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Abstract

This paper is concerned with the boundary layer problem for a hyperbolic system transformed via a 
Cole–Hopf type transformation from a repulsive chemotaxis model with logarithmic sensitivity proposed 
in [23,34] modeling the biological movement of reinforced random walkers which deposit a non-diffusible 
(or slowly moving) signal that modifies the local environment for succeeding passages. By prescribing the 
Dirichlet boundary conditions to the transformed hyperbolic system in an interval (0, 1), we show that 
the system has the boundary layer solutions as the chemical diffusion coefficient ε → 0, and further use 
the formal asymptotic analysis to show that the boundary layer thickness is ε1/2. Our work justifies the 
boundary layer phenomenon that was numerically found in the recent work [25]. However we find that the 
original chemotaxis system does not possess boundary layer solutions when the results are reverted to the 
pre-transformed system.
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1. Introduction

Chemotaxis is a common phenomenon in biology describing the change of motion of species 
in response to a chemical stimulus spread in the environment. The consequence of chemotaxis 
is that the species changes its movement toward (or away from) a higher concentration of the 
chemical stimulus. The first chemotaxis model was derived by Keller and Segel in a series of 
works [20–22] to describe abundant biological processes including the aggregation phase of cel-
lular slime mold and traveling waves formed by bacterial chemotaxis. Since then, numerous 
variants of the Keller–Segel model have been developed to interpret the various biological phe-
nomena/processes, such as aggregative patterns of bacteria [33,44], slime mould formation [14], 
fish pigmentation patterning [35], angiogenesis in tumor progression [4], primitive streak forma-
tion [36], blood vessel formation [9], wound healing [38], and so on. The Keller–Segel model, in 
its general form, reads

{
nt = [Dnx − χnφ(c)x]x,
ct = εcxx + g(n, c),

(1.1)

where n(x, t) and c(x, t) denote cell density and chemical concentration, respectively. The pa-
rameter D > 0 is the diffusivity of endothelial cells, χ is the chemotactic coefficient and ε ≥ 0
denotes the chemical diffusion rate. The chemotaxis is said to be attractive if χ > 0 and repulsive 
if χ < 0 with |χ | measuring the intensity of chemotaxis. The function φ(c) is commonly called 
the chemotactic sensitivity function accounting for the chemical signal detection mechanism and 
g(n, c) denotes the chemical kinetics.

With χ > 0, φ(c) = ln c and g(n, c) = −kncm (k > 0, m ≥ 0), the model (1.1) was well-
known as the Keller–Segel model proposed in [20] to describe the traveling band propagation of 
bacterial chemotaxis observed in the famous experiment of Adler [1,2]. The analytical studies of 
this model have been continuously undertaken in a series of works (see survey papers [17,46] and 
references therein). When χ > 0, φ(c) = c and g(n, c) = n − c, the model (1.1) was well-known 
as classical Keller–Segel model first proposed in [21] to describe the aggregation phase of slime 
mold amoebae Dictyostelium discoideum, which has attracted extensive attentions in the past few 
decades (see survey articles [3,13,16]). In contrast to the attractive chemotaxis models, the stud-
ies of repulsive chemotaxis (i.e. χ < 0) are much less and not many results have been developed. 
It is generally believed that repulsive chemotaxis is a stabilizing factor for the dynamics, but its 
mathematical mechanism has not been completely understood (see [52]). In this paper, we shall 
consider the following Keller–Segel type repulsive chemotaxis model

{
nt = [Dnx − χn(ln c)x]x,
ct = εcxx + nc − μc,

(1.2)

where χ < 0. This model was developed in [23,34] to model the biological movement of rein-
forced random walkers that deposit a non-diffusible (or slowly moving) substance that modifies 
the local environment for succeeding passages with little or no transport of the modifying sub-
stance.

The characteristic of model (1.2) lies in the logarithmic sensitivity function lnc which is 
singular at c = 0. This singularity brings great difficulties in analytical studies such as the stability 
of traveling waves and well-posedness problem. Among other things, the foremost mathematical 
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question is therefore how to resolve this singularity such that analysis can be undertaken. The 
way used in the literature (see [23,30]) was to apply a Cole–Hopf type transformation

q = (ln c)x = cx

c

and transform (1.2) into a hyperbolic system augmented with initial data as follows:⎧⎪⎨
⎪⎩

pt − (pq)x = pxx,

qt − (εq2 + p)x = εqxx,

(p, q)(x,0) = (p0, q0)(x),

(1.3)

where we have set p = n and assumed −χ = D = 1 without loss of generality since specific val-
ues of χ and D are not important in our analysis. Clearly the transformed system (1.3) removes 
the singularity and becomes both analytically and numerically tractable. Numerous results of 
(1.3) have been obtained in recent years from different perspectives. We briefly recall these re-
sults according to the value of ε that is particularly relevant to the present paper.

• Case of ε = 0. The global well-posedness of (1.3) was studied in [11] for x ∈ R and in [5,12,
24] for x ∈ R

N(N ≥ 2). Furthermore the existence and stability of traveling wave solutions 
in R was established in [19,27,29,30,47]. The global existence of solutions of (1.3) in the 
interval (0, 1) subject to the Neumann-Dirichlet (ND) boundary condition, namely px =
q = 0 at x = 0, 1, was obtained in [53] for small data and later in [43] for large data. In the 
multidimensional bounded domain � ⊂ R

d(d = 2, 3), the global existence and exponential 
decay rates of solutions under Neumann boundary conditions were obtained in [28] for small 
initial data.

• Case of ε > 0. First the existence and stability of traveling wave solutions were estab-
lished by the second author with his collaborators in a series of works [26,31,32]. For 
x ∈ R

N(N = 2, 3), the global existence and asymptotic behavior of classical solution of 
(1.3) was recently established in [37,48] for small data, whereas for x ∈ (0, 1) the global 
existence and asymptotic behavior of large-data solution was established in [43] with ND 
boundary conditions and in [25] with Dirichlet boundary conditions.

Except the above-mentioned results, for the model (1.3), it is particularly relevant to consider the 
solution behavior for small ε > 0 since it conforms to the original idea of [23,30] modeling the 
movement of reinforced random walks towards a non-diffusible (or slowly moving) substance. 
This paper will be focused on the asymptotic behavior of solutions of (1.3) as ε → 0 to under-
stand how the solution behavior could be different with respect to ε. In the works [37,46,48], it 
has been shown that if the spatial domain is unbounded (i.e. x ∈R

N, N ≥ 1), both traveling wave 
solutions (see [46]) and global solutions of well-posedness problem (see [37,48]) are uniformly 
convergent in ε, namely the solution with ε > 0 converges to that with ε = 0 as ε → 0. If the 
domain is an interval say (0, 1), and ND boundary condition is prescribed for ε ≥ 0:

px |x=0,x=1 = p̄ ≥ 0, q|x=0,x=1 = q̄, if ε ≥ 0,

then the solution is still uniformly convergent in ε (see [49]). However if the Dirichlet boundary 
conditions are imposed in (0, 1) as follows:
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{
p|x=0,x=1 = p̄ ≥ 0, q|x=0,x=1 = q̄, if ε > 0

p|x=0,x=1 = p̄ ≥ 0, if ε = 0
(1.4)

it was numerically illustrated in [25] recently that ε is a singular parameter and a boundary layer 
for q would arise as ε → 0. This is a new phenomenon discovered for the chemotaxis model 
showing that boundary condition might be a significant factor to affect the solution behavior as 
ε > 0. Mathematical justification of boundary layers was left open in [25]. It is the purpose of 
this paper to rigorously prove the occurrence of boundary layer process for the solution compo-
nent q of (1.3)–(1.4) as ε → 0 and complement the numerical discovery of [25] with analytical 
justifications. As stressed in [25], the boundary condition of q can not be imposed for ε = 0 since 
otherwise the problem is over-determined. Due to this special structure, a boundary layer for q
may arise as ε → 0 if the value of q does not match at the boundary between ε > 0 and ε = 0. 
This is the key observation and starting point of our present work.

The theory of boundary layers has been one of the fundamental and important issues in physics 
and fluid mechanics [41] since the pioneering work by Prandtl [39] in 1904. The boundary layer 
phenomenon usually occurs when the inviscid limit of the Navier–Stokes equations near a bound-
ary is considered (cf. [6,7,18,45,50,51]). Moreover, the boundary layer problem also arises in the 
theory of hyperbolic systems when parabolic equations with small viscosity are applied as pertur-
bations (cf. [8,10,42]). With these empirical results, it is natural to expect that (1.3) may possess 
boundary layer solutions as ε tends to zero by regarding it as a viscosity coefficient. To the best of 
our knowledge, this is a new phenomenon found for mathematical models related to chemotaxis 
and has never been studied before in spite of a large body of works on chemotaxis models. We 
hope our work can arouse a new interest in chemotaxis researches.

2. Main results

For convenience, we first state some notations.
Notation. Throughout this paper, unless specified, we denote by C a generic positive constant 

which is independent of ε and may change from one line to another. Without loss of generality, 
we assume 0 ≤ ε < 1 for we consider the diffusion limit problem as ε → 0. For simplicity we 
denote ‖f ‖Lp = ‖f ‖Lp(0,1) for 1 ≤ p ≤ ∞, and Hk = Wk,2(0, 1) denotes the k-th Sobolev space 
with norm ‖f ‖Hk . The Banach space W 1,p(0, T ; X) consists of all functions f ∈ Lp(0, T ; X)

such that ∂tf exists in the weak sense and belongs to Lp(0, T ; X), with norm denoted by

‖f ‖W 1,p(0,T ;X) =
( T∫

0

‖f (t)‖p
X + ‖∂tf (t)‖p

X dt

)1/p

, 1 ≤ p < ∞

In [25], the authors show that the system (1.3)–(1.4) admits a unique global classical solution. 
We cite the results below for later use.

Lemma 2.1 ([25]). Suppose that (p0, q0) ∈ H 2 and satisfies the compatible condition
(p0, q0)(0) = (p̄, q̄). Then for any ε ≥ 0, there exists a unique global classical solution (pε, qε)

to the initial-boundary value problem (1.3)–(1.4) such that the following hold true.

(i) If ε > 0, then (pε − p̄, qε − q̄) ∈ C([0, ∞); H 2) ∩ L2([0, ∞); H 3), and for all t > 0, there 
is a constant C > 0 independent of t such that
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‖(pε − p̄)(t)‖2
H 2 + ‖(qε − q̄)(t)‖2

H 2

+
t∫

0

(‖(pε − p̄)(τ )‖2
H 3 + ‖(qε − q̄)(τ )‖2

H 3)dτ ≤ C. (2.1)

(ii) If ε = 0, then it holds that

(p0 − p̄) ∈ C([0,∞);H 2) ∩ L2([0,∞);H 3),

(q0 − q̂) ∈ C([0,∞);H 2) ∩ L2([0,∞);H 2),

and when p̄ > 0, for all t > 0, it holds that

‖(p0 − p̄)(t)‖2
H 2 + ‖(q0 − q̂)(t)‖2

H 2 +
t∫

0

(‖(p0 − p̄)(τ )‖2
H 3 + ‖(q0 − q̂)(τ )‖2

H 2)dτ ≤ C,

for some constant C > 0 independent of t , where q̂ = ∫ 1
0 q0(x)dx.

Remark 2.2. We remark that the constant C in estimate (2.1), which is obtained by the standard 
energy methods in [25], depends reciprocally on ε. In [25], the decay rates of solution as t → ∞
were derived also and omitted here for they will not be used in this paper.

Next we recall the conventional definition of boundary layer (BL)-thickness (cf. [7]).

Definition 2.3. Let (pε, qε) and (p0, q0) be the solution of (1.3)–(1.4) with ε > 0 and ε = 0, 
respectively. If there is a non-negative function δ = δ(ε) satisfying δ(ε) ↓ 0 as ε ↓ 0 such that

lim
ε→0

‖pε − p0‖L∞(0,T ;C[0,1]) = 0,

lim
ε→0

‖qε − q0‖L∞(0,T ;C[δ,1−δ]) = 0,

lim inf
ε→0

‖qε − q0‖L∞(0,T ;C[0,1]) > 0

we say that the initial-boundary value problem (1.3)–(1.4) has a boundary layer solution as ε → 0
and δ(ε) is called a BL-thickness.

Remark 2.4. As mentioned in [7], the above definition does not determine the BL-thickness 
uniquely since any function δ∗(ε) satisfying inequality δ∗(ε) > δ(ε) is also a BL-thickness. In 
Appendix A, we shall perform a formal asymptotic analysis based on WKB method to show that 
BL-thickness of the problem (1.3)–(1.4) is ε1/2. But this can not be rigorously proved by the 
analysis developed in the present paper. We shall study the boundary layer stability and hence 
justify that BL-thickness of the problem (1.3)–(1.4) is exactly ε1/2 in a future work.

We are now in a position to state the main results of this paper on the boundary layer problem. 
To this end, we first need a uniform-in-ε bound of solutions to the system (1.3)–(1.4), which is 
the key to show the existence of boundary layer solutions.
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Theorem 2.5 (Uniform-in-ε estimates). Assume that (p0, q0) ∈ H 2 and satisfies the compat-
ible condition (p0, q0)(0) = (p̄, q̄). Let (pε, qε) be the unique global solution of the system 
(1.3)–(1.4) with ε > 0 obtained in Lemma 2.1. Then for any 0 < T < ∞, the following estimates 
hold

sup
0≤t≤T

(
‖pε

x‖2
L2 + ε1/2‖qε

x‖2
L2

)
(t) +

T∫
0

(
ε1/2‖pε

xx‖2
L2 + ε3/2‖qε

xx‖2
L2

)
dt ≤ C, (2.2)

where C is a positive constant independent of ε.

Then the results on the existence of boundary layers for the transformed problem (1.3)–(1.4)
are given in the following theorem.

Theorem 2.6. Assume the conditions of Theorem 2.5 hold. Let (pε, qε) and (p0, q0) be the solu-
tion of system (1.3)–(1.4) corresponding to ε > 0 and ε = 0, respectively. Then any non-negative 
function δ(ε) satisfying

δ(ε) → 0 and ε1/2/δ(ε) → 0, as ε → 0

is a BL-thickness of (1.3)–(1.4), such that for any 0 < T < ∞

‖pε − p0‖2
L∞(0,T ;C[0,1]) < Cε1/2 (2.3)

and

‖qε − q0‖2
L∞(0,T ;C[δ,1−δ]) < Cδ−1ε1/2, (2.4)

lim inf
ε→0

‖qε − q0‖L∞(0,T ;C[0,1]) > 0, (2.5)

if and only if

t∫
0

p0
x(0, τ )dτ ·

t∫
0

p0
x(1, τ )dτ �= 0, for some t ∈ [0, T ], (2.6)

where the constant C is independent of ε. That is the problem (1.3)–(1.4) has a boundary layer 
solution as ε → 0 iff (2.6) holds.

Remark 2.7. If p0x(0) · p0x(1) �= 0, then the condition (2.6) in Theorem 2.6 is satisfied.

Before proceeding, we outline the main ideas employed in this paper to prove Theorem 2.6. 
The uniform-in-ε estimate (2.2) is the key for the proof of Theorem 2.6. The standard energy 
method as employed in [25] only can give the estimates depending on ε due to appearance 
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of the boundary term ε(qε
xpε

x)|x=1
x=0. For example, the following estimate was obtained in [25, 

Lemma 2.3]):

‖pε
x‖2

L∞(0,T ;L2)
+ ‖qε

x‖2
L∞(0,T ;L2)

+ ‖pε
xx‖2

L2(0,T ;L2)
+ ε‖qε

xx‖2
L2(0,T ;L2)

≤ Cε−1

where C is a constant independent of ε. Thus to derive the solution convergence as ε → 0, one 
needs a new approach to get the estimates of the boundary term ε(qε

xp
ε
x)|x=1

x=0. Observing that 
by integrating (1.3)1 with respect to x, pε

x |x=0,x=1 can be expressed in terms of pε
t , and hence 

bounded by ‖pε
t ‖L2 and other controllable terms, where ‖pε

t ‖L2 can be estimated by the rou-
tine L2-energy estimate thanks to the condition pε

t |x=0,x=1 = qε
t |x=0,x=1 = 0 (see Lemma 3.2). 

Based on this crucial observation, we undertake a refined estimate for ε(qε
xp

ε
x)|x=1

x=0, which read-
ily gives rise to (2.2) by employing various inequalities (see the proof of Lemma 3.3). With the 
key estimate (2.2), we prove Theorem 2.6 by exploiting the weighted L2-method, inspired from 
a work [18]. By a delicate computation, we succeed in deriving the weighted L2-estimate (see 
Lemma 4.3):

1∫
0

ξ(x)|(qε − q0)x |2(x, t) dx + ε

t∫
0

1∫
0

ξ(x)|(qε − q0)xx |2(x, τ ) dxdτ ≤ Cε1/2,

where ξ(x) := x2(1 − x)2, x ∈ [0, 1]. Then we can readily derive (2.4) based on the above 
estimates.

Theorem 2.6 asserts that the boundary layer for q will arise for the transformed system 
(1.3)–(1.4) as ε → 0. Naturally we shall ask whether the original chemotaxis model (1.2) with 
corresponding boundary conditions will have boundary layer or not. To this end, we need to use 
the Cole–Hopf type transformation q = cx

c
to pass the results of transformed system (1.3)–(1.4)

to the pre-transformed chemotaxis system (1.2) with the corresponding boundary conditions as 
follows: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nt = [Dnx − χn(ln c)x]x,
ct = εcxx + nc − μc,

(n, c)(x,0) = (n0, c0)(x),

n|x=0,x=1 = n̄,
cx

c
|x=0,x=1 = c̄, if ε > 0

n|x=0,x=1 = n̄, if ε = 0

(2.7)

where D > 0, χ < 0, μ ≥ 0 are constant parameters, and n̄ ≥ 0, c̄ ∈R are constants. The global 
existence of solutions to (2.7) has been obtained in [25] and here we only address the diffusion 
limit of solutions as ε → 0.

Proposition 2.8. Let the initial data satisfy n0(x) ≥ 0, c0(x) > 0 and the compatibility condi-
tions: n0|x=0,x=1 = n̄, c0x

c0
|x=0,x=1 = c̄. Assume that n0 ∈ H 2, ln c0 ∈ H 3 and let (nε, cε) and 

(n0, c0) be the unique global solution of system (2.7) with ε > 0 and ε = 0, respectively. Then 
for any 0 < T < ∞, it holds that

‖nε − n0‖2 ∞ < Cε1/2 (2.8)
L (0,T ;C[0,1])
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and

‖cε − c0‖2
L∞(0,T ;C[0,1]) < Cε1/2,

where the constant C is independent of ε but depends on T .

Remark 2.9. The results in Proposition 2.8 says that the original chemotaxis model (1.2) does 
not have boundary layer phenomenon as ε → 0 although the transformed system does. This indi-
cates that non-diffusive problem (2.7) can be approximated by the diffusive problem with small 
diffusion. Moreover the boundary condition cx

c
|x=0,x=1 = c̄ may lead to standard boundary con-

ditions. For example, if c̄ = 0, then it indicates the Neumann boundary condition cx|x=0,x=1 = 0, 
whilst if c̄ �= 0 it implies the Robin boundary condition (c − 1

c̄
cx)|x=0,x=1 = 0. We further note 

that the results in Proposition 2.8 do not include the case where c also has the Dirichlet bound-
ary condition. In other words, it is unknown whether there is a boundary layer if the Dirichlet 
boundary condition is prescribed to c directly.

3. Proof of Theorem 2.5

Suppose that (pε, qε) is the unique global solution to the system (1.3)–(1.4) with ε > 0 given 
in Lemma 2.1. In this section we are devoted to deriving the uniform estimate (2.2) for pε and 
qε , and thus prove Theorem 2.5. Let p̃ = pε − p̄, q̃ = qε − q̄ . Substituting p̃ and q̃ into (1.3)
and (1.4), we can reformulate the problem (1.3)–(1.4) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̃t = p̃xx + (p̃q̃)x + p̄q̃x + q̄p̃x,

q̃t = εq̃xx + ε[(q̃)2]x + 2εq̄q̃x + p̃x,

(p̃, q̃)(x,0) = (p0 − p̄, q0 − q̄)(x),

p̃|x=0,x=1 = 0, q̃|x=0,x=1 = 0.

(3.1)

The proof of (2.2) consists of a series of lemmas. The first one is the uniform L2 estimates 
proved in [25]. We cite it here for later use.

Lemma 3.1 ([25, Lemma 2.2]). Suppose that the assumptions in Theorem 2.5 hold. Then there 
exists a positive constant C, independent of ε and t , such that

‖(pε − p̄)(t)‖2
L2 + ‖(qε − q̄)(t)‖2

L2 +
t∫

0

(‖pε
x‖2

L2 + ε‖qε
x‖2

L2) dτ ≤ C.

Next we proceed to derive the higher order estimates.

Lemma 3.2. Suppose that the assumptions in Theorem 2.5 hold. Then for any 0 < T < ∞, there 
exists a positive constant C, independent of ε but dependent on T , such that

sup
0≤t≤T

(
‖pε

t (t)‖2
L2 + ‖qε

t (t)‖2
L2

)
+

T∫
0

(
‖pε

xt‖2
L2 + ε‖qε

xt‖2
L2

)
dt ≤ C.
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Proof. Differentiating (3.1)1 with respect to t , we have

p̃tt = p̃xxt + (p̃q̃)xt + p̄q̃xt + q̄p̃xt .

Taking the L2 inner product of this equation with p̃t , integrating the result by parts over (0, 1), 
and using the boundary conditions, we arrive at

1

2

d

dt
‖p̃t‖2

L2 + ‖p̃xt‖2
L2

= −
1∫

0

(p̃q̃)t p̃xt dx − p̄

1∫
0

q̃t p̃xt dx

= −
1∫

0

p̃t q̃p̃xt dx −
1∫

0

p̃q̃t p̃xt dx − p̄

1∫
0

q̃t p̃xt dx

:= I1 + I2 + I3.

(3.2)

Observing that p̃t |x=0,x=1 = 0, then by Hölder and Gagliardo–Nirenberg interpolation inequali-
ties, we have

I1 ≤ ‖p̃t‖L∞‖p̃xt‖L2‖q̃‖L2

≤ C‖p̃t‖1/2
L2 ‖p̃xt‖3/2

L2 ‖q̃‖L2

≤ 1

8
‖p̃xt‖2

L2 + C‖q̃‖4
L2‖p̃t‖2

L2 .

Due to the boundary conditions and Sobolev embedding inequality, I2 is estimated as follows:

I2 ≤ ‖p̃‖L∞‖q̃t‖L2‖p̃xt‖L2

≤ C‖p̃‖H 1‖q̃t‖L2‖p̃xt‖L2

≤ C‖p̃x‖L2‖q̃t‖L2‖p̃xt‖L2

≤ 1

8
‖p̃xt‖2

L2 + C‖p̃x‖2
L2‖q̃t‖2

L2 .

Moreover, the Cauchy–Schwarz inequality, yields

I3 ≤1

4
‖p̃xt‖2

L2 + p̄2‖q̃t‖2
L2 .

Substituting above estimates for I1-I3 into (3.2), we obtain

d

dt
‖p̃t‖2

L2 + ‖p̃xt‖2
L2 ≤ C‖q̃‖4

L2‖p̃t‖2
L2 + C(‖p̃x‖2

L2 + p̄2)‖q̃t‖2
L2 . (3.3)

We next estimate ‖q̃t‖L2 . Differentiating (3.1)2 with respect to t , gives
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q̃t t = εq̃xxt + ε[(q̃)2]xt + 2εq̄q̃xt + p̃xt ,

which, multiplied by q̃t and integrated by parts with respect to x over (0, 1), results in

1

2

d

dt
‖q̃t‖2

L2 + ε‖q̃xt‖2
L2 = −ε

1∫
0

[(q̃)2]t q̃xt dx +
1∫

0

p̃xt q̃t dx

= −2ε

1∫
0

q̃q̃t q̃xt dx +
1∫

0

p̃xt q̃t dx

:= I4 + I5.

(3.4)

Upon using Hölder, Poincaré and Sobolev embedding inequalities, we estimate I4 as

I4 ≤ 2ε‖q̃‖L∞‖q̃t‖L2‖q̃xt‖L2

≤ Cε‖q̃‖H 1‖q̃t‖L2‖q̃xt‖L2

≤ C(ε1/2‖q̃x‖L2)‖q̃t‖L2(ε
1/2‖q̃xt‖L2)

≤ 1

2
ε‖q̃xt‖2

L2 + C(ε‖q̃x‖2
L2)‖q̃t‖2

L2 .

With Cauchy–Schwarz inequality, I5 can be easily estimated as

I5 ≤ 1

4
‖p̃xt‖2

L2 + ‖q̃t‖2
L2 .

Inserting above estimates for I4 and I5 into (3.4), we obtain

d

dt
‖q̃t‖2

L2 + ε‖q̃xt‖2
L2 ≤ 1

2
‖p̃xt‖2

L2 + C(ε‖q̃x‖2
L2 + 1)‖q̃t‖2

L2,

which, combined with (3.3), yields

d

dt
(‖p̃t‖2

L2 + ‖q̃t‖2
L2) + (‖p̃xt‖2

L2 + ε‖q̃xt‖2
L2)

≤ C(‖q̃‖4
L2 + ‖p̃x‖2

L2 + ε‖q̃x‖2
L2 + p̄2 + 1)(‖p̃t‖2

L2 + ‖q̃t‖2
L2).

This, along with Gronwall’s inequality and Lemma 3.1, gives

‖p̃t (t)‖2
L2 + ‖q̃t (t)‖2

L2 +
t∫

0

(
‖p̃xt‖2

L2 + ε‖q̃xt‖2
L2

)
dτ ≤ C,

where the constant C is independent of ε but depends on t . The proof of Lemma 3.2 is thus 
finished. �
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Lemma 3.3. Suppose that the assumptions in Theorem 2.5 hold. Then for any 0 < T < ∞, there 
exists a positive constant C, independent of ε but dependent on T , such that

sup
0≤t≤T

(
‖pε

x(t)‖2
L2 + ε1/2‖qε

x(t)‖2
L2

)
+

T∫
0

(
ε1/2‖pε

xx‖2
L2 + ε3/2‖qε

xx‖2
L2

)
dt ≤ C.

Proof. Taking the L2 inner product of (3.1)1 with (−εp̃xx), integrating the result by parts over 
(0, 1), and using the boundary conditions, we get

1

2

d

dt

(
ε‖p̃x‖2

L2

)
+ ε‖p̃xx‖2

L2

= −ε

1∫
0

p̃x q̃p̃xx dx − ε

1∫
0

p̃q̃xp̃xx dx

− εp̄

1∫
0

q̃x p̃xx dx − εq̄

1∫
0

p̃xp̃xx dx

:= J1 + J2 + J3 + J4.

(3.5)

We next estimate J1–J4. First by the boundary conditions and Hölder and Sobolev embedding 
inequalities, we infer that

J1 ≤ ε‖p̃x‖L2‖q̃‖L∞‖p̃xx‖L2

≤ Cε‖p̃x‖L2‖q̃‖H 1‖p̃xx‖L2

≤ C‖p̃x‖L2(ε
1/2‖q̃x‖L2)(ε

1/2‖p̃xx‖L2)

≤ 1

8
ε‖p̃xx‖2

L2 + C‖p̃x‖2
L2(ε‖q̃x‖2

L2)

and

J2 ≤ ε‖p̃‖L∞‖q̃x‖L2‖p̃xx‖L2

≤ Cε‖p̃‖H 1‖q̃x‖L2‖p̃xx‖L2

≤ C‖p̃x‖L2(ε
1/2‖q̃x‖L2)(ε

1/2‖p̃xx‖L2)

≤ 1

8
ε‖p̃xx‖2

L2 + C‖p̃x‖2
L2(ε‖q̃x‖2

L2).

Furthermore, the Cauchy–Schwarz inequality gives

J3 + J4 ≤
(
p̄ε1/2‖q̃x‖L2 + |q̄|ε1/2‖p̃x‖L2

)
(ε1/2‖p̃xx‖L2)

≤ 1
ε‖p̃xx‖2

2 + 2p̄2(ε‖q̃x‖2
2) + 2q̄2(ε‖p̃x‖2

2).
4 L L L
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Then it follows from (3.5) that

d

dt
(ε‖p̃x‖2

L2) + ε‖p̃xx‖2
L2 ≤ C(‖p̃x‖2

L2 + p̄2 + q̄2)(ε‖p̃x‖2
L2 + ε‖q̃x‖2

L2). (3.6)

We are now in a position to estimate ‖q̃x‖L2 . Taking the L2 inner product of (3.1)2 with (−εq̃xx), 
and integrating the result by parts, we derive

1

2

d

dt

(
ε‖q̃x‖2

L2

)
+ ε2‖q̃xx‖2

L2 = −2ε2

1∫
0

q̃q̃x q̃xx dx − 2ε2q̄

1∫
0

q̃x q̃xx dx

+ ε

1∫
0

p̃xx q̃x dx − ε(p̃x q̃x)|x=1
x=0

:= J5 + J6 + J7 + J8.

(3.7)

We proceed to estimate J5 - J8. Using Hölder and Sobolev embedding inequalities and the bound-
ary conditions, we deduce

J5 ≤ 2ε2‖q̃‖L∞‖q̃x‖L2‖q̃xx‖L2

≤ Cε2‖q̃‖H 1‖q̃x‖L2‖q̃xx‖L2

≤ C(ε‖q̃x‖2
L2)(ε‖q̃xx‖L2)

≤ 1

8
ε2‖q̃xx‖2

L2 + C(ε‖q̃x‖2
L2)

2.

By Cauchy–Schwarz inequality and the assumption that 0 < ε < 1, we obtain

J6 ≤ 2ε2q̄‖q̃x‖L2‖q̃xx‖L2

≤ 1

8
ε2‖q̃xx‖2

L2 + Cεq̄2(ε‖q̃x‖2
L2)

≤ 1

8
ε2‖q̃xx‖2

L2 + Cq̄2(ε‖q̃x‖2
L2)

and

J7 ≤ 1

4
ε‖p̃xx‖2

L2 + ε‖q̃x‖2
L2 .

To estimate J8, we rewrite p̃x |x=0,x=1 as follows. First, integrating (3.1)1 over (x, 1), we have
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p̃x(1, t) = p̃x(x, t) +
1∫

x

p̃yy dy

= p̃x(x, t) +
1∫

x

p̃t dy −
1∫

x

(p̃q̃)y dy − p̄

1∫
x

q̃y dy − q̄

1∫
x

p̃y dy

= p̃x(x, t) +
1∫

x

p̃t dy − [(p̃q̃)(1, t) − (p̃q̃)(x, t)]

− p̄[q̃(1, t) − q̃(x, t)] − q̄[p̃(1, t) − p̃(x, t)]

= p̃x(x, t) +
1∫

x

p̃t dy + (p̃q̃)(x, t) + p̄q̃(x, t) + q̄p̃(x, t),

(3.8)

where we have used the boundary conditions p̃(1, t) = q̃(1, t) = 0. Then integrating (3.8) over 
(0, 1) with respect to x, and using the boundary conditions again, we end up with

p̃x(1, t) =
1∫

0

p̃x(x, t) dx +
1∫

0

1∫
x

p̃t dydx

+
1∫

0

(p̃q̃)(x, t) dx + p̄

1∫
0

q̃(x, t) dx + q̄

1∫
0

p̃(x, t) dx

=
1∫

0

1∫
x

p̃t dydx +
1∫

0

(p̃q̃)(x, t) dx

+ p̄

1∫
0

q̃(x, t) dx + q̄

1∫
0

p̃(x, t) dx,

which, upon the application of Hölder inequality, gives

|p̃x(1, t)| ≤ ‖p̃t‖L2 + ‖p̃‖L2‖q̃‖L2 + p̄‖q̃‖L2 + |q̄|‖p̃‖L2 . (3.9)

In a similar fashion as to obtain (3.9), we derive

|p̃x(0, t)| ≤ ‖p̃t‖L2 + ‖p̃‖L2‖q̃‖L2 + p̄‖q̃‖L2 + |q̄|‖p̃‖L2 . (3.10)

Combination of (3.9), (3.10) and Gagliardo–Nirenberg interpolation inequality, gives
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J8 ≤ ε‖q̃x‖L∞(|p̃x(0, t)| + |p̃x(1, t)|)
≤ 2ε‖q̃x‖L∞(‖p̃t‖L2 + ‖p̃‖L2‖q̃‖L2 + p̄‖q̃‖L2 + |q̄|‖p̃‖L2)

≤ Cε(‖q̃x‖L2 + ‖q̃x‖1/2
L2 ‖q̃xx‖1/2

L2 )

× (‖p̃t‖L2 + ‖p̃‖L2‖q̃‖L2 + p̄‖q̃‖L2 + |q̄|‖p̃‖L2)

≤ 1

4
ε2‖q̃xx‖2

L2 + ε‖q̃x‖2
L2

+ Cε1/2(‖p̃t‖2
L2 + ‖p̃‖2

L2‖q̃‖2
L2 + p̄2‖q̃‖2

L2 + q̄2‖p̃‖2
L2),

where the assumption that 0 < ε < 1 has been used. Substituting above estimates for J5–J8 into 
(3.7), we obtain

d

dt

(
ε‖q̃x‖2

L2

)
+ ε2‖q̃xx‖2

L2

≤ 1

2
ε‖p̃xx‖2

L2 + C(ε‖q̃x‖2
L2 + q̄2 + 1)(ε‖q̃x‖2

L2)

+ Cε1/2(‖p̃t‖2
L2 + ‖p̃‖2

L2‖q̃‖2
L2 + p̄2‖q̃‖2

L2 + q̄2‖p̃‖2
L2),

which, added to (3.6), yields

d

dt
(ε‖p̃x‖2

L2 + ε‖q̃x‖2
L2) + (ε‖p̃xx‖2

L2 + ε2‖q̃xx‖2
L2)

≤ C(‖p̃x‖2
L2 + ε‖q̃x‖2

L2 + p̄2 + q̄2 + 1)(ε‖p̃x‖2
L2 + ε‖q̃x‖2

L2)

+ Cε1/2(‖p̃t‖2
L2 + ‖p̃‖2

L2‖q̃‖2
L2 + p̄2‖q̃‖2

L2 + q̄2‖p̃‖2
L2).

This, combined with Lemma 3.1, Lemma 3.2 and Gronwall’s inequality, gives

ε‖p̃x(t)‖2
L2 + ε‖q̃x(t)‖2

L2 +
t∫

0

(
ε‖p̃xx‖2

L2 + ε2‖q̃xx‖2
L2

)
dτ ≤ Cε1/2,

where the constant C is independent of ε but depends on t , which implies

ε1/2‖q̃x(t)‖2
L2 +

t∫
0

(
ε1/2‖p̃xx‖2

L2 + ε3/2‖q̃xx‖2
L2

)
dτ ≤ C. (3.11)

As a consequence of Lemma 3.1 and Lemma 3.2, we get

‖p̃x‖2
W 1,2(0,T ;L2)

≤ C,

which, along with the Sobolev embedding inequality, yields

‖p̃x‖2
∞ 2 ≤ C‖p̃x‖2

1,2 2 ≤ C.

L (0,T ;L ) W (0,T ;L )
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This, combined with (3.11) completes the proof. �
Proof of Theorem 2.5. By Lemma 3.3, we derive estimate (2.2), which finishes the proof of 
Theorem 2.5.

4. Boundary layer problem (proof of Theorem 2.6)

Recall that (pε, qε) denote the global solution of (1.3)–(1.4) with ε ≥ 0. For convenience, we 
set

u = pε − p0, v = qε − q0 (4.1)

Then from system (1.3)-(1.4), we deduce that (u, v) satisfies the following initial-boundary value 
problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = uxx + (pεv + uq0)x,

vt = εvxx + εq0
xx + ε[(qε)2]x + ux,

u|x=0,x=1 = 0, v|x=0,x=1 = (q̄ − q0)|x=0,x=1,

u(x,0) = 0, v(x,0) = 0.

(4.2)

Based on the reformulated problem (4.2), we shall derive a series of results below.

Lemma 4.1. Suppose that the assumptions in Theorem 2.6 hold. Then for any 0 < T < ∞, there 
exists a positive constant C, independent of ε but dependent on T , such that

sup
0≤t≤T

(
‖(pε − p0)(t)‖2

L2 + ‖(qε − q0)(t)‖2
L2

)

+
T∫

0

(
‖(pε − p0)x‖2

L2 + ε‖(qε − q0)x‖2
L2

)
dt ≤ Cε1/2.

Proof. Testing (4.2)1 with u, integrating the result by parts, with Hölder and Sobolev embedding 
inequalities we obtain

1

2

d

dt
‖u‖2

L2 + ‖ux‖2
L2 = −

1∫
0

pεvux dx −
1∫

0

uq0ux dx

≤ ‖pε‖L∞‖v‖L2‖ux‖L2 + ‖u‖L2‖q0‖L∞‖ux‖L2

≤ 1

4
‖ux‖2

L2 + C‖pε‖2
H 1‖v‖2

L2 + C‖q0‖2
H 1‖u‖2

L2 .

(4.3)

Taking the L2 inner product of (4.2)2 with v, and using the integration by parts again, we get
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1

2

d

dt
‖v‖2

L2 + ε‖vx‖2
L2 = ε

1∫
0

q0
xxv dx + 2ε

1∫
0

qεqε
xv dx +

1∫
0

uxv dx + ε(vvx)|x=1
x=0

:= K1 + K2 + K3 + K4.

(4.4)

By Hölder and Sobolev embedding inequalities, we estimate K1–K3 as follows:

K1 ≤ ε2‖q0
xx‖2

L2 + ‖v‖2
L2,

K2 ≤ 2ε‖qε‖L∞‖qε
x‖L2‖v‖L2

≤ Cε(‖qε‖L2 + ‖qε
x‖L2)‖qε

x‖L2‖v‖L2

≤ Cε‖qε
x‖2

L2 + C(ε‖qε‖2
L2 + ε‖qε

x‖2
L2)‖v‖2

L2

and

K3 ≤1

8
‖ux‖2

L2 + 2‖v‖2
L2 .

With boundary conditions in (4.2), we rewrite K4 as follows:

K4 = ε[(q̄ − q0)(qε
x − q0

x )]|x=1
x=0

= ε[(q̄ − q0)qε
x ]|x=1

x=0 − ε[(q̄ − q0)q0
x ]|x=1

x=0

:= M1 + M2.

By Hölder and Gagliardo–Nirenberg interpolation inequalities, we deduce

M1 ≤ 2ε(q̄ + ‖q0‖L∞)‖qε
x‖L∞

≤ Cε(q̄ + ‖q0‖H 1)
(
‖qε

x‖L2 + ‖qε
x‖1/2

L2 ‖qε
xx‖1/2

L2

)
= Cε1/2(q̄ + ‖q0‖H 1)

(
ε1/2‖qε

x‖L2 + (ε1/8‖qε
x‖1/2

L2 )(ε3/8‖qε
xx‖1/2

L2 )
)

≤ Cε1/2
(
(q̄ + ‖q0‖H 1)

2 + ε‖qε
x‖2

L2 + ε1/2‖qε
x‖2

L2 + ε3/2‖qε
xx‖2

L2

)
and

M2 ≤ 2ε(q̄ + ‖q0‖L∞)‖q0
x‖L∞

≤ Cε(q̄ + ‖q0‖H 2)
2.

With the above estimates for M1 and M2, and keeping in mind that 0 < ε < 1, we get

K4 ≤ Cε1/2
(
(q̄ + ‖q0‖H 2)

2 + ε1/2‖qε
x‖2

L2 + ε3/2‖qε
xx‖2

L2

)
,

which, combined with the above estimates for K1–K3 and (4.4), leads to
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d

dt
‖v‖2

L2 + ε‖vx‖2
L2

≤ 1

4
‖ux‖2

L2 + C(‖qε‖2
L2 + ε‖qε

x‖2
L2 + 1)‖v‖2

L2

+ Cε1/2
(
(q̄ + ‖q0‖H 2)

2 + ε1/2‖qε
x‖2

L2 + ε3/2‖qε
xx‖2

L2

)
.

This, along with (4.3) gives

d

dt
(‖u‖2

L2 + ‖v‖2
L2) + (‖ux‖2

L2 + ε‖vx‖2
L2)

≤ C(‖pε‖2
H 1 + ‖q0‖2

H 1 + ‖qε‖2
L2 + ε‖qε

x‖2
L2 + 1)(‖u‖2

L2 + ‖v‖2
L2)

+ Cε1/2
(
(q̄ + ‖q0‖H 2)

2 + ε1/2‖qε
x‖2

L2 + ε3/2‖qε
xx‖2

L2

)
.

Applying Gronwall’s inequality to this, and using Part (ii) of Lemma 2.1, Theorem 2.5 and 
Lemma 3.1, we arrive at

‖u(t)‖2
L2 + ‖v(t)‖2

L2 +
t∫

0

(
‖ux‖2

L2 + ε‖vx‖2
L2

)
dτ ≤ Cε1/2, (4.5)

where the constant C is independent of ε but depends on t . This, along with the convention (4.1), 
completes the proof. �
Lemma 4.2. Suppose that the assumptions in Theorem 2.6 hold. Then for any 0 < T < ∞, there 
exists a positive constant C, independent of ε but dependent on T , such that

ε sup
0≤t≤T

‖(qε − q0)x(t)‖2
L2 +

T∫
0

‖(qε − q0)t‖2
L2 dt ≤ Cε1/2 (4.6)

and

sup
0≤t≤T

‖(pε − p0)x(t)‖2
L2 +

T∫
0

‖(pε − p0)t‖2
L2 dt ≤ Cε1/2. (4.7)

Proof. We first estimate (4.6). Taking the L2 inner product of (4.2)2 with vt and integrating the 
result by parts, we derive
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1

2

d

dt

(
ε‖vx‖2

L2

)
+ ‖vt‖2

L2 = ε

1∫
0

q0
xxvt dx + 2ε

1∫
0

qεqε
xvt dx

+
1∫

0

uxvt dx + ε(vxvt )|x=1
x=0

:= K5 + K6 + K7 + K8.

(4.8)

First by Cauchy–Schwarz inequality and Part (ii) of Lemma 2.1, we obtain

K5 ≤ 2ε2‖q0
xx‖2

L2 + 1

8
‖vt‖2

L2 ≤ Cε2 + 1

8
‖vt‖2

L2 .

Then using Hölder and Sobolev embedding inequalities, we estimate K6 and K7 as follows:

K6 ≤ 2ε‖qε‖L∞‖qε
x‖L2‖vt‖L2

≤ Cε(‖qε‖L2 + ‖qε
x‖L2)‖qε

x‖L2‖vt‖L2

≤ 1

4
‖vt‖2

L2 + Cε(ε‖qε
x‖2

L2‖qε‖2
L2 + ε‖qε

x‖4
L2)

and

K7 ≤ 1

8
‖vt‖2

L2 + 2‖ux‖2
L2 .

With the boundary conditions, Sobolev embedding W 1,2(0, 1) ↪→ C([0, 1]), and Gagliardo–
Nirenberg interpolation inequality, K8 is estimated as follows:

K8 = ε[(qε
x − q0

x )(−q0
t )]|x=1

x=0

≤ 2ε‖qε
x‖L∞‖q0

t ‖L∞ + 2ε‖q0
x‖L∞‖q0

t ‖L∞

≤ Cε(‖qε
x‖L2 + ‖qε

x‖1/2
L2 ‖qε

xx‖1/2
L2 )‖q0

t ‖H 1 + Cε‖q0‖H 2‖q0
t ‖H 1

= Cε1/2
(
(ε1/2‖qε

x‖L2) + (ε1/8‖qε
x‖1/2

L2 )(ε3/8‖qε
xx‖1/2

L2 )
)

‖q0
t ‖H 1

+ Cε‖q0‖H 2‖q0
t ‖H 1

≤ Cε1/2
(
ε1/2‖qε

x‖2
L2 + ε3/2‖qε

xx‖2
L2 + ‖q0

t ‖2
H 1

)
+ Cε‖q0‖H 2‖q0

t ‖H 1,

(4.9)

where we have used the assumption that 0 < ε < 1. We proceed to estimate ‖q0
t ‖H 1 in the right-

hand side of (4.9). By equation (1.3)2 with ε = 0 and Part (ii) of Lemma 2.1, we derive

‖q0
t ‖H 1 = ‖p0

x‖H 1 ≤ ‖p0‖H 2 ≤ C.

Putting the above estimates into (4.9), and using Part (ii) of Lemma 2.1 again, we obtain that for 
0 < ε < 1
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K8 ≤ Cε1/2(ε1/2‖qε
x‖2

L2 + ε3/2‖qε
xx‖2

L2 + 1).

Substituting the above estimates for K5–K8 into (4.8), using Theorem 2.5 and Lemma 3.1 we 
deduce

d

dt

(
ε‖vx‖2

L2

)
+ ‖vt‖2

L2

≤ 4‖ux‖2
L2 + Cε‖qε

x‖2
L2

(
‖qε‖2

L2 + ε1/2‖qε
x‖2

L2

)
+ Cε1/2

(
ε1/2‖qε

x‖2
L2 + ε3/2‖qε

xx‖2
L2 + 1

)
≤ 4‖ux‖2

L2 + Cε1/2
(
ε1/2‖qε

x‖2
L2 + ε3/2‖qε

xx‖2
L2 + 1

)
,

where the assumption that 0 < ε < 1 has been used. Integrating this inequality over (0, t) and 
using Theorem 2.5 and Lemma 4.1, we obtain

ε‖vx(t)‖2
L2 +

t∫
0

‖vt‖2
L2 dτ ≤ Cε1/2, (4.10)

where the constant C is independent of ε but depends on t . The above estimate completes the 
proof of (4.6).

We next prove (4.7). Testing (4.2)1 with ut , integrating the result by parts, and using the 
boundary conditions, we have

1

2

d

dt
‖ux‖2

L2 + ‖ut‖2
L2 = −

1∫
0

pεvuxt dx +
1∫

0

(uq0)xut dx

= − d

dt

1∫
0

pεvux dx +
1∫

0

(pεv)tux dx +
1∫

0

(uq0)xut dx

= − d

dt

1∫
0

((
pεv + ux

2

)2 − (pεv)2 − u2
x

4

)
dx

+
1∫

0

(pεv)tux dx +
1∫

0

(uq0)xut dx

= − d

dt

1∫
0

(
pεv + ux

2

)2
dx + d

dt

1∫
0

(pεv)2 dx + 1

4

d

dt

1∫
0

u2
x dx

+
1∫
(pεv)tux dx +

1∫
(uq0)xut dx,
0 0
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which, gives

1

4

d

dt
‖ux‖2

L2 + d

dt

∥∥∥(
pεv + ux

2

)∥∥∥2

L2
+ ‖ut‖2

L2

= d

dt

1∫
0

(pεv)2 dx +
1∫

0

(pεv)tux dx +
1∫

0

(uq0)xut dx.

For fixed t ∈ (0, T ], integrating this equation over (0, t) and using the initial conditions, we 
deduce

1

4
‖ux(t)‖2

L2 +
∥∥∥(

pεv + ux

2

)
(t)

∥∥∥2

L2
+

t∫
0

‖ut‖2
L2 dτ

= ‖(pεv)(t)‖2
L2 +

t∫
0

1∫
0

(pεv)tux dx dτ +
t∫

0

1∫
0

(uq0)xut dx dτ

:= K9 + K10 + K11.

(4.11)

Let us estimate K9–K11. First by Theorem 2.1, Lemma 3.1, Lemma 4.1 and the Sobolev embed-
ding inequality, we get

K9 ≤ ‖pε(t)‖2
L∞‖v(t)‖2

L2

≤ C
(
‖pε(t)‖2

L2 + ‖pε
x(t)‖2

L2

)
‖v(t)‖2

L2

≤ Cε1/2.

With Hölder and Sobolev embedding inequalities, we have

K10 =
t∫

0

1∫
0

pε
t vux dx dτ +

t∫
0

1∫
0

pεvtux dx dτ

≤ ‖pε
t ‖L2(0,T ;L∞)‖v‖L∞(0,T ;L2)‖ux‖L2(0,T ;L2)

+ ‖pε‖L∞(0,T ;L∞)‖vt‖L2(0,T ;L2)‖ux‖L2(0,T ;L2)

≤ C(‖pε
t ‖L2(0,T ;L2) + ‖pε

xt‖L2(0,T ;L2))‖v‖L∞(0,T ;L2)‖ux‖L2(0,T ;L2)

+ C(‖pε‖L∞(0,T ;L2) + ‖pε
x‖L∞(0,T ;L2))‖vt‖L2(0,T ;L2)‖ux‖L2(0,T ;L2)

≤ Cε1/2,

where we have used Theorem 2.5, Lemma 3.1, Lemma 3.2, Lemma 4.1 and (4.10). It follows 
from Poincaré and Sobolev embedding inequalities that
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K11 =
t∫

0

1∫
0

uxq
0ut dx dτ +

t∫
0

1∫
0

uq0
xut dx dτ

≤ ‖ux‖L2(0,T ;L2)‖q0‖L∞(0,T ;L∞)‖ut‖L2(0,t;L2)

+ ‖u‖L2(0,T ;L∞)‖q0
x‖L∞(0,T ;L2)‖ut‖L2(0,t;L2)

≤ 1

4
‖ut‖2

L2(0,t;L2)
+ C‖q0‖2

L∞(0,T ;H 1)
‖u‖2

L2(0,T ;H 1)

≤ 1

4
‖ut‖2

L2(0,t;L2)
+ C‖q0‖2

L∞(0,T ;H 1)
‖ux‖2

L2(0,T ;L2)

≤ 1

4
‖ut‖2

L2(0,t;L2)
+ Cε1/2,

where Lemma 4.1 and Part (ii) of Lemma 2.1 have been used. Substituting the above estimates 
for K9–K11 into (4.11), we obtain

‖ux(t)‖2
L2 +

t∫
0

‖ut‖2
L2 dτ ≤ Cε1/2,

where the constant C is independent of ε but depends on t . Thus, the proof of (4.7) is com-
pleted. �
Lemma 4.3. Suppose that the assumptions in Theorem 2.6 hold. Define ξ(x) = x2(1 − x)2 for 
0 ≤ x ≤ 1. Then for any 0 < T < ∞, there exists a positive constant C, independent of ε but 
dependent on T , such that

sup
0≤t≤T

⎛
⎝ 1∫

0

ξ(x)|(qε − q0)x |2(x, t) dx

⎞
⎠ + ε

T∫
0

1∫
0

ξ(x)|(qε − q0)xx |2(x, t) dxdt ≤ Cε1/2.

Proof. Differentiating (4.2)2 with respect to x, we have

vxt = εvxxx + εq0
xxx + ε[(qε)2]xx + uxx.

Multiplying the above equation by x2(1 − x)2vx , integrating the resulting equation with respect 
to x by parts, and using the fact that ξ(x)|x=0,x=1 = 0, we get
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1

2

d

dt
‖x(1 − x)vx‖2

L2 + ε‖x(1 − x)vxx‖2
L2

= −ε

1∫
0

2(1 − 2x)x(1 − x)vxvxx dx + ε

1∫
0

x2(1 − x)2vxq
0
xxx dx

+ 2ε

1∫
0

x2(1 − x)2(qε
x)2vx dx + 2ε

1∫
0

x2(1 − x)2qεvxq
ε
xx dx

+
1∫

0

x2(1 − x)2vxuxx dx

:= K12 + K13 + K14 + K15 + K16.

(4.12)

We proceed to estimate K12–K16. Starting with Cauchy–Schwarz inequality, we first have

K12 ≤ 2ε‖x(1 − x)vxx‖L2‖(1 − 2x)vx‖L2

≤ 2(ε1/2‖x(1 − x)vxx‖L2)(ε
1/2‖vx‖L2)

≤ 1

8
ε‖x(1 − x)vxx‖2

L2 + 8ε‖vx‖2
L2 .

The integration by parts with Hölder inequality yields

K13 = −ε

1∫
0

x2(1 − x)2vxxq
0
xx dx − ε

1∫
0

2(1 − 2x)x(1 − x)vxq
0
xx dx

≤ ε‖q0
xx‖L2‖x(1 − x)vxx‖L2 + 2ε‖vx‖L2‖q0

xx‖L2

≤ 1

8
ε‖x(1 − x)vxx‖2

L2 + 2(ε‖vx‖2
L2 + ε‖q0

xx‖2
L2).

By the assumption that 0 < ε < 1 and Hölder and Gagliardo–Nirenberg interpolation inequali-
ties, we derive

K14 ≤ 2ε‖qε
x‖L2‖qε

x‖L∞‖x(1 − x)vx‖L2

≤ Cε‖qε
x‖L2(‖qε

x‖L2 + ‖qε
x‖1/2

L2 ‖qε
xx‖1/2

L2 )‖x(1 − x)vx‖L2

= C(ε‖qε
x‖2

L2)‖x(1 − x)vx‖L2

+ C(ε1/2‖qε
x‖3/2

L2 )(ε1/2‖qε
xx‖1/2

L2 )‖x(1 − x)vx‖L2

≤ ‖x(1 − x)vx‖2
L2 + Cε1/2

(
(ε1/2‖qε

x‖2
L2)

2 + (ε1/2‖qε
x‖2

L2)
3 + ε3/2‖qε

xx‖2
L2

)
.

Noting that qε = v + q0, we have
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K15 = 2ε

1∫
0

x2(1 − x)2qεvxvxx dx + 2ε

1∫
0

x2(1 − x)2qεvxq
0
xx dx

≤ 2ε‖qε‖L∞‖x(1 − x)vx‖L2‖x(1 − x)vxx‖L2

+ 2ε‖qε‖L∞‖x(1 − x)vx‖L2‖q0
xx‖L2

≤ Cε‖qε‖H 1‖x(1 − x)vx‖L2‖x(1 − x)vxx‖L2

+ Cε‖qε‖H 1‖x(1 − x)vx‖L2‖q0
xx‖L2

≤ 1

8
ε‖x(1 − x)vxx‖2

L2 + C(ε‖qε‖2
H 1)‖x(1 − x)vx‖2

L2 + ε‖q0
xx‖2

L2,

where we have used the Sobolev embedding H 1 ↪→ L∞. For K16, we use equation (4.2)1 to 
rewrite it as

K16 =
1∫

0

x2(1 − x)2vxut dx

−
1∫

0

x2(1 − x)2vxp
ε
xv dx −

1∫
0

x2(1 − x)2vxp
εvx dx

−
1∫

0

x2(1 − x)2vxuxq
0 dx −

1∫
0

x2(1 − x)2vxuq0
x dx

:= R1 + R2 + R3 + R4 + R5.

To bound K16, we estimate R1–R5 below. First Cauchy–Schwarz inequality leads to

R1 ≤ ‖x(1 − x)vx‖2
L2 + ‖ut‖2

L2 .

By Hölder and Sobolev embedding inequalities, we estimate R2–R5 as follows:

R2 ≤ ‖x(1 − x)v‖L∞‖x(1 − x)vx‖L2‖pε
x‖L2

≤ C‖x(1 − x)v‖H 1‖x(1 − x)vx‖L2‖pε
x‖L2

≤ C(‖x(1 − x)v‖L2 + ‖[x(1 − x)v]x‖L2)‖x(1 − x)vx‖L2‖pε
x‖L2

≤ C(‖v‖L2 + ‖x(1 − x)vx‖L2)‖x(1 − x)vx‖L2‖pε
x‖L2

≤ C(‖pε
x‖L2 + ‖pε

x‖2
L2)‖x(1 − x)vx‖2

L2 + ‖v‖2
L2,

R3 ≤ ‖x(1 − x)vx‖2
L2‖pε‖L∞

≤ C(‖pε‖L2 + ‖pε
x‖L2)‖x(1 − x)vx‖2

L2 ,

R4 ≤ ‖x(1 − x)vx‖L2‖ux‖L2‖q0‖L∞

≤ C‖q0‖2 ‖x(1 − x)v ‖2 + ‖u ‖2

H 1 x L2 x L2
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and

R5 ≤ ‖x(1 − x)vx‖L2‖u‖L2‖q0
x‖L∞

≤ C‖q0‖2
H 2‖x(1 − x)vx‖2

L2 + ‖u‖2
L2 .

With above estimates in hand, we obtain

K16 ≤ C(‖pε‖L2 + ‖pε
x‖L2 + ‖pε

x‖2
L2 + ‖q0‖2

H 2 + 1)‖x(1 − x)vx‖2
L2

+ (‖v‖2
L2 + ‖u‖2

L2 + ‖ux‖2
L2 + ‖ut‖2

L2).

Substituting the above estimates for K12–K16 into (4.12), we derive that for 0 < ε < 1

d

dt
‖x(1 − x)vx‖2

L2 + ε‖x(1 − x)vxx‖2
L2

≤ C(‖pε‖L2 + ‖pε
x‖L2 + ‖pε

x‖2
L2 + ε1/2‖qε‖2

H 1 + ‖q0‖2
H 2 + 1)‖x(1 − x)vx‖2

L2

+ C(‖v‖2
L2 + ‖u‖2

L2 + ‖ux‖2
L2 + ‖ut‖2

L2 + ε‖vx‖2
L2)

+ Cε1/2
(
(ε1/2‖qε

x‖2
L2)

2 + (ε1/2‖qε
x‖2

L2)
3 + ε3/2‖qε

xx‖2
L2 + ‖q0‖2

H 2

)
.

Applying Gronwall’s inequality to this, and using Part (ii) of Lemma 2.1, Theorem 2.5, 
Lemma 3.1, Lemma 4.1 and Lemma 4.2, we obtain

1∫
0

x2(1 − x)2|vx |2(x, t) dx + ε

t∫
0

1∫
0

x2(1 − x)2|vxx |2(x, τ ) dxdτ ≤ Cε1/2,

where the constant C is independent of ε but depends on t . Thus, the proof Lemma 4.3 is com-
pleted. �

With the help of Lemma 4.1, Lemma 4.2 and Lemma 4.3, we can estimate the thickness of 
boundary layers.

Proof of Theorem 2.6. By Lemma 4.1, Lemma 4.2 and Sobolev embedding inequality, we have 
that for any t ∈ [0, T ],

‖(pε − p0)(t)‖2
C[0,1] ≤ C

(
‖(pε − p0)(t)‖2

L2(0,1)
+ ‖(pε − p0)x(t)‖2

L2(0,1)

)
≤ Cε1/2.

Thus, we obtain (2.3) and

‖(pε − p0)‖2
L∞(0,T ;C[0,1]) → 0, as ε → 0.

Next, we prove (2.4). First one can prove that for any δ ∈ (0, 1/2),

δ2 ≤ 4x2(1 − x)2, ∀x ∈ (δ,1 − δ).
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This, along with Lemma 4.3 gives

δ2

1−δ∫
δ

v2
x(x, t) dx ≤ 4

1−δ∫
δ

x2(1 − x)2v2
x(x, t) dx ≤ Cε1/2,

from which we derive that for any δ ∈ (0, 1/2),

‖(qε − q0)x(t)‖L2(δ,1−δ) ≤ Cδ−1ε1/4, ∀ t ∈ [0, T ].

Combining this with Lemma 4.1, we have by Gagliardo–Nirenberg interpolation inequality that 
for any t ∈ [0, T ],

‖(qε − q0)(t)‖2
C[δ,1−δ]

≤ C(‖(qε − q0)(t)‖2
L2(δ,1−δ)

+ ‖(qε − q0)(t)‖L2(δ,1−δ)‖(qε − q0)x(t)‖L2(δ,1−δ))

≤ C(ε1/2 + ε1/2δ−1)

≤ Cε1/2δ−1,

where the constant C is independent of ε but depends on T . Hence, we obtain (2.4) and

‖(qε − q0)‖2
L∞(0,T ;C[δ,1−δ]) → 0, as ε → 0,

provided that δ = δ(ε) satisfies

δ(ε) → 0 and ε1/2/δ(ε) → 0, as ε → 0.

Next we turn to show that (2.5) and (2.6) are equivalent. For this, we integrate (1.3)2 with 
ε = 0 over (0, t) and set x = 0 in the resulting integral equation to obtain

q0(0, t) = q0(0,0) +
t∫

0

p0
x(0, τ )dτ = q0(0) +

t∫
0

p0
x(0, τ )dτ = q̄ +

t∫
0

p0
x(0, τ )dτ, (4.13)

where we have used the compatible condition q0(0) = q̄ . Then it follows from (4.13) that

q0(0, t) − q̄ =
t∫

0

p0
x(0, τ )dτ,

which, along with the boundary condition qε(0, t) = q̄ gives for any ε > 0 that

q0(0, t) − qε(0, t) =
t∫
p0

x(0, τ )dτ. (4.14)
0
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If we assume that 
∫ t

0 p0
x(0, τ)dτ �= 0 for some t ∈ [0, T ], then (2.5) holds and the boundary 

layer appears at x = 0. Similarly if we assume that 
∫ t

0 p0
x(1, τ)dτ �= 0, then (2.5) holds and the 

boundary layer appears at x = 1. Thus, we have proved that (2.6) implies (2.5). It remains to 
show (2.5) implies (2.6) by argument of contradiction. Indeed if we assume (2.6) is false, that is

t∫
0

p0
x(0, τ ) dτ ·

t∫
0

p0
x(0, τ ) dτ = 0, ∀ t ∈ [0, T ],

then it follows from (4.14) that

q0(0, t) − qε(0, t) = q0(1, t) − qε(1, t) = 0, ∀ t ∈ [0, T ]. (4.15)

We shall show below that under (4.15) the boundary terms for v in the proof of Lemma 4.1 and 
Lemma 4.2 will vanish and hence lead to a estimates violating (2.5). In fact, with (4.15), we have 
K4 = 0 in (4.4) and K2 can be estimated in a more delicate way by

K2 ≤ 2ε‖qε‖L∞‖qε
x‖L2‖v‖L2

≤ Cε
(
‖qε‖L2 + ‖qε‖1/2

L2 ‖qε
x‖1/2

L2

)
‖qε

x‖L2‖v‖L2

≤ Cε2‖qε‖2
L2‖qε

x‖2
L2 + Cε2‖qε‖L2‖qε

x‖3
L2 + ‖v‖2

L2

≤ Cε5/4(‖qε‖L2 + ‖qε‖2
L2)

(
ε1/2‖qε

x‖2
L2 + ε3/4‖qε

x‖3
L2

)
+ ‖v‖2

L2,

(4.16)

where the assumption ε < 1 has been used. Now we modify the proof of Lemma 4.1 directly by 
using K4 = 0 and replacing K2 in (4.4) with (4.16) and get by a similar argument as deriving 
(4.5) that

sup
0≤t≤T

(‖u(t)‖2
L2 + ‖v(t)‖2

L2) +
T∫

0

(‖ux‖2
L2 + ε‖vx‖2

L2) dt ≤ Cε5/4. (4.17)

Similarly we can modify the proof of Lemma 4.2 directly to get a better estimates for vx . First, 
differentiating (4.15) with respect to t gives vt |x=0,x=1 = 0, which leads to K8 = 0 in (4.8). Then 
using a similar argument as obtaining (4.16), we find

K6 ≤ 2ε‖qε‖L∞‖qε
x‖L2‖vt‖L2

≤ 1

4
‖vt‖2

L2 + Cε5/4(‖qε‖L2 + ‖qε‖2
L2)

(
ε1/2‖qε

x‖2
L2 + ε3/4‖qε

x‖3
L2

)
.

Now substituting the above estimate for K6 into (4.8), keeping the estimates of K5, K7 un-
changed, and using the same arguments as deriving (4.10), one easily gets that

ε sup
0≤t≤T

‖vx(t)‖2
L2 +

T∫
‖vt‖2

L2 dt ≤ Cε5/4,
0
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which, entails that for t ∈ [0, T ]

‖vx(t)‖2
L2 ≤ Cε1/4. (4.18)

Then from (4.17) and (4.18), we deduce for t ∈ [0, T ] that

‖(qε − q0)(t)‖2
C[0,1]

≤ C(‖(qε − q0)(t)‖2
L2(0,1)

+ ‖(qε − q0)(t)‖L2(0,1)‖(qε − q0)x(t)‖L2(0,1))

≤ C(ε5/4 + ε5/8 · ε1/8)

≤ Cε3/4,

which, yields

lim inf
ε→0

‖qε − q0‖L∞(0,T ;C[0,1]) = lim
ε→0

‖qε − q0‖L∞(0,T ;C[0,1]) = 0.

This contradicts (2.5) and hence (2.6) holds by argument of contradiction. The proof is com-
pleted. �

Note that in general the condition (2.6) in Theorem 2.6 is hardly checkable unless the term 
p0

x(0, τ) or p0
x(1, τ) is known. Below we shall show that the condition (2.6) can be ensured by 

assuming p0x(0) ·p0x(1) �= 0. For example without loss of generality, we assume that p0x(0) �= 0
and furthermore p0x(0) > 0. By part (ii) of Lemma 2.1, we know that p0 ∈ C([0, ∞); H 2), 
which along with Sobolev embedding theorem, entails for any T ∈ (0, ∞) that

p0
x(x, t) ∈ C([0,1] × [0, T ]),

which implies

p0
x(0, t) ∈ C([0, T ]). (4.19)

We know from the initial conditions that p0(x, 0) = p0(x). Differentiating this equation with 
respect to x and then setting x = 0, we obtain

p0
x(0,0) = p0x(0) > 0. (4.20)

Combing (4.19) and (4.20), we conclude that there exists a suitably small T ∗ > 0, such that

p0
x(0, τ ) > 0, ∀ τ ∈ [0, T ∗]. (4.21)

Then from (4.14) and (4.21), we have for any ε > 0 that

‖qε − q0‖L∞(0,T ;C[0,1]) ≥
T∫

p0
x(0, t)dt > 0, ∀ 0 < T < T ∗
0
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and

‖qε − q0‖L∞(0,T ;C[0,1]) ≥
T ∗∫
0

p0
x(0, t)dt > 0, ∀ T ≥ T ∗.

From the above two inequalities, we conclude that there exists a positive constant C(T , T ∗)
independent of ε but dependent on T and T ∗, such that for any ε > 0

‖qε − q0‖L∞(0,T ;C[0,1]) ≥ C(T ,T ∗) > 0.

Hence, for any 0 < T < ∞

lim inf
ε→0

‖qε − q0‖L∞(0,T ;C[0,1]) > 0.

Thus, we obtain (2.5) under the assumption that p0x(0) > 0. The result can be extended to the 
case p0x(0) < 0 similarly. In a similar fashion as above, one can derive (2.5) for the case p0x(1) �=
0. This yields the results of Remark 2.7.

5. Diffusion limit of the original model

In this section we transfer the diffusion limit results for the transformed system (1.3)–(1.4)
back to the pre-transformed system (1.2) and prove Proposition 2.8. First passing the result of 
Lemma 2.1 to the pre-transformed chemotaxis system (1.2) gives the global existence of the 
problem (2.7), which has been done in [25, Proposition 1.1] and will be omitted here. To complete 
the proof of Proposition 2.8, it remains only to derive the solution convergence with respect to ε
and the details are given below.

Proof of Proposition 2.8. We denote the solution of (2.7) with ε ≥ 0 by (nε, cε). Noticing that 
nε = pε and n0 = p0, the convergence rate (2.8) is obtained directly from Theorem 2.6. We only 
need to prove the convergence for cε. Observing that{

(ln cε)t = ε(qε)2 + εqε
x + nε − μ,

(ln c0)t = n0 − μ,

where qε = (ln cε)x . We consider the difference of the two equations:

(ln cε − ln c0)t = ε(qε)2 + εqε
x + (nε − n0),

which, integrated with respect to t , gives

cε(x, t)

c0(x, t)
= cε(x,0)

c0(x,0)
exp

{ t∫
0

[(nε − n0) + ε(qε)2 + εqε
x ]dτ

}
.

It follows from the fact cε(x, 0) = c0(x,0) = c0(x) that
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|cε(x, t) − c0(x, t)| = |c0(x, t)| ·
∣∣∣∣ exp

{ t∫
0

[(nε − n0) + ε(qε)2 + εqε
x ]dτ

}
− 1

∣∣∣∣
= |c0(x, t)| · |eGε(x,t) − 1|

(5.1)

We denote Gε(x, t) := ∫ t

0 [(nε − n0) + ε(qε)2 + εqε
x ] dτ for convenience. By Hölder and 

Gagliardo–Nirenberg interpolation inequalities, we have for any t ∈ (0, T ]

|Gε(x, t)| ≤
T∫

0

(
‖nε − n0‖L∞ + ε‖qε‖2

L∞ + ε‖qε
x‖L∞

)
dτ

≤ T ‖nε − n0‖L∞(0,T ;L∞) + Cε

T∫
0

(
‖qε‖2

L2 + ‖qε‖L2‖qε
x‖L2

)
dτ

+ Cε

T∫
0

(
‖qε

x‖L2 + ‖qε
x‖1/2

L2 ‖qε
xx‖1/2

L2

)
dτ

≤ CT ε1/4 + CT ε‖qε‖2
L∞(0,T ;L2)

+ CT ε‖qε‖L∞(0,T ;L2)‖qε
x‖L∞(0,T ;L2)

+ CT ε‖qε
x‖L∞(0,T ;L2) + CT 3/4ε‖qε

x‖1/2
L∞(0,T ;L2)

‖qε
xx‖1/2

L2(0,T ;L2)

≤ CT ε1/4 + CT ε + CT ε3/4 + CT 3/4ε1/2

where we have used (2.8), Theorem 2.5 and Lemma 3.1 and C is a constant independent of ε. 
Considering that 0 < ε < 1, one has

|Gε(x, t)| ≤ C1ε
1/4 (5.2)

for some positive constant C1 independent of ε (but depends on T ). Since c0(x, t) satisfies the 
equation c0

t = (n0 − μ)c0, then by using the results of Lemma 2.1, one can derive that

|c0(x, t)| ≤ C2 exp{(n̄ − μ)t},

where the positive constant C2 is independent of t if n̄ > 0 and depends on t if n̄ = 0 (see [25, 
Section 2.3]). We further apply the Taylor expansion and (5.2) with the assumption 0 < ε < 1 to 
have

|eGε(x,t) − 1| ≤
∞∑

k=1

1

k! |G
ε(x, t)|k ≤

∞∑
k=1

|Gε(x, t)|k ≤ C3ε
1/4

where the constant C3 > 0 is independent of ε. Combining the above two estimates with (5.1), 
we conclude the following result:

‖cε − c0‖L∞(0,T ;L∞) ≤ C4ε
1/4,
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where the constant C4 > 0 is independent of ε and depends on t . This completes the proof of 
Proposition 2.8. �
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Appendix A

Based on the Definition 2.3, the results in Theorem 2.6 can not give a unique boundary layer 
thickness. In this section, we shall show that the boundary layer thickness is ε1/2 by the asymp-
totic analysis. We remark that our results are derived based on a formal instead of rigorous 
procedure by the WKB method (e.g. see [15, Chapter 4], [10,40]). However a rigorous proof is 
beyond the scope of this paper, see Remark 2.4. We split our analysis into four steps.

Step 1. Asymptotic expansions. Assume that the boundary layer thickness is εα for some 
α > 0 to be determined later. By the asymptotic matching method (see [15, Chapter 2]), it is 
known that the solution consists of two parts: the outer solution and the boundary-layer solution 
near the endpoints x = 0, 1. We first introduce two boundary layer coordinates given as

z = x

εα
, η = x − 1

εα
, x ∈ [0,1] (A.1)

where 0 ≤ z < ∞ and −∞ < η ≤ 0. As ε → 0, these coordinates have the effect of stretching the 
regions near x = 0 and x = 1. By the WKB method, we assume that the solutions of (1.3)–(1.4)
with small ε > 0 have the following expansions:

pε(x, t) =
∑
j≥0

εαj
[
pI,j (x, t) + pB,j (z, t) + pb,j (η, t)

]
, j = 0,1,2, · · · ,

qε(x, t) =
∑
j≥0

εαj
[
qI,j (x, t) + qB,j (z, t) + qb,j (η, t)

]
, j = 0,1,2, · · · ,

(A.2)

where each term in (A.2) is assumed to be smooth and the boundary-layer solutions enjoy the 
following basic hypothesis (see also [15, Chapter 4], [10,40]):

(H) pB,j and qB,j decay to zero exponentially as z → ∞, while pb,j and qb,j decay to zero 
exponentially as η → −∞ all for j ≥ 0.

Step 2. Initial and boundary conditions. Substituting the expansions (A.2) into the initial 
conditions in (1.3), we have
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p0(x) =
∑
j≥0

εαj
[
pI,j (x,0) + pB,j (z,0) + pb,j (η,0)

]
,

q0(x) =
∑
j≥0

εαj
[
qI,j (x,0) + qB,j (z,0) + qb,j (η,0)

]
.

(A.3)

Noticing that the initial data p0, q0 are independent of ε, it follows from (A.3) and the hypothesis 
(H) that

pI,0(x,0) = p0(x), pB,0(z,0) = pb,0(η,0) = 0,

qI,0(x,0) = q0(x), qB,0(z,0) = qb,0(η,0) = 0
(A.4)

and for j ≥ 1

pI,j (x,0) = pB,j (z,0) = pb,j (η,0) = 0,

qI,j (x,0) = qB,j (z,0) = qb,j (η,0) = 0.

To derive the boundary conditions, we substitute (A.2) into (1.4) and obtain from (A.1) that

p̄ =
∑
j≥0

εαj
[
pI,j (0, t) + pB,j (0, t)

]
,

p̄ =
∑
j≥0

εαj
[
pI,j (1, t) + pb,j (0, t)

]
,

q̄ =
∑
j≥0

εαj
[
qI,j (0, t) + qB,j (0, t)

]
,

q̄ =
∑
j≥0

εαj
[
qI,j (1, t) + qb,j (0, t)

]
,

where in the first expression given above, we have neglected the term pb,j (− 1
εα , t) due to the 

assumption (H) that pb,j (− 1
εα , t) decay to zero exponentially as − 1

εα → −∞ (i.e. as ε → 0). 
For the same reason, the terms pB,j ( 1

εα , t), qb,j (− 1
εα , t) and qB,j ( 1

εα , t) have been neglected in 
the second, third and fourth expressions above, respectively. Since the above expressions hold 
for any ε > 0, we get

p̄ = pI,0(0, t) + pB,0(0, t),

p̄ = pI,0(1, t) + pb,0(0, t),

q̄ = qI,0(0, t) + qB,0(0, t),

q̄ = qI,0(1, t) + qb,0(0, t)

(A.5)

and for j ≥ 1 we have
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pI,j (0, t) + pB,j (0, t) = 0,

pI,j (1, t) + pb,j (0, t) = 0,

qI,j (0, t) + qB,j (0, t) = 0,

qI,j (1, t) + qb,j (0, t) = 0.

Step 3. Profiles of pI,j and pB,j . We first substitute (A.2) without the boundary layer solu-
tions pB,j , pb,j , qB,j and qb,j into the first equation of (1.3) and immediately get the equation 
for the outer solution pI,j :

p
I,j
t −

j∑
k=0

(pI,kqI,j−k)x = p
I,j
xx , for j ≥ 0. (A.6)

To find the profile for left boundary-layer solution pB,j , we neglect the right boundary-layer 
solutions pb,j and qb,j in (A.2) and substitute the remaining terms of (A.2) into the first equation 
of (1.3). By using (A.6), after some calculations, we end up with

∑
j≥−2

εαjGj (x, z, t) = 0, (A.7)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G−2 = −p
B,0
zz ,

G−1 = −pI,0q
B,0
z − qI,0p

B,0
z − (pB,0qB,0)z − p

B,1
zz ,

Gj = p
B,j
t −

j∑
k=0

pB,kq
I,j−k
x

−
j+1∑
k=0

(pI,k + pB,k)q
B,j+1−k
z −

j∑
k=0

pI,k
x qB,j−k

−
j+1∑
k=0

pB,k
z (qI,j+1−k + qB,j+1−k) − p

B,j+2
zz , for j ≥ 0.

Now using x = εαz and expanding Gj(x, z, t) in ε by the Taylor expansion to get

Gj(x, z, t) = Gj(ε
αz, z, t) = Gj(0, z, t) +

∞∑
k=1

1

k! (ε
αz)k∂k

xGj (0, z, t), j ≥ 0. (A.8)

Then feeding (A.8) into (A.7), we obtain

∑
j≥−2

εαj G̃j (z, t) = 0, (A.9)

where
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⎧⎪⎨
⎪⎩

G̃−2 = −p
B,0
zz ,

G̃−1 = −pI,0(0, t)q
B,0
z − qI,0(0, t)p

B,0
z − (pB,0qB,0)z − p

B,1
zz ,

· · · · · ·

here we have omitted the terms G̃j for j ≥ 0 for brevity. To make (A.9) true for any ε > 0, it 
is required that G̃j = 0 for j ≥ −2 where in particular G̃−2 = 0 implies pB,0

zz = 0. This, upon 
the integration with respect to z over (z, ∞) along with the assumption (H), gives pB,0

z = 0. 
Integrating this over (z, ∞) yields

pB,0(z, t) = 0, for (z, t) ∈ [0,∞) × [0, T ] (A.10)

which, applied to G̃−1 = 0, gives

pB,1
zz = −pI,0(0, t)qB,0

z .

Integrating the above equation over (z, ∞) and using the assumption (H) again, we have that

pB,1
z = −pI,0(0, t)qB,0 = −p̄qB,0, (A.11)

where (A.10) and the first identity in (A.5) have been used.
Step 4. Boundary layer thickness. For later use, we first derive the equation for qI,0 for 

which we substitute (A.2) without the boundary-layer terms pB,j , pb,j , qB,j and qb,j into the 
second equation of (1.3) and immediately get

q
I,0
t − pI,0

x = 0. (A.12)

In what follows, we discuss the boundary layer at x = 0 only for brevity and similar arguments 
apply directly to the boundary layer at x = 1. Now we insert (A.2) by neglecting pb,j and qb,j

into the second equation of (1.3). Using (A.12) and (A.10), we arrive at

(q
B,0
t + εαq

I,1
t + εαq

B,1
t + · · · )

− 2ε(qI,0 + qB,0 + εαqI,1 + εαqB,1 + · · · )
× (qI,0

x + ε−αqB,0
z + εαqI,1

x + qB,1
z + · · · )

− (εαpI,1
x + pB,1

z + · · · )
− ε(qI,0

xx + ε−2αqB,0
zz + εαqI,1

xx + ε−αqB,1
zz + ε2αqI,2

xx + qB,2
zz + · · · ) = 0,

(A.13)

where in each bracket the omitted terms are higher-order terms of εα . With x = εαz, we substitute 
the Taylor expansions

pI,j (x, t) = pI,j (εαz, t) = pI,j (0, t) +
∞∑

k=1

1

k! (ε
αz)k∂k

xpI,j (0, t),

qI,j (x, t) = qI,j (εαz, t) = qI,j (0, t) +
∞∑ 1

k! (ε
αz)k∂k

x qI,j (0, t),
k=1
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into (A.13) and get

(q
B,0
t︸︷︷︸
S1

+ · · · ) − [2ε1−α(qI,0(0, t) + qB,0)qB,0
z︸ ︷︷ ︸

S2

+· · · ] − (pB,1
z︸︷︷︸
S3

+· · · ) − (ε1−2αqB,0
zz︸ ︷︷ ︸

S4

+· · · ) = 0,

(A.14)

where in each bracket we only write out the lowest order terms of ε, which suffices to find the 
value of α by finding the correct balancing so as to generate a boundary layer. Since α > 0 gives 
rise to 1 − α �= 1 − 2α, S2 and S4 can never be together to produce a balance. Hence there are 
three possible balancing as discussed below:

• S1 ∼ S3 and S2, S4 are higher orders. Then the condition requires 1 −α > 0 and 1 − 2α > 0, 
which leads to α < 1

2 . But this will rule out the possibility of the boundary layer appearing 

for qε at x = 0. In fact, assuming α < 1
2 and letting ε → 0 in (A.14), we have qB,0

t = p
B,1
z . 

This along with (A.11) gives qB,0
t = −p̄qB,0. Thus qB,0(z, t) = qB,0(z, 0)e−p̄t ≡ 0 due to 

(A.4). This implies that qε does not have the boundary layer at x = 0 as ε → 0. Hence this 
balancing is inappropriate.

• S1 ∼ S2 ∼ S3 and S4 is higher order. The condition S1 ∼ S2 ∼ S3 requires that 1 − α = 0
and so α = 1 which indicates that S1, S2, S3 = O(1) and S4 = O(ε−1). This violates our 
assumption that S4 is higher order.

• S1 ∼ S3 ∼ S4 and S2 is higher order. The condition S1 ∼ S2 ∼ S4 requires that 1 − 2α = 0
and hence α = 1

2 . With this, we have S1, S3, S4 = O(1) and S2 = O(ε1/2) which is consistent 
with our assumption that S4 is higher order. This gives a (only) possible balancing to produce 
boundary layers.

Therefore from the above arguments, we may conclude that the boundary layer thickness must 
be exactly ε1/2 if it exists.
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