f

j

1 = −(1 + 1
λj

)
µ

d(uc)
− 1 − λj . According to the definition

of Gχ and G, (3.25) can be rewritten in the form of{
−f

j

1 ϕ′′ = fϕϕ + fψψ,

−ψ ′′ = f
j

1 ϕ − f
j

0 ψ,
(3.26)

where

fϕ = 2f
j

0 f
j

1 − f
j

1 , fψ = f
j

1 − 2((f
j

0 )2 − f
j

0 ).

Again set ϕ = ∑∞
i=0 aiϕi, ψ = ∑∞

i=0 biϕi . By (3.26), we have

∞∑
i=0

L∗
i

(
ai

bi

)
ϕi = 0, L∗

i =
(

fϕ − f
j

1 λi fψ

f
j

1 −λi − f
j

0

)
.

By a straightforward calculation, we find det L∗
j = 0 if and only if i = j and

L∗
i =

(
0 0

f
j

1 −λj − f
j

0

)
.

Therefore, ker(K∗ − I ) is spanned by
(

f
j

0 + λj

f
j

1

)
ϕj . Thus it is easy to check that the

unique element � in ker(K − I ) does not belong to (ker(K∗ − I ))⊥ = R(K − I ), and hence
ker(K − I )∩R(K − I ) = {0}. Therefore the algebraic multiplicity of the eigenvalue 1 is one.
Thus, the lemma is proved. �

We are now in a position to present the result on global bifurcation for the system (3.6).

Theorem 3.4. If χ
j

0 	= χk
0 for any integer k 	= j . Then the projection of the bifurcation curve

�j onto the χ -axis is the infinity interval (χ
j

0 , ∞). Moreover, if χ > χmin and χ 	= χk
0 for any

positive integer k, then (3.6) has at least one non-constant positive solution.

Proof. We only need to verify all the conditions of lemma 3.2. By lemma 3.3 and its proof, we
know that, if 0 < χ 	= χ

j

0 and χ lies in a small neighborhood of χ
j

0 , then the linear operator
I − K(χ) : X → X is a bijection and thus O is an isolated solution of (3.24) for this fixed
χ . We now compute index (T (χ, .), O) so that we can apply lemma 3.2. The index of this
isolated zero fixed point of T (χ, .) is given by

index (T (χ, .), O) = deg (I − K(χ), B, O) = (−1)γ ,

where B is a sufficiently small ball centered at O, and γ is the sum of the algebraic multiplicities
of the eigenvalues of K(χ) that are large than 1. We shall verify that

index
(
T (χ

j

0 − ε), O
)

	= index
(
T (χ

j

0 + ε), O
)

(3.27)

for ε > 0 sufficiently small. Indeed, if τ is an eigenvalue of K(χ) with eigenfunction (ϕ, ψ),
then we have {−τϕ′′ = (2 − τ)f0ϕ + f1ψ,

−τψ ′′ = ϕ − τψ.

Applying ϕ = ∑∞
i=0 aiϕi and ψ = ∑∞

i=0 biϕi , we have

∞∑
i=0

(
(2 − τ)f0 − τλi f1

1 −(1 + λi)τ

)(
ai

bi

)
ϕi = 0.
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It is obvious that the set of eigenvalues of K(χ) is composed of all τ ′s that satisfy the
characteristic equation

(f0 + λi)(1 + λi)τ
2 − 2f0(1 + λi)τ − f1 = 0, i = 0, 1, 2, · · ·. (3.28)

Taking χ = χ
j

0 , if τ = 1 solves (3.28), then by (3.28) and (3.23) we have

χ
j

0 = (µ + d(uc)λi) (1 + λi)

h(uc)λi

= χi
0.

It follows from the assumption in theorem 3.4 that j = i. Therefore, without counting
the eigenvalues corresponding to i = j in (3.28), K(χ) has the same number of eigenvalues
large than 1 for all χ close to χ

j

0 , and they have the same multiplicities. For i = j , (3.28) has
the following two roots:

τ1(χ
j

0 ) = 1 and τ2(χ
j

0 ) = f
j

0 − λj

f
j

0 + λj

< 1.

It is evident that τ2(χ) < 1 always holds for χ sufficiently close to χ
j

0 . So the change of
τ1(χ) with the variable χ plays a critical role in our results.

By the quadratic equation (3.28), we can readily show that τ1(χ) is an increasing function
of χ and crosses 1 as χ passes through χ

j

0 . Thus we have

τ1(χ
j

0 − ε) < 1 and τ1(χ
j

0 + ε) > 1.

Then the matrix K(χ
j

0 + ε) has exactly one more eigenvalue that is larger than 1 than
K(χ

j

0 − ε) does. Using a similar argument as that in lemma 3.3, we can show that this
eigenvalue has algebraic multiplicity one. So (3.27) is satisfied.

Now lemma 3.2 applied to T (χ, ·) asserts that �j either meets ∞ in R × X or meets
(χk

0 , ω̃) for some k 	= j, χk
0 > 0. Since the solutions (u, v) of (3.6) are bounded by constants

independent of χ which was verified in [17], we can prove the first alternative must occur by
applying a reflective and periodic extension method exactly same as in [11] and any solution
on the curve �j must be positive. The proof of theorem 3.4 is completed. �

The theorem above shows that the bifurcation curve �j emanating from (χ
j

0 , ω̃) must join
with ∞; however, we do not know whether it is possible that �j meets some bifurcation points
and then reaches ∞; Moreover the existence of non-constant solutions for χ = χk

0 is still not
provided by our theorem.

4. Stability of bifurcation steady states

This section is devoted to studying the stability of the steady state (u∗
j , v

∗
j ) bifurcating from

(χ
j

0 , ω̃) by analyzing the sign of the principal eigenvalue of linearized operator around (u∗
j , v

∗
j ).

To this end, we need to obtain the formula for χ1 in (3.8). We first consider the adjoint system
of the homogeneous system associated with (3.11):

d(uc)u
′′
2 + (χ0h(uc) − µ) u2 + v2 = 0,

v′′
2 − χ0h(uc)u2 − v2 = 0,

u′
2(0) = u′

2(l) = 0,

v′
2(0) = v′

2(l) = 0.

(4.1)

Solving (4.1), we obtain a nonzero solution{
u2 = c2(j)ϕj , c2(j) = − 1+λj

χ0h(uc)
< 0,

v2 = ϕj ,
(4.2)
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where ϕj is defined as in (3.5) for j = 1, 2, · · ·. Then the solvability condition for (3.11)
yields the solvability equation for χ1 as follows:∫ l

0
u2F1dx = 0.

Substituting (3.12) into the above equation gives rise to

χ1 = χ
j

1 = 0, for all j = 1, 2, · · · .
In view of χ1 = 0 for each j, F1 in (3.12) can be simplified to

F1 = µ

2uc

c2
1 +

(
d ′(uc)c1λj − χ

j

0 h′(uc)λj +
µ

2uc

c1

)
c1 cos(2

√
λjx).

By this, we can find a particular solution (u2, v2) of (3.11) in the form of{
u2 = a1(j) + a2(j) cos(2

√
λjx),

v2 = a3(j) + a4(j) cos(2
√

λjx),
(4.3)

where

a1(j) = a3(j) = −c2
1/2uc; a2(j) = (1 + 4λj )a4(j);

a4(j) =
(
d ′(uc)λj + µ

2uc

)
c2

1 − χ
j

0 h′(uc)c1λj

4h(uc)χ
j

0 λj − (
µ + 4d(uc)λj

) (
1 + 4λj

) . (4.4)

Due to χ1 = 0, we proceed to compute χ2. Again we substitute (3.8) and (3.9) into (3.6) and
equate the O(ε3) terms. Then we obtain

d(uc)u
′′
3 + (χ0h(uc) − µ) u3 − χ0h(uc)v3 = F2,

v′′
3 + u3 − v3 = 0,

u′
3(0) = u′

3(l) = 0,

v′
3(0) = v′

3(l) = 0,

(4.5)

where

F2 = −
[
d ′(uc)(u1u

′
2 + u2u

′
1) + d ′′(uc)(

1

2
u2

1u
′
1)

]′

+ χ0

[
h′(uc)(u1v

′
2 + u2v

′
1) + h′′(uc)(

1

2
u2

1v
′
1)

]′
(4.6)

+ χ1
[
h(uc)v

′
2 + h′(uc)(u1v

′
1)
]′

+ χ2h(uc)v
′′
1 +

2µ

uc

u1u2.

Similarly, by the solvability condition for (4.5), we have
∫ l

0 u2F2dx = 0 which gives∫ l

0
F2ϕj dx = 0. (4.7)

Then substituting (4.6) into (4.7) leads to

χ
j

2 = −χ
j

0

h(uc)

[
h′(uc)

(
a1(j) − a2(j)

2
+ c1(j)a4(j)

)
+

1

8
h′′(uc)c

2
1(j)

]
+

1

h(uc)

[
1

λj0

µc1(j)

uc

(2a1(j) + a2(j)) +
1

8
d ′′(uc)c

3
1(j)

]
.

+
1

h(uc)

[
c1(j)

2
d ′(uc) (2a1(j) + a2(j))

]
.
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From the above computation results, we know that when the parameter χ given by (3.8)
is in the neighborhood of χ

j

0 for each j = 1, 2, · · ·, the corresponding bifurcating solution
(u∗, v∗) has a formula (3.9) with (u1, v1) and (u2, v2) given in (3.15) and (4.3), respectively.
In order to show the relationship between the solution (u∗, v∗) and its bifurcation location χ

j

0 ,

we relabel (u∗, v∗) as (u∗
j , v

∗
j ), i.e.{

u∗
j = uc + εu1 + ε2u2 + · · · ,

v∗
j = uc + εv1 + ε2v2 + · · · ,

Now we give some basic terminologies, ω̃ = (uc, uc) is called the base term of the non-constant
steady state (u∗

j , v
∗
j ) whose shape and amplitude are primarily determined by the leading term

(u1, v1) when ε is small, i.e. ‖u∗
j −uc‖ ≈ ε is the amplitude of response which is the change in

the cell density from the base term. Note that this leading term has the wave mode j , see (3.15)
and (3.5). Therefore we also refer to j as the principal wave mode of the solution (u∗

j , v
∗
j ).

Now applying the conventional perturbation method to linearize equation (3.6), we set{
u = u∗

j + φeρt ,

v = v∗
j + ηeρt

and obtain the linearized equation of (3.6) as follows:
d(u∗

j )φ
′′ − χh(u∗

j )η
′′ − χh′(u∗

j )u
∗
j
′η′ + R1φ

′ + R2φ = ρφ, x ∈ (0, l),

η′′ + φ − η = ρη, x ∈ (0, l),

φ′ = φ′(l) = 0,

η′(0) = η′(l) = 0,

(4.8)

where

R1 = 2d ′(u∗
j )u

∗
j
′ − χh′(uc)(u

∗
j )v

∗
j
′

and

R2 = d ′′(u∗
j )u

∗
j
′2 + d ′(u∗

j )u
∗
j
′′ − χh′′(u∗

j )u
∗
j
′
v∗

j
′ − χh′(u∗

j )v
∗
j
′′ + µ(1 − 2u∗

j /uc).

Set 
ρ = ρ0 + ερ1 + ε2ρ2 + · · · ,
φ = φ0 + εφ1 + ε2φ2 + · · · ,
η = η0 + εη1 + ε2η2 + · · · ,

and 
u∗

j = uc + εu1 + ε2u2 + · · · ,
v∗

j = uc + εv1 + ε2v2 + · · · ,
χ = χ

j

0 + εχ
j

1 + ε2χ
j

2 + · · · .
Substituting them into (4.8), we obtain a system by equating the O(1) terms as follows:

d(uc)φ
′′
0 + (χ

j

0 h(uc) − µ)φ0 − χ
j

0 h(uc)η0 = ρ0φ0 + ρ0χ
j

0 h(uc)η0, x ∈ (0, l),

η′′
0 + φ0 − η0 = ρ0η0, x ∈ (0, l),

φ′
0(0) = φ′

0(l) = 0,

η′
0(0) = η′

0(l) = 0.

(4.9)

It is well known that the sign of ρ0 determines the stability of the stationary solution (u∗
j , v

∗
j ).

Observing the space decomposition (3.3), we use −λm(φ0, η0) to replace (φ′′
0 , η′′

0) in (4.9) and
the existence of non-zero solution (φ′′

0 , η′′
0), we get an equation for ρ0 :

ρ2
0 + (d(uc)λm + λm + µ + 1) ρ0 + A = 0, (4.10)
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where

A = (d(uc)λm + µ) (1 + λm) − χ
j

0 h(uc)λm = h(uc)λm(χm
0 − χ

j

0 )

and χ
j

0 is given by (3.16). Obviously, when j 	= j0 in the above formula, there exists a
positive integer m = j0 such that A < 0. As such, equation (4.10) has a positive root ρ0 > 0.
Therefore, we can conclude an important result on the stability of the solution (u∗

j , v
∗
j ).

Proposition 4.1 (Stability criterion). When the wave mode j 	= j0, the steady state (u∗
j , v

∗
j )

in (3.9) is unstable. In other words, if (u∗
j , v

∗
j ) is stable, then j = j0.

The above result gives a necessary condition for the stability of the non-constant steady states.
Next we shall derive a sufficient condition for the stability of the steady state (u∗

j0
, v∗

j0
) with

principle wave mode j0. It is straightforward to check that the principal eigenvalue for (4.9)
is ρ0 = 0 with eigenvector

(φ0, η0) = ((1 + λj0)ϕj0 , ϕj0).

To determine the stability of (u∗
j0
, v∗

j0
), we need further to find ρ1. Thus, by the similar

computation of obtaining equation (4.9), but now equating the O(ε) terms gives a system
of ρ1:

d(uc)φ
′′
1 +

(
χ

j0
0 h(uc) − µ

)
φ1 − χ

j0
0 h(uc)η1 = ρ1φ0 + ρ1χ

j0
0 h(uc)η0 + G1,

η′′
1 + φ1 − η1 = ρ1η0,

φ′
1(0) = φ′

1(l) = 0,

η′
1(0) = η′

1(l) = 0,

(4.11)

where

G1 = χ
j0
0 h′(uc)

[
u1η

′
0 + v′

1φ0
]′ − d ′(uc)

[
u1φ

′
0 + u′

1φ0
]′

+
2µ

uc

u1φ0.

It follows from the solvability condition for the equation (4.11) that∫ l

0
[ρ1φ0 + ρ1χ

j0
0 h(uc)η0 + G1]u2dx +

∫ l

0
ρ1η0v2dx = 0,

where (u2, v2) is given in (4.2) with j = j0. By this, we have

ρ1 = −
∫ l

0 G1u2dx∫ l

0 (φ0u2 + χ
j0
0 h(uc)η0u2 + η0v2)dx

.

Through a direct computation, we obtain the values of the denominator and the numerator for
ρ1, respectively, as follows:∫ l

0
(φ0u2 + χ

j0
0 h2(uc)η0u2 + η0v2)dx = 1

2
l
(
c1(j0)c2(j0) + χ

j0
0 h2(uc)c2(j0) + 1

)
(4.12)

= − l

2

(
c2

1(j0)

χ
j0
0 h2(uc)

+ λj0

)
< 0

and ∫ l

0
G1u2dx = 0.

Hence ρ1 = 0. For our purpose, we need to compute ρ2. Firstly simplify G1 as

G1 = µ

uc

c2
1(j0) +

[
2d ′(uc)c

2
1(j0)λj0 − 2χ

j0
0 h′(uc)c1(j0)λj0 +

µ

uc

c2
1(j0)

]
cos

(
2
√

λj0x
)
.
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Figure 1. Numerical simulation of the bifurcating solution component u of the
chemotaxis system (1.1) in a one dimensional interval l = (0, 20) with parameter
values: D = 1, µ = uc = 0.5, α = −0.2, β = 1.3, χ = 14(j0 = 5); the initial value is
set as: u0 = v0 = uc +r where r is a 1% random small perturbation of the homogeneous
steady state (uc, uc). The red color represents the high value of u and other colors (blue
and yellow) represents the low value of u.

Then, we can find a particular solution (φ1, η1) for (4.11) as{
φ1 = ā1 + ā2 cos(2

√
λj0x),

η1 = ā3 + ā4 cos(2
√

λj0x),

where

āi = 2ai(j0), i = 1, 2, 3, 4,

with ai(j0), i = 1, 2, 3, 4, as defined in (4.4). We again need to use the same computation as
obtaining equation (4.9), but now equating the O(ε2) terms to create a system for ρ2:

d(uc)φ
′′
2 +

(
χ

j0
0 h(uc) − µ

)
φ2 − χ

j0
0 h(uc)η2 = ρ2φ0 + ρ2χ

j0
0 h(uc)η0 + G2,

η′′
2 + φ2 − η2 = ρ2η0,

φ′
1(0) = φ′

1(l) = 0,

η′
1(0) = η′

1(l) = 0,

(4.13)

where

G2 = χ
j0
0 h′(uc)

[
v′

1φ1 + v′
2φ0 + u1η

′
1 + u2η

′
0

]′ − d ′(uc)
[
u′

1φ1 + u′
2φ0 + u1φ

′
1 + u2φ

′
0

]′
+ χ

j0
0 h′′(uc)

[
u1v

′
1φ0 +

1

2
u2

1η
′
0

]′
− d ′′(uc)

[
u1u

′
1φ0 +

1

2
u2

1φ
′
0

]′

+ χ
j0
2 h(uc)η

′′
0 +

2µ

uc

(u1φ1 + u2φ0).

By applying the solvability condition of (4.13), we have

ρ2 = −
∫ l

0 G2u2dx∫ l

0 (φ0u2 + χ
j0
0 h(uc)η0u2 + η0v2)dx

. (4.14)
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Figure 2. Illustration of evolutionarily unstable bifurcating solution component u of the
chemotaxis system (1.1) in l = (0, 20), where χ = 48(j0 = 18) and other parameters
are same as those in figure 1. The initial value is set as: u0 = v0 = uc + r where r is a
1% random small perturbation of the homogeneous steady state (uc, uc). The red color
represents the high value of u and other colors represent the lower value of u as shown
in the color bar.

A tedious computation leads to∫ l

0
G2u2dx = −3

2
lc2λj0�

with

� = χ
j0
0

[
h′(uc)

(
a1 − a2

2
+ c1a4

)
+

1

8
h′′(uc)c

2
1

]
−
[

1

λj0

µc1

uc

(2a1 + a2) +
1

8
d ′′(uc)c

3
1

]
+

[
1

3
h(uc)χ

j0
2 − 3

2
d ′(uc)c1a2

]
.

Noting the expression (4.8) of χ
j0
2 , we can simplify � as

� = c1(a1 − a2)d
′(uc) − 2

3
h(uc)χ

j0
2 .

By (4.13), the denominator of (4.14) is negative. Therefore, the stability of non-constant steady
state (u∗

j0
, v∗

j0
) actually depends on the sign of �. In particular, if � < 0, then the numerator of

(4.14) is negative since c2 < 0 and hence ρ2 < 0. This implies the stability of small-amplitude
steady state (u∗

j0
, v∗

j0
). Therefore, we can draw the following conclusion.

Theorem 4.2 (Stability). Let j0 > 0 be a positive integer such that χ
j0
0 = χmin. Then, the

small-amplitude steady-state (u∗
j0
, v∗

j0
) is stable provided that

� < 0. (4.15)
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Figure 3. Numerical simulation of transition of unstable bifurcating solutions to stable
solutions for the chemotaxis system (1.1) in l = (0, 20), where parameter values are
D = 1, µ = uc = 0.5, α = 0.2, β = 1, χ = 12.6714(j0 = 5); the initial value is set
as: u0 = v0 = uc + r where r is a 1% random small perturbation of the homogeneous
steady state (uc, uc) = (0.5, 0.5). The red color represents the high value of u and other
colors represent the lower value of u as shown in the color bar.

We should note that it is unclear whether the condition (4.15) is necessary for the stability of
small-amplitude steady state (u∗

j0
, v∗

j0
). This leave an open question for the future study.

5. Simulation and conclusion

In this paper, we establish the global existence of classical solutions of the volume-filling
chemotaxis system (1.1)–(1.3) subject to (1.4). Furthermore, we investigate the local and
global structure of steady states bifurcating from the homogeneous steady state (uc, uc) via the
asymptotic analysis and global bifurcation theory. Based on the local structure of solutions,
we find a stability criterion and a sufficient condition for the stability of bifurcating steady
states with small amplitude.

Next we shall show the numerical simulation in an interval l = [0, 20] to illustrate the
possible bifurcating patterns for the system (1.1)–(1.3) and verify the stability criterion given in
proposition 4.1. The model is solved with MATLAB pde solver based on the finite difference
scheme. For brevity, we only show the numerical result for the solution component u. We
start from the case where the wave mode of bifurcating pattern is exactly the principle wave
mode j0. With the parameter values chosen in figure 1 where the condition (1.4) is satisfied,
we can calculate from (3.16) that the principle wave mode j0 = 5. By theorem 3.1, we know
that the analytical approximation of the non-constant solution component u bifurcating from
the homogenous steady states (uc, uc) = (0.5, 0.5) is given by

u∗(ε) = 0.5 + ε(1 + λ5)ϕ5 + o(ε) = 0.5 + ε
(

1 +
(π

4

)2)
cos

(πx

4

)
+ o(ε)
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for some small ε > 0, whose graph has 5 zeros with the horizontal line u = 0.5 in the x-u
plane, see a plot in figure 1(b) with ε = 0.3. By proposition 4.1, if the bifurcating solution
of (1.1) is stable, then its wave mode must be j = j0 = 5. This is perfectly verified by the
numerical simulation shown in figure 1, where we see the stable steady state bifurcating from
the homogeneous field (yellow area in figure 1(a)) has exactly five interactions with the basal
line u = uc = 0.5 (see the plot of profile of u at t = 800 in figure 1(b)). The stability criterion
in proposition 4.1 is further confirmed by the simulation in figure 2 for a different scenario,
where χ is chosen such that principle wave mode j0 = 18 and other parameter values are same
as those in figure 1. The result of proposition 4.1 asserts that only the bifurcating solution with
wave mode 18 could be stable. From the numerical simulation, we can see that the bifurcation
solution from the homogenous field has only 10 wave mode (see the plot of upper panel of
figure 2(b)) and hence it is unstable, as seen in figure 2(a) where the aggregation pattern with
mode j = 10 is bifurcated again followed with more bifurcations. In figure 3, we show another
scenario where the bifurcating solution is initially unstable but evolutionarily stable. With the
parameter values chosen, we have the principle wave mode j0 = 5. The numerical simulation
shows that the initial bifurcating solution has wave mode j = 6 (see the plot of profile of u at
time t = 150) which is unstable by proposition 4.1. As we see from figure 3(a), this unstable
solution transits to a stable one with j = j0 = 5 at time t = 280 approximately by merging
half of a peak into the boundary (see the plot of profile of u in figure 3(b)). This again supports
the stability criterion given in proposition 4.1.
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