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Abstract This paper establishes the global uniform-in-time boundedness of solutions to the
following Keller-Segel system with signal-dependent diffusion and chemotaxis
U, =V-(y)Vu —u¢p(v)Vv), xeQ,t>0,
{v,:dAv—v—i—u, xe,t>0
in a bounded domain  C RY (N < 4) with smooth boundary, where the density-dependent
motility functions y (v) and ¢ (v) denote the diffusive and chemotactic coefficients, respec-
tively. The model was originally proposed by Keller and Segel in (J. Theor. Biol. 30:225—
234, 1970) to describe the aggregation phase of Dictyostelium discoideum cells, where the
two motility functions satisfy a proportional relation ¢ (v) = (o« — 1)y’ (v) with o > 0 de-
noting the ratio of effective body length (i.e. distance between receptors) to the step size.

The major technical difficulty in the analysis is the possible degeneracy of diffusion. In this
work, we show that if y (v) > 0 and ¢ (v) > 0 are smooth on [0, co) and satisfy

. dy (v) N
inf > —,
>0 v (V) (VPp(V) +d —y W), 2

then the above Keller-Segel system subject to Neumann boundary conditions admits clas-
sical solutions uniformly bounded in time. The main idea of proving our results is the esti-
mates of a weighted functional fQ uPv=idx for p > % by choosing a suitable exponent p
depending on the unknown v, by which we are able to derive a uniform L*-norm of v and
hence rule out the diffusion degeneracy.
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1 Introduction

In this paper, we consider the following Keller-Segel system with signal-dependent motili-
ties

u,=V-(y(w)Vu —up(v)Vv), xe,t>0,
v, =dAv+u—v, xeQ,t>0, ()
oyu =0,v=0, x€ed, t>0, ’

u(x,0) =up(x), vix,0) =vo(x), x e

in a bounded domain  C RV (N > 1) with smooth boundary 32, where 7 =1 and d > O is
the chemical diffusion rate and 9, = % denotes the derivative with respect to the unit outer
normal vector v of €2; u(x, t) represents the cell density and v(x, t) denotes the chemical
signal concentration at position x and time ¢. The system (1.1) was proposed by Keller and
Segel in [18] to describe the aggregation phase of Dictyostelium discoideum (Dd) cells in
response to the chemical signal cyclic adenosine monophosphate (cAMP) secreted by Dd
cells, where the signal-dependent diffusivity y (v) and chemotactic sensitivity function ¢ (v)
satisfy the following proportionality relation

¢v) = (@ = 1y'(v), (1.2)

where o > 0 denotes the ratio of effective body length (i.e. distance between receptors) to
the step size (see [18] for details).

When y (v) and ¢ (v) are constant, the Keller-Segel system (1.1) is called the minimal
chemotaxis model [30] which has been extensively studied in the literature (see review pa-
per [3, 13] and the references therein), and “critical mass” is perhaps the most prominent
phenomenon amongst abundant results. When y(v) =1 and ¢ (v) = f, the system (1.1)
becomes the following so-called singular Keller-Segel system proposed in [19]

u,=Au—XV~(%Vv), xe, >0,
T, =Av+u—v, xeQ,t>0, (1.3)
oyu =0,v=0, x€ed, t>0, ’

u(x,0) =up(x), vix,0) =vo(x), x e

which exhibits different behaviors from the minimal chemotaxis model and no ‘critical
mass” phenomenon was identified (cf. [4, 12, 22, 29, 33, 37]). In particular, Nagai and
Senba ([28, 29]) proved that all radial classical solutions of system (1.3) with 7 = 0 are
global-in-time if either N > 3 with x < ﬁ, or N = 2 with arbitrary x > 0, whereas the
radial solution may blow up if x > % and N>3. Whent=1,N>2and x < \/%, Fujie
([8]) showed that the system (1.3) possesses global classical solutions with uniform-in-time
boundedness based on an observation that v has a positive lower bounded. We refer to [11]
for an exhaustive review of works related to the system (1.3). When v is a nutrient consumed
by bacteria, namely the second equation of (1.3) is replaces by v, = Av — uv™ (m > 0), the
singular Keller-Segel was proposed in [20] to describe the wave prorogation generated by
bacterial chemotaxis (see [34] for mathematical results).
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In contrast to plenty of results developed for the minimal and singular Keller-Segel sys-
tems, when both y (v) and ¢ (v) are non-constant and ruled by the relation (1.2), the results
obtained for (1.1) are much less. The mathematical analysis of (1.1) with signal-dependent
diffusive and chemotactic coefficients has to cope with considerable challenges caused by
the possible degeneracy of diffusion (i.e. y(v) may touch down to zero), and hence the
conventional methods for the constant diffusion are inapplicable to (1.1) and new ideas are
much in demand. The existing results in the literature are only confined with a specific case
«a =0 in (1.2), which implies that ¢ (v) = —y’(v) and hence reduces the system to

u, = Ay (v)u), xe,t>0,
TV, =dAv+u—v, xeQ,t>0, (1.4)
dyu = d,v =0, x€d, t>0, ’

u(x,0) =up(x), vix,0) =vy(x), x € Q.

If y(v) = ;—2 (i.e. algebraically decreasing) with k > 0, it was proved in [38] that global
bounded solutions exist in any dimensions provided that ¢y > 0 is small enough. The global
existence result was later extended to the parabolic-elliptic case model (1.4) (i.e. T =0) in
[1]forany 0 < k < ﬁ and ¢y > 0. Recently the global existence of weak solutions of (1.4)
with T = 1 with large initial data was established in [6]. When y (v) = e~ *" (exponentially
decreasing), the size of initial cell mass is crucial for the global dynamics. A critical mass
phenomenon, different from the case of algebraically decreasing y (v), was identified in [15]
in two dimensions: if n = 2, there is a critical number m = 4 /x > 0 such that the solution
of (1.4) with T =d = 1 may blow up if the initial cell mass |lu¢l|.1 ) > m while global
bounded solutions exist if ||ugll,1q) < m. This result was further refined in [10] showing
that the blowup occurs at the infinity time for 7 = 0 and in [9] for T = 1. In [5], the global
existence of weak solutions for arbitrary large masses and space dimension was proved and
infinite-time blowup was also shown by minimizing the entropy.
To describe the stripe pattern formation observed in the experiment of [25], a logistic
source was added into the first equation of (1.4) in [7]
lu,:A(y(v)u)—l—uu(l—u), xe,t>0, (1.5)
v, =dAv+u—v, xe,t>0, ’

where y’(v) < 0 and u > 0 denotes the intrinsic cell growth rate. The system (1.5) was
called density-suppressed motility model in [7]. It was shown in [17] that the system (1.5)
has a unique global classical solution in two dimensional spaces if y (v) satisfies the follow-
ing: ¥ € C3([0, 00)), ¥ (v) > 0 and y’(v) < 0 on [0, 00), lim,_, o ¥ (v) = 0 and lim,_, o ‘;/((5))
exists. Moreover, the constant steady state (1, 1) of (1.5) is proved to be globally asymptot-

. . ’ 2
ically stable if & > X0 where K, = MaxXg<y<co ly ((l:))'

6 . Recently, similar results have been
extended to higher dimensions (n > 3) for large i > 0 in [36] and for weaker conditions
on y(v) in [9, 16]. On the other hand, for small i > 0, the existence/nonexistence of non-
constant steady states of (1.5) was rigorously established under some constraints on the
parameters in [27] and the periodic pulsating wave is analytically obtained by the multi-
scale analysis. When y (v) is a piecewise constant function, the dynamics of discontinuity
interface was studied in [32] and the existence of discontinuous traveling wave solution
was established in [26]. When y (v) is smooth, the existence of smooth traveling wavefront
solutions was proved in [24].

From the results recalled above, we see that when y (v) and ¢ (v) satisfy the relation
(1.2), the existing results are all confined to the case @ = 0 and no results are available to the
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case o # 0. As a first attempt, the parabolic-elliptic system (1.1) with t = 0 was recently
considered in [35] by attaching the following hypotheses on y (v) and ¢ (v):

(L1) y € C*([0, 00)) and y (v) > O for all v € [0, 00).
(L2) (a) ¢ € C*([0,00)), ¢p(v) =0and ¢'(v) <0 for v € [0, 00);
(b) lim,_ v (v) <o ifn > 3.

; YWig'w| _ n
(L3) lnfvz() W > 2

Then it was shown [35] that if (L1)-(LL3) are satisfied and the solution satisfies an addi-
tional constraint

/ ¢ P(v)dx <oo forsome p > % (1.6)
Q
then the system (1.1) with T = 0 admits a unique global classical solution with uniform-
in-time bound for given initial data (u, vo) € [W"*°(£2)]>. Moreover when y (v) and ¢ (v)
are algebraically or exponentially decreasing functions, the conditions ensuring the global
boundedness are specified.

The purpose of this paper is to investigate the fully parabolic system (1.1) (i.e. T = 1)
and find conditions warranting the global boundedness of solutions. The proof in [35] fully
made use of the elliptic structure of the second equation of (1.1) to construct a positive
definite quadratic form to derive the essential L”-estimates (p > N). But this idea was not
applicable to the parabolic system (1.1) with T = 1. The key step in this paper is to build
a uniform estimate for the weighted integral fQ uPv~?dx with some p,q > 0 where the
exponent g depends on the unknown v, which develops the ideas in the literature (cf. [8,
37]) where the exponent is a constant determined by a simple quadratic equation. To this
end, we derive an auxiliary lemma (i.e. Lemma 2.7) to elucidate the complexity involved in
this v-dependent exponent. Then we use the estimate for the weighted integral fQ uPv=idx
to derive the W' -P-estimate for v with p > N which yields the L>-bound of v and hence
rules out the diffusion degeneracy. Finally we employ the Moser iteration to establish the
global boundedness of solutions.

The hypotheses attached to the motility functions y (v) and ¢ (v) are the following

(Hy) y € C*((0,00)) and y (v) > 0 for all v € (0, 00).
(H) ¢ € C*((0, 00)) and ¢ (v) > 0 for all v € (0, 00).
(H3) y (v) and ¢ (v) fulfills

. dy (v)
inf
v20 VP (V) (VP (V) +d — ¥ (V) +

N
>
2
where
0 if ing f =<0,

f if inf f > 0.

v>0

In particular, the hypothesis (H3) becomes free when inf,-o(v¢ (v) +d — y (v)) < 0. For the
initial data (uo, vo), we assume that

(g, vo) € [WHX(Q)]* with up>0,v9>0 in Q and uy 0. (1.7)

Then our main results are stated in the following theorem.
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Theorem 1.1 Let @ C RN (2 < N < 4) be a bounded domain with smooth boundary and
initial data satisfy (1.7). If y and ¢ satisfy hypotheses (H,)-(Hs), then problem (1.1) has a
unique global classical solution (u,v) € [u € C°(Q x [0, 00)) N C>H(Q x (0, 00))]? satis-
fying

luC, D@ + (¢ Dliwreog) < C forall 1€ (0,00),

where C > 0 is a constant C independent of t.

Remark 1.1 There are two remarks concerning the above results.

() Ifd=y@w)=1land ¢(v) = % as considered in [8], then the hypothesis (H3) is equiva-
lent to

. dy (v) 1 N

inf =—>.

v20vp (V) (VP (V) +d —y()+ X 2

Thus the results in Theorem 1.1 say that the system (1.1) with v = 1 admits globally

bounded solutions if ¥ < \/% , which is the same as the result obtained in [8].

(2) In [35], two essential conditions (L3) and (1.6) are imposed to guarantee the global
boundedness of solutions to (1.1) with T = 0, as recalled above, where the condition
(1.6) imposed a sole restriction on ¢ (v). In this paper, we do not have such a condition
and only hypothesis (H3) is prescribed.

If y (v) and ¢ (v) are explicitly given, the condition (H3) can be specified. In the follow-
ing theorem, as an application of Theorem 1.1, we consider algebraically decreasing motil-
ity functions y (v) and ¢ (v) connected by the proportionality relation (1.2) in the original
Keller-Segel model and specify the conditions warranting the global boundedness.

Before stating the result, we recall the following result (see [8, Lemma 2.2]) asserting
that the solution component v has a positive lower bound.

Lemma 1.1 Let (u, v) be a solution to (1.1). Then there exists a positive constant 1) inde-
pendent of t such that
infv(x,t) >n forall t > 0. (1.8)
xeQ

Then the following results hold.

Theorem 1.2 Let @ C RN (2 < N < 4) be a bounded domain with smooth boundary and
initial data satisfy (1.7). If y (v) and ¢ (v) satisfy the relation (1.2) with 0 <« < 1 and
y(v) = ;’—A (o >0, A > 0) such that

d

N _ [A(1—a)—1]o
N _ | a)(—n.A +d)+

2 1
Al —a)’

sk
(1.9)
R
where 1 is defined in Lemma 1.1, then the system (1.1) has a unique classical solution (u, v)
in Q x [0, 00), which is uniformly bounded in time such that
lu(-, iz + v, Dllwreo < C forall t € (0,00)

with some positive constant C independent of t.
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2 Preparatory Results

In this section, we will present some preparatory results for proving the global boundedness
of solutions to (1.1), including local existence of classical solutions, some frequently used
inequalities and basic estimates on the solutions. In what follows, without confusion, we
shall abbreviate fQ fdx as fg f for simplicity. Moreover, we shall use C;(i = 1,2, 3,...) to
denote a generic constant which may vary in the context.

2.1 Local Existence
We first state the local-in-time existence of classical solutions of the problem (1.1).

Lemma 2.1 (Local existence) Let Q C RN (N > 1) be a bounded domain with smooth
boundary and assume y (v) and ¢ (v) satisfy the hypotheses (H,) and (H,). If the initial data
(ug, vo) satisfy (1.7), then there is a Tyax € (0, 00] such that the problem (1.1) with t =1
admits a unique classical solution (u,v) € [C2 X [0, Tona)) N CZH(2 % (0, Tinax))] sat-
isfying u, v > 0 in Q x (0, Tyyax). Moreover, if Tyax < +00, then

(-, Dl + v Dllwie ) = 00 as £/ Tax-

The local existence results stated in Lemma 2.1 can be proved by the standard Schauder
fixed point theorem along with parabolic regularity theory (cf. see [17, 39]) or by the Amen’s
theorem [2] (cf. [14] for details). Therefore, we omit the proof for brevity.

2.2 Some Inequalities
The following well-known inequality will be frequently used.

Lemma 272 ([31]) Let Q2 be a bounded Lipschitz domain in RN, p,q,r,s > 1, j,m e Ny
anda € [%, 1] satisfying e # + (% — %)a + =2 Then there is a positive constant C such
that for all functions w € W™ (Q2) N L*(K2), the following inequality holds

A -
ID/wliLr@ < CUD" w7 g lwll g + lwllws@)-

Lemma 2.3 ([23]) Let y € C'((0, T)) N C°([0, T)) with some T € (0,00], B> 0, A>0
and the nonnegative function h € C°([0, T)) satisfy

Y (@) +Ay(t) <h() and / h(s)ds <B fora.e. t€(0,T). 2.1

(-1

Then it follows that

() <yo+ forall te(0,T).

l—e 4
The new component of the Grownwall type inequality stated in Lemma [23] is that a
local integrality of A (¢) is sufficient to warrant the global boundedness of y, which improves
the classical Grownwall inequality where the global integrality of A (¢) is required.
The following estimates of v depending on the bound of u is useful to our later analysis.
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Lemma 2.4 ([8, 37]) Let 1 <6, u < oco. Then there is a constant C > 0 independent of t
such that the solution of (1.1) satisfies the following estimates:

W If 5 (G — ) < 1, then

lv(, Olizngey <CA+ sup |lu(-,s)pq) foral t>0.

5€(0,00)
() If 3+ 5G — 1) <1, then

0 "

IVoC, Ollev <CA+ sup |lu(:, $)lipo) forall t>0.

s€(0,00)
2.3 Some Basic Estimates on Solutions

Below we shall show some basic but important preparatory estimates on solutions in order
to prove our results.

Lemma 2.5 Let (u, v) be a solution to (1.1) obtained in Lemma 2.1 with a maximal time
Tmax > 0. Then it follows that

/u:/ ug forall t € (0, Thax) 2.2)
Q Q

/vfmax{/ uo,/ vo} forall t € (0, Thax)- 2.3)
Q Q Q

Proof Integration of the first equation of (1.1) along with the Neumann boundary conditions
immediately gives (2.2) and integration of the second equation of (1.1) with (2.2) yields
(2.3). O

and

The following lemma will serve as a source for several integral estimates in the sequel.
It will be applied with certain parameters p > % to provide global smooth solutions for
system (1.1). We shall prepare some useful estimates. Firstly, we recall and build some
uniform estimate for the weighted integral fQ u?v~9dx with some p > 0, g > 0, which may
depend on v.

Lemma 2.6 Let Q@ C RN (N > 1) be a smooth bounded domain. Let (u, v) be a solution to
(1.1) obtained in Lemma 2.1 with a maximal time Ty, > 0. Then for all p, g € R, we have

- uﬁvé
dt Jg
=—p(p—1 uﬁ”v‘?y(vnw%/uﬁvéfz[ﬁciw(v)—dé(c;—1>]|Vv|2
Q Q
+/ P (5 — v () — Gy (v) — dIVu - Vo
Q

+qf uPv?=Y(u —v) forall t € (0, Thay)-
Q

2.4)
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Proof A direct calculation resting on integration by parts and the Neumann boundary con-
ditions yields

d I o
— | uPv :p/ u”’lvqu,+q/ uPvi=y,
dt Jo Q Q

;3/ uﬁ’lv‘j[V~(y(v)Vu—u¢(v)Vv)]+cj/ uPvi Y (dAv +u —v)
Q Q

=—p / [y ) Vit — up (v)Vv)] - V(o) 2.3)
Q
— c}d/ V@u’vi™ - Vo —i—é/ v —v)
Q Q
=L+5hL+5.
With further simple calculations, we have
L=—p(p—1) f u” vy (W) Vu — up()Vo)l - Vu
“ (2.6)
- pq / u?" Ty () Vi — ug (v) V)] - Vo
Q
and
L= —dcjﬁ/ u? 'y - Vo —dg (G — 1)/ uPvi=?| V|2 2.7
Q Q

Substituting (2.6)-(2.7) into (2.5) and regrouping the same-like terms, we get (2.4) immedi-
ately. O

In order to cope with the barrier caused by the non-constant y (v) and ¢ (v), we prove the
following lemma which plays a key role in obtaining the L”-estimate for u for some p > %
In the sequel, for notational brevity, we set

V() =vg(v). 2.8

Lemma 2.7 Let y and ¢ satisfy hypotheses (H,)-(H3). Let p > %(N > 2) and close to %
Set

A(v) =4y (0)d + py*(v) + pd® = 2dpy (v),
B(v) =2(p — D2y (v)d + pyY (v)(y (v) — d)], (2.9
Cw)=pp— 1P (v).

Then A(v), B(v) and C(v) are all positive such that

2C(v) B(v)
< B(v) 2A(v)

]ﬂ(O,min{%,p]);ﬁQ) forall v=0. (2.10)

Proof First it is easy to verify that A(v) and C(v) are all positive. In view of (H;) and (Hj3),
one can pick p > %(N > 2) which is close to % such that for any v > 0,
dy (v)
>p
v +d—y)+

@2.11)
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Then it is clear that

yy> YOV porall v 0. 2.12)

d+ p¥r(v)

To proceed, we define

o) = PP
2d + pyr(v)
_ pYW2(p— DY) +dN]
B NQ2d + py(v))
Y)I(p — D) + pd]
2d + pyr(v) '

r3(v) (2.13)

va(v) =

Then choosing p > % but close to % and noticing that ¥ (v) > 0, we can verify that

pyd+y©] Y @Ip - DY)+ pd]
d+pyv) 2d + py(v)
y)py @) +pd]  YvOI(p - DY)+ pd]
2d + pyr(v) 2d + pyr(v)
_ Ylp =Dy @ +pdl Y @Ip = DY @) + pd]
- 2d + pyr(v) 2d + pyr(v)

Y1(v) — ys(v) =

(2.14)

=0

as well as

pYI2(p — DY) +dN]  py(v)d

NQd + py(v)) 2d + py(v)
2p =Dy

NQd+ py(v) ~

y3(v) — (V) =
2.15)

= py(v)

and

pYWId+vy @]  py@I2(p — DY (v) +dN]
d+ p¥r(v) NQ2d + py(v))
[pY2(v)(N —2p +2) + Y (v)d2N —2p +2) + Nd?]

= 0.
Py ) NId+ py 124 + py )] ”
(2.16)

Collecting (2.14)—(2.16) and using (2.12), one gets

yi(v) —y3(v) =

y () > y1(v) > max{y,(v), y3(v), ya(v)}. (2.17)
Since
B(v) =2(p — DRy ()d + py()(y (v) —d)] >0 & y(v) > y2(v), (2.18)

therefore B(v) > 0 is ensured due to (2.17). With simple calculations, one has

B%(v) —4A()C(v)
=4(p — DH2y )d + py () (¥ (v) = DI — py? )[4y ()d + p(y (v) — d)*1}
= 16(p — *y ()d{dy (v) + py (V)Y (v) — dpyr(v) — pY*(v)},
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and hence

2C(v) B(v)

2
B) < 2A00) & B (v) —4AW)C() >0 & y() >y (v). (2.19)

Furthermore with p > %, one can check

€0 _ (p = Dpy*) N

Bv)  ymdt o —d 2 y(v) > y3(v) (2.20)
and

20 _ (p—Dpy(v)

B~ ymd+ G —a P T v = 2.21)
Finally with (2.17)—(2.21), we get (2.10) and hence completes the proof. 0

To prove our main results, we need to derive some a priori estimates of u. Making use
of Lemma 2.7, instead of working on the L”-estimates of u, we first derive a bound on the
weighted L?-estimates of #, namely fg uPv~1, with some positive exponents p and ¢. To
this end, we first establish a differential inequality on the weighted L?-norm of u as follows.

Lemma 2.8 Let Q@ C RN (N > 2) be a smooth bounded domain. Assume that y (v) and ¢ (v)
satisfy hypotheses (H,)-(H3). Let (u,v) be a solution to (1.1) in a maximal time interval
(0, Thnax)- Then there exists p > % which is close to % such that for any p € (1, p] as well

2C(v) B(v) . N
, N (0, —, d
@54 € (e 500710 O minl 5 p)) an
d - - +1,,—q—1
— uPvi<q | uPvi—q | u?" v 9 forall t e (0, Tyhx), (2.22)
dr Jo Q Q

where A(v) as well as B(v) and C(v) are the same as (2.9).

N

Proof First, from the proof of Lemma 2.7, see (2.12), there exists a positive constant p > 5

which is close to % such that

Py ()ld + ¥ ()]
N B A

2.23
d+ v 29

y(v)

for any v > 0. Observing that W is monotonically increasing with respectto p > 0,

thus by (2.23), we conclude that for all p € (1, p],

py()d+ ¢y )]

A )

for any v > 0.
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Next, for p € (1, p], choosing p := p > 1 and ¢ := —q in Lemma 2.6, we obtain
d
dt Jq

— -1 f W20y ()| Vul? — g / W pug (v) +d(q + D]IVol
Q Q

ufv™1

(2.24)
+ p/ u? v (p — D (v) + gy (v) + dgq]Vu - Vv

_qfup+lv—q—l +q/ uPv™4 forall t e (07 Tmax)7
Q Q

where by the Young inequality, it follows that

p/ w0 [(p — Do () + gy (v) +dq]Vu - Vo
Q

<p(p—1) / W20y ()| Va (2.25)
Q
L_P / [(p—l)v¢(v)+qy(v)+dq]2u
-0 Jq )
for all ¢ € (0, Thax)- Inserting (2.25) into (2.24) yields that

a
dr Jo
- / { P, [(p — Dvg(v) + gy (v) + dg]?

=13 - )

X u”v"”2|VU|2—|—q/ ufv4 —q/ u?ty=4=! forall t € (0, Tpax)-
Q Q

Py=a2|Vy)?

ufv™4

—dq(qg+1)— pqvcb(v)} (2.26)

Denote

N DY (v) + gy (v) +dgl?
4(p—1) y(v)

Then from (2.27), we can get a quadric expression for g as follows

g(piq,v):= —dq(g+1)— pgy(v). (2.27)

4(p — Dy (v)g(p;q,v)
=[p(p— D*¥*() + pg’y*(v) + d*pg’
+2p(p — Dgy (v)y (v) +2dp(p — gy (v) +2dpg*y (v)]
—4(p—Dy)dq(q+1) —4(p — Dy ) pgy (v) (2.28)
=p(p — D>’ )+ pg’y*(v) +d’ pg® = 2p(p — gy (v)y (v)
+2dp(p — gy (v) + 2dpq’y (v) — 4(p — Dy (v)dg(q + 1)
= A(v)g” — B(v)qg + C(v),

where A(v) as well as B(v) and C(v) are given by (2.9). Now, with Lemma 2.7, one can

pick g € (ZBC((U”)) , 21134(8)] N (0, min{%, p}), which ensures that

1 1
Ag® < Ba and C < 5B (2.29)
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With (2.29), one gets immediately from (2.28) that

g(pigq,v) <0

for all p € (1, p] and v > 0. Substituting the above inequality into (2.26) and (2.27), we get
(2.22). 0

3 Proof of Main Results

Now we have all necessary estimates to obtain weighted L”-estimates for u with some
p> %, which is a key step to derive the L”-estimate for u with p > N that finally leads to
the global boundedness of solutions.

3.1 The a Priori L?-Estimates
We first develop a weighted L”-norm of u.

Lemma 3.1 Let Q@ C RYN(2 < N < 4) be a smooth bounded domain. Assume that y (v)
and ¢ (v) satisfy hypotheses (Hy)-(H3). Let (u, v) be a solution to (1.1) in a maximal time
interval (0, Tiax). Then for any t € (0, Thax), there exist positive constants p > % as well as
q > 0 such that

/ ul(,t)v™(,1) < C forall t € (0, Tiax), (3.1
Q
where C > 0 is a constant independent of t.

Proof We begin with (2.22) and apply the Young inequality to get
g+ / uPv™

_ (q+1)_[ _p(q+1)]
(q + 1) u/’ p+1 p+1

q/ e L 0D, +1)”*'/U-[q-"—(n‘%”]x<f’+“
Q p+1 p Q

1 D\”?
=q/up+lv—q—l+—<q(p+ )) (q—l—l)p“/ o,
Q p+1 P Q

which together with (2.22) implies

i Mpl)iq—i-/ uPv=4 < ;(M
dt Q Q p+1

(3.2)

-P
) (q + 1)P+1 / vP™4 forall t € (0, Thax)-
Q

p
(3.3)
Therefore applying Lemma 2.4 with the fact (2.2), we get a constant C; > 0 such that
N
/ v (., 1) <C; forall t€(0,Thax) and 1<gg < . 34
Q N -2

Due to 2 < N <4, it follows that 2% € [2, oc]. Hence for any g > 0, one can choose
p > 2 but close to 2 such that

0<p—q=qo
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so that, employing the Young inequality, we derive from (3.4) that

1 (q(p+1)

-p
FE p ) (g + P! / VP71 < C, forall t e (0, Tmax) (3.5)
Q

with some positive constant C,. For all ¢ € (0, Tyax), integrating (3.3) from O to 7, taking
into account Lemma 2.3, we get some positive constant C3 such that

/ uf (-, t)v79(, 1) < Cz forall t e (0, T, (3.6)
Q
which implies (3.1) directly. a

Lemma 3.2 Let @ C RY(2 < N < 4) be a smooth bounded domain. Then for any p > N
there is a constant Co(p) > 0 independent of t such that the solution of (1.1) satisfies

u(, DllLr@) < Co(p) forall t € (0, Thax). (3.7

Proof Firstly, according to Lemma 3.1, we can pick « > % and g € (0, %) such that

/ u v < C; forall re€ (0, Trax) (3.8)
Q

N
2
. Using (3.8) and Holder inequality, we find that

1 1 xk=ly
Iy 3 090 ok
ulo < ukp~90 v<Tlo
Q Q Q

K=l

K=ly
ECI% (fvi(i_q%> Tox (3.9)
Q

—C lvC, Dl ”1040
Lk~ Iy (Q)

holds with some C; > 0. Since gy < E and K > we may fix a number /) € (%, k) such

that [y < N(" "")

for all ¢ € (0, Tinax)-

N(k—q0)

Since, [y < N340

implies that

N ( 1 K — lo)
—(=- <1,
2\l lqo

so that, by (i) of Lemma 2.4 with (2.2), we have

sup lv(, DIl ey = Ca(L +sup lluC, )l 1o q) (3.10)
>0 L* o (@) >0

with some positive constant C,. Therefore, there is C3 > 0 fulfilling

q
sup (-, 1) 1o @ = Call + (sup uC- Dl o) * ] 3.11)
> >
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by using (3.9). Observing that % < 1 due to x > % > go, we derive that there exists a
constant 7; > 0 such that

sup [luC, Dl o @) < M- (3.12)

t>0

Now, collecting (2.2) and (3.12), we derive that for some ry > 1 satisfying ry > %, there is
a constant 7, > 0 such that

sup luC, )l o @) < n2. (3.13)

t>0

Notice that

N . ..
Nj‘:() > N due to rg > % Then resorting to the variation-of-constants formula

for v and LP-L4 estimates for the heat semigroup again, we derive that for 6 € (N, 1\1,\]_'20 ),
there exist a positive constant C4 such that

V0 ) oo
t
dA—1 —s)(dA-1
< Ve Ay oy + [ Ve 45D ) o s

1_N 1 1
—1-3E-b re—s
< Call Vol + Ca | (14 =5)727 270 7)™ 1 u(, 5) || ooy ds
0

! 11

N
< C4l Vol (@) + Cama / (4@ —s) 2 20 e h1t=9gs,
0

(3.14)

where A; > 0 denotes the first nonzero eigenvalue of —A in 2 under Neumann boundary
conditions. With the facts vy € W"*() and

V-G -0y ae—s) = =Y GE-Dy s
A+ —s5) 220 e MU=dg < (145 272078 ™15 < 400,
0
we find a constant C5 > 0 such that

/ |Vol? < Cs forall ¢ (0, Tna) (3.15)
Q

by (3.14), where 6 € (N, Nrg ). Next, for any p > 6, taking v”~! as a test function for the

—r

second equation of (1.1) and using the Holder inequality and (3.13) yields that

1d
- p -1 p72v 2 f P
S Ve + (P )/Qv Vol + | v

= [ !
Q

i ro—1
< (/ w‘o)ro (/ vror(ll(P—l)) 0 (3.16)
e Q
ro—1

) _ rg
< (/ -1 ”)  forall 1€ (0, Tnay),
Q

where 7, is the same as (3.13). Now, due to (2.3), in light of the Gagliardo—Nirenberg in-
equality and Young inequality, we derive that there exist positive constants C¢ and C; such
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that

ro—1

2(p—1)
(-n\ " 2
n2 </ Uro ! > =mlv2| 2‘:0(;;71)
Q —

L peo=D @ 2(P 1 2([7*])
L2 2p —2p1 4
< Ce( IVVZ |5 ||U2|| 2 +lvzl S
L@ 7@ L7 (©

< c7(||Vv' ARy @17

LZ(Q)
_ 4 - 2
= p ”v ||L2(Q) +C8

=(p— 1)/ VP2 Vo2 + Cg forall 1 € (0, Tnay),
Q

where

Np _ NpGo=D
2 2rp(p—1)

P11 = N N
-3+

subject to the fact that p < 1 by rg > % Inserting (3.17) into (3.16), we get a positive
constant Cg such that

dt/v” /v”< Cy forall r e (0, Thax), (3.18)
p

which entails by the Gronwall inequality that
[ vP(-, 1) <Cyp forall 1t € (0, Tay) and p > 6. (3.19)
Q

In view of 8 > N, by the Sobolev embedding theorem along with (3.15) and (3.19), we can
find a constant C;; > O such that

v, O llpe@) < Ci forall t € (0, Tiax)- (3.20)
This along with the hypotheses (H;)-(H,) gives us positive constants C;, and C;3 such that
Cia<y(),¢p() < Cp3 forall 1€ (0, Ty). (3.21)

Next, we multiply the first equation of (1.1) by u?~'(p > N + 1) and integrate the resulting
equation by parts to obtain some positive constants C14 and Cys so that

d
—Enunimmcw—1>/u"*2|wff clsfu”wmz forall £ € (0, T
Q Q

(3.22)
by using the Young inequality and (3.21). Next we estimate the term on the right hand side
of (3.22). In fact, with the Holder inequality, one has

CIS/uP|VU|2§C15 (/M" 1) </ |VU|29>
Q (3.23)

SC16||142|| 20
Le-T(@
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where o = % and 0 is the same as (3.15). In view of p > N + 1, we have

1 0 N
<.
p _o—-1 N-=2

Furthermore an application of the Gagliardo-Nirenberg inequality along with Lemma 2.5
yields some positive constants Cj7 and Cyg such that

22 ) 212-2 2
Colu I 5, = CoIVufI5g ¥ 175 + i )

Lo-T (@) P L7 ) (3.24)
L2120
= Ci(IVuz |5 + 1,
where
Np—N + %
P=S NN

Due to o > N /2, one can check 0 < p, < 1. Noticing [|Vu 5 ||L2(Q) ; fQ uP~2|Vul|?, then

the Young inequality applied to ||Vu 7% L2 @ yields a constant Cj9 > 0 so that we have from
(3.23)-(3.24) that Cys [ u?|Vv|* < S4L=D [ 4P=2|Vu|? + C)y, which applied to (3.22)

leads to

1d C 1
—EHMHZP(Q)‘*‘L)/ PZ2Vul*> < Cyo forall 1 € (0, Thay)- (3.25)

Np

On the other hand, if we define p; = : 2 i < 1 with p > 1. Then by (2.2), we can find

==

positive constants Cy, Co1, Ca resultmg from the Gagliardo-Nirenberg inequality and the
Young inequality such that

= lut)?,
/;2 L2

< Coo([IVue? |75, llu fnz 2 +||uz|| )
< C2](||v“7||2L€3(Q) +1) (3.26)

Culp—1) 4
< = xSV g, +

L(p 1)/ P2|Vul? 4 Cop.

Inserting (3.26) into (3.25), we get a positive constant C»3 such that

1d
=l + / WP < Cyy forall 1€ (0, Ty, (3.27)
Q

which upon an use of Gronwall’s inequality yields (3.7) and hence completes the proof. [

3.2 Proof of Theorem 1.1

To prove Theorem 1.1, from the local existence theorem with extension criterion in Lemma
2.1, it suffices to show that there is a constant C > 0 independent of ¢ such that

u(, Dlle@ + IV, Do < C forallz € (0, Tiax). (3.28)
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Indeed with Lemma 3.2, employing the standard estimate for Neumann semigroup (see [21,
Lemma 1]), one can find a positive constant ¢; independent of 7 such that

lv(, D llwieog <ci forall ¢ € (0, Thax)-

Since y (v) has a positive lower bound, see (3.21), one can employ the Moser iteration (see
the proof of [35, Lemma 3.5]) to get a constant ¢; > O such that [Ju(-, )| zx@) < c2. We
hence get (3.28) and complete the proof.

3.3 Proof of Theorem 1.2

In the case of y (v) = ;’7(0, A > 0) with ¢ (v) = (@ — 1)y’ (v) for 0 < @ < 1, we can compute
that

_ dy (v) _ d
UOEIW Fd -y 0Dy 41— (Ll 4 g)

F):
+

where the hypothesis (H3) is equivalent to

inf F'(v) > % (3.29)

v=>0

Then we have two cases to proceed.
Case 1. If .(1 —«) — 1 > 0, namely A > ﬁ, we have from Lemma 1.1 that

d N
> —.
21— a2l ) 2

inf F (v) N¢>
in —
inf v)> 7

Case 2. If .(1 —a) — 1 <0, namely A < ﬁ, then we can check

Sup([x(l —ax) 1o +d> _,
v=>0 v +

and hence
1
inf F(v) = ———.
v=0 A1l —a)
Then the condition (3.29) becomes
1 N
_ > —.
Ml—a) 2

Combining the results in Case 1 and Case 2 along with Theorem 1.1 completes the proof
of Theorem 1.2.
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