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Abstract
In this paper, we consider the following Lotka–Volterra competition system with
dynamical resources and density-dependent diffusion

⎧
⎪⎨

⎪⎩

ut = �(d1(w)u) + u(a1w − b1u − c1v), x ∈ �, t > 0,

vt = �(d2(w)v) + v(a2w − b2u − c2v), x ∈ �, t > 0,

wt = �w − w(u + v) + μw(m(x) − w), x ∈ �, t > 0,

(∗)

in a bounded smooth domain � ⊂ R
2 with homogeneous Neumann boundary con-

ditions, where the parameters μ, ai , bi , ci (i = 1, 2) are positive constants, m(x) is
the prey’s resource, and the dispersal rate function di (w) satisfies the the following
hypothesis:

• di (w) ∈ C2([0,∞)), d ′
i (w) ≤ 0 on [0,∞) and d(w) > 0.

Whenm(x) is constant, we show that the system (*) with has a unique global classical
solution when the initial datum is in functional space W 1,p(�) with p > 2. By
constructing appropriate Lyapunov functionals and using LaSalle’s invariant principle,
we further prove that the solution of (*) converges to the co-existence steady state
exponentially or competitive exclusion steady state algebraically as time tends to
infinity in different parameter regimes. Our results reveal that once the resource w

has temporal dynamics, two competitors may coexist in the case of weak competition
regardless of their dispersal rates and initial values no matter whether there is explicit
dependence in dispersal or not. When the prey’s resource is spatially heterogeneous
(i.e. m(x) is non-constant), we use numerical simulations to demonstrate that the
striking phenomenon “slower diffuser always prevails” (cf. Dockery et al. in J Math
Biol 37(1):61–83, 1998; Lou in J Differ Equ 223(2):400–426, 2006) fails to appear if
the non-random dispersal strategy is employed by competing species (i.e. either d1(w)

or d2(w) is non-constant) while it still holds true if both d(w) and d2(w) are constant.
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1 Introduction

1.1 Background, motivation andmain results

The evolution of dispersal (either randomor non-random) is one of themost interesting
topics in theoretical studies of population dynamics and various mathematical models
have been studied to understand the process of dispersal and its ecological effect and
evolution [e.g., see the survey papers (Cosner 2014; Lou 2008) or book (Cantrell
and Cosner 2004)]. Among other things, we consider the following Lotka–Volterra
diffusion-competition model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = d1�u + u(a1 − b1u − c1v), in � × R
+,

vt = d2�v + v(a2 − b2u − c2v), in � × R
+,

∂νu = ∂νv = 0, on ∂� × R
+,

(u, v)(x, 0) = (u0, v0)(x), in �,

(1.1)

where u(x, t) and v(x, t) represent the population densities of two competing species
at location x ∈ � and at time t > 0, and the habitat � is a bounded smooth domain in
R
n(n ≥ 2); d1, d2 > 0 are the dispersal rates of u and v, respectively. ai , bi , ci (i =

1, 2) are all positive constants, where ai represent the intrinsic growth rates of species,
b1 and c2 are the death rates due to intra-specific competition and c1 and b2 are the
death rates due to inter-specific competition; � = ∑n

i=1
∂2

∂x2i
is the usual Laplace

operator and ∂ν = ∂
∂ν
, where ν denotes the outward unit normal vector on ∂�, is the

normal derivative on the boundary. The zero-flux boundary condition is prescribed to
warrant that no individual crosses the boundary of the habitat. The initial data u0 and
v0 are nonnegative and nontrivial (i.e., not identically zero). The system (1.1) has been
extensively studied in the literature (cf. Lou and Ni 1996; Brown 1980; Jüngel 2010
and references therein) among which the main concern was under what conditions
competition exclusion or co-existence will be achieved asymptotically. It turned out
that the asymptotic behavior of solutions to (1.1) essentially depends on the value of
the ecological reaction coefficients ai , bi , ci (i = 1, 2). For simplicity, the following
changes of variables and parameters:

ũ = b1u, ṽ = c2v, b = b2
b1

, c = c1
c2
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have been often used to simplify the system (1.1) to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = d1�u + u(a1 − u − cv), in � × R
+,

vt = d2�v + v(a2 − bu − v), in � × R
+,

∂νu = ∂νv = 0, on ∂� × R
+,

(u, v)(x, 0) = (u0, v0)(x), in �,

(1.2)

where tildes on u and v have been suppressed for convenience. Set

A = a1/a2, B = 1/b, C = c. (1.3)

Then the following results are well known (cf. Lou and Ni 1996):

• Weak competition C < A < B. The solution (u, v) of (1.2) converges to
(u∗, v∗) = ((a1−a2c)/(1−bc), (a2−ba1)/(1−bc)) uniformly (i.e., regardless of
initial values) as t → ∞, namely the coexistence steady state (u∗, v∗) is globally
asymptotically stable.

• Competitive exclusion A < min{B,C} (reps. A > max{B,C}). The solution
(u, v) of (1.2) converges to (0, a2) (reps. (a1, 0)) uniformly as t → ∞; that is,
one species dominates and the other becomes extinct (one species wipes out the
other).

• Strong competition B < A < C . The steady states (a1, 0) and (0, a2) are locally
stable, but (u∗, v∗) is unstable. If the domain is convex, no stable positive steady
states exist.

When the spatial heterogeneity of resource (or environment) is considered, say
ai = m(x) with m(x) being a non-constant function representing the local carry-
ing capacity of species, then the Lotka–Volterra competition-diffusion system in (1.1)
can be extended to the following one:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = d1�u + u(m(x) − u − cv), in � × R
+,

vt = d2�v + v(m(x) − bu − v), in � × R
+,

∂νu = ∂νv = 0, on ∂� × R
+,

(u, v)(x, 0) = (u0, v0)(x), in �.

(1.4)

The most prominent feature of (1.4), in contrast to (1.1), is perhaps the so-called
“slower diffuser wins” phenomenon.

With g(x) ∈ Cα(�)(0 < α < 1) with
∫

�
gdx ≥ 0 and g 
≡ 0, we denote by θd,g

the unique positive solution of

d�θ + θ(g(x) − θ) = 0 in �, ∂νθ = 0 on ∂� (1.5)

where the proof of existence and uniqueness of solutions to (1.5) was given in
Cantrell and Cosner (2004). The result of Dockery et al. (1998) asserts that if
m(x) ∈ Cα(�)(0 < α < 1), then every solution (u, v) of (1.4) with b = c = 1
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7 Page 4 of 37 Z.-A. Wang, J. Xu

converges to (θd1,m, 0) as t → ∞when d1 < d2. Simply speaking, the slower diffuser
wipes out its fast competitor regardless of the initial value. When 0 < b, c < 1 (weak
competition), it was further proved by Lou (2006) that for any b ∈ (1/E(m), 1) there
exists a c̄ > 0 such that if c ∈ (c̄, 1), then (θd1,m, 0) is globally asymptotically stable
for some 0 < d1 < d2, where E(m) = supd>0 θd,m/m with f̄ = 1

|�|
∫

�
f dx . This

remarkable result implies that co-existence may be no longer possible even in the case
of weak competition 0 < b, c < 1, which is very different from constant m(x). The
results are further completed in Lam and Ni (2012). It was also conjectured that the
same results should for any c ∈ (0, 1). This conjecture is confirmed in an important
work of He and Ni (2017). In fact, a complete dynamics for bc ≤ 1 including the case
b = c = 1 with different heterogeneity of resources for different competing species
was obtained in a series of important papers by He and Ni (2016a, b) and He and Ni
(2017).

Both the system (1.1) and (1.4) do not take into account the non-random dispersion
of species towards the resource (like food, light). Recently the following reaction-
diffusion-advection model

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = ∇ · (d1∇u − χ1u∇m) + u(m(x) − u − cv), in � × R
+,

vt = ∇ · (d2∇v − χ2v∇m) + v(m(x) − bu − v), in � × R
+,

d1∂νu − χ1u∂νm = d2∂νv − χ2u∂νm = 0, on ∂� × R
+,

(u, v)(x, 0) = (u0, v0)(x), in �,

(1.6)

has been considered by adding the advection (directed movement) of species along the
gradient of the resource. Due to its complexity, the model (1.6) still remains poorly
understood and not many results are available. We refer to Cantrell et al. (2006),
Cantrell et al. (2007), Chen et al. (2008), Averill et al. (2017) for some interesting
results obtained on (1.6) and Cosner (2014), Lou (2008) for open questions imposed.

We note that all these relevant works mentioned above have assumed the (envi-
ronmental) carrying capacity/recource m(x) is either constant or spatially variable.
However the resource often changes in time (like seasonal changes or temporarily
varying population in the predator-prey system), and hence it would be of interest to
consider the dynamics in a spatio-temporal heterogenous environment. It seems few
research projects have been conducted in this direction. Given heterogeneous time-
periodic resource m(x, t), it is shown in Hutson et al. (2001) that the system (1.4)
with b = c = 1 exhibits quite different dynamics, where the competing species may
coexist at different dispersal rates and even faster diffuser may prevail under suitable
choices of d1, d2 and m. The traveling wave solutions (see Zhao and Ruan 2011; Bao
and Wang 2013) and the free boundary problem (e.g., see Chen et al. 2016; Wang and
Zhang 2016 and references therein) of (1.4) with heterogenous time-periodic envi-
ronment have been investigated. Though time-dependent resources are considered in
these works, they are still given as functions of time without temporal dynamics.
By considering the feedback of resources from exploitations by consumers, Zhang
et al. (2017) extend, based on their experimental findings, the scalar logistic mod-
els to consumer-resource reaction-diffusion models to include exploitable renewed
resources with temporal dynamics. The experiment of Zhang et al. (2017) not only
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verifies some hypotheses on the single logistic model but also finds that homogeneous
resources can support larger population than heterogeneous resources—a surprising
result. The model in Zhang et al. (2017) was further analytically studied in a recent
work (He et al. 2019).

In this paper, we shall consider another scenario where the resource has temporal
dynamics. To be specific, we consider the competition of two species in a predator-prey
system, where the prey as a resource has spatial movement, intrinsic birth-death kinet-
ics and loss due to predation. Furthermore in the realistic predator-prey system, the
dispersal rates of predators should depend on the distribution of the prey (see Kareiva
and Odell 1987). Taking into account these two important effects in the competition
system, we consider the following Lotka–Volterra competition model with dynamical
resource and density-dependent diffusion (i.e. non-random dispersion):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = �(d1(w)u) + u(a1w − u − cv), x ∈ �, t > 0,

vt = �(d2(w)v) + v(a2w − bu − v), x ∈ �, t > 0,

wt = �w − w(u + v) + μw(1 − w), x ∈ �, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂�, t > 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈ �,

(1.7)

where u(x, t) and v(x, t) denote the densities of two competing species (e.g. preda-
tors), and w(x, t) denotes the density of predators’ resources (e.g. the prey). The third
equation of (1.7) describes the dynamics of the resource, which for instance can be
regarded as the prey in the predator-prey system. di (w)(i = 1, 2) denotes the resource-
dependent dispersal rate of species with a monotone property: d ′

i (w) ≤ 0, to comply
with the fact that the predators will reduce its motility for exploitation when encoun-
tering the prey observed in the field experiment of Kareiva and Odell (1987). This
dispersal mechanism is called “density-suppressed motility” and was also found in
the bacterial movement (cf. Fu et al. 2012; Jin et al. 2018). Common examples include
di (w) = 1/(1 + w)λi (algebraic decay) or di (w) = e−λiw (exponential decay) with
λi > 0. By expanding the Laplace operator, it is easy to see that the nonlinear diffusion
in (1.7) actually consists of both diffusive and advective flux

�(d1(w)u) = ∇ · (d1(w)∇u − uχ1(w)∇w),

�(d2(w)v) = ∇ · (d2(w)∇v − vχ2(w)∇w),
(1.8)

with χi (w) = −d ′
i (w) ≥ 0(i = 1, 2). Hence the system (1.7) can be regarded as a

generalization of the reaction-diffusion-advection model (1.6).
Throughout the paper, we shall assume the motility function di (w) (i = 1; 2)

satisfies the following hypothesis:

(H1): di (w) ∈ C2([0,∞)), d ′
i (w) ≤ 0 on [0,∞) and d(w) > 0.

Due to the presence of the density dependent diffusion coefficient, the system
(1.7) is a cross diffusion system and the maximum principle is no longer applicable.
Thus the boundedness of solutions (prevention of overcrowding of population) is
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not an obvious result and needs to be justified. Hence the first goal of this paper
is to prove that the system (1.7) has a unique global classical solution uniformly
bounded in time. We shall prove our results by the method of energy estimates and
Moser iteration. The second goal of this paper is to identify conditions under which
coexistence or exclusion steady state will be asymptotically achieved. Then we finally
give some biological interpretations for our results. We shall prove our results based
on a parabolic approach—constructing Lyapunoval functions, which is different from
elliptic approaches used in the literature (cf. He and Ni 2016a; Lam and Ni 2012; Lou
2006). Our first result is the global existence of solutions with uniform-in-time bound.

Theorem 1.1 Let� ⊂ R
2 be a bounded domainwith smooth boundary and the hypoth-

esis (H1) hold. Assume (u0, v0, w0) ∈ [W 1,p(�)]3 with p > 2 and u0, v0, w0 ≥
0( 
≡ 0). Then there exists a global classical solution (u, v, w) ∈ [C0([0,∞) ×
�̄) ∩ C2,1((0,∞) × �̄)]3 solving the system (1.7). Moreover, the solution satisfies
u, v, w > 0 for all t > 0 and

‖u(·, t)‖L∞(�) + ‖v(·, t)‖L∞(�) + ‖w(·, t)‖W 1,∞(�) ≤ C for all t > 0, (1.9)

where C > 0 is a constant independent of t . In particular, we have 0 < w ≤ K, where

K := max{1, ‖w0‖L∞}. (1.10)

Our secondmain result is concernedwith the asymptotic behavior of solutions to (1.7),
which is connected to the homogeneous steady state (us, vs, ws) of (1.7) satisfying
the following equations

⎧
⎪⎨

⎪⎩

u(a1w − u − cv) = 0,

v(a2w − bu − v) = 0,

w(μw − μ + u + v) = 0.

(1.11)

Beyond two trivial solutions (extinction steady state (0, 0, 0) and resource-only steady
state (0, 0, 1)), we see that (1.11) has some other non-trivial solutions depending on the
value of parameters ai , b, c. They can be classified into the following three categories
similar to the classical Lotka–Volterra competition system

Case 1 : c <
a1
a2

< 1/b(weak competition);

Case 2 : a1
a2

< min{1/b, c}(v has advantage over u);

Case 3 : a1
a2

> max{1/b, c}(u has advantage over v).

(1.12)

For convenience, we denote

L := μ(bc − 1) + a1(b − 1) + a2(c − 1).
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One can check that L < 0 in Case 1 (c < a1
a2

< 1
b ). Then the corresponding homoge-

neous steady state (us, vs, ws) can be solved as follows:

(us, vs, ws) =
{

(u∗
1, v

∗
1 , w

∗
1) or (0, v∗

2 , w
∗
2) or (u∗

3, 0, w
∗
3), in Case 1,

(0, v∗
2 , w

∗
2) or (u∗

3, 0, w
∗
3), in Case 2 and Case 3,

where
(u∗

1, v
∗
1 , w

∗
1) := μ

L
(a2c − a1, a1b − a2, bc − 1) (1.13)

and

(v∗
2 , w

∗
2) :=

(
μa2

a2 + μ
,

μ

a2 + μ

)

, (u∗
3, w

∗
3) :=

(
μa1

a1 + μ
,

μ

a1 + μ

)

. (1.14)

To state our main results on the large time behavior of solutions, we introduce some
further notations. Denote

Ki := max
0≤w≤K

|d ′
i (w)|2
di (w)

, i = 1, 2, (1.15)

where K is defined in (1.10). Let

⎧
⎪⎨

⎪⎩

δ1 = (a1b + a2c)2 − 4a1a2, in Case 1,

δ2 = a1(b + 1)2 − 4a2, in Case 2,

δ3 = a2(c + 1)2 − 4a1, in Case 3,

(1.16)

and ⎧
⎪⎪⎨

⎪⎪⎩

μ∗
1 = c(a1+a2−a1b)2+b(a1+a2−a2c)2

4bc(a1+a2)(1−bc) , in Case 1,

μ∗
2 = (a1(b+1)−2a2)2

4(a2−a1b)
, in Case 2,

μ∗
3 = (a2(c+1)−2a1)2

4(a1−a2c)
, in Case 3.

(1.17)

Then our second result is stated in the follow theorem.

Theorem 1.2 Let the assumptions in Theorem 1.1 hold. Then the solution (u, v, w) of
(1.7) obtained in Theorem 1.1 has the following convergence properties.

(1) Assume c < a1
a2

< 1
b (Case 1) and K1 + K2 ≤ 4 (“=” holds if ‖w0‖L∞ ≤ 1). If

δ1 < 0 or δ1 ≥ 0 and μ > μ∗
1, then

(u, v, w) → (u∗
1, v

∗
1 , w

∗
1) exponentially as t → ∞.

(2) Suppose a1
a2

< min{ 1b , c} (Case 2) and K2 ≤ 4 (“=” holds if ‖w0‖L∞ ≤ 1 ). If
δ2 < 0 or δ2 ≥ 0 and μ > μ∗

2, then

(u, v, w) → (0, v∗
2 , w

∗
2) algebraically as t → ∞.
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(3) Assume a1
a2

> max{ 1b , c} (Case 3) and K1 ≤ 4 (“=” holds if ‖w0‖L∞ ≤ 1 ). If
δ3 < 0 or δ3 ≥ 0 and μ > μ∗

3, then

(u, v, w) → (u∗
3, 0, w

∗
3) algebraically as t → ∞.

1.2 Implications of results

This paper investigates the asymptotic dynamics of a diffusive Lotka–Volterra com-
petition system, where the resource has spatio-temporal dynamics and diffusion of
competitors depends on the resource distribution. Below we shall discuss the applica-
tions of our results and compare them with existing findings. It is well known that the
model (1.4) will exhibit the striking phenomenon “slower diffuser always prevails”
when the resource is spatially heterogeneous but given. Therefore the first issue we
are concerned with is whether the same phenomenon still exists when the resource w

has temporal dynamics such as in the system (1.7). To this end, we consider (1.7) with
a special case di (w) = Di = constant (i = 1, 2) and a1 = a2 = a:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = D1�u + u(aw − u − cv), x ∈ �, t > 0,

vt = D2�v + v(aw − bu − v), x ∈ �, t > 0,

wt = �w − w(u + v) + μw(1 − w), x ∈ �, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂�, t > 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈ �.

(1.18)

The system (1.18) is directly comparable with the Lotka–Volterra competition-
diffusion system (1.4)where the spatially heterogenous resourcem(x) is givenwithout
temporal dynamics. It can be easily checked that δi < 0 (i = 1, 2, 3) in each case of
(1.12) if a1 = a2. Hence Theorem 1.2 applied to (1.18) yields the following results.

Corollary 1.3 Let (u, v, w) be the unique classical solution of (1.18) with a1 = a2
obtained in Theorem 1.1. Then the following results hold.

(1) If c < 1 < 1
b (Case 1), then (u, v, w) → (u∗

1, v
∗
1 , w

∗
1) exponentially as t → ∞.

(2) If 1 < min{ 1b , c} (Case 2), then
(u, v, w) → (0, v∗

2 , w
∗
2) algebraically as t → ∞.

(3) If 1 > max{ 1b , c} (Case 3), then
(u, v, w) → (u∗

3, 0, w
∗
3) algebraically as t → ∞.

The prominent phenomenon derived from the system (1.4) is that “slower diffuser
always wipes out faster diffuser” even for the weak competition (Case 1). However the
results in Corollary 1.3 show that this phenomenon no longer exists if the resource has
temporal dynamics and co-existence may be achieved in the case of weak competition
regardless of the size of Di (i = 1, 2) and initial values. In this situation, the asymptotic
dynamics of (1.18) is more like the one for the classical Lotka–Volterra diffusion-
competition model (1.1) with spatially homogeneous resources.

Next we consider the density-dependent motility function di (w) and interpret the
meaning of Ki defined in (1.15). To see this, we consider following examples under
the hypothesis (H1):
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di (w) = 1

(1 + w)λi
or di (w) = exp(−λiw), λi > 0. (1.19)

Then it is easy to verify that Ki = max0≤w≤K
|d ′
i (w)|2
di (w)

= |λi |2. This means that Ki is
a measurement of the decay rates of di (w) with respect to w. In terms of the decay
rate λi , we have the following results as a consequence of Theorem 1.2.

Corollary 1.4 Let di (w) (i = 1, 2) be given in (1.19), and (u, v, w) be the unique
classical solution of (1.7) with a1 = a2 obtained in Theorem 1.1. Then the following
results hold.

(1) If c < 1 < 1
b (Case 1) and λ21 + λ22 < 4, then

(u, v, w) → (u∗
1, v

∗
1 , w

∗
1) exponentially as t → ∞.

(2) If 1 < min{ 1b , c} (Case 2) and λ2 < 2, then

(u, v, w) → (0, v∗
2 , w

∗
2) algebraically as t → ∞.

(3) If 1 > max{ 1b , c} (Case 3) and λ1 < 2, then

(u, v, w) → (u∗
3, 0, w

∗
3) algebraically as t → ∞.

The results in Corollary 1.4 indicate that even two non-randomly dispersing competi-
tors have different dispersal rates (i.e. λ1 
= λ2), which is comparable with the case
d1 
= d2 in the system (1.4), the co-existence steady state can be achieved in the case
of weak competition if the dispersion decay rates of both competitors are not large
(i.e. λ21 + λ22 < 4) no matter whether they are equal or not. This again shows that
the phenomenon “slower diffuser always prevails” does not exist any more. In the
original model (1.4) deriving the prominent phenomenon “slower diffuser always pre-
vails”, the given resource is spatially heterogenous. Hence a natural question is what
the asymptotic dynamics will be if the prey’s resource (resource supplied to the prey)
is spatially heterogenous given that the prey has temporal dynamics, namely replacing
the third equation of (1.7) by

wt = �w − w(u + v) + μw(m(x) − w)

wherem(x) represents the prey’s resource which is non-constant. The analytical study
of this question will be very delicate and has gone beyond the scope of this paper, but
we shall numerically explore it in the last section. It turns out the phenomenon “slower
diffuser always prevails” will fail to appear when the non-random dispersal strategy
is employed by the competing species even if the prey’s resource m(x) is spatially
heterogeneous, whereas it still holds if the species use the random dispersion only (see
simulations and discussions in Sect. 4).

The rest of this paper is organized as follows. In Sect. 2, we shall address the global
boundedness of solutions to (1.7) and show Theorem 1.1. In Sect. 3, we construct
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Lyapunov functionals to prove the asymptotic behavior of solutions asserted in The-
orem 1.2. In Sect. 4, we shall make a summary of our results, show numerical results
on the heterogenous prey’s resources and discuss their biological implications.

2 Boundedness of solutions (Proof of Theorem 1.1)

Theorem 1.1 is a consequence of the local existence theorem (see Lemma 2.1) and
the a priori estimates (see Lemma 2.6 and Lemma 2.7), which shall be detailed in the
subsequent subsections.

2.1 Preliminaries

Before proceeding, we introduce some notations used throughout the paper.
Notation. For simplicity, we replace

∫ t
0

∫

�
f (·, s)dxds and ∫

�
f (·, t)dx by ∫ t

0

∫

�
f

and
∫

�
f , respectively. In addition, we denote ‖ · ‖L p(�) = ‖ · ‖L p for short, and Ci

(i = 1, 2, 3, · · · ) stand for generic constants which may alter from line to line.
First, we establish the local existence of solutions to the system (1.7) by the abstract

theory of quasilinear parabolic systems established in Amann (1993).

Lemma 2.1 (Local existence) Let � ⊂ R
2 be a bounded domain with smooth bound-

ary. Assume that the parametersμ, a1, a2, b, c are positive constants and the hypothesis
(H1) holds. Suppose that (u0, v0, w0) ∈ [W 1,p(�)]3 with u0, v0, w0 ≥ 0( 
≡ 0) and
p > 2. Then there exists a constant Tmax ∈ (0,∞] such that system (1.7) has a unique
classical solution (u, v, w) fulfilling u, v, w > 0 for all t > 0 and

(u, v, w) ∈ [C0(�̄ × [0, Tmax )) ∩ C2,1(�̄ × (0, Tmax ))]3.

Moreover if Tmax < ∞, then

‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t)‖W 1,∞ → ∞ as t ↗ Tmax .

Proof Denote z = (u, v, w). Then the system (1.7) can be written as

⎧
⎪⎨

⎪⎩

zt = ∇ · (P(z)∇z) + Q(z), x ∈ �, t > 0,
∂z
∂ν

= 0, x ∈ ∂�, t > 0,

z(·, 0) = (u0, v0, w0), x ∈ �,

(2.1)

where

P(z) =
⎛

⎝
d1(w) 0 ud ′

1(w)

0 d2(w) vd ′
2(w)

0 0 1

⎞

⎠ , Q(z) =
⎛

⎝
u(a1w − u − cv)

v(a2w − bu − v)

−w(u + v) + μw(1 − w)

⎞

⎠ .

Since di (w) > 0 (i = 1, 2), the matrix P(z) is positive definite for the given initial
data, which asserts that the system (2.1) is normally parabolic. Then the application of
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(Amann 1990, Theorem 7.3) yields a Tmax > 0 such that system (2.1) admits a unique
solution (u, v, w) ∈ [C0(�̄ × [0, Tmax )) ∩C2,1(�̄ × (0, Tmax ))]3. The nonnegativity
of (u, v, w) follows from the maximum principle. To be precise, we rewrite the first
equation of system (1.7) as follows

⎧
⎪⎨

⎪⎩

ut − d1(w)�u + q1(x, t)∇w · ∇u + q2(x, t)u = 0, x ∈ �, t ∈ (0, Tmax ),
∂u
∂ν

= 0, x ∈ ∂�, t ∈ (0, Tmax ),

u(x, 0) = u0 ≥ 0, x ∈ �,

(2.2)
where q1(x, t) = −2d ′

1(w) and q2(x, t) = −d ′′
1 (w)|∇w|2 − d ′

1(w)�w − (a1w − u −
cv). Then one applies the maximum principle to system (2.2) and gets that u(x, t) ≥ 0
for all (x, t) ∈ � × (0, Tmax ). Since u0 
≡ 0, then u > 0 holds by strong maximum
principle. Similarly, we can derive that v,w > 0 for all (x, t) ∈ � × (0, Tmax ).
Moreover, we see that P(z) is an upper triangular matrix, which along with (Amann
1989, Theorem 5.2) yields the blowup criterion as claimed. Consequently, the proof
is finished. ��
Lemma 2.2 (Kowalczyk and Szymańska 2008) Assume that � ⊂ R

n is a bounded
domain with smooth boundary and T ∈ (0,∞]. Suppose that y(x, t) ∈ C0(�̄ ×
[0, T )) ∩ C2,1(�̄ × (0, T )) satisfies

{
yt = �y − y + h(x, t), x ∈ �, t ∈ (0, T ),
∂ y
∂ν

= 0, x ∈ ∂�, t ∈ (0, T ),

where h(x, t) ∈ L∞((0, T ); L p(�)). Then there exists a constant C > 0 such that

‖y(·, t)‖W 1,q ≤ C

with

q ∈
{

[1, np
n−p ), if p ≤ n,

[1,∞], if p > n.

Lemma 2.3 (Jin and Wang 2017) Let the assumptions in Lemma 2.1 hold. Then the
solution (u, v, w) of system (1.7) satisfies that

‖w(·, t)‖L∞ ≤ K (2.3)

for all t > 0, where K is defined by (1.10). Moreover

lim sup
t→∞

w(·, t) ≤ 1 for all x ∈ �̄. (2.4)

Lemma 2.4 Let (u, v, w) be a solution of (1.7) under the assumptions in Lemma 2.1.
Then it follows that ∫

�

|∇w(·, t)|2 ≤ C (2.5)
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and ∫ t+τ

t

∫

�

(u2 + v2)(·, s) ≤ C and
∫ t+τ

t

∫

�

|�w(·, s)|2 ≤ C, (2.6)

where τ = min{1, Tmax
2 } and C > 0 is a constant independent of t .

Proof Integrating the first equation of (1.7) over � and using Young’s inequality with
(2.3), we have

d

dt

∫

�

u +
∫

�

u = a1

∫

�

uw −
∫

�

u2 − c
∫

�

uv +
∫

�

u

≤ −1

2

∫

�

u2 + (a1K + 1)2

2
|�|

which gives
d

dt

∫

�

u +
∫

�

u + 1

2

∫

�

u2 ≤ C1, (2.7)

where C1 = (a1K+1)2

2 |�|. Similarly from the second equation of system (1.7), we
derive that

d

dt

∫

�

v +
∫

�

v + 1

2

∫

�

v2 ≤ C2 (2.8)

with C2 = (a2K+1)2

2 |�|.
Multiplying the third equation of (1.7) by−�w, using (2.3) andYoung’s inequality,

one derives that

1

2

d

dt

∫

�

|∇w|2 + 1

2

∫

�

|∇w|2 +
∫

�

|�w|2

≤ K
∫

�

(u + v)|�w| + μK (K + 1)
∫

�

|�w| − 1

2

∫

�

w�w

≤ 3

4

∫

�

|�w|2 + K 2
∫

�

u2 + K 2
∫

�

v2 + C3

with C3 = K 2
(
μ(1 + K ) + 1

2

)2 |�|. This yields that
d

dt

∫

�

|∇w|2 +
∫

�

|∇w|2 + 1

2

∫

�

|�w|2 ≤ 2K 2
∫

�

(u2 + v2) + 2C3. (2.9)

Multiplying (2.7) and (2.8) by 6K 2 and combining them with (2.9), we end up with

φ′ + φ + K 2
∫

�

(u2 + v2) + 1

2

∫

�

|�w|2 ≤ C4, (2.10)

where φ(t) = 6K 2
∫

�
u + 6K 2

∫

�
v + ∫

�
|∇w|2 and C4 = 6C1K 2 + 6C2K 2 + 2C3.

Then the application of Grönwall inequality to (2.10) gives

φ(t) ≤ φ(0) + C4, (2.11)
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which yields (2.5). Furthermore, integrating (2.10) over (t, t + τ) with τ =
min{1, Tmax

2 } and using (2.11), we have that

K 2
∫ t+τ

t

∫

�

(u2 + v2) + 1

2

∫ t+τ

t

∫

�

|�w|2 ≤ φ(t) + C4τ

≤ φ(0) + C4(1 + τ),

which gives (2.6). Hence the proof of Lemma 2.4 is completed. ��

2.2 A priori estimates

Motivated by an idea of Jin et al. (2018), we will derive the boundedness of ‖u(·, t)‖L2

and‖v(·, t)‖L2 with the help of (2.6). Furthermore,we derive the uniformboundedness
of the solution.

Lemma 2.5 Assuming the conditions of Lemma 2.1 hold, the solution of (1.7) satisfies

‖u(·, t)‖L2 + ‖v(·, t)‖L2 + ‖w(·, t)‖W 1,4 ≤ C for all t ∈ (0, Tmax ) (2.12)

where C > 0 is a constant of independent of t .

Proof Multiplying the first equation of system (1.7) by u and applying Young’s
inequality, we have

1

2

d

dt

∫

�

u2 +
∫

�

d1(w)

2
|∇u|2 ≤

∫

�

|d ′
1(w)|2

2d1(w)
u2|∇w|2 + a1K

∫

�

u2 −
∫

�

u3

≤ K1

2

(∫

�

u4
) 1

2
(∫

�

|∇w|4
) 1

2 − 1

2

∫

�

u3 + C1,

(2.13)

whereC1 = 16a31K
3

27 |�| andK1 is defined in (1.15). The Gagliardo-Nirenberg inequal-
ity in two dimensions (n = 2) yields that

‖u‖2L4 ≤ C2(‖∇u‖L2‖u‖L2 + ‖u‖2L2). (2.14)

On the other hand, when n = 2, applying (Jin et al. 2018, Lemma 2.5), we have

‖∇w‖2L4 ≤ C3(‖�w‖L2‖∇w‖L2 + ‖∇w‖2L2) ≤ C4(‖�w‖L2 + 1) (2.15)
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where (2.5) has been used. Then the combination of (2.14) and (2.15) gives that

K1

2

(∫

�

u4
) 1

2
(∫

�

|∇w|4
) 1

2

≤ K1C2C4

2
(‖∇u‖L2‖u‖L2‖�w‖L2 + ‖u‖2L2‖�w‖L2 + ‖∇u‖L2‖u‖L2 + ‖u‖2L2)

≤ d1(K )

2
‖∇u‖2L2 + C5‖u‖2L2‖�w‖2L2 + C5‖u‖2L2

(2.16)
withC5 = 1

d1(K )
[K1C2C4+d1(K )]2. Substituting (2.16) into (2.13) andusingYoung’s

inequality give that
d

dt
‖u‖2L2 − 2C5‖u‖2L2‖�w‖2L2 ≤ C6 (2.17)

for all t ∈ (0, Tmax ), where C6 = 2(C1 + 64C3
5

27 |�|). Recalling (2.6), one can find
t0 = t0(t) ∈ ((t − τ)+, t) for any t ∈ (0, Tmax ) such that

‖u(·, t0)‖2L2 ≤ C7 (2.18)

in both cases t ∈ (0, τ ) and t ≥ τ , where τ is defined in Lemma 2.4. By (2.6), there
exists a constant C8 > 0 such that

∫ t0+τ

t0

∫

�

|�w(·, s)|2 ≤ C8. (2.19)

With a notice of t0 < t ≤ t0 + τ ≤ t0 + 1, we integrate (2.17) over (t0, t) and use
(2.18)–(2.19) to derive that

‖u(·, t)‖2L2 ≤‖u(·, t0)‖2L2e
2C5

∫ t
t0

‖�w(·,s)‖2
L2

ds + C6

∫ t

t0
e2C5

∫ t
s ‖�w(·,ρ)‖2

L2
dρds

≤ (C7 + C6τ)e2C5C8

(2.20)
for all t ∈ (0, Tmax ). Treating v in the same way, we have

‖v(·, t)‖2L2 ≤ C9 (2.21)

for all t ∈ (0, Tmax ). Furthermore, we apply the parabolic regularity (see Lemma 2.2)
to the third equation of system (1.7) and obtain that ‖w(·, t)‖W 1,4 ≤ C9 which, together
with (2.20)–(2.21), yields (2.12). ��

With the boundedness of ‖u(·, t)‖L2 and ‖v(·, t)‖L2 in hand, we next derive the
uniform-in-time boundedness of the solution (u, v, w).

Lemma 2.6 Let the assumptions in Lemma 2.1 hold. Then the solution of (1.7) satisfies
for all t ∈ (0, Tmax ) that

‖w(·, t)‖W 1,∞ ≤ C, (2.22)

where C > 0 is a constant independent of t .
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Proof First with 0 < w ≤ K in (2.3) and hypothesis (H1), we have 0 < d1(K ) ≤
d1(w) and

|d ′
1(w)|2
d1(w)

≤ K1. Then one multiplies the first equation of system (1.7) by u2

and integrates the result over � to derive that

1

3

d

dt

∫

�

u3 + 2
∫

�

d1(w)u|∇u|2 +
∫

�

u4

≤ −2
∫

�

d ′
1(w)u2∇u · ∇w + a1

∫

�

u3w − c
∫

�

u3v

≤
∫

�

d1(w)u|∇u|2 + K1

(∫

�

u6
) 1

2
(∫

�

|∇w|4
) 1

2 + a1K
∫

�

u3. (2.23)

From Lemma 2.5, we have ‖∇w‖L4 ≤ C2 and ‖u 3
2 ‖2

L
4
3

= ‖u‖3
L2 ≤ C3. Then one

applies the Gagliardo-Nirenberg inequality and Young’s inequality to obtain that

4K1

(∫

�

u6
) 1

2
(∫

�

|∇w|4
) 1

2 ≤ 4K1C
2
2‖u

3
2 ‖2L4

≤ C4(‖∇u
3
2 ‖

4
3
L2‖u

3
2 ‖

2
3

L
4
3

+ ‖u 3
2 ‖2

L
4
3
)

≤ 2d1(K )

9
‖∇u

3
2 ‖2L2 + C5, (2.24)

where C5 = C3C4(1+ 3C2
4

d21 (K )
). Since 2d1(K )

9 ‖∇u
3
2 ‖2

L2 = d1(K )
2 ‖u 1

2 ∇u‖2
L2 , we substi-

tute (2.24) into (2.23) and employ Young’s inequality again to show that

1

3

d

dt

∫

�

u3 + 1

3

∫

�

u3 + d1(K )

2

∫

�

u|∇u|2 + 1

2

∫

�

u4 ≤ C6

with C6 = |�|
4 (27a41K

4 + 1
3 ) + C5, that is

d

dt

∫

�

u3 +
∫

�

u3 ≤ 3C6.

Therefore, the application of Grönwall inequality gives that

∫

�

u3 ≤
∫

�

u30 + 3C6. (2.25)

We conclude similarly that ‖v‖L3 ≤ C7, which, together with (2.25) and (2.3) gives
(2.22) directly by the parabolic regularity (cf. Lemma 2.2). ��
Lemma 2.7 Let the assumptions in Lemma 2.1 hold and assume that (u, v, w) is a
solution of (1.7). Then there exists a positive constant C independent of t such that

‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ ≤ C
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for all t ∈ (0, Tmax ).

Proof Since w ∈ L∞(�̄ × [0, Tmax )), there is a constant M > 0 such that |w| ≤ M
for all t ∈ [0, Tmax ). Multiplying the first equation of (1.7) by u p−1 with p ≥ 2 and
integrating the result by parts, we arrive at

1

p

d

dt

∫

�

u p + (p − 1)
∫

�

d1(w)u p−2|∇u|2

≤ (p − 1)
∫

�

|d ′
1(w)|u p−1|∇u||∇w| + a1

∫

�

wu p −
∫

�

u p(u + cv)

≤ (p − 1)

2

∫

�

d1(w)u p−2|∇u|2 + p − 1

2

∫

�

|d ′
1(w)|2
d1(w)

u p|∇w|2 + a1M
∫

�

u p.

(2.26)
Since 0 < w ∈ W 1,∞(�̄ × [0, Tmax ]), it follows from the hypothesis (H1) that there
exist constants Ci (i = 1, 2, 3) > 0 such that

C1 ≤ d1(w) ≤ C2, and
|d ′

1(w)|2
d1(w)

≤ C3. (2.27)

Then we have from (2.26) that

d

dt

∫

�

u p + p(p − 1)
∫

�

u p + C1 p(p − 1)

2

∫

�

u p−2|∇u|2 ≤ C4 p(p − 1)
∫

�

u p

(2.28)
withC4 = (C3

2 ‖∇w‖2L∞ +a1M+1). By the Gagliardo-Nirenberg inequality to
∫

�
u p,

we get

C4 p(p − 1)
∫

�

u p = C4 p(p − 1)‖u p
2 ‖2L2

≤ C5 p(p − 1)(‖∇u
p
2 ‖

2n
n+2

L2 ‖u p
2 ‖

4
n+2

L1 + ‖u p
2 ‖2L1)

≤ 2C1(p − 1)

p
‖∇u

p
2 ‖2L2 + C6 p(p − 1)(pn + 1)‖u p

2 ‖2L1 ,

where C6 = C5[( C5
2C1

)
n
2 + 1]. Noting that

∫

�
u p−2|∇u|2 = 4

p2
∫

�
|∇u

p
2 |2 and that

pn + 1 ≤ (p + 1)n , one derives that

d

dt

∫

�

u p + p(p − 1)
∫

�

u p ≤ C6 p(p − 1)(p + 1)n
(∫

�

u
p
2

)2

(2.29)

from (2.28). Furthermore, it follows from (2.29) that

∫

�

u p ≤
∫

�

u p
0 + C6(p + 1)n sup

0≤t≤Tmax

(∫

�

u
p
2

)2
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≤ ‖u0‖p
L∞|�| + C6(p + 1)n sup

0≤t≤Tmax

(∫

�

u
p
2

)2

. (2.30)

If sup0≤t≤Tmax

( ∫

�
u

p
2
) 2
p ≤ ‖u0‖L∞ , we have from (2.30) that

∫

�

u p ≤ (C6 + |�|)(p + 1)n‖u0‖p
L∞ .

While if sup0≤t≤Tmax

( ∫

�
u

p
2
) 2
p > ‖u0‖L∞ , it follows from (2.30) that

∫

�

u p ≤ (C6 + |�|)(p + 1)n sup
0≤t≤Tmax

(∫

�

u
p
2

)2

.

Denote

N (p) = max

{

‖u0‖L∞ , sup
0≤t≤Tmax

(∫

�

u p
) 1

p
}

and letC7 = C6+|�|. Now if sup0≤t≤Tmax

(∫

�
u p

) 1
p < ‖u0‖L∞ , we immediately have

that ‖u‖L∞ < C8 for some constant C8 > 0, which completes the proof. Otherwise it
follows from the inequality (2.30) that

N (p) ≤ C
1
p
7 (p + 1)

n
p N

( p

2

)
.

where w.l.o.g we have assumed C7 > 1. Taking p = 2 j , j = 1, 2, . . ., we have that

N (2 j ) ≤ C2− j

7 (1 + 2 j )n2
− j
N (2 j−1)

≤
j∏

k=1

C2−k

7 (1 + 2k)n2
−k
N (1)

≤
j∏

k=1

(1 + 2−k)n2
−k

(

C
∑ j

k=1 2
−k

7

) (
2
∑ j

k=1 kn2
−k

)
N (1)

≤ 23nC7N (1). (2.31)

Since u ∈ L1(� × [0, Tmax ]), we get N (1) ≤ C9. Sending j → ∞ in (2.31), one has

‖u‖L∞ ≤ 23nC7N (1) =: C10 for all t ∈ (0, Tmax ).

Performing the same procedure to v, we can get a constantC11 > 0 such that ‖u‖L∞ ≤
C11 for all t ∈ (0, Tmax ). This completes the proof. ��

123



7 Page 18 of 37 Z.-A. Wang, J. Xu

3 Stabilization and convergence rate

In this section, we will investigate the asymptotic behavior of solutions solving sys-
tem (1.7) and prove Theorem 1.2 based on Lyapunov functional method along with
LaSalle’s invariant principle. Though the ideas are in the same spirit as a previous
work Jin and Wang (2017) which deals with a two-component prey-taxis system with
constant diffusion, the analyses in our present work are muchmore technical and com-
plex since (1.7) is a three-component system with competition and density-dependent
diffusion. In particular, the technique of choosing appropriate coefficients to appear
in the Lyapunov functionals is quite different.

3.1 Stabilization

We aligned out analysis into three distinct scenarios.

Case 1 (weak competition): c < a1
a2

< 1
b . In this case, we can easily check

that u∗
1, v

∗
1 and w∗

1 defined by (1.13) are all positive. Then we consider the energy
functional

E1(t) := E1[u(t), v(t), w(t)] = ξ1

∫

�

(

u − u∗
1 − u∗

1 ln
u

u∗
1

)

+ η1

∫

�

(

v − v∗
1 − v∗

1 ln
v

v∗
1

)

+
∫

�

(

w − w∗
1 − w∗

1 ln
w

w∗
1

)

,

(3.1)
where ξ1, η1 > 0 are constants defined by

ξ1 =
{

1
a1

, δ1 < 0,
b

a1+a2
, δ1 ≥ 0,

and η1 =
{

1
a2

, δ1 < 0,
c

a1+a2
, δ1 ≥ 0,

(3.2)

where δ1 is defined in (1.16).

Lemma 3.1 Suppose that c < a1
a2

< 1
b and δ1, μ

∗
1 are defined by (1.16) and (1.17),

respectively. Let E1(t) be the energy functional defined in (3.1) with the solution
(u, v, w) obtained in Theorem 1.1. Then the following results hold.

(1) E1(t) ≥ 0 for all t > 0.
(2) Assume that

K1 + K2 ≤ 4 (“ = ” holds if ‖w0‖L∞ ≤ 1), (3.3)

whereK1,K2 are defined by (1.15). There exists two constants α1 > 0 and T1 > 0
such that

d

dt
E1(t) ≤ −α1F1(t) (3.4)

holds for all t > T1 if either δ1 < 0 or δ1 ≥ 0 and μ > μ∗
1, where

F1(t) =
∫

�

(u − u∗
1)

2 +
∫

�

(v − v∗
1)

2 +
∫

�

(w − w∗
1)

2. (3.5)
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Proof First, we show that E1(t) ≥ 0 for all t > 0. For convenience, we rewrite (3.1)
as

E1(t) = ξ1 I1(t) + η1 I2(t) + I3(t), (3.6)

where ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I1(t) = ∫

�

(
u − u∗

1 − u∗
1 ln

u
u∗
1

)
,

I2(t) = ∫

�

(
v − v∗

1 − v∗
1 ln

v
v∗
1

)
,

I3(t) = ∫

�

(
w − w∗

1 − w∗
1 ln

w
w∗
1

)
.

Let ϕ(z) := z − u∗
1 ln z for z > 0. Then it holds ϕ′(z) = 1 − u∗

1
z and ϕ′′(z) = u∗

1
z2
. By

the Taylor’s expansion, we can find a constant ξ > 0 between u and u∗
1 such that

u − u∗
1 − u∗

1 ln
u

u∗
1

= ϕ(u) − ϕ(u∗
1) = ϕ′′(ξ)

2
(u − u∗

1)
2 = u∗

1

2ξ2
(u − u∗

1)
2 ≥ 0,

which implies I1(t) ≥ 0. Similarly, we have that I2(t) ≥ 0 and I3(t) ≥ 0. Therefore,
by (3.6), E1(t) ≥ 0 for all t > 0 since ξ1, η1 > 0.

Next we show E1(t) satisfies (3.4) under certain conditions. To this aim, we use the
fact that a1w∗

1 − u∗
1 − cv∗

1 = 0 to estimate I1(t) as follows

d

dt
I1(t) =

∫

�

(

1 − u∗
1

u

)

ut

= −u∗
1

∫

�

d1(w)|∇u|2
u2

− u∗
1

∫

�

d ′
1(w)∇u · ∇w

u
+

∫

�

(u − u∗
1)(a1w − u − cv)

= −u∗
1

∫

�

d1(w)|∇u|2
u2

− u∗
1

∫

�

d ′
1(w)∇u · ∇w

u
− c

∫

�

(u − u∗
1)(v − v∗

1)

−
∫

�

(u − u∗
1)

2 + a1

∫

�

(u − u∗
1)(w − w∗

1).

(3.7)
Similarly, from the second and third equations of (1.7), we have

d

dt
I2(t) = −v∗

1

∫

�

d2(w)|∇v|2
v2

− v∗
1

∫

�

d ′
2(w)∇v · ∇w

v
− b

∫

�

(u − u∗
1)(v − v∗

1)

−
∫

�

(v − v∗
1)

2 + a2

∫

�

(v − v∗
1)(w − w∗

1)

(3.8)
and

d

dt
I3(t) = −w∗

1

∫

�

|∇w|2
w2 −

∫

�

(u − u∗
1)(w − w∗

1) −
∫

�

(v − v∗
1)(w − w∗

1)

− μ

∫

�

(w − w∗
1)

2,

(3.9)
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where we have used identities a2w∗
1 = bu∗

1+v∗
1 and u

∗
1+v∗

1 = μ(1−w∗
1). Combining

(3.7)–(3.9) with (3.6) gives that

d

dt
E1(t) = −

∫

�

X1A1X
T
1 −

∫

�

Y1B1Y
T
1 , (3.10)

where X1 = (u − u∗
1, v − v∗

1 , w − w∗
1) and Y1 = (∇u

u , ∇v
v

,∇w
)
and A1, B1 are

matrices denoted by

A1 :=
⎛

⎜
⎝

ξ1
cξ1+bη1

2
1−a1ξ1

2
cξ1+bη1

2 η1
1−a2η1

2
1−a1ξ1

2
1−a2η1

2 μ

⎞

⎟
⎠ , B1 :=

⎛

⎜
⎜
⎜
⎝

ξ1u∗
1d1(w) 0

ξ1u∗
1d

′
1(w)

2

0 η1v
∗
1d2(w)

η1v
∗
1d

′
2(w)

2

ξ1u∗
1d

′
1(w)

2
η1v

∗
1d

′
2(w)

2
w∗
1

w2

⎞

⎟
⎟
⎟
⎠

.

Next, we shall show the nonnegativity of the matrices A1 and B1. When δ1 < 0, we
let ξ1 = 1

a1
and η1 = 1

a2
, which implies 1− a1ξ1 = 0 and 1 − a2η1 = 0. This leads to

|A11| :=
∣
∣
∣
∣
∣

ξ1
cξ1+bη1

2
cξ1+bη1

2 η1

∣
∣
∣
∣
∣
= −δ1

4a21a
2
2

> 0 and |A1| = μ|A11| > 0.

When δ1 ≥ 0, we choose ξ1 = b
a1+a2

and η1 = c
a1+a2

. Then one can derive that

|A11| = bc(1 − bc)

(a1 + a2)2

and

|A1| = μ|A11| + 1

4(a1 + a2)3

[
2bc(a1 + a2 − a1b)(a1 − a2c + a2)

− c(a1 + a2 − a1b)
2 − b(a1 − a2c + a2)

2
]

> |A11|
(

μ − c(a1 + a2 − a1b)2 + b(a1 + a2 − a2c)2

4bc(a1 + a2)(1 − bc)

)

.

Therefore under the conditions c < a1
a2

< 1
b andμ > μ∗

1 defined in (1.17), one has that|A11| > 0 and |A1| > 0. Based on the Sylvester’s criterion, the matrix A1 is positive
definite and we can find a constant α1 > 0 such that

X1(x, t)A1X
T
1 (x, t) ≥ α1|X1|2, if δ1 < 0 or δ1 ≥ 0 and μ > μ∗

1. (3.11)

For B1, first we see ξ1u∗
1d1(w) > 0 and hence

∣
∣
∣
∣
ξ1u∗

1d1(w) 0
0 η1v

∗
1d2(w)

∣
∣
∣
∣ = ξ1η1u

∗
1v

∗
1d1(w)d2(w) > 0.
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To proceed, we claim that

ξ1u∗
1

w∗
1

< 1 and
η1v

∗
1

w∗
1

< 1. (3.12)

Let δ1 < 0. In fact, since 1
b > a1

a2
, we have a2 > a1b, which implies that

a1 − a2c

a1(1 − bc)
< 1 ⇔ u∗

1

a1w∗
1

< 1 (3.13)

by recalling the definition of u∗
1 and w∗

1 . On the other hand, when δ1 ≥ 0, thanks to
a2 > a1b and (3.13), one has

bu∗
1

(a1 + a2)w∗
1

<
bu∗

1

a2w∗
1

<
u∗
1

a1w∗
1

< 1. (3.14)

The combination of (3.13) and (3.14) gives that
ξ1u∗

1
w∗
1

< 1 in either case. Similarly, we

can derive that
η1v

∗
1

w∗
1

< 1. Hence, (3.12) holds in case 1.

Next, we claim that there is a T1 > 0 such that for all t > T1, it holds

ξ1u∗
1w

2|d ′
1(w)|2

4w∗
1d1(w)

+ η1v
∗
1w

2|d ′
2(w)|2

4w∗
1d2(w)

< 1. (3.15)

In fact if ‖w0‖L∞ ≤ 1 by (2.3), we see ‖w(·, t)‖L∞ ≤ 1. Then it follows from (3.3)
and (3.12) that

ξ1u∗
1w

2|d ′
1(w)|2

4w∗
1d1(w)

+ η1v
∗
1w

2|d ′
2(w)|2

4w∗
1d2(w)

<
w2

4
(K1 + K2) ≤ 1

4
(K1 + K2) ≤ 1.

If ‖w0‖L∞ > 1, we suppose that 1
4 (K1 + K2) < 1 holds (see (3.3)), then there exists

a constant ε0 > 0 such that

1

4
(K1 + K2) + ε0 ≤ 1. (3.16)

Since w ∈ C2,1(�̄ × (0,∞)), it follows from (2.4) that

lim sup
t→∞

w2

4
(K1 + K2) ≤ 1

4
(K1 + K2),

which allows us to find a constant T1 > 0 such that

w2

4
(K1 + K2) ≤ 1

4
(K1 + K2) + ε0 (3.17)
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for all t > T1. The combination of (3.12) and (3.16)–(3.17) guarantees (3.15) in the
case ‖w0‖L∞ > 1. This proves the claim (3.15).

Now from (3.15), we obtain directly that

|B1| = ξ1η1u∗
1v

∗
1w

∗
1d1(w)d2(w)

w2

(

1 − ξ1u∗
1w

2|d ′
1(w)|2

4w∗
1d1(w)

− η1v
∗
1w

2|d ′
2(w)|2

4w∗
1d2(w)

)

> 0

for all t > T1. Then the Sylvester’s criterion enables us to get

Y1(x, t)B1Y
T
1 (x, t) ≥ 0. (3.18)

Hence, the combination of (3.5), (3.10), (3.11) and (3.18) implies for all t > T1 that

d

dt
E1(t) ≤ −α1F1(t) either δ1 < 0 or δ1 ≥ 0 and μ > μ∗

1,

which yields (3.4) and hence completes the proof. ��

Lemma 3.2 Suppose that the conditions of Lemma 3.1 hold. Then we have

‖u(·, t) − u∗
1‖L∞ + ‖v(·, t) − v∗

1‖L∞ + ‖w(·, t) − w∗
1‖L∞ → 0 as t → ∞. (3.19)

Proof Let φ(t) := φ(t; u0, v0, w0) = (u, v, w)(t) denote the unique global classical
solution of system (1.7) with initial data (u0, v0, w0). This defines a semi-flow (or
trajectory) on L∞(�̄) (see Amann 1989) due to Theorem 1.1. By (3.4), we know that
E1(φ) ≤ E1(φ0) =: c where φ0 = φ(0). Then clearly �c = {φ ∈ R

3 : E1(φ) ≤ c} is
a positively invariant compact set by Theorem 1.1.

From Lemma 3.1 and (3.1), we know that the function E1(φ) is continuously dif-
ferentiable and enjoys the following properties:

(1) E1(φ) > 0 for all φ 
= (u∗
1, v

∗
1 , w

∗
1);

(2) d
dt E1(φ) ≤ 0 for all φ > 0,

where d
dt E1(φ) = 0 if and only if φ = (u∗

1, v
∗
1 , w

∗
1). Then the LaSalle’s invariance

principle (e.g. see LaSalle 1960, Theorem 3 or Sastry 2013, pp. 198–199, Theorem
5.23) asserts that (u∗

1, v
∗
1 , w

∗
1) is globally asymptotic stable, namely (3.19) holds. ��

Case 2: a1
a2

< min{ 1b , c}. In this case, we employ the following energy functional

E2(t) := E2[u(t), v(t), w(t)] = ξ2

∫

�

u + 1

a2

∫

�

(

v − v∗
2 − v∗

2 ln
v

v∗
2

)

+
∫

�

(

w − w∗
2 − w∗

2 ln
w

w∗
2

)

(3.20)
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to study the asymptotic behavior of the solution (u, v, w) solving system (1.7), where
(v∗

2 , w
∗
2) is given in (1.14) and

ξ2 =
{

1
a1

, δ2 < 0,
2a2−a1b

a21
, δ2 ≥ 0.

Note that ξ2 > 0 in the case 2. Then we have the following results.

Lemma 3.3 Let E2(t) be the functional defined by (3.20). Then for all t > 0, we have
E2(t) ≥ 0. Moreover, under the condition a1

a2
< min{ 1b , c} and

K2 ≤ 4 (“ = ” holds if ‖w0‖L∞ ≤ 1), (3.21)

there exists two constants α2 > 0 and T2 > 0 such that if δ2 < 0 or δ2 ≥ 0 and
μ > μ∗

2, then
d

dt
E2(t) ≤ −α2F2(t), (3.22)

where

F2(t) =
∫

�

u2 +
∫

�

(v − v∗
2)

2 +
∫

�

(w − w∗
2)

2

and μ∗
2 is defined by (1.17).

Proof With

J1(t) =
∫

�

u, J2(t) =
∫

�

(

v − v∗
2 − v∗

2 ln
v

v∗
2

)

, J3(t) =
∫

�

(

w − w∗
2 − w∗

2 ln
w

w∗
2

)

,

we rewrite the energy functional E2(t) as

E2(t) = ξ2 J1(t) + 1

a2
J2(t) + J3(t). (3.23)

By the similar arguments as in Lemma 3.1, we apply the Taylor formula to obtain that
J2 ≥ 0 and J3 ≥ 0, which immediately indicae E2(t) ≥ 0 thanks to the positivity of
u.

We proceed to show (3.22). Note that v∗
2 and w∗

2 satisfy v∗
2 = a2w∗

2 and v∗
2 =

μ(1 − w∗
2), which along with the equations of (1.7) and the fact a1

a2
< c gives

d

dt
J1(t) = a1

∫

�

uw −
∫

�

u2 − c
∫

�

uv

≤ a1

∫

�

u(w − w∗
2) −

∫

�

u2 − a1
a2

∫

�

u(v − v∗
2). (3.24)

Similarly we have

d

dt
J2(t) = a2

∫

�

(v − v∗
2)(w − w∗

2) − b
∫

�

u(v − v∗
2) −

∫

�

(v − v∗
2)

2
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−v∗
2

∫

�

d2(w)|∇v|2
v2

− v∗
2

∫

�

d ′
2(w)∇v · ∇w

v
(3.25)

and

d

dt
J3(t) = −

∫

�

u(w−w∗
2)−

∫

�

(v−v∗
2)(w−w∗

2)−μ

∫

�

(w−w∗
2)

2−w∗
2

∫

�

|∇w|2
w2 .

(3.26)
Then the combination of (3.23)–(3.26) leads to

d

dt
E2(t) ≤ −

∫

�

X2A2X
T
2 −

∫

�

Y2B2Y
T
2 , (3.27)

where X2 = (u, v − v∗
2 , w − w∗

2), Y2 = (∇v
v

,∇w
)
, and matrices A2, B2 are defined

as follows

A2 :=
⎛

⎜
⎝

ξ2
b+ξ2a1
2a2

1−ξ2a1
2

b+ξ2a1
2a2

1
a2

0
1−ξ2a1

2 0 μ

⎞

⎟
⎠ , B2 :=

(
v∗
2d2(w)

a2

v∗
2d

′
2(w)

2a2
v∗
2d

′
2(w)

2a2
w∗
2

w2

)

.

If δ2 < 0, we have ξ2 = 1
a1

from the definition of ξ2, and hence

|A21| :=
∣
∣
∣
∣
∣

ξ2
b+ξ2a1
2a2

b+ξ2a1
2a2

1
a2

∣
∣
∣
∣
∣
= −δ2

4a1a22
> 0, |A2| = − μδ2

4a1a22
> 0.

On the other hand, if δ2 ≥ 0 we choose ξ2 = 2a2−a1b
a21

and derive that

|A21| = a2 − a1b

a21a2
> 0

and

|A2| = μ|A21| − (a1(b + 1) − 2a2)2

4a21a2
= |A21|

(

μ − (a1(b + 1) − 2a2)2

4(a2 − a1b)

)

> 0

when μ > μ∗
2. Hence, there exists a constant α2 > 0 such that

X2(x, t)A2X
T
2 (x, t) ≥ α2|X2|2, if δ2 < 0 or δ2 ≥ 0 and μ > μ∗

2 (3.28)

based on the Sylvester’s criterion. Under the condition (3.21), we can use the similar
arguments as in Lemma 3.1 to find T2 > 0 such that

w2|d ′
2(w)|2

4d2(w)
<

K2

4
≤ 1 for all t > T2
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(“ = ” holds if ‖w0‖L∞ ≤ 1), which implies that d2(w)

w2 >
d ′2
2 (w)

4 . Recalling the
definition of v∗

2 and w∗
2 , one has

v∗
2d2(w)

a2
> 0

and

|B2| = v∗
2

a22

(
a2w∗

2d2(w)

w2 − v∗
2d

′2
2 (w)

4

)

= μ2

(a2 + μ)2

(
d2(w)

w2 − |d ′
2(w)|2
4

)

> 0

for all t > T2. Therefore, the matrix B2 is positive definite and then

Y2(x, t)B2Y
T
2 (x, t) ≥ 0,

which together with (3.27) and (3.28), gives that

d

dt
E2(t) ≤ −α2F2(t), if δ2 < 0 or δ2 ≥ 0 and μ > μ∗

2

for all t > T2. The proof is complete. ��
Lemma 3.4 Let (u, v, w) be the solution of system (1.7) and (v∗

2 , w
∗
2) be defined by

(1.14). Assume that the conditions in Lemma 3.3 hold. Then it follows that

‖u(·, t)‖L∞ + ‖v(·, t) − v∗
2‖L∞ + ‖w(·, t) − w∗

2‖L∞ → 0 as t → ∞. (3.29)

Proof From Lemma 3.3, we see that the non-negative functional E2(t) satisfies
d
dt E2(t) ≤ 0 and d

dt E2(t) = 0 if and only if (u, v, w) = (0, v∗
2 , w

∗
2). Using LaSalle’s

invariance principle again as in Lemma 3.2, we obtain (3.29). ��
Case 3: a1

a2
> max{ 1b , c}. This case is essentially the same as the Case 2. By simply

swap d1(w), a1, c with d2(w), a2, b and u with v in the proof of Case 2, we get the
following results directly.

Lemma 3.5 Assume a1
a2

> max{ 1b , c} andK1 ≤ 4 (“ = ” holds if ‖w0‖L∞ ≤ 1). Then
the following convergence holds:

‖u(·, t) − u∗
3‖L∞ + ‖v(·, t)‖L∞ + ‖w(·, t) − w∗

3‖L∞ → 0 as t → ∞.

3.2 Convergence rate

In this subsection, we shall investigate the convergence rates of solutions. To this end,
we first need to improve the regularity of solutions of the system (1.7).
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Lemma 3.6 Let (u, v, w) be the solution of system (1.7) obtained in Theorem 1.1, then
there exists a constant C > 0 independent of t such that

‖∇u(·, t)‖L4 + ‖∇v(·, t)‖L4 ≤ C . (3.30)

Proof First, we claim that there exists β ∈ (0, 1) such that for all t > 1

‖w(·, t)‖
C2+β,1+ β

2 (�̄×[t,t+1])
≤ C1, (3.31)

where C1 > 0 is a constant independent of t . Indeed since (u, v, w) is the classical
solution of system (1.7), we get that

0 < u ≤ C2 and ‖w‖W 1,∞ ≤ C2.

Let g1(x, t,∇u) = d1(w)∇u + d ′
1(w)u∇w and g2(x, t) = u(a1w − u − cv). Then

we rewrite the first equation of system (1.7) as

ut = ∇ · g1(x, t,∇u) + g2(x, t)

for all x ∈ � and t > 0. By the similar arguments in (Jin and Wang 2020, Lemma
4.1), we derive that

∇u · g1(x, t,∇u) ≥ d1(C2)

2
|∇u|2 − C3, |g1(x, t,∇u)| ≤ d1(0)|∇u| + C4

and

|g2(x, t)| ≤ C5,

which, together with Hölder regularity, yields that

‖u(·, t)‖
Cβ,

β
2 (�̄×[t,t+1])

≤ C6 (3.32)

for all t > 1. Similarly, we have

‖v(·, t)‖
Cβ,

β
2 (�̄×[t,t+1])

≤ C7 (3.33)

for all t > 1. From the third equation of (1.7), the combination of (3.32)–(3.33) with
the standard parabolic Schauder theory (cf. Ladyźenskaja et al. 1968) yields (3.31).
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On the other hand, it follows from the first equation of system (1.7) that

1

4

d

dt

∫

�

|∇u|4 =
∫

�

|∇u|2∇u · ∇ut

=
∫

�

|∇u|2∇u · ∇(∇ · (d1(w)∇u)) +
∫

�

|∇u|2∇u · ∇(∇ · (d ′
1(w)u∇w))

+
∫

�

∇(a1uw − u2 − cuv) · ∇u|∇u|2.
(3.34)

The first two terms in the right hand side of (3.34) can be estimated in the same way
of Jin and Wang (2020, Lemma 4.2) or Jin et al. (2019, Lemma 3.6) and we have

∫

�

|∇u|2∇u · ∇(∇ · (d1(w)∇u)) +
∫

�

|∇u|2∇u · ∇(∇ · (d ′
1(w)u∇w))

≤−d1(C2)

12

∫

�

|∇|∇u|2|2− d1(C2)

2

∫

�

|∇u|2|D2u|2+C8

∫

�

|∇u|4+C8

(3.35)

thanks to (3.31). We next estimate the last term on the right hand side of (3.34) as
follows

∫

�

∇(a1uw − u2 − cuv) · ∇u|∇u|2

≤ a1

∫

�

w|∇u|4 + a1

∫

�

u|∇u|2∇u · ∇w − c
∫

�

u|∇u|2∇u · ∇v

≤ C9

∫

�

|∇u|4 + 1

4

∫

�

|∇v|4 + C9.

(3.36)

Substituting (3.35) and (3.36) into (3.34) gives that

1

4

d

dt

∫

�

|∇u|4 + 1

2

∫

�

|∇u|4 + d1(C2)

12

∫

�

|∇|∇u|2|2

≤ −d1(C2)

2

∫

�

|∇u|2|D2u|2 + C10

∫

�

|∇u|4 + 1

4

∫

�

|∇v|4 + C10.

(3.37)

Using integration by parts and Young’s inequality one obtains

C10

∫

�

|∇u|4 = −C10

∫

�

u∇|∇u|2 · ∇u − C10

∫

�

u�u|∇u|2

≤ d1(C2)

24

∫

�

|∇|∇u|2|2 + d1(C2)

4

∫

�

|∇u|2|D2u|2 + C10

2

∫

�

|∇u|4 + C11,

that is,

C10

∫

�

|∇u|4 ≤ d1(C2)

12

∫

�

|∇|∇u|2|2
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+ d1(C2)

2

∫

�

|∇u|2|D2u|2 + 2C11. (3.38)

From (3.37) and (3.38), we arrive at

d

dt

∫

�

|∇u|4 + 2
∫

�

|∇u|4 ≤
∫

�

|∇v|4 + 4(C10 + 2C11). (3.39)

In the same manner, we get

d

dt

∫

�

|∇v|4 + 2
∫

�

|∇v|4 ≤
∫

�

|∇u|4 + C12. (3.40)

Combining (3.39) with (3.40) gives that

d

dt

∫

�

(
|∇u|4 + |∇v|4

)
+

∫

�

(
|∇u|4 + |∇v|4

)
≤ 4(C10 + 2C11) + C12,

which, together with Grönwall inequality, yields (3.30). Therefore, the proof is com-
pleted. ��
Lemma 3.7 Let the assumptions in Lemma 3.1 hold. Then there exist two constants
σ > 0 and C > 0 independent of t such that

‖u − u∗
1‖L∞ + ‖v − v∗

1‖L∞ + ‖w − w∗
1‖L∞ ≤ Ce−σ t (3.41)

holds for all t > T0 with some T0 > 0, where u∗
1, v

∗
1 and w∗

1 are defined in (1.13).

Proof Since ‖u − u∗
1‖L∞ → 0 as t → ∞ (see Lemma 3.2), we apply the L’Hôpital’s

rule to derive that

lim
u→u∗

1

u − u∗
1 − u∗

1 ln
u
u∗
1

(u − u∗
1)

2 = lim
u→u∗

1

1 − u∗
1
u

2(u − u∗
1)

= lim
u→u∗

1

1

2u
= 1

2u∗
1
,

which by the continuity yields a constant t1 > 0 such that

1

4u∗
1

∫

�

(u − u∗
1)

2 ≤
∫

�

(

u − u∗
1 − u∗

1 ln
u

u∗
1

)

≤ 1

u∗
1

∫

�

(u − u∗
1)

2 (3.42)

for all t > t1. Similarly, we can find a constant t2 > 0 such that

1

4v∗
1

∫

�

(v − v∗
1)

2 ≤
∫

�

(

v − v∗
1 − v∗

1 ln
v

v∗
1

)

≤ 1

v∗
1

∫

�

(v − v∗
1)

2 (3.43)

and

1

4w∗
1

∫

�

(w − w∗
1)

2 ≤
∫

�

(

w − w∗
1 − w∗

1 ln
w

w∗
1

)

≤ 1

w∗
1

∫

�

(w − w∗
1)

2 (3.44)
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hold for all t > t2. Let t3 = max{t1, t2}. Then, it follows from the definition of E1(t)
and F1(t) that

E1(t) ≤ C1F1(t) for all t > t3,

which, together with (3.4), implies that there exists a constant t4 > 0 such that

d

dt
E1(t) + α1

C1
E1(t) ≤ 0 for all t > t4. (3.45)

Applying the Grönwall’s inequality to (3.45), we get

E1(t) ≤ E1(0)e
− α1

C1
t

for all t > t4. (3.46)

On the other hand, one can find a constant C2 > 0 such that F1(t) ≤ C2E1(t) from
the left inequalities of (3.42)–(3.44). Then, it follows from (3.46) that

‖u − u∗
1‖L2 + ‖v − v∗

1‖L2 + ‖w − w∗
1‖L2 ≤ C3e

− α1
2C1

t
for all t > t4. (3.47)

To finish the proof, we need the higher-order estimates of solutions. With (1.9) and
(3.30), we use the Gagliardo-Nirenberg inequality to obtain that

‖u − u∗
1‖L∞ ≤ C4(‖∇u‖

2
3
L4‖u − u∗

1‖
1
3
L2 + ‖u − u∗

1‖L2) ≤ C5‖u − u∗
1‖

1
3
L2 . (3.48)

Similarly we have

‖v − v∗
1‖L∞ ≤ C6‖v − v∗

1‖
1
3
L2 and ‖w − w∗

1‖L∞ ≤ C7‖w − w∗
1‖

1
3
L2 ,

which, together with (3.47) and (3.48), gives (3.41) by choosing C large enough and
σ = α1

6C1
by taking T0 = t4. ��

Lemma 3.8 Suppose that the conditions in Lemma 3.3 hold. Then there is a T1 > 0
such that the solution (u, v, w) of system (1.7) satisfies

‖u‖L∞ + ‖v − v∗
2‖L∞ + ‖w − w∗

2‖L∞ ≤ C

1 + t
(3.49)

for all t > T1, where C is a positive constant independent of t .

Proof As in the proof of Lemma 3.7, we find a t1 > 0 such that

1

4v∗
2

∫

�

(

v − v∗
2)

2 ≤
∫

�

(v − v∗
2 − v∗

2 ln
v

v∗
2

)

≤ 1

v∗
2

∫

�

(v − v∗
2)

2 (3.50)

and

1

4w∗
2

∫

�

(

w − w∗
2)

2 ≤
∫

�

(w − w∗
2 − w∗

2 ln
w

w∗
2

)

≤ 1

w∗
2

∫

�

(w − w∗
2)

2 (3.51)
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for all t > t1 thanks to Lemma 3.4. Recalling the definition of E2(t) and F2(t) and
using the result of Theorem 1.1, it follows from (3.50) and (3.51) that

E2(t) ≤ C1

(∫

�

u +
∫

�

(v − v∗
2)

2 +
∫

�

(w − w∗
2)

2
)

≤ C2

((∫

�

u2
) 1

2 +
(∫

�

(v − v∗
2)

2
) 1

2 +
(∫

�

(w − w∗
2)

2
) 1

2
)

≤ C3F
1
2
2 (t),

which, combining with (3.22), gives that

d

dt
E2(t) + α2

C2
3

E 2
2 (t) ≤ 0. (3.52)

Solving this ordinary differential inequality (3.52), we arrive at

E2(t) ≤ C4(t + 1)−1 for all t ≥ t1.

Using the same argument as in the proof of Lemma 3.7, we readily get (3.49) and
complete the proof. ��
With the same arguments for Lemma 3.8, we get the following conclusion with the
omit of proof for simplicity.

Lemma 3.9 Let (u, v, w) be the solution of system (1.7) and (u∗
3, w

∗
3) be defined by

(1.14). Suppose that the conditions in Lemma 3.5 hold. Then there exists a T2 such
that

‖u − u∗
3‖L∞ + ‖v‖L∞ + ‖w − w∗

3‖L∞ ≤ C

1 + t

holds for all t > T2, where C > 0 is a constant independent of t .

Proof of Theorem 1.2. Theorem 1.2 is a direct consequence of Lemmas 3.7–3.9.

4 Summary, simulations and discussions

4.1 Heterogenous prey’s resources

Diffusive Lotka–Volterra competition systems with given spatially homogenous or
heterogeneous resources have been widely studied in the past few decades and many
interesting results/phenomena have been found. The most prominent result (cf. Dock-
ery et al. 1998; Lou 2006) is perhaps the phenomenon “slower diffuser always prevails
(species with slower dispersion rate will wipe out the one with faster dispersion rate in
the competition)” if the resource is spatially heterogeneous without temporal dynam-
ics, which has stimulated much interesting work to investigate its universality (cf.
He and Ni 2016b; Hutson et al. 2001; He et al. 2019; Zhang et al. 2017). However
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whether this distinctive phenomenon exists when the spatially heterogeneous resource
is not given but has temporal dynamics remains unknown. Toward this question, in
this paper, we consider a diffusive Lotka–Volterra competition system (1.7) where
the predators’ resource has temporal dynamics and the diffusion rates of competing
species depend on the prey density. Interestingly our analytical results show that phe-
nomenon “slower diffuser always prevails” no longer appears and the co-existence
steady state will be achieved asymptotically in the case of weak competition regard-
less of the size of dispersal rates of two competing species (see Corollaries 1.3 and
1.4). The results in the present paper, along with those in Hutson et al. (2001), show
that when the resources are temporarily varying no matter whether they are given
functions of time as in Hutson et al. (2001) or have the temporal dynamics as in the
present paper, the dynamics of the competition system will be quite different from
the case where the resources are only spatially varying. This finding may not be that
surprising since no heterogeneity is present in the system (1.7), where in particular
the prey’s resource (i.e. the resource supplied to the prey) is spatially homogeneous.
Since the phenomenon “slower diffuser always prevails” arises when the resource is
heterogenous, a relevant question keen to be elucidated is what will happen if the
prey’s resource is heterogeneous. This motivates us to further consider the following
system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = �(d1(w)u) + u(a1w − u − cv), x ∈ �, t > 0,

vt = �(d2(w)v) + v(a2w − bu − v), x ∈ �, t > 0,

wt = �w − w(u + v) + μw(m(x) − w), x ∈ �, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂�, t > 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈ �,

(4.1)

where m(x) represents the prey’s resource. When m(x) is bounded, the global bound-
edness of solutions to (4.1) can be established with similar arguments as in Sect. 2 with
direct modifications. However, the asymptotical behavior of solutions is very hard to
obtain due to the heterogeneity of m(x). Below we shall use numerical simulations
to explore the asymptotic dynamics of solutions to (4.1) and examine the effect of
heterogeneity of the prey’s resource and non-random dispersion (i.e. d1(w) or d2(w)

is non-constant) on the competition outcomes.

4.2 Numerical simulations

To investigate the effects of non-random dispersion and the heterogeneity of the prey’s
resource m(x) on the competition outcomes, we set other competition conditions to
be the same, and hence w.l.o.g we assume in the following that

a1 = a2 = b = c = μ = 1.

Weshall implement the numerical simulations in an interval� = [0, 10] by theMatlab
Pdepe solver based on the finite difference scheme, with the following initial value
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(u0, v0, w0)(x) = (1 + cos(πx), 1 + cos(πx), 1 + cos(πx)). (4.2)

We divide our numerical simulations into three cases: random dispersion (constant
diffusion), non-random dispersion (density-dependent diffusion) and mixed dispersal
strategies, for both the spatially homogeneous (i.e. constant) and heterogenous (i.e.
non-constant) prey’s resource. For the spatially homogeneous prey resource, we shall
simply set m(x) = 1 and for the spatially heterogenous one we set without loss of
generality

m(x) = 2 + 2 cos(πx/2). (4.3)

Case 1: random dispersion (constant diffusion). We first numerically explore the
asymptotic dynamics of (4.1) with random dispersion only (i.e. both d1(w) and d2(w)

are constant). Without loss of generality, we choose d1(w) = 1 and d2(w) = 5 so that
u is the slower diffuser. When the prey’s resourcem(x) = 1 is spatially homogeneous,
the numerical simulations of spatial-temporal patterns of the two competing species
and their steady spatial profiles are plotted in Fig. 1, where we see that the spatially
homogeneous co-existence steady state is asymptotically achieved. For the spatially
heterogenous prey’s resource given in (4.3), the corresponding numerical simulation
results are plotted in Fig. 2 where we do observe that the faster diffuser v is asymptot-
ically wiped out and the slower diffuser u wins—namely the slower diffuser prevails.
The numerical simulations shown in Figs. 1 and 2 demonstrate that when both com-
peting species employ the random dispersal strategies, the effect of heterogeneity of

0 1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

x

(u
,v

,w
)

 Spatial profile of (u,v,w)

u
v
w

Fig. 1 Numerical simulations of the spatially homogeneous (constant) co-existence state to the system (4.1)
with random dispersion (constant diffusion) and spatially homogenous prey’s resource m(x) = 1, where
d1(w) = 1, d2(w) = 5

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

(u
,v

,w
)

 Spatial profile of (u,v,w)

u
v
w

Fig. 2 Numerical simulations of the phenomenon “slower diffuser prevails” to the system (4.1) with random
dispersion (constant diffusion) and spatially heterogeneous prey’s resource m(x) = 2 + 2 cos( π

2 x), where
d1(w) = 1, d2(w) = 5
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Fig. 3 Numerical simulations of the spatially homogeneous co-existence state to the system (4.1) with
non-random dispersion and spatially homogeneous prey’s resource m(x) = 1, where d1(w) and d2(w) are
given in (4.4)

the prey’s resourcem(x) on the competition outcomes is similar to the two-component
competition system (1.4).

Case 2: non-random dispersion (density-dependent diffusion).We turn to numer-
ically explore the asymptotic dynamics of (4.1) with non-random dispersion (i.e. both
d1(w) and d2(w) are non-constant) to investigate the impact of the heterogeneity of
the prey’s resource m(x) on the competition outcomes. To this end, we set

d1(w) = e−10w, d2(w) = e−5w (4.4)

so that d1(w) < d2(w), that is u is the slower diffuser in the competition. We first
look at the spatially homogeneous prey’s resource m(x) = 1 for which the numerical
simulations of spatial-temporal patterns of the two competing species and their steady
spatial profiles are plotted in Fig. 3. Clearly we see that spatially homogeneous co-
existence steady state is asymptotically achieved and the slower diffuser is slightly
disadvantaged indeed in contrast to the numerical results for the random dispersion
shown in Fig. 1. For the spatially heterogeneous prey’s resource m(x) given in (4.3),
the corresponding numerical results are shown in Fig. 4 where we unexpectedly find
that the two competing species u and v reach a spatially heterogeneous co-existence
steady state, that is “slower diffuser always prevails” phenomenon no longer arises.
Apart from this, we find a (weak) segregation phenomenon between the two competing
species u and v in Fig. 4. These numerical observations indicate that the non-random
dispersion will lead to competition outcomes different from the random dispersion .

Case 3: mixed random and non-random dispersions. From the numerical results
shown in the above two cases, one finds that the choice of dispersal strategies is very
important to the competition outcomes. Now we explore what kind of competition
outcomes will be achieved if two species employ mixed dispersal strategies (i.e. one
species uses the random dispersion and the other uses the non-random dispersion). To
this end, we set

d1(w) = e−5w, d2(w) is constant,

that is the dispersion of the species u is non-random (density-dependent) while the
dispersion of v is random. The initial condition is given by (4.2). For the spatially
homogeneous prey’s resource m(x), the resulting numerical results are plotted in Fig.
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Fig. 4 Numerical simulations of the spatially heterogeneous (non-constant) co-existence state to the system
(4.1) with non-random dispersion and spatially heterogeneous m(x) = 2 + 2 cos( π

2 x), where di (w)(i =
1, 2) are given in (4.4)
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Fig. 5 Numerical simulations of the spatially homogeneous co-existence state to the system (4.1) with
mixed random and non-random dispersions and the spatially homogeneous prey’s resource m(x) = 1,
where d1(w) = e−5w, d2(w) = 5

5 which illustrates that the homogeneous co-existence steady state is asymptotically
achieved.When the prey’s resourcem(x) is spatially heterogeneous, the steady spatial
profiles of numerical solutions for different constant dispersal rates d2(w) are shown
in Fig. 6 from which we find that the co-existence steady state is achieved, where the
profile for the species u with non-random dispersion is heterogeneous while the one
for the species v with random dispersion may be heterogeneous (resp. homogeneous)
if its dispersal rate is small (resp. large). In particular, when d2(w) = 5, the diffusion
rate of u is less than the one of v, that is u is the slower diffuser with non-random
dispersion . In this case, the simulation in Fig. 6c shows that the slower diffuser u
does not wipe out the faster one v, instead they co-exist. This implies again that the
non-random dispersion is a factor rendering the failure of the phenomenon “slower
diffuser always prevails” in the competition system.

4.3 Biological implications

Based on the above numerical results obtained for the system (4.1), we may speculate
the following biological implications.

First, regarding the prominent phenomenon “slower diffuser always prevails”, the
following facts are observed.

(a) When the two competing species employ the random dispersal strategies (i.e.
both d1(w) and d2(w) are constant), the prominent phenomenon “slower diffuser
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(a) d2(w) = 0.01 (b) d2(w) = 0.1 (c) d2(w) = 5

Fig. 6 Numerical simulations of spatially heterogeneous co-existence state to the system (4.1) with mixed
randomand non-randomdispersions and the spatially heterogeneous prey’s resourcem(x) = 2+2 cos( π

2 x),

where d1(w) = e−5w and d2(w) is a constant as shown

always prevails” holds true when the prey’s resource m(x) is spatially heteroge-
neous (see Fig. 2) while the co-existence will be achieved otherwise (see Fig.
1);

(b) Once there is a non-random dispersion employed amongst competing species (i.e.
at least one of diffusion rates di (w), i = 1, 2, is non-constant), the phenomenon
“slower diffuser always prevails”will fail and instead coexistencewill be achieved
regardless of spatial homogeneity or heterogeneity of the prey’s resource m(x)
(see Figs. 3, 4, 5, 6).

Second, the effects of dispersal strategy and resource heterogeneity on the slower
diffusers are the following:

(c) Whether the prey’s resource is spatially homogenous or heterogenous, non-
random dispersion seems to be disadvantageous for the slower diffuser in terms
of the total population supported in the space (see Figs. 1, 3 and 5 for the spatially
homogeneous prey source, and see Figs. 2, 4 and 6 for the spatially heterogeneous
prey source, where we find that the slower diffuser with random dispersion has a
larger total population supported than the one with non-random dispersion);

(d) Given that two competing species employ the same dispersal strategies (either
random or non-random dispersion), the resource heterogeneity is advantageous
to the slower diffuser (compare Fig. 1 vs. Fig. 2 and Fig.3 vs. Fig. 4); but this
seems not the case for mixed dispersal strategies (see Figs. 5 and 6).

The observation (a) agrees well with the prominent phenomenon “slower diffuser
always prevails”when the competing species employ the randomdispersion strategies.
However the observation (b) suggests this phenomenon may fail with the non-random
dispersion in the competition system. The observations (c) and (d) give possible effects
of the non-random dispersion and heterogeneity of resources on the slower diffuser.
All these numerical observations on the system (4.1) have not been justified analyti-
cally in this paper in particular for the heterogenous prey’s resource m(x), and hence
raise interesting questions to pursue in the future. Finally we remark in the above
simulations, we do not take into account the effect of the total amount of the resource
m(x) on the global dynamics of the system (4.1). It appears from the simulations (not
shown here) that the size of total amount of the resource m(x) will have an impact on
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the asymptotic profiles of (u, v, w), but this has gone beyond the interest of this paper
and hence we do not discuss it here.
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Ladyźenskaja OA, Solonnikov VA, Ural’ceva NN (1968) Linear and quasilinear equations of parabolic
type. Translated from the Russian by S. Smith. Translations of mathematical monographs, vol 23.
American Mathematical Society, Providence

Lam K-Y, Ni W-M (2012) Uniqueness and complete dynamics in heterogeneous competition-diffusion
systems. SIAM J Appl Math 72(6):1695–1712

LaSalle J (1960) Some extensions of liapunov’s second method. IRE Trans Circuit Theory 7(4):520–527
Lou Y (2006) On the effects of migration and spatial heterogeneity on single and multiple species. J Differ

Equ 223(2):400–426
Lou Y (2008) Some challenging mathematical problems in evolution of dispersal and population dynamics.

In: Friedman A (ed) Tutorials in mathematical biosciences IV. Springer, Berlin, pp 171–205
Lou Y, Ni W-M (1996) Diffusion, self-diffusion and cross-diffusion. J Differ Equ 131(1):79–131
Sastry S (2013) Nonlinear systems: analysis, stability, and control, vol 10. Springer, Berlin
Wang M, Zhang Y (2016) The time-periodic diffusive competition models with a free boundary and sign-

changing growth rates. Z Angew Math Phys 67(5):132
Zhang B, Kula A, Mack K, Zhai L, Ryce AL, Ni W-M, DeAngelis DL, Van Dyken JD (2017) Carrying

capacity in a heterogeneous environment with habitat connectivity. Ecol Lett 20(9):1118–1128
Zhao G, Ruan S (2011) Existence, uniqueness and asymptotic stability of time periodic traveling waves for

a periodic Lotka-Volterra competition system with diffusion. J Math Pures Appl 95(6):627–671

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Zhi-An Wang1 · Jiao Xu2

B Zhi-An Wang
mawza@polyu.edu.hk

Jiao Xu
maxujiao@mail.scut.edu.cn

1 Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom,
Hong Kong

2 School of Mathematics, South China University of Technology, Guangzhou 510640,
People’s Republic of China

123

http://orcid.org/0000-0003-2945-5810

	On the Lotka–Volterra competition system with dynamical resources and density-dependent diffusion
	Abstract
	1 Introduction
	1.1 Background, motivation and main results
	1.2 Implications of results

	2 Boundedness of solutions (Proof of Theorem 1.1)
	2.1 Preliminaries
	2.2 A priori estimates

	3 Stabilization and convergence rate
	3.1 Stabilization
	3.2 Convergence rate

	4 Summary, simulations and discussions
	4.1 Heterogenous prey's resources
	4.2 Numerical simulations
	4.3 Biological implications

	Acknowledgements
	References




