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We establish the global existence of classical solutions to a generalized chemotaxis model, which
includes the volume filling effect expressed through a nonlinear squeezing probability. This novel
choice of squeezing probability reflects the elastic properties of cells. Necessary and sufficient
conditions for spatial pattern formation are given and the underlying bifurcations are analyzed. In
numerical simulations, the complex dynamics of merging and emerging patterns are shown for zero
cell kinetics and nonzero cell kinetics, respectively. We conclude that the emerging process of
pattern formation is due to cell growth. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2766864�

Chemotaxis describes the active oriented movement of
cells or other species along chemical gradients. The math-
ematical analysis of chemotaxis equations revealed a
plentitude of spatial patterns, including aggregations,
finite-time blowup, spot patterns, spikes, plateaus, or
traveling waves. In this paper, we focus on the spatial
patterns generated by the volume filling chemotaxis
model. The volume filling model takes the finite volume of
cells into account. We prove, for a very general class of
volume filling models, that solutions exist globally in time
and stay bounded; hence, no blowup is possible. By a
novel choice of the so-called squeezing probability q„u…
we try to incorporate the semielastic properties of cells.
Cells are not solid blocks, but they are deformable and
elastic and can squeeze into openings. For this choice of
squeezing probability q, we investigate the stability of the
spatially homogeneous equilibrium, analyze the underly-
ing bifurcations, and show numerical simulations. It
turns out that the numerical solution without cell kinetics
(no cell death or cell proliferation) shows a coarsening
dynamics of merging of local peaks. This coarsening is
well known from other phase-transition problems, for ex-
ample, the Cahn-Hilliard equations. If cell kinetics are
included, we observe complex dynamics of merging and
emerging of local peaks. In many cases the dynamics does
not appear to be periodic and we suspect that chaotic
dynamics is possible. This, however, cannot be proven
with the methods currently available.

I. INTRODUCTION

Chemotaxis is the characteristic movement or orientation
of an organism or cell along a chemical concentration gradi-
ent either toward or away from the chemical stimulus. In the
first case, the chemical is called a chemoattractant, and in the
second case it is said to be a chemorepellent. The term
chemotaxis is used broadly in the mathematical literature to
describe general chemosensitive movement responses. Mod-
els for chemotaxis have been successfully applied to the ag-
gregation patterns in bacteria,1–3 slime molds,4 skin pigmen-

tation patterns,5 angiogenesis in tumor progression and
wound healing,6 and many other examples. A classical and
very important chemotaxis model was proposed by Keller
and Segel7 in 1970 to describe the aggregation process of
cellular slime mold by chemical attraction. A special case of
the Keller-Segel model reads

ut = ���u − u��v� � v�, �x,t� � � � �0, � � ,

vt = � � v + g�u,v�,
�u

�n
=

�v
�n

= 0, �1.1�

u�x,0� = u0�x�, v�x,0� = v0�x� ,

where � is a bounded domain of Rn, u�t ,x� denotes the
particle density, v�t ,x� stands for the concentration of
chemoattractant, � is a positive constant, � is called
chemosensitivity, and g�u ,v� describes production and deg-
radation of the chemoattractant.

Model �1.1� has been extensively studied in great detail
in the literature �e.g., see the survey articles of
Hortsmann8,9�. Of particular interest is the tendency of solu-
tions to exhibit finite-time blowup. It has been shown that the
possibility of blowup of the solutions to system �1.1� essen-
tially depends on the space dimension. For constant
chemosensitivity ��v�=� and linear reproduction and degra-
dation g�u ,v�=�u−�v, finite-time blowup never happens in
one dimension �unless there is no diffusion of the chemoat-
tractant v� but can occur in n dimension for n�2. The two-
dimensional case is important and several thresholds �for ra-
dially symmetric solutions and for nonsymmetric solutions�
were found. If the initial distribution exceeds this threshold,
the solution will blow up in finite time. When the initial mass
is below this threshold the solution exists globally.

There are various modifications of Eq. �1.1� which pre-
vent blowup. For example, Mimura and Tsujikawa10 pre-
sented a chemotaxis-growth model, which reads

ut = a	u − ��u��v� � v� + f�u� in � � �0, � � ,
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vt = b	v + �u − �v,
�u

�n
=

�v
�n

= 0, �1.2�

u�x,0� = u0�x�, v�0,x� = v0�x� ,

where f�u� is a smooth function of u such that f�0�=0 and

f�u� = �− 
u + ��u for sufficiently large u .

The function f�u� describes cell proliferation and cell death.
For space dimension n=1, 2, Osaki et al.11 showed that the
solutions of problem �1.2� exist globally due to the dissipa-
tivity of the growth of cells. Moreover, saturation effects in
the chemotactic component ��v� occur very naturally if cell
surface receptor kinetics is taken into account. Chemotaxis
models with saturation effects can prevent blowup and have
been used in many applications �Biler,12 Ford et al.,13 Oth-
mer and Stevens14�. A chemotaxis model with finite sampling
radius by incorporating a nonlocal sampling into the classical
model was studied recently by Hillen et al.15 The global
existence of the solution for any space dimension and nu-
merical simulation of pattern formation is shown in Ref. 15.
When cells demonstrate both chemoattraction and
chemorepulsion according to multiple environmental signals,
the classical model can be extended into an attraction-
repulsion chemotaxis model. This type of model has been
studied by a number of authors.16–18 The general conditions
for blowup or global existence to some special cases of the
attraction-repulsion model were identified in a recent work.19

Other strategies of preventing blowup are reviewed in a
forthcoming paper.20

Painter and Hillen17 introduced the mechanistic descrip-
tion of the volume filling effect. In the volume filling effect,
it is assumed that particles have a finite volume and that cells
cannot move into regions that are already filled by other
cells. First, we give a brief derivation of the model below.
For a full derivation we refer to Ref. 17.

The derivation of the model begins with a master equa-
tion for a continuous-time and discrete-space random walk
�Othmer and Stevens14�,

�ui

�t
= Ti−1

+ ui−1 + Ti+1
− ui+1 − �Ti

+ + Ti
−�ui, �1.3�

where Ti
± are the transitional probabilities per unit of time for

a one-step jump to i±1.
In the volume filling approach, the probability of making

a jump is assumed to depend on the availability of space into
which cells can move. The transitional probability then takes
the form

Ti
± = q�ui±1��� + ���vi±1� − ��vi��� , �1.4�

where q�u� denotes the squeezing probability of a cell find-
ing space at its neighboring location, � and  are constants,
and � represents the mechanism of the signal detection. It
was assumed that only a finite number of cells, say ū, can be
accommodated at any site, and the function q is stipulated by
the condition

q�ū� = 0, with 0 � q�u� � 1 for 0 � u � ū .

Moreover, the squeezing probability is zero when the cell
density exceeds ū. A logical immediate choice for q�u� is

q�u� = �1 −
u

ū
, 0 � u � ū ,

0, u � ū ,

�1.5�

which says that the probability of a cell finding space at its
neighboring site decreases linearly in the cell density at that
site. The choice �1.5� for q�u� corresponds to the interpreta-
tion that cells are solid blocks and the probability of finding
space is proportional to the number of occupants �see Refs.
17, 21, and 22�. However, cells are not solid blocks; they are
elastic and can squeeze into openings. Hence the probability
q�u� of a cell finding space should be a nonlinear function,
which is greater than a linear distribution. Under this consid-
eration, a more realistic form of squeezing probability q�u�,
which takes into account the elastic properties of cells, is

q�u� = �1 − �u

ū
��

, 0 � u � ū ,

0, u � ū ,
� �1.6�

where ��1 is called the squeezing exponent in this paper.
Substituting Eq. �1.4� into the master equation �1.3�, ap-

plying Taylor expansion, and converting the discrete equa-
tion into a continuous equation, we end up with the follow-
ing equation:

ut = � · �d1�q�u� − q��u�u� � u − q�u�u��v� � v� , �1.7�

where

d1 = k�, ��v� = 2k
d��v�

dv
,

and k is a scaling constant.
Another possible choice of squeezing probability q�u�,

which also reflects elastic cell property, is given as

q�u� = ��1 −
u

ū
�r

, 0 � u � ū ,

0, u � ū ,
� �1.8�

with 0�r�1. For this choice of q�u�, the derivative q��u�
→� as u→ ū, which leads to a singularity in the diffusion
coefficient �see Eq. �1.7��. In that case the model becomes a
fast diffusion parabolic equation and the classical theory for
global existence of nonlinear parabolic equations no longer
applies. Hence we will use Eq. �1.6� as an example in the
following analysis. We can, however, do a similar pattern
formation analysis for Eq. �1.8� and also find merging and
emerging dynamics similar, as Eq. �1.6� does �not shown
here, but in Ref. 23�.

If we combine the chemotaxis equation �1.7� with the
dynamic equation for the external signal, and incorporate the
birth and death dynamics of cells and external signals, de-
noted by f�u ,v� and g�u ,v�, respectively, we obtain a formu-
lation of the volume filling chemotaxis model,
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ut = � · �d1�q�u� − q��u�u� � u − q�u�u��v� � v� + f�u,v� ,

�1.9�
vt = d2	v + g�u,v� ,

on a bounded smooth domain �. Moreover, the zero-flux
boundary conditions are prescribed as follows:

�d1�q�u� − q��u�u� � u� · n − q�u�u��v� � v · n = 0,

�1.10�
�v · n = 0,

where n denotes the unit outward normal vector at the
boundary ��.

The global existence of solutions to a volume filling
chemotaxis model was first obtained in Ref. 24, where cell
proliferation was not taken into account. Recently, Wrzosek25

proved the global existence of the solution to system �1.9�
and �1.10� with cell kinetics and a smooth squeezing prob-
ability q�u�. Furthermore, he proved the existence of a global
attractor of system �1.9� and �1.10� in any space dimension
n�1 for the special linear form of q�u� as in Eq. �1.5�.35 In
this paper, we consider a more realistic squeezing probability
q�u�, which reflects the semielastic property of cells and
more general kinetic forms f and g. We prove the global
existence of classical solutions and study pattern formation
to system �1.9� and �1.10� under our novel choice of squeez-
ing probability. For pattern formation, we extend the analysis
in Ref. 17 by generalizing the squeezing probability function
q�u� to the form of Eq. �1.6� for ��1. It is worthwhile to
note that the choice of Eq. �1.6� with ��1 in Eq. �1.9�
results in density-dependent diffusion �nonlinear diffusion�
in the first equation of Eq. �1.9�, which is in contrast to
choice Eq. �1.5� that results in a constant diffusion �linear
diffusion�.

The rest of the paper is organized as follows. In Sec. II,
we give the basic assumptions for squeezing probability
q�u�, as well as the kinetic functions f and g, and prove the
global existence of classical solutions to the system �1.9� and
�1.10�. The results are obtained based on Amann’s theory of
parabolic systems26–28 by making a smooth extension for
q�u�. In Sec. III, we will identify the conditions for pattern
formation of the general system �1.9� with zero-flux bound-
ary conditions �1.10� by performing the standard linear sta-
bility analysis. In Sec. IV, we consider Eq. �1.6� and derive
the dispersion relation. Based on this dispersion relation, we
investigate the bifurcations of the chemosensitivity �, the
growth rate �, and the death rate � of the chemoattractant.
We also study the influence of crowding capacity � on pat-
tern formation. In Sec. V, we show numerical simulations for
system �1.9� and �1.10� and compare the patterns obtained
for the choice of Eq. �1.6� versus Eq. �1.5�. We close with a
discussion in Sec. VI.

II. GLOBAL EXISTENCE

To study the local and global existence of the solutions
to problem �1.9� and �1.10�, we assume that non-negative
initial data are given,

u�x,0� = u0�x� � 0, v�x,0� = v0�x� � 0, for x � � . �2.1�

Moreover, we make the following assumptions:

�A1� d1 and d2 are positive constants, ��C2�R ,R� and
��v��0;

�A2� The squeezing probability q�u��C3��0, ū�� satisfies
the following conditions:

�1� There exists a critical number ū such that q�0�=1,
q�ū�=0, and 0�q�u��1 for u� �0, ū�, and q�u�=0 for
all u� ū;

�2� q�u� is nonincreasing, i.e., q��u��0. Moreover, 	q��u�	
is bounded and q��u��0 for all u� �0, ū�.

Hereafter we call ū the crowding capacity.
�A3� f �C2�R�R� satisfies the quasipositivity condition,

i.e., f�0,v��0 for v�0. Moreover, there exists a con-
stant uc�0 with uc� ū such that for all v�0,

f�uc,v� = 0 and f�u,v� � 0 for u � uc. �2.2�

We call uc the carrying capacity.
�A4� g�C2�R�R� is bounded and satisfies the quasiposi-

tivity condition g�u ,0��0 for u�0. In addition, there
exists a constant v̄�0 such that

g�u, v̄� � 0 for 0 � u � ū . �2.3�

Standard examples for q are Eqs. �1.5� and �1.6�. A typical
choice for the cell kinetic function f�u ,v� is logistic growth
f�u ,v�=�u�1−u /uc� and for g it is linear growth and death
g�u ,v�=�u−�v. A more general choice will be discussed
later �see Eqs. �2.4� and �2.5��.

Remark 2.1. Here we assume that the crowding capac-
ity ū is larger than the carrying capacity uc. The carrying
capacity denotes a critical density beyond which there is not
enough nutrients available to support further population
growth, whereas the crowding capacity gives only a volume
constraint of how many particles can be squeezed into a unit
area (or volume). Hence, it is reasonable to assume ū�uc.

Remark 2.2. From Assumption (A2), we see that the
squeezing probability function q�u� is not differentiable at
u= ū. Later on, we will show that the solution u satisfies 0
�u� ū. So here q��ū� represents the left derivative of q�u� at
u= ū, i.e., q��ū�=limu→ū−q��u�.

Remark 2.3. The condition q��u��0 for 0�u� ū
means q�u� is concave in �0, ū�. So q�u� is pointwise larger
than the linear case in Eq. (1.5) for u� �0, ū�, which is used
to reflect the elastic properties of cells. As the same reasons
stated in Remark 2.2, here we define q��ū� as the left deriva-
tive of q��u� at u= ū. Note that the condition q��u��0 is
sufficient but not necessary for global existence.

Remark 2.4. We now compare the above assumptions
(A1)–(A4) with the conditions imposed by Wrzosek in Refs.
25 and 35. In Ref. 25, q�u�= q̃�u��ū−u� and q̃�u��0, q̃�u�
�C3�R� for all u�R. Clearly our assumptions are different
from the assumptions in Ref. 25. The argument applied in
Ref. 25 cannot be used directly here. Particularly, q�u� is
allowed to be not differentiable at u= ū in our assumption.
Even in the domain �0, ū� in which q�u� is smooth, our as-
sumptions do not fulfill the assumptions in Ref. 25. For ex-
ample, the choice of Eq. (1.6) for � being an integer greater
than 1 satisfies both our assumptions and Wrzosek’s assump-
tions for u� �0, ū�. However, when ��1 is not an integer,
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Eq. (1.6) cannot be represented in the form in Ref. 25 even
for u� �0, ū�.

For the cell kinetic term f�u ,v�, in Ref. 25, f�u ,v�
=uh�u� is independent of the chemoattractant concentration
v, where h�u��0 for u� ū. However, the cell kinetics might
depend on the concentration of the signal. Many growth fac-
tors have been shown to stimulate such dual activity; for
example, vascular endothelial growth factor �VEGF� medi-
ates both endothelial cell proliferation and chemotaxis. An
example from Ref. 17 for this behavior is

f�u,v� = ruv�1 −
u

uc
� , �2.4�

where it is assumed that the chemical mediates both cell
migration and cell proliferation, where uc� ū. For the signal
kinetics g�u ,v�, in Ref. 25, g�u ,v�=g1�u�−vg2�v�, where
g1 ,g2�C2�R� ,g1�0,g1�0�=0,g2�0 and limy→+�yg2�y�
= +�. In fact, g�u ,v� can be more general and the conditions
can be relaxed to Eq. �2.3�. A standard example is of birth-
death structure, i.e.,

g�u,v� = g1�u,v�u − g2�u,v�v , �2.5�

with bounded birth rate g1�0 and death rate g2�� for some
positive constant �. Then, there exists a v̄ such that g�u ,v�
satisfies condition �2.3�.

Under the assumptions �A1�–�A4�, we can immediately
prove that v is non-negative and bounded above by v̄, if 0
�u� ū. This is shown in the following Lemma:

Lemma 2.5. Let Assumptions (A1)-(A4) hold and �u ,v�
be a solution of system (1.9) and (1.10). If 0�u� ū, then it
follows that 0�v� v̄.

Proof. We define an operator £ by

£v = vt − d2	v − g�u,v� .

Then v=0 is a lower solution of the v equation in Eq. �1.9�
since for 0�u� ū,

£v = − g1�u,0� � 0,

and v̄ is a upper solution of the v equation due to

£ v̄ = − g�u, v̄� � 0.

Then it follows from the comparison principle that 0�v
� v̄. �

In what follows, we are devoted to proving the global
existence of classical solutions to system �1.9� and �1.10�.
Note that q�u� is not smooth at u= ū, which causes some
trouble in applying the theory for nonlinear parabolic equa-
tions. Hence we first consider a smooth extension of q�u�,
denoted by q̄�u�, such that q̄�u��C3�R� is concave and
smooth at u= ū, and furthermore,

q̄�u� = �1, u � 0,

q�u� , 0 � u � ū ,

�0, u � ū .

Then we consider the following auxiliary problem:

ut = � · �d1�q̄�u� − q̄��u�u� � u − uq̄�u���v� � v� + f�u,v� ,

�2.6�
vt = d2	v + g�u,v� .

Next, we will employ Amann’s results26–28 to prove the glo-
bal existence of solutions to the auxiliary problem �2.6� and
�1.10� and show that 0�u� ū if 0�u0� ū. Since q�u�
= q̄�u� for all 0�u� ū, and 0�u� ū for 0�u0� ū, we au-
tomatically obtain the global existence of solutions for the
original problem �1.9� and �1.10�. The zero-flux boundary
condition �1.10� is equivalent to the Neumann boundary con-
dition. Amann’s results on global existence apply for both
Dirichlet and Neumann boundary conditions. Hence, for a
given function ��C��� , 
0,1��, we consider more general
conditions given by

�u + �1 − ��
�u

�n
= 0 on � � ,

�2.7�

�v + �1 − ��
�v
�n

= 0 on � � ,

where n represents the outer unit normal vector on ��.
Let �� �n , + � �; then the space W1,��� ;R2� is continu-

ously embedded in the continuous function space C�� ;R2�.
We define

Wb
1,�: = 
w � W1,���;R2�	�w	�� = 0� .

By Assumption �A2� and the definition of the extension q̄�u�,
we know that d�u�=d1�q̄�u�− q̄��u�u��0 and d�u� is smooth
for u�R. Note that q̄�0�=1. Then it is easy to verify that
there exists a M �0 such that

d�u� � d1 for u � �− M,M + ū� . �2.8�

Now we can choose an open subset G�R2 such that

X1 � G � X2,

where

X1 = 
�u,v�	 � R2	0 � u � ū, v � 0�

and

X2 = 
�u,v�	 � R2	 − M � u � M + ū� .

We consider the solution in the following solution space:

X: = 
w = �u,v� � 	Wb
1,�	w��̄� � G� .

Under the above mathematical setup, we have the following
local existence theorem:

Lemma 2.6. Let � be a smooth bounded domain of Rn

with boundary �� and the assumptions (A1)–(A4) be satis-
fied. Then we have

(i) For any initial data �u0 ,v0��X, there exists a posi-
tive constant T�u0 ,v0� depending on the initial data �u0 ,v0�
such that problem �2.6�, �2.1�, and �2.7� has a unique maxi-
mal classical solution �u�x , t� ,v�x , t�� defined on
�� �0,T�u0 ,v0�� satisfying

�u,v� � C��0,T�u0,v0��;X� � C2,1��̄

� �0,T�u0,v0��;R2�;
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(ii) Let ��t , �u0 ,v0�� be the unique solution obtained
above. Then � is a C0,1-map from the set 
�t , �u ,v�� 	 �u ,v�
�X ,0� t�T�u0 ,v0�� to X;

(iii) If u0�0,v0�0, then u�0,v�0;
(iv) If ��u ,v��· , t��L���� is bounded away from the bound-

ary of G for each time t with 0� t�T�u0 ,v0�, then
T�u0 ,v0�= +�, i.e., �u ,v� is a global solution in time. Fur-

thermore �u ,v��C���0, + � � ;C2�1−����̄�� for any 0����
�1.

Proof. The proof of local existence is similar to the proof
in Refs. 25 and 29. Let w= �u ,v��R2. Then Eqs. �1.9�, �2.1�,
and �2.7� can be rewritten as

wt = � · �a�w� � w� + F�w� in � � �0, + � � ,

Bw = 0 on � � � �0, + � � , �2.9�

w�· ,0� = �u0,v0� in � ,

where

a�w� = �d1�q̄�u� − q̄��u�u� − u��v�q̄�u�
0 d2

�
and

Bw = �w − �1 − ��
�w

��
.

Since for �u ,v��G, d�u�=d1�q̄�u�− q̄��u�u��0, the eigen-
values of A�w� are positive. Therefore Eq. �2.9� is normally
elliptic.26 Then (i) and (ii) follow from Theorem 7.3 and
Corollary 9.3 in Ref. 26. The positivity (iii) follows from
Theorem 15.1 of Ref. 28. Since Eq. �2.9� is a triangular
system, (iv) follows from Theorem 5.2 of Ref. 27. �

To obtain the global solution, from the results in �iv� of
Lemma 2.6, it remains to prove that u ,v are L� bounded
away from the boundary of G. By the definition of G, it
suffices to show that u is bounded below by 0 and above by
ū. In the following lemma, we show that 0�u� ū, provided
that 0�u0� ū.

Lemma 2.7. Assume that 0�u0� ū. Let �u ,v� be a so-
lution obtained in Lemma 2.6 with zero-flux boundary con-
dition Eq. (1.10). Then it follows that 0�u� ū.

Proof. We use a comparison principle for nonlinear para-
bolic equation to prove the existence of upper and lower
bounds for u. Indeed, the lower bound 0 has been obtained in
Lemma 2.6 (iii). We only need to show the existence of the

upper bound ū. Given v�C2,1��̄� �0,T�u0 ,v0���, we can
easily verify from the first equation of system �2.6� that the
operator P is uniformly parabolic �see Ref. 30� on �=R
�Rn�R�R, where

Pu = P�u,�u, � u,ut�

= ut − � · �d1�q̄�u� − q̄��u�u� � u − uq̄�u���v� � v�

− f�u,v� .

For any solution �u ,v� of system �2.6� obtained in Lemma
2.6, we have Pu=0. However, for u= ū, we have from As-
sumptions �A2� and �A3� that

Pū � 0.

On the boundary ��, we have �ū /�n=0. Hence u= ū is a
supersolution of system �2.6� with Neumann boundary con-
ditions. Following the comparison principle, we obtain that
u� ū. Together with the positivity property obtained in
Lemma 2.6, one has 0�u� ū. �

Note that for 0�u� ū, we have q̄�u�=q�u�. Then com-
bining Lemmas 2.5, 2.6, and 2.7, we obtain the following
global existence and boundedness theorem to system �1.9�
with zero-flux boundary condition �1.10�.

Theorem 2.8. For any �u0 ,v0��X with 0�u0� ū, 0

�v0� v̄ on �̄, the initial-boundary value problem �1.9�,
�1.10�, and �2.1� has a unique positive solution �u ,v� satis-
fying

�i� �u ,v��C��0, + � � ;X��C2,1��̄� �0, + � � ;R2�;
�ii� u�t ,x� and v�t ,x� are bounded on �̄� �0, + � � with

0�u� ū, 0�v� v̄;
�iii� The solution semigroup ��t , �u0 ,v0�� forms a semidy-

namical system on X.

III. PATTERN FORMATION

Pattern formation in mathematics refers to the process
that, by changing a bifurcation parameter, the spatially ho-
mogeneous steady states lose stability to spatially inhomoge-
neous perturbations, and stable inhomogeneous solutions
arise. In this section, we investigate pattern formation for
system �1.9�. The approach applied here is very routine. We
look for the spatial homogeneous steady states by setting the
kinetics on the right-hand side of Eq. �1.9� to be zero,

f�us,vs� = 0, g�us,vs� = 0. �3.1�

We suppose that �us ,vs� is a non-negative solution of Eq.
�3.1�. That is �us ,vs� is a homogeneous steady state of system
�1.9�. We assume that in the absence of any spatially varia-
tion the homogeneous steady state is linearly stable. We first
determine the conditions for this to hold.

With no spatial variation, u and v satisfy

ut = f�u,v�, vt = g�u,v� . �3.2�

The linearization of Eq. �3.2� at �us ,vs� is

wt = Aw, A = � fu fv

gu gv
� , �3.3�

where A is the community �Jacobian� matrix of system �3.2�
at steady state �us ,vs�. Hereafter, we shall take the partial
derivative of f and g to be evaluated at the steady state unless
stated otherwise. Then the conditions for which �us ,vs� is
linearly stable can be easily determined by

tr A = fu + gv � 0, 	A	 = fugv − fvgu � 0. �3.4�

If there are some parameters in f and g, then the steady states
�us ,vs� are functions of these parameters. Hence, inequalities
�3.4� impose certain constraints on the parameters.

In what follows, we shall consider the full chemotaxis
model �1.9�. We examine small perturbations from the spa-
tially homogeneous steady state �us ,vs� of the form
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u = us + �ũ�x,t�, v = vs + �ṽ�x,t� , �3.5�

where ��1.
Substituting Eq. �3.5� into Eq. �1.9�, we end up with

�ũt = � � �d1�q�us + �ũ� − q��us + �ũ��us + �ũ�� � u

− ��us + �ũ���vs + �ṽ�q�us + �ũ� � ṽ�

+ f�us + �ũ,vs + �ṽ� ,

�3.6�
�ṽt = �d2 � ṽ + g�us + �ũ,vs + �ṽ� .

Equating first-order terms with respect to �, neglecting
higher-order terms, and dropping the tilde for the conve-
nience, we obtain the following linearized system for Eq.
�1.9�:

ut = d1�q�us� − q��us�us� � u − usq�us���vs� � v + ufu + vfv,

�3.7�
vt = d2	v + ugu + vgv.

Hereafter we abbreviate �=q�us�−q��us�us and �
=−��vs�usq�us�. The vs in ��vs� will be often abbreviated for
notational convenience unless stated otherwise, i.e., �
=��vs�. Since we assume that q��u��0 for 0�u� ū, we
have ��0. The chemotactic sensitivity � is always assumed
to be non-negative and hence ��0.

In the following, we assume that the domain is a one-
dimensional bounded domain, similar analysis holds for
higher dimensional bounded domains. Then following the
standard argument �e.g., see Ref. 31�, the dispersion relation
associated with system �3.7� can be determined as

�2 + a�k2�� + b�k2� = 0, �3.8�

where k is the spatial eigenvalue, which is commonly re-
ferred to as the wave number, and � is the eigenvalue, which
determines temporal growth and depends on the wave num-
ber k. The a�k2� and b�k2� are given, respectively, as

a�k2� = ��d1 + d2�k2 − �fu + gv� ,

�3.9�
b�k2� = �d1d2k4 + ��gu − d2fu − �d1gv�k2 + fugv − fvgu.

The dispersion relation �3.8� gives ��k� as a function of wave
number k at steady state �us ,vs�. For the steady state to be
unstable, we require that Re��k� is positive for some k�0.
Since a�k2��0 due to Eq. �3.4�, the instability can only oc-
cur if b�k2� becomes negative for some k so that Eq. �3.8� for
� has one positive and one negative root. Referring to Eq.
�3.9�, the condition b�k2��0 requires that

�d1d2k4 + ��gu − d2fu − �d1gv�k2 + fugv − fvgu � 0. �3.10�

Since it is required in Eq. �3.4� that 	A 	 = fugv− fvgu�0, a
necessary condition for Eq. �3.10� is

�gu − d2fu − �d1gv � 0. �3.11�

For Eq. �3.10� to be the case for some nonzero k, the dis-
criminant of equation b�k2�=0 must be positive since the
coefficient �d1d2 of k4 is positive. In other words, for the
existence of an interval of unstable modes, we require that

��gu − d2fu − �d1gv�2 − 4�d1d2�fugv − fvgu� � 0. �3.12�

Applying Eq. �3.11�, we obtain from Eq. �3.12� that

�gu − d2fu − �d1gv � − 2�d1d2�fugv − fvgu� . �3.13�

To recap, we have now obtained conditions for the genera-
tion of spatial patterns for the volume filling chemotaxis
model �1.9� and �1.10�. For convenience, we reproduce them
here. Remembering that all derivatives are evaluated at the
steady state �us ,vs�, they are

fu + gv � 0, fugv − fvgu � 0, �gu − d2fu − �d1gv � 0,

�3.14�
��gu − d2fu − �d1gv�2 − 4�d1d2�fugv − fvgu� � 0,

where �=q�us�−q��us�us, �=−��vs�usq�us�. The importance
of the chemotaxis term in the chemotaxis model is that it
leads to a 	v term in the u equation, so-called cross diffu-
sion. This removes the need for d1 and d2 to be sufficiently
different in order to obtain spatial patterns. The strength of
the chemotactic sensitivity � plays a crucial role in pattern
formation. Generally there exists a critical value �c such that
there is no pattern formation if � is below this critical value
�c, while pattern formation can be expected if � is larger
than this critical value �c. In our problem, we can explicitly
determine this critical value if all parameters are fixed in
system �1.9� except for the chemotactic sensitivity �. Indeed,
from the foregoing analysis, we know that the bifurcation
occurs when

�gu − d2fu − �d1gv = − 2�d1d2�fugv − fvgu� . �3.15�

Substituting �=−�usq�us� into Eq. �3.15� and solving the
resulting equation for �, we obtain the critical chemosensi-
tivity �c,

�c =
2�d1d2�fugv − fvgu� − d2fu − �d1gv

guusq�us�
. �3.16�

At this bifurcation value, the corresponding critical wave-
number is given by

kc
2 =

d2fu + �d1gv − �gu

2�d1d2
. �3.17�

Whenever b�k2��0, Eq. �3.8� has a solution �, which is
positive for the range of wave numbers. When ���c, from
Eq. �3.9�, the range of unstable wave numbers k1

2�k2�k2
2 is

obtained from the zeros k1
2 and k2

2 of b�k2�=0 as

k1
2 =

C − 
C2 − 4�d1d2�fugv − fvgu��1/2

2�d1d2
� k2,

�k2
2 =

C + 
C2 − 4�d1d2�fugv − fvgu��1/2

2�d1d2
, �3.18�

where C=d2fu+�d1gv−�gu denotes the coefficient of k2 in
the equation b�k2�=0 �Eq. �3.9��.

Whenever conditions �3.14� are satisfied and there is a
range of wave numbers k lying within the bound defined by
Eq. �3.18�, then the corresponding spatial eigenfunctions are
linearly unstable and pattern formation can be expected. It is
worthwhile to point out that for an infinite domain there is
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always a spatial pattern if 0�k1
2�k2

2 in Eq. �3.18�. In this
situation, conditions �3.14� are sufficient conditions for pat-
tern formation to system �1.9� and �1.10�, while for a finite
domain, the possible wave numbers k and corresponding spa-
tial wavelengths are discrete and depend in part on the
boundary conditions. If there does not exist a discrete wave
number k2 lying between k1

2 and k2
2, then there is no spatial

pattern formation even if Eq. �3.14� is satisfied. Some ex-
amples will be given in the forthcoming sections.

We summarize the main results obtained in this section
in the following theorem.

Theorem 3.1. Let �us ,vs� be a spatially homogeneous
steady state of system (1.9). Let fu , fv and gu, gv denote the
partial derivatives evaluated at steady state �us ,vs�. Then
pattern formation of system �1.9� with zero-flux boundary
condition �1.10� is possible if Eq. (3.14) is satisfied. Further-
more, the critical chemosensitivity �c is determined by Eq.
(3.16). When ���c, there is no spatial pattern, whereas pat-
tern formation can be expected if ���c and the range of
unstable wave numbers is given by Eq. (3.18).

IV. ANALYSIS FOR NONLINEAR SQUEEZING
PROBABILITY

By the global existence and boundedness obtained in
Theorem 2.4, we know that 0�u� ū if 0�u0� ū. Then, as
we mentioned in the Introduction, a logical choice for the
squeezing probability function q�u�, which reflects the elastic
property of particles, is

q�u� = 1 − �u

ū
��

, � � 1, 0 � u � ū . �4.1�

In this section, we will discuss the dynamics of system �1.9�
with q�u�, which has the nonlinear form �4.1�. For simplicity,
we suppose that the cell and chemoattractant kinetics have
the following form extensively used in literature �e.g., Refs.
17 and 25�:

f�u,v� = �u�1 − u/uc�, g�u,v� = �u − �v , �4.2�

where the cell kinetics follows the logistic growth with car-
rying capacity 0�uc� ū and ��0; the chemoattractant
grows with rate � and decays with rate � due to dilution.
Applying Eqs. �4.1�, �4.2�, and �1.9�, we obtain

ut = � · �D�u� � u − ���u� � v� + �u�1 −
u

uc
� ,

vt = d2	v + �u − �v , �4.3�

�D�u� � u − ���u� � v� · n = 0, � v · n = 0,

where n, as usual, denotes the unit outward normal vector at
the boundary of the domain and D�u� and ��u� are denoted
by

D�u� = d1�1 + �� − 1��u

ū
���, ��u� = u�1 − �u

ū
��� . �4.4�

As a special case of Eq. �1.9�, the global existence and
boundedness of the solution to Eq. �4.3� has been given by
Theorem 2.4.

Clearly, the spatially homogeneous steady states of sys-
tem �4.3� are �0,0� and �uc ,�uc /��. Furthermore, by linear-
ization, one can easily determine that the steady state �0,0�
is a saddle point and hence unstable, while the steady state
�uc ,�uc /�� is stable to the corresponding homogeneous sys-
tem of Eq. �4.3� with two negative eigenvalues −� and −�.
Therefore, we focus on the stable steady state �us ,vs�
= �uc ,�uc /�� to study pattern formation for system �4.3�.
First, we linearize system �4.3� about the steady state
�uc ,�uc /�� and obtain

ut = � · �D�uc� � u� − � · ����uc� � v� − �u ,

vt = d2	v + �u − �v .

Performing the linear stability analysis as before, we find the
corresponding dispersion relation

�2 + a�k2�� + b�k2� = 0,

a�k2� = �D�uc� + d2�k2 + �� + �� , �4.5�

b�k2� = D�uc�d2k4 + ��d2 + �D�uc� − ����uc��k2 + �� .

From the analysis in the previous section, the condition
�3.14� has to be satisfied to obtain pattern formation. In the
situation discussed in this section, we know that fu+gv=
−��+���0 and fugv− fvgu=���0. Then we only need the
third and fourth condition in Eq. �3.14� to hold. This requires
that �see Eq. �3.13��

�d2 + �D�uc� − ����uc� � − 2d2��D�uc� . �4.6�

Then Eq. �4.6� gives a necessary condition for pattern forma-
tion of system �4.3�. If we regard the wave number as a
continuous variable in spite of the fact that the wave number
is discrete, Eq. �4.6� then gives a sufficient and necessary
condition for pattern formation of system �4.3� with zero-flux
boundary condition.

In the remainder of this section, we will investigate the
influence of the squeezing exponent �, chemosensitivity �,
growth rate �, and death rate � of chemoattractant on the
pattern formation of Eq. �4.3�.

A. Bifurcations with chemotactic sensitivity �

From the previous analysis, if we think of the chemosen-
sitivity � as the bifurcation parameter, then the bifurcation
value �c is determined by �see Eq. �3.16��

�c =
2d2��D�uc� + �d2 + �D�uc�

���uc�
. �4.7�

The corresponding critical wave number kc is determined
from Eq. �3.17� by

kc
2 =

− �d2 − �D�uc� + �c���uc�
2d2D�uc�

. �4.8�

When ���c, we have b�k2��0 for some wave numbers k2

and hence there exists a positive solution � of Eq. �4.5� for
some k�0. Moreover, the range of unstable wave numbers
k1

2�k2�k2
2 can be obtained as
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k1
2 =

S − 
S2 − 4��d2D�uc��1/2

2d2D�uc�
�4.9�

and

k2
2 =

S + 
S2 − 4��d2D�uc��1/2

2d2D�uc�
, �4.10�

where S=−�d2−�D�uc�+����uc�.
Then the critical value is �kc ,�c� such that b�k2��0 for

all k2 if ���c, however, b�k2��0 for a range of wave num-
bers k1

2�k2�k2
2 if ���c. Figure 1�a� shows how b�k2� var-

ies as a function of k2 for various � and Fig. 1�b� shows how
the eigenvalue � varies as a function of k2 for various �. A
stability curve for b�k2�=0 for �=2 in Fig. 2 immediately
gives us some information we need to know. When ���c,
b�k2��0, and consequently, no positive wave numbers cor-
respond to �. As � increases and exceeds the critical value
�c, there must exist wave numbers k between the two curves
�dashed and solid portion of the curve in Fig. 2�. These wave
numbers define unstable modes.

As we mentioned in the previous section, the condition
���c does not guarantee pattern formation since the allow-
able wave numbers k are discrete for a finite domain. Gen-
erally, the pattern formation can be achieved by increasing
the domain size. So a question arises as to how a necessary
and sufficient condition can be derived to generate the spatial

pattern for a fixed domain. Indeed, the bifurcation diagram,
Fig. 2, has given us some useful clues already. We study the
difference for k2

2 and k1
2,

K��,�,�� = k2
2 − k1

2

=
���d2 − �D�uc� + ����uc��2 − 4��d2D�uc��1/2

d2D�uc�
.

Here we consider the difference as a function of �, �, and �,
since we will investigate the influence of �, �, and � on the
pattern formation in the following. It is easy to verify that
K�� ,� ,�� is an increasing function of � and �. So pattern
formation can be supported by increasing the value of � or �.
Biologically, we expect pattern formation if the growth rate �
of the chemoattractant or the chemosensitivity � is big
enough. On the other hand, K�� ,� ,�� is a decreasing func-
tion of �. Hence pattern formation also can be supported by
decreasing the decay rate � of the signal.

We now derive a sufficient and necessary condition for
the chemosensitivity � for pattern formation in a one-
dimensional domain �0, � �. On �0, � � with non-flux-
boundary conditions, the corresponding wave numbers k are
given by k=n� /�, where n=0, ±1, ±2, . . .. The requirement
�3.18� in terms of modes n becomes

n1
2 � n2 � n2

2, �4.11�

where n1=k1� /� and n2=k2� /�. Now we want to find an
appropriate value of � such that there exists at least one
integer n satisfying Eq. �4.11�. Without loss of generality, we
look at positive wave modes only and other cases can be
analyzed analogously. For �=�c, we have k1=k2=kc and
hence k1� /�=k2� /�. We can easily check that k1

2��� as a
function of � is decreasing and that k2

2��� is increasing. As a
consequence, n1 is decreasing �see dotted portion of the
curve in Fig. 3�a�� and n2 is increasing �see solid portion of
the curve in Fig. 3�a�� as a function of �. Now we look for
the conditions such that there exists at least one integer n

FIG. 1. �a� A sketch of b�k2� against k2 defined by Eq. �4.5�. When the
chemosensitivity strength � increases beyond the critical value �c, b�k2�
becomes negative for a finite range of k2. �b� Plot of the real part of eigen-
value ��k2� as a function of k2 defined in Eq. �4.5�. When ���c, there is a
range of wave numbers k1

2�k2�k2
2 such that the steady state is unstable.

The parameters are chosen as �=1, d1=0.1, d2=1.0, uc=2.0, ū=4.0, �
=4.0, �=5.0, �=10.0.

FIG. 2. A sketch of b�k2�=0 in Eq. �4.5� in the �k2 ,�� plane, where param-
eters are chosen as �=2, d1=0.1, d2=1.0, uc=2.0, ū=4.0, �=4.0, �=5.0,
�=10.0, and consequently, kc

2=17.889, �c=1.296. The dashed portion de-
notes k1

2 and the solid portion represents k2
2.
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between n1 and n2. At the critical value �c as obtained above,
we define nc : =n1��c�=n2��c�. Then we have two cases to
consider.

Case �a�. nc is an integer. Then we increase � from �c,
and any increment of � will lead to n1����nc�n2��� due to
the monotonicity of n1 and n2. We immediately get an un-
stable mode n=nc �see Fig. 3�a��. In this case, �c is a bifur-
cation value, such that pattern formation is obtained when
���c and no pattern formation evolves when ���c.

Case �b�. nc is not an integer number. Since n1��� is
continuously decreasing with respect to � and n2���→� as
�→�, there must exist a minimum number of �, denoted by
�B, such that �B��c and n1��B�, or n2��B�, or both, are
integers. For ���B, we obtain an unstable mode n such that
n1����n�n2���.

We therefore end up with the following theorem.
Theorem 4.1. Assume ��1. Let �B��c be the first

number of � such that either k1� /�, or k2� /� is an integer.
Then �B is a bifurcation number and ���B is a necessary
and sufficient condition for pattern formation of system (4.3).

Next, we examine the relationship between the critical
value �c and the squeezing exponent �, from which we can
understand the influence of � on the dynamics of system
�4.3�. We give the following theorem.

Theorem 4.2. The critical value �c, as a function of
squeezing exponent �, is decreasing.

Proof. For convenience, we denote �=uc / ū�1 and
M���=1/ �1− �uc / ū���=1/ �1−����1, then Eq. �4.7� can be
rewritten as

�c =
1

�uc
�2��d1d2M���1 + ���M��� + �d2M���

+ �d1�1 + ���M����� . �4.12�

Note that 0�uc / ū�1. Then function M is nonincreasing
with respect to �. Next we prove that function ���M��� is a
decreasing function of �. To see this, we define h���
=���M���. Then we have

dh

d�
=

���1 − �� + � ln ��
�1 − ���2 .

Since ��1, it is easy to verify that 1−��+� ln ��0 for all
��1. So h��� is decreasing with respect to �. Consequently,
the critical chemosensitivity value �c is a decreasing function
of squeezing exponent �. �

Remark 4.3. Biologically, Theorem 4.2 tells us that cells
are apt to aggregate when the squeezing exponent � is in-
creased, since the squeezing probability q�u� is increasing
with respect to �. When the squeezing probability is bigger,
cells are more motile and hence pattern formation is easier
to form.

B. Bifurcation with growth rate �

In this section, we consider growth rate � as the bifurca-
tion parameter, and therefore fix all other parameters in sys-
tem �4.3�. Note that varying � affects the value of the steady
state �us ,vs�. We want to understand the influence of the
dynamical parameter � on pattern formation of system �4.3�.
The temporal eigenvalues � of the linearization at �us ,vs� are
the roots of Eq. �4.5�.

We compute the critical value �c for � from Eq. �4.5�,

�c =
2d2��D�uc� + �d2 + �D�uc�

���uc�
, �4.13�

such that no unstable modes exist if � is below this critical
number �c, whereas unstable modes are possible when � is
beyond this critical value �c �see Fig. 4�a� for the dispersion
relation�. Furthermore, if we consider �c as a function of �
and recall the proof of Theorem 4.2, we can show that the
critical value �c of the growth rate decreases as the parameter
� increases. This outcome is consistent with the biological
context that, increasing the growth rate � of the chemoattrac-
tant results in a higher concentration of chemoattractant,
which makes the system more unstable.

FIG. 3. �a� A sketch of b�n2�2 /�2�=0 in Eq. �4.5� in the �n ,�� plane, where
the domain is chosen as �0, � � with �=4 and parameters are chosen as �
=2, d1=0.1, d2=1.0, uc=2.0, ū=4.0, �=4.0, �=5.0, �=10.0, and conse-
quently, nc=5.38, �c=1.296. �b� A comparison of wave numbers with re-
spect to squeezing exponent �. Parameters are chosen as in �a� except �.
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Remember that the critical number �c is not necessarily a
bifurcation value due to the discrete nature of the unstable
modes. But we can formally obtain the desired bifurcation
value for � by performing the same analysis as for � in Sec.
IV A and obtain a bifurcation theorem similar with Theorem
4.1. To avoid repetition, we do not provide details here.

C. Bifurcation with decay rate �

In the model �4.3�, the parameter � stands for the decay
�degradation� rate of the chemoattractant, and the uniform
steady state �us ,vs� depends on �. If we perform the similar
linear stability analysis as we did in previous sections, it is
easy to derive a critical value for � as

�c =
�����uc� − �d2�2

d1D�uc�
, �4.14�

such that when ���c, there do not exist unstable modes,
whereas unstable modes can be expected when ���c. Now,
if we regard the death rate � as a dynamical parameter, the
dispersion relation of Eq. �4.5� as � passes through the criti-
cal value �c, as shown in Fig. 4�b�. Here the plot of the
dispersion relation for � in Fig. 4�b� has some difference in
appearance compared to the plot of the dispersion relation
for � in Fig. 4�a�. From Fig. 4�a�, we see that all eigenvalues
� take the same value at k2=0 for any dynamical parameter
�. However, Fig. 4�b� shows that the eigenvalue � has a
different value at k2=0 for each different dynamical param-
eter �. In fact, from Eq. �4.5�, when k2=0, we have

�2 + �� + ��� + � + � = 0. �4.15�

It is clear that Eq. �4.15� is independent of parameter � but
dependent on parameter �.

Now we examine the relationship between the critical
value �c and squeezing exponent �. We still use the notation
in Sec. IV A and rewrite Eq. �4.14� as follows:

�c
1/2 = 1

d1�1 + ���M����
���uc − �d2M���� .

In Sec. IV A, we have shown that functions M��� and
���M��� are decreasing with respect to �. Then, it is easy to
see that �c, as a function of �, is increasing, which is in
contrast to the critical growth rate �c that is a decreasing
function of �. This is in agreement with the biological inter-
pretation. When increasing the squeezing exponent, the criti-
cal death rate becomes larger and hence pattern formation
can allow for faster dilution of chemicals. As a consequence,
pattern formation is easier to form.

V. NUMERICAL SIMULATION IN ONE DIMENSION

In this section, we will numerically investigate pattern
formation for model �4.3�. Unless stated otherwise, through-
out this section, we assume zero-flux boundary conditions.
For �=1, numerical solutions have been shown by Painter
and Hillen in Ref. 17. In the case of zero kinetics �f�u ,v�
=0�, Painter and Hillen found a typical behavior of merging
of local peaks �also called coarsening process�. In the paper
by Potapov and Hillen,22 these local peaks were identified as
metastable steady states and in the paper by Dolak et al.,32,34

a singular perturbation analysis around these transient pat-
terns was given. These patterns are similar to coarsening
patterns obtained for the Brusselator model,33 where a non-
linear stability analysis was performed. If cell kinetics were
included in the model, in addition to the merging of peak
patterns, the emerging of new local maxima was observed
also by Painter and Hillen.17 In this article, we particularly
focus on the effect of nonlinear squeezing probability q�u�
=1− �u / ū�� through ��1 on the merging and emerging pro-
cess. We obtain a similar patterning process as the linear
diffusion case ��=1� in Ref. 17, and our results, confirm that
merging and emerging processes are very typical patterning
processes for the volume filling chemotaxis model.

FIG. 4. �a�. Dispersion relation �4.5� as the parameter � passes through the
bifurcation value �c=10.18, where �=4, d1=0.1, d2=1.0, uc=2.0, ū=4.0,
�=4.0, �=10.0, �=0.5. �b� Dispersion relation �4.5� as the parameter �
passes through the bifurcation value �c=4.04, where �=2, d1=0.1, d2=1.0,
uc=2.0, ū=4.0, �=10, �=20, �=0.5.
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A. Zero cell kinetics

In this section, we will consider the nonlinear diffusion
volume filling chemotaxis model �1.9� with cell kinetics
f�u ,v�=0 and g�u ,v�=�u−�v as well as nonlinear squeezing
probability function q�u�=1− �u / ū�� , ��1. Then, the cell
density is conserved due to no cell growth and death. Again,
we look at the stability of the homogeneous steady state
�us ,�us /��. Note that condition �3.4� is not satisfied in the
case of f =0, however, the instability region can be explicitly
determined by performing standard linear stability analysis
as before,

� �
ū� + �� − 1�us

�

usū
��ū� − us

��
d1�

�
. �5.1�

Under this condition, unstable wave modes can be expected.
From Eq. �5.1�, we see that the cell density is crucial for
pattern formation. At high or low initial cell density us, the
system tends to be stable to spatial perturbations.

Some typical numerical simulation examples are shown
in Fig. 5. In Fig. 5�a�, we choose squeezing exponent �=1
and then the diffusion of the system �3.8� becomes linear. In
Fig. 5�b�, we choose �=2 and the diffusion of the system
�3.8� is then nonlinear. For both cases, we observe some
initial merging process, which stops, and a new time-
independent peak pattern appears. Actually, similar merging
dynamics appears for other crowding exponents ��1 �not
shown�.

In Fig. 5�c�, we significantly reduce the cell diffusion
parameter d1, which leads to a persistent steady state without
observable merging dynamics.

B. Nonzero cell kinetics

From the above numerical analysis, we see that without
cell kinetics we obtain multiple aggregations, which undergo
a merging process. In this section, we include the effect of
cell kinetics into the model and explore whether or not stable
multipeak aggregation patterns can develop. We suppose that
cells follow logistic growth f�u ,v�=�u�1−u /uc�. Production
term g�u ,v� and squeezing probability q�u� are chosen as
before. Then the model is the same as Eq. �4.3�.

The nontrivial uniform steady state of Eq. �4.3� is given
by �us ,vs�= �uc ,�uc /��, and the instability region of this
steady state is determined by condition �4.6�. The graph of
the dispersion relation now corresponds to Fig. 1�a�. Thus,
low wave modes might be stable to spatial perturbation, and
higher wave modes may develop multipeak solutions, which
is in contrast to the case of zero kinetics, where low wave
modes might be unstable. We choose a set of parameters,
such that the instability condition �4.6� is satisfied, and
present the numerical simulation in Fig. 6. We first choose
parameters deep in the instability region and it was shown
that multiple peaks develop and that these peaks exist indefi-
nitely �see Figs. 6�b� and 6�c��. Numerical simulation shows
that a time-independent persistent spatial pattern might not
exist and patterns demonstrate an interesting pattern interac-
tion process of merging and emerging, where neighboring
aggregations join to form a single aggregation resulting in a
large interval of low cell density. In the low density regions,
new cell aggregations subsequently arise, which is in con-
trast to the zero kinetics case in which only a merging pro-
cess was observed. When the parameters are chosen close to
the stability/instability boundary, solutions can stabilize into

FIG. 5. �Color� Space-time evolution of cell density for model �4.3� with zero kinetics, with initial value that is set as the small perturbation of the
homogeneous solution u0=0.2 and with �=10, ū=1.0, uc=0.5, d2=1.0: �a� �=40, d1=0.25, �=1, �=2. �b� �=40, d1=0.25, �=2, �=2. �c� �=30, d1=0.01,
�=2, �=1.
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a time-independent spatial pattern �see Fig. 6�a�, where a
seven-peak pattern evolves�. However, there are no local
peaks emerging during the evolution. In Fig. 6�c�, we choose
very small diffusive rate d1 and get a more complex pattern
due to high chemotactic effects.

The evolution of merging and emerging peak solutions is
presented in Fig. 7. We see that peaks are capped by the
crowding capacity ū due to the volume filling effects. For
zero kinetics �see Fig. 7�a��, after some time, peaks merge
into some stationary peaks. For the nonzero kinetics case
�see Fig. 7�b��, we see that initially solution tends to blow up
�very sharp� but the volume filling mechanism prevents
blowup and then solutions stay bounded to form complex
merging and emerging patterns.

VI. DISCUSSION

In this paper, we include a nonlinear squeezing probabil-
ity function q�u�, which reflects elastic properties of cells,
into a volume filling chemotaxis model and prove the global
existence of classical solutions to the resulting model. We
show that the cell density will stay below the crowding ca-
pacity ū if the initial cell density is less than this crowding
capacity. We carry out conditions of pattern formation for the
general volume filling chemotaxis model. Moreover, we ap-
ply a particular choice Eq. �4.1� of q�u� into the model to
perform the linear stability analysis and study the underlying
bifurcation for different parameters. One-dimensional nu-
merical simulations are presented for both zero cell kinetics
and nonzero cell kinetics. Merging and emerging dynamics
are observed under different parameter values. We find that
the squeezing exponent � has no huge effect on the spa-

FIG. 6. �Color� Space-time evolution of cell density for model �4.3� for different choices of parameters. �a� d1=0.25, d2=1, �=10, �=10, ū=1.0, uc=0.25,
�=0.5, �=10, �=2. Simulations indicate that a fixed spatial pattern exists as peaks persist and grow. Here are seven peaks. �b� d1=0.25, d2=1, �=10, �
=10, ū=1.0, uc=0.25, �=0.5, �=20, �=2. �c� d1=0.01, d2=1, �=10, �=10, ū=1.0, uc=0.25, �=0.5, �=1, �=2. In �b� and �c�, typical merging and emerging
patterns develop. The parameters chosen in �a� are closer to the stability region than those chosen in �b� and �c�. All simulations use the domain size as
�0, 20�.

FIG. 7. �Color� Evolution of merging and emerging local peaks. �a� Zero
cell kinetics, where �=40, �=10, ū=1.0, uc=0.5, d1=0.25, d2=1.0, �=1,
�=2. �b� Nonzero cell kinetics, where d1=0.25, d2=1, �=10, �=10, ū
=1.0, uc=0.25, �=0.5, �=20, �=2.
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tiotemporal dynamics. The merging and emerging process
can be observed for all values of ��1; the limit state, how-
ever, depends on �.

The parameter � has been included to describe elastic
properties of cells. The case of �=1 corresponds to solid
blocks �see the car-parking problem in Ref. 21�, whereas �
→� corresponds to cells being fluids, which can fill all open
space. The critical chemosensitivity �c is decreasing in �;
hence, increasing � is destabilizing the system. If � is large,
chemotaxis has a large effect and more cells can still enter
into a crowded region and make chemotactic aggregation
more pronounced.

Comparing Figs. 7�a� and 7�b�, we can conclude that the
emerging process is due to cell growth. It is of interest to
further study the merging and emerging process in more de-
tails. The merging and emerging patterns in Fig. 6�b� seem to
have a dominating wavelength so that neither too many nor
too few local maxima arise. In Ref. 22 some scaling and
numerical analyses were applied to describe the transition
region and the local peaks were identified with metastable
steady states. For the merging process �no kinetics�, a quali-
tative analysis was given by Dolak and Schmeiser32 using a
singular perturbation argument. It would be interesting to
apply their methods to study the merging-emerging process
as observed above. A detailed analysis will be given in a
forthcoming paper.
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