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a b s t r a c t

In this paper, we first explore the stationary problem of the density-suppressed motility (DSM) model
proposed in Fu et al. (2012) and Liu et al. (2011) where the diffusion rate of the bacterial cells
is a decreasing function (motility function) of the concentration of a chemical secreted by bacteria
themselves. We show that the DSM model does not admit non-constant steady states if either the
chemical diffusion rate or the intrinsic growth rate of bacteria is large. We also prove that when
the decay of the motility function is sub-linear or linear, the DSM model does not admit non-
constant steady states if either the chemical diffusion rate or the intrinsic growth rate of bacteria
is small. Outside these non-existence parameter regimes, we show that the DSM model will have
non-constant steady states under some constraints on the parameters. Furthermore we numerically
find the stable stationary patterns only when the parameter values are close to the critical instability
regime. Finally by performing a delicate multiple-scale analysis, we derive that the DSM model may
generate propagating oscillatory waves whose amplitude is governed by an explicit Ginzburg–Landau
equation, which is further verified by numerical simulations.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Turing (i.e., diffusion-driven) and chemotaxis-driven insta-
bilities have been widely accepted as two major mechanisms
reproducing many exquisite biological spatio-temporal patterns
observed in nature or experiments [1]. Recently a so-called ‘‘self-
trapping’’ mechanism was introduced into the engineered E. coli
strains in the experiment by a synthetic biology approach and
spatio-temporal patterns were observed (see [2]), where E. coli
cells excrete a signaling molecule acyl-homoserine lactone (AHL)
such that at low AHL level, E. coli cells undergo run-and-tumble
random motion, while at high AHL levels E. coli cells tumble
incessantly and become immotile as a result of a vanishing
macroscopic motility. Later on a system of reaction–diffusion
equations with density-suppressed motility was proposed in the
paper [3] to explain the underlying stripe pattern formation pro-
cess observed in the experiment of [2]. This paper is concerned
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with the model proposed in [3], which reads as⎧⎪⎪⎨⎪⎪⎩
ut = ∆(r(v)u) + σu(1 − u), x ∈ Ω, t > 0,
vt = d∆v + u − v, x ∈ Ω, t > 0,
∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where u(x, t) and v(x, t) represent the densities of E. coli cells and
AHL, respectively. The first equation states that E. coli cells under-
take a non-random diffusion with a logistic birth–death kinetics
with intrinsic rate σ > 0 saturated at the normalized density
1, where the diffusion rate of E. coli cells depends on a motility
function r(v) satisfying r ′(v) < 0 (suppressed effect of AHL
concentration on cell’s motility). d > 0 is a constant representing
the diffusive rate of v. The model (1.1) is considered in a bounded
smooth domain Ω ⊂ RN (N ≥ 1) with zero-Neumann boundary
conditions warranting that no individual crosses the boundary
of the habitat, which is well consistent with the experimental
setting of [2] where the experiment was performed in an isolated
apparatus.

Mathematically, system (1.1) may be degenerate due to the
property r ′(v) < 0 and hence its analysis becomes delicate. To
the best of our knowledge, no much results have been known to
(1.1) as of today. When σ > 0, the existence of global classical
solutions of (1.1) was obtained first in [4] for Ω ⊂ R2 with r(v)
satisfying the following hypotheses:
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(H1) r(v) ∈ C3([0, ∞)), r(v) > 0 and r ′(v) < 0 on [0, ∞),
limv→∞ r(v) = 0;

(H2) limv→∞
r ′(v)
r(v) exists.

It was further shown that if dσ is suitably large such that

σd >
k0
16

, where k0 = max
0≤v≤∞

|r ′(v)|2

r(v)
, (1.2)

then the constant steady state (1, 1) is globally asymptotically
stable. Numerical simulations in [4] illustrated that system (1.1)
can produce oscillating traveling waves and stable/unstable ag-
gregation patterns under some conditions on the parameter val-
ues. Recently the global existence of classical solutions of (1.1)
was extended to higher dimensions (N ≥ 3) in [5] for large
σ > 0 with a mildly weaker condition than (H1)–(H2). When
r(v) is a piecewise constant function, the analysis of (1.1) with
σ > 0 was performed in [6] to study the dynamics of interface of
discontinuity of solutions. When σ = 0, the global existence of
class solutions of (1.1) was established in [7] for the case r(v) =

c0/vk(k > 0) with small constant c0 > 0 in any dimensions with
an extension in [8]. By assuming that r(v) has positive lower and
upper bounds, global classical solutions in two dimensions and
global weak solutions in three dimensions of (1.1) with σ = 0
were obtained in [9]. Except the aforementioned results, no other
results appear to be available and many interesting analytical
questions on the density-suppressed motility model (1.1) have
not been addressed, such as traveling wave solutions, stationary
(pattern) solutions and so on.

Among other things, this paper is to explore the stationary
problem of system (1.1) which reads as⎧⎨⎩

−∆(r(v)u) = σu(1 − u), x ∈ Ω,

−d∆v = u − v, x ∈ Ω,
∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω.

(1.3)

In view of the realistic meaning, only nonnegative solutions of
(1.3) are of interest. By the well-known maximum principle and
Hopf boundary lemma for elliptic equations, for any nonnegative
classical solution (u, v) of (1.3) with (u, v) ̸≡ (0, 0), it is easily
seen that u, v > 0 on Ω . Hence in this paper we shall consider
the existence and non-existence of non-constant positive classical
solutions of (1.3) on Ω . For convenience, we let w = r(v)u and
transform problem (1.3) into the following equivalent one:⎧⎪⎨⎪⎩

−∆w =
σw
r(v) [1 −

w
r(v) ], x ∈ Ω,

−d∆v =
w
r(v) − v, x ∈ Ω,

∂w
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω.

(1.4)

Throughout the paper, whenever we say a solution of (1.3) or
(1.4), we always mean a positive classical solution. Clearly, system
(1.4) has a unique trivial solution (0, 0) and a unique positive
constant solution (r(1), 1). The main purpose of this paper is
to find the conditions for the non-existence and existence of
non-constant solutions of the stationary problem (1.4) with r(v)
satisfying the condition (H1) in a bounded smooth domain Ω ⊂

RN (1 ≤ N ≤ 3). From the global stability result of [4] under
condition (1.2), one can conclude that (1.3) and hence (1.4) un-
der hypotheses (H1)–(H2) will not have non-constant positive
solutions in two dimensions if σd is large. In this paper, we
shall remove the condition (H2) and prove the non-existence of
non-constant solutions of (1.4) in three or lower dimensions
for large σd, see Theorem 3.1(a). More interestingly we find
that (1.4) will not have non-constant solution either if σd is
sufficiently small for some r(v) satisfying certain additional con-
ditions besides (H1), see Theorem 3.1(b). This result is somewhat
counterintuitive, since for mathematical models of biology the

patterns (i.e., non-constant solutions) will usually tend to arise
when the diffusion rate d or the intrinsic growth rate σ is small
(cf. [10–12]). We believe this is a distinctive phenomenon caused
by the density-suppressed motility. For moderate value of σd,
we show that non-constant positive solutions of (1.4) may exist,
as shown in Theorem 4.1. Furthermore in this paper we use the
multiple-scale analysis to derive that system (1.1) may generate
pulsating (oscillating) traveling waves whose amplitude is shown
to be governed by a Ginzburg–Landau equation (see Section 5).
We verify our results by numerical simulations showing that
the model (1.1) can reproduce the expanding strip (ring) pat-
terns qualitatively similar to those observed in the experiment
of [2]. This in turn justifies the system (1.1) in modeling the cell
movement with density-suppressed motility.

Since the solutions of (1.4) and (1.3) are equivalent under the
transformation w = r(v)u, we shall focus on the transformed
system (1.4) in a bounded domain Ω ⊂ RN (1 ≤ N ≤ 3) in the
sequel unless otherwise stated. The rest of this paper is organized
as follows. In Section 2, we derive a key priori estimate on
solutions. In Section 3, we find the conditions under which non-
constant positive solutions of (1.4) do not exist. Then we prove
the existence of non-constant positive solutions of (1.4) under
some conditions with numerical illustrations in Section 4. Finally
we show that system (1.1) can generate oscillating waves whose
amplitude is determined by a Ginzburg–Landau type equation
with numerical verifications.

2. A key priori estimates

In order to establish the existence and nonexistence theorem
of non-constant steady states for small σ or d, we need to derive
some priori estimates for positive solutions of the system (1.4).
Our result reads as follows:

Proposition 2.1. Let Ω be a bounded domain in RN (1 ≤ N ≤ 3)
with smooth boundary. Then for any given constant d0 > 0, there
exists a positive constant c > 1, which depends only on d0 and Ω ,
such that any positive solution (w, v) of (1.4) satisfies

1
c

≤ w(x), v(x) ≤ c, ∀x ∈ Ω̄,

provided that d ≥ d0. Moreover, if lim infv→∞ r(v)v ∈ (r(0), ∞],
such c is independent of d0 and Ω .

Proof. Assume that w(x0) = maxΩ w. By the maximum principle
and Hopf boundary lemma (see Proposition 2.2 of [13]), it follows
from the first equation of (1.4) that

1 −
w(x0)
r(v(x0))

≥ 0, so w(x0) ≤ r(v(x0)) ≤ r(0),

which yields

w(x) ≤ r(0), ∀x ∈ Ω̄. (2.1)

Similarly, let w(y0) = minΩ̄ w and we have

1 −
w(y0)
r(v(y0))

≤ 0, i.e., w(y0) ≥ r(v(y0)).

This gives

w(x) ≥ min r(v(x)), ∀x ∈ Ω̄. (2.2)

In order to derive the lower bound of w and the upper/lower
bounds of v, we first consider the case that lim infs→∞ r(s)s ∈

(r(0), ∞]. In this case, by assuming v(x0) = maxΩ v, we can
conclude from the maximum principle with Hopf lemma (Propo-
sition 2.2 of [13]) as applied to the second equation of (1.4) and
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(2.1) that r(v(x0))v(x0) ≤ w(x0) ≤ r(0). Then there exists a large
constant c > 0, independent of σ , d and Ω , such that

v(x) ≤ v(x0) ≤ c, ∀x ∈ Ω. (2.3)

As r(v) is decreasing on [0, ∞) with respect to v, (2.2) and (2.3)
yield w(x) ≥ r(c) > 0, ∀x ∈ Ω. Arguing similarly as above,
letting v(y0) = minΩ v(y), we get from the second equation of
(1.4) that r(v(y0))v(y0) ≥ w(y0) ≥ r(c), and so we find a positive
constant c∗ =

r(c)
r(0) independent of σ , d and Ω such that

v(x) ≥ v(y0) ≥ c∗ > 0, ∀x ∈ Ω. (2.4)

For the general case, to obtain the lower bound of w and the
upper/lower bounds of v, we rewrite the equation of v as

− ∆v +
1
d
v =

1
d

w

r(v)
, x ∈ Ω;

∂v

∂ν
= 0, x ∈ ∂Ω. (2.5)

On the other hand, integrating the equation of w over Ω yields∫
Ω

w
r(v)

[
1 −

w
r(v)

]
dx = 0, which gives∫

Ω

w2

r2(v)
dx =

∫
Ω

w

r(v)
dx ≤

(∫
Ω

w2

r2(v)
dx
) 1

2

|Ω|
1
2 .

Hence, we have∫
Ω

w2

r2(v)
dx ≤ C0. (2.6)

Hereafter, the positive constant C0 depends only on d0, Ω and
may be different from line to line.

In view of (2.6), by the standard Lp-estimates for elliptic
equations (see, for instance, [14]) as applied to (2.5), it holds
∥v∥W2,2(Ω) ≤ C0, ∀d ≥ d0. In the following, we always assume
that d ≥ d0. Then, the well-known embedding theorem (see [14])
allows us to conclude that

∥v∥L∞(Ω) ≤ C0, i.e., v(x) ≤ C0, ∀x ∈ Ω, if 1 ≤ N ≤ 3.

(2.7)

Now, (2.7), together with (2.2) and the monotonicity of r , indi-
cates w(x) ≥ r(C0) > 0, ∀x ∈ Ω . Thus, by a similar argument as
obtaining (2.4), we get a positive constant c∗

=
r(C0)
r(0) depending

only on d0, Ω such that

v(x) ≥ c∗ > 0, ∀x ∈ Ω.

The proof is now complete. □

3. Nonexistence of nonconstant steady states

In this section, we shall use two different approaches to es-
tablish the nonexistence result of non-constant solutions of (1.4)
for large or small d or σ . Hereafter, whenever we say d is large
or small, it should be understood that σ is fixed first; the same
convention applies to the case when we say σ is large or small.
The main results we shall prove in this section are stated in the
following theorem.

Theorem 3.1. Let r(v) satisfy the condition (H1). Then we have the
following results on the stationary system (1.4).

(a) Given d > 0, there is a constant σ ∗ such that system (1.4)
has no non-constant positive solution if σ > σ ∗; Conversely
there is a constant d∗ for given σ > 0 such that (1.4) has no
non-constant positive solution if d > d∗.

(b) Assume further that r(v)v is increasing in v ∈ [0, ∞). Then
the following assertions hold.

(i) Given d > 0, there is a constant σ∗ such that (1.4) has
no non-constant positive solution if 0 < σ ≤ σ∗;

(ii) Given σ > 0, there is a constant d∗ such that (1.4)
has no non-constant positive solution if 0 < d ≤ d∗ and
limv→∞ r(v)v ∈ (r(0), ∞].

Remark 3.1. It has been shown in [4] that the constant solution
(r(1), 1) is globally asymptotically stable if dσ >

k0
16 where k0 is

defined in (1.2), which indicates that the stationary problem (1.4)
has only positive constant solution (r(1), 1) if dσ >

k0
16 . This result

was proved in two dimensions under the hypotheses (H1)–(H2),
however, the results in Theorem 3.1(a) hold for three dimen-
sions without condition (H2). The conditions on r(v) imposed in
Theorem 3.1(b) basically requires the decay rate of r(v) must be
linear or sublinear. For instance r(v) =

1
(α+βv)ξ with ξ < 1 or

β < α and ξ = 1 is a candidate.

Theorem 3.1 is a consequence of the following series of lem-
mas.

Lemma 3.1. Let r(v) satisfy the condition (H1). Then the following
assertions hold.

(i) If r(v)v is non-decreasing in v ∈ [0, ∞), then there exists
a positive constant σ∗ such that (1.4) has no non-constant
positive solution provided that 0 < σ ≤ σ∗.

(ii) There exists a positive constant d∗ such that (1.4) has no
non-constant positive solution provided that d ≥ d∗.

Proof. We first verify (i). To this end, we first claim that any
positive solution (w, v) of (1.4) satisfies

(w, v) → (r(1), 1) in C2(Ω̄) × C2(Ω̄), as σ → 0. (3.1)

Notice that c is independent of σ > 0 in Proposition 2.1. By a
standard compactness argument, there exists a sequence σi with
σi → 0 as i → ∞ such that the corresponding positive solution
sequence (wσi , vσi ) of (1.4) with σ = σi satisfies

(wσi , vσi ) → (ŵ, v̂) in C2(Ω̄) × C2(Ω̄), as i → ∞,

where 0 < ŵ, v̂ on Ω̄ . Clearly, (ŵ, v̂) solves⎧⎪⎨⎪⎩
−∆ŵ = 0, x ∈ Ω,

−d∆v̂ =
ŵ
r(v̂) − v̂, x ∈ Ω,

∂ŵ
∂ν

=
∂v̂
∂ν

= 0, x ∈ ∂Ω.

(3.2)

Hence, ŵ must be a positive constant. Furthermore, by setting
v̂(x∗) = minΩ̄ v̂ and v̂(x∗) = maxΩ̄ v̂, we have from the maxi-
mum principle and Hopf boundary Lemma applied to the second
equation of (3.2) (see also Proposition 2.2 of [13]) that

ŵ

r(v̂(x∗))
− v̂(x∗) ≤ 0,

ŵ

r(v̂(x∗))
− v̂(x∗) ≥ 0.

These inequalities, together with the facts that r(v)v is non-
decreasing on [0, ∞) and ŵ is a positive constant, immediately
imply

v̂(x∗) = v̂(x∗), i.e., v̂ ≡ a positive constant.

On the other hand, for any fixed i ≥ 1, integrating over Ω̄ the
equation satisfied by wσi and vσi , respectively, we have∫

Ω

{
wσi (x)
r(vσi (x))

(
1 −

wσi (x)
r(vσi (x))

)}
dx = 0,∫

Ω

{
wσi (x)
r(vσi (x))

− vσi (x)
}
dx = 0.

Since ŵ and v̂ are positive constants, we send i → ∞ to obtain
(ŵ, v̂) = (r(1), 1). Therefore, the above analysis implies the claim
(3.1).
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Let us now define

W 2,2
ν (Ω) =

{
g ∈ W 2,2(Ω) :

∂g
∂ν

= 0 on ∂Ω

}
,

L20(Ω) =

{
g ∈ L2(Ω) :

∫
Ω

gdx = 0
}

and

F(σ , z, v, ξ ) = (f1, f2, f3)(σ , z, v, ξ )

with

f1(σ , z, v, ξ ) = ∆z + σ
(z + ξ )
r(v)

(
1 −

z + ξ

r(v)

)
,

f2(σ , z, v, ξ ) = d∆v +
z + ξ

r(v)
− v,

f3(σ , z, v, ξ ) =

∫
Ω

(z + ξ )
r(v)

(
1 −

z + ξ

r(v)

)
dx,

where w = z + ξ with
∫

Ω
zdx = 0 and ξ ∈ R1

+
:= [0, ∞).

Then

F : R1
+

×(L20(Ω)∩W 2,2
ν (Ω))×W 2,2

ν ×R1
+

↦−→ L20(Ω)×L2(Ω)×R1.

It is observed that finding the positive solution of (1.4) is equiv-
alent to solving F(σ , z, v, ξ ) = 0. Moreover, F(σ , z, v, ξ ) = 0
has a unique solution (z, v, ξ ) = (0, 1, r(1)) when σ = 0.

By elementary calculation, we have

Φ ≡ D(z, v, ξ )F(0, 0, 1, r(1)) : (L20(Ω) ∩ W 2,2
ν (Ω)) × W 2,2

ν × R1
+

↦−→ L20(Ω) × L2(Ω) × R1,

where

Φ(h, k, τ ) =

⎛⎜⎜⎜⎜⎝
∆h

d∆k +
1

r(1)
(h + τ ) −

r(1) + r ′(1)
r(1)

k

−

∫
Ω

{ 1
r(1)

(h + τ ) −
r ′(1)
r(1)

k
}
dx

⎞⎟⎟⎟⎟⎠ .

In order to use the implicit function theorem, we need to
verify that Φ is both invertible and surjective. Indeed, assume
that Φ(h, τ , k) = (0, 0, 0). Clearly, h = 0. Integrating the second
equation over Ω , and using the third equation and the fact of
h = 0, we further have∫

Ω

τdx = r ′(1)
∫

Ω

kdx = [r ′(1) + r(1)]
∫

Ω

kdx,

which gives
∫

Ω
kdx = 0 due to τ ∈ R1, and in turn τ = 0. In

addition, k solves

−d∆k = −
r(1) + r ′(1)

r(1)
k in Ω;

∂k
∂ν

= 0 on ∂Ω.

In light of r(1) + r ′(1) ≥ 0 (since r(v)v is non-decreasing in
v ∈ [0, ∞)) and

∫
Ω
kdx = 0, it is obvious that k = 0. Hence,

h = τ = k = 0 and Φ is invertible. On the other hand, one can
easily check that Φ is also a surjection.

As a consequence, the implicit function theorem allows us
to conclude that there exists a positive constant σ∗ such that,
for each σ ∈ [0, σ∗], (0, 1, r(1)) is the unique solution of
F(σ , z, v, ξ ) = 0 in Bσ∗

(0, 1, r(1)), where Bσ∗
(0, 1, r(1)) is the

ball in (L20(Ω) ∩ W 2,2
ν (Ω)) × W 2,2

ν × R1
+

centered at (0, 1, r(1))
with radius σ∗. Taking smaller σ∗ if necessary, we can see that
the assertion (i) holds by using the claim (3.1).

The proof of (ii) is similar to that of (i). First of all, it can be
shown that any positive solution (w, v) of (1.4) satisfies

(w, v) → (r(1), 1) in C2(Ω̄) × C2(Ω̄), as d → ∞. (3.3)

Then, we set ρ = d−1 and define the analogous operator F:

F(ρ, w, z, ξ ) = (f1, f2, f3)(ρ, w, z, ξ ) : R1
+

× (L20(Ω) ∩ W 2,2
ν (Ω)) × W 2,2

ν (Ω) × R1
+

↦−→ L2(Ω) × L20(Ω) × R1,

where

f1(ρ, w, z, ξ ) = ∆w +
σw

r(z + ξ )

(
1 −

w

r(z + ξ )

)
,

f2(ρ, w, z, ξ ) = ∆z + ρ

(
w

r(z + ξ )
− (z + ξ )

)
,

f3(ρ, w, z, ξ ) =

∫
Ω

(
w

r(z + ξ )
− (z + ξ )

)
dx,

where v = z + ξ with
∫

Ω
zdx = 0 and ξ ∈ R1

+
:= [0, ∞). Clearly,

(w, z, ξ ) = (r(1), 0, 1) is the unique nonnegative nontrivial
solution of F (0, w, z, ξ ) = 0, and moreover, it is easily verified
that D(w, z, ξ )F (0, r(1), 0, 1) is a bijection. Thus, combined with
(3.3), one can use the implicit function theorem to yield the
desired assertion (ii). □

Below we shall derive some nonexistence result of noncon-
stant steady states when the parameter d > 0 is small. To
highlight the dependence of solution (w, v) of (1.4) on the param-
eter d, we use (wd, vd) instead of (w, v) below. First we determine
the asymptotic behavior of any positive solution (wd, vd) as d →

0.

Lemma 3.2. Assume that r(v)v is increasing on [0, ∞), and
limv→∞ r(v)v = θ ∈ (r(0), ∞]. Then given σ > 0, any positive
solution (wd, vd) of (1.4) satisfies

(wd, vd) → (r(1), 1) uniformly on Ω̄, as d → 0.

Proof. Under our assumption, Proposition 2.1 tells us that c is
independent of σ , d > 0 in Proposition 2.1. Thus, a standard
compactness argument, as applied to the first equation in (1.4),
allows one to conclude that there exists a sequence di with di →

0 as i → ∞ such that the corresponding sequence (wdi , vdi ) of
positive solutions of (1.4) with d = di satisfies

wdi → w̃ uniformly on Ω̄, as i → ∞, (3.4)

where 0 < w̃ ≤ r(0) on Ω̄ (due to (2.1)). As a result, given
any small ε > 0 with ε < w̃ and w̃ + ε ≤ θ on Ω̄ , we have
w̃(x) − ε ≤ wdi (x) ≤ w̃(x) + ε, ∀x ∈ Ω̄ for all large i.

Next, let us consider the following two auxiliary problems

− di∆v̄ =
w̃(x) + ε

r(v)
− v, x ∈ Ω;

∂v

∂ν
= 0, x ∈ ∂Ω, (3.5)

and

− di∆v =
w̃(x) − ε

r(v)
− v, x ∈ Ω;

∂v

∂ν
= 0, x ∈ ∂Ω. (3.6)

Clearly, vdi is a lower solution to (3.5) and an upper solution to
(3.6) for all large i.

Now, we fix any such large i and treat problem (3.5). Since
limv→∞ r(v)v > r(0) and w̃(x) ≤ r(0) on Ω̄ , it is easily checked
that a sufficiently large positive constant M with M > r(0)
is an upper solution to (3.5). Therefore, the well-known theory
of upper–lower solutions ensures that (3.5) admits at least one
positive solution.

In the sequel, we will show that (3.5) has a unique positive
solution. Notice that any small positive constant is also a lower
solution of (3.5). Assume that v1 and v2 are any two positive
solutions of (3.5). Then, by the iteration theory of upper–lower
solutions. We know that (3.5) admits a maximal positive solution
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vmax and a minimal positive solution vmin with vmin ≤ vmax on Ω̄

satisfying

vmin ≤ v1, v2 ≤ vmax on Ω̄.

Thus, it suffices to verify vmin = vmax on Ω̄ .
To this end, let us denote ρ∗

= inf{ρ > 0 : vmax ≤

ρvmin on Ω̄}. Obviously, ρ∗
≥ 1 and vmax ≤ ρ∗vmin on Ω̄ . If we

can show ρ∗
= 1, it is clear that vmin = vmax on Ω̄ , as we wanted.

We proceed indirectly and suppose that ρ∗ > 1. First note that
ρ∗r(ρ∗v) > r(v), ∀v > 0 since r(v)v is increasing in v > 0. To
reach a contradiction, we set h = ρ∗vmin − vmax. So h ≥ 0 on Ω̄ ,
and satisfies

−di∆h + h = ρ∗
w̃ + ε

r(vmin)
−

w̃ + ε

r(vmax)
=

(w̃ + ε)[ρ∗r(vmax) − r(vmin)]
r(vmin)r(vmax)

≥
(w̃ + ε)[ρ∗r(ρ∗vmin) − r(vmin)]

r(vmin)r(vmax)
> 0 in Ω.

In the above, we also used the facts that vmax ≤ ρ∗vmin on Ω̄ and
r(v) is decreasing in v > 0.

Since ∂h
∂ν

= 0 on ∂Ω , it immediately follows from the strong
maximum principle and Hopf boundary lemma for elliptic equa-
tion that h > 0 on Ω̄ . This implies that h ≥ ε0vmax on Ω̄ for some
constant ε0 > 0, which in turn gives

ρ∗

1 + ε0
vmin ≥ vmax on Ω̄,

which contradicts the definition of ρ∗.
So far, we have proved that for any given large i, (3.5) has

a unique positive solution, denoted by vi. Similarly, it can be
proved that (3.6) also has a unique positive solution denoted
by vi, for any given large i. To proceed further, we need to
introduce some notations. As r(v)v is increasing in v ∈ [0, ∞)
and limv→∞ r(v)v = θ ∈ [r(0), ∞], given τ ∈ [0, θ ), there exists a
unique v ∈ [0, ∞) such that r(v)v = τ . Hence, we can define the
C2-function v = g(τ ), τ ∈ [0, θ ), which satisfies r(g(τ ))g(τ ) = τ ,
and so g(τ ) is also increasing in τ ∈ [0, θ ).

Given large i, we rewrite (3.5) as follows:

−di∆[g(τ̄i)] =
w̃ + ε − τ̄i

r(g(τ̄i))
, x ∈ Ω;

∂τ̄i

∂ν
= 0, x ∈ ∂Ω,

with r(v̄i)v̄i = τ̄i. On the other hand, an application of the max-
imum principle yields 0 < minΩ̄ w̃ ≤ r(v̄i(x))v̄i(x) ≤ maxΩ̄ w̃ +

ε ≤ θ , ∀x ∈ Ω̄ . Hence for all large i and for some constant C0 > 1,
we have
1
C0

≤ g(τ̄i) ≤ C0.

As a consequence, a similar analysis as in Lemma 2.4 of [15]
concludes that

r(v̄i)v̄i = τ̄i → w̃ + ε uniformly on Ω̄, as i → ∞. (3.7)

Similarly, making use of (3.6), we have

r(vi)vi → w̃ − ε uniformly on Ω̄, as i → ∞. (3.8)

Combining (3.7) and (3.8) and the arbitrariness of ε, we obtain
that

r(vdi )vdi → w̃ uniformly on Ω̄, as i → ∞. (3.9)

Hence it follows that

vdi → g(w̃) := ṽ uniformly on Ω̄, as i → ∞, (3.10)

where ṽ ∈ C(Ω̄) and ṽ > 0 on Ω̄ .
Together with (3.4) and (3.9), we can send i → ∞ in the first

equation in (1.4) to find that w̃ solves (in the weak and then in

the classical sense)

− ∆w̃ =
σw̃

r(g(w̃))

[
1 −

w̃

r(g(w̃))

]
, x ∈ Ω;

∂w̃

∂ν
= 0, x ∈ ∂Ω.

(3.11)

Observe that r(g(τ )) is decreasing in τ ≥ 0, and so τ
r(g(τ )) is

increasing in τ ≥ 0. Let w̃(x) = minΩ̄ w̃ and w̃(x̄) = maxΩ̄ w̃.
Then thanks to the maximum principle, we get from (3.11) that

1 ≥
w̃(x̄)

r(g(w̃(x̄)))
and 1 ≤

w̃(x)
r(g(w̃(x)))

.

This clearly implies that w̃(x̄) = w̃(x), that is, w̃ is a positive
constant, and then ṽ is also a positive constant due to (3.10).
Furthermore, it is necessary that (w̃, ṽ) = (r(1), 1). Therefore, we
have proved

(wd, vd) → (r(1), 1) uniformly on Ω̄, as d → 0. (3.12)

The proof is thus complete. □

Lemma 3.3. Assume that r(v)v is increasing in v ∈ [0, ∞) and
limv→∞ r(v)v = θ ∈ (r(0), ∞]. Given σ > 0, there exists a small
constant d∗ > 0, depending only on σ and Ω , such that (1.4) has
no nonconstant positive solution if 0 < d ≤ d∗.

Proof. We shall employ the topological degree technique to
establish the desired result. Denote

D =
{
(w, v) ∈ C(Ω̄) × C(Ω̄) :

1
c + 1

< w, v < c + 1
}
,

where c is given in Proposition 2.1, which is now independent of
d > 0. Let us define the operator

A(d, (w, v)) = (−∆ + I)−1
(

w +
σw

r(v)

[
1 −

w

r(v)

]
, v

+
1
d

[
w

r(v)
− v

])
,

where (−∆+ I)−1 represents the inverse operator of −∆+ I with
the zero Neumann boundary condition over ∂Ω . Clearly, (w, v) is
a positive solution if and only if A(d, (w, v)) = (w, v). In addition,
A is compact from [d1, d2] × D to C(Ω̄) × C(Ω̄) for any given
0 < d1 < d2 < ∞, and A(d, (w, v)) ̸= (w, v) for all d ∈ (0, ∞)
and (w, v) ∈ ∂D. This implies that the Leray–Schauder degree
deg(I − A(d·),D) is well defined and its value does not depend
on d ∈ (0, ∞).

Let d∗ be given as in Lemma 3.1(ii). Then (r(1), 1) is the unique
positive solution of A(d∗, (w, v)) = (w, v), which in turn yields

deg(I − A(d∗, ·),D) = index(I − A(d∗, ·), (r(1), 1)),

where index(I − A(d, σ , ·), (r(1), 1)) is the index of the opera-
tor I − A(d, ·) at the point (r(1), 1). Furthermore, the routine
computation as in [4] (see Lemma 4.1 (1)) shows that (r(1), 1)
is linearly stable provided that r ′(1) + r(1) ≥ 0 for any d > 0
which is fulfilled due to our assumption that r(v)v is increasing
in v ∈ [0, ∞). It then follows from the Leray–Schauder degree
formula (see for instance Theorem 2.8.1 of [16]) that

deg(I − A(d∗, ·),D) = index(I − A(d∗, ·), (r(1), 1)) = 1.

As a result, it holds

deg(I − A(d, ·),D) = index(I − A(d∗, ·),D) = 1, (3.13)

for any d > 0.
In view of Lemma 3.2, it is also easily computed that only pos-

sible positive solution (wd, vd) of (1.4) is linearly stable provided
that 0 < d ≤ d∗ for some small d∗ > 0. This indicates that

index(I − A(d, ·), (wd, vd)) = 1, (3.14)
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if 0 < d ≤ d∗. Moreover, the linear stability of (wd, vd) implies
that for any given 0 < d ≤ d∗, (1.4) admits at most finitely many
such positive solutions, denoted by {(wi, vi)}ℓi=1. Hence it follows
from (3.14) that

deg(I − A(d, ·),D) =

ℓ∑
i=1

index(I − A(d, ·), (wi, vi)) = ℓ. (3.15)

Therefore (3.13) and (3.15) yield ℓ = 1. This implies that (1.4)
admits a unique positive solution, which must be (r(1), 1) if 0 <

d ≤ d∗. The proof is now complete. □

By a similar analysis to that of Lemma 3.3, we are able to show
the following result.

Lemma 3.4. Given d > 0, there exists a large constant σ ∗ > 0
depending only on d and Ω , such that (1.4) has no nonconstant
positive solution if σ ≥ σ ∗.

Proof. First of all, it follows from Proposition 2.1 and the
v-equation that, up to a sequence of σ if necessary, any positive
solution (w, v) of (1.4) satisfies

v → ṽ in C1(Ω̄), as σ → ∞, (3.16)

where ṽ > 0 on Ω̄ . Now, given small ϵ > 0, consider the
following two auxiliary problems:

−∆w = σw

( 1
r(ṽ) + ϵ

−
w

(r(ṽ) − ϵ)2

)
, x ∈ Ω;

∂w

∂ν
= 0, x ∈ ∂Ω,

(3.17)

and

−∆w = σw

( 1
r(ṽ) − ϵ

−
w

(r(ṽ) + ϵ)2

)
, x ∈ Ω;

∂w

∂ν
= 0, x ∈ ∂Ω.

(3.18)

In view of (3.16), given large σ > 0, w is an upper-solution
to problem (3.17) and a lower solution to problem (3.18). In
addition, (3.17) and (3.18) have a unique positive solution, de-
noted by wσ and wσ , respectively. A simple upper–lower solution
argument shows that

wσ ≤ w ≤ wσ on Ω̄, for all large σ . (3.19)

Furthermore, a similar analysis as in Lemma 2.4 of [15] concludes
that

wσ →
(r(ṽ) − ϵ)2

r(ṽ) + ϵ
, wσ →

(r(ṽ) + ϵ)2

r(ṽ) − ϵ
uniformly on Ω̄,

as σ → ∞. (3.20)

Sending ϵ → 0 in (3.20), it then follows from (3.19) that w →

r(ṽ) uniformly on Ω̄, as σ → ∞. Notice that for all σ > 0, it
holds∫

Ω

( w

r(v)
− v

)
dx = 0. (3.21)

By means of (3.16) and (3.21), we let σ → ∞ and find that ṽ = 1.
That is, we have proved that

(w, v) → (r(1), 1) uniformly on Ω̄, as σ → ∞. (3.22)

Recall again that c depends neither on σ > 0 nor on d ≥ 1 in
Proposition 2.1, and as in the proof of Lemma 3.3, it can be shown
that (r(1), 1) is linearly stable for all large σ (see Lemma 4.1(1)).
Now, with the aid of (3.22), one can adapt the argument of
Lemma 3.4 to yield the desired conclusion. The details are omitted
here. □

4. Existence of non-constant stationary solutions

This section is devoted to establishing the existence of non-
constant positive solutions to the stationary problem (1.4) by
applying the Leray–Schauder degree theory.

4.1. Preliminaries

We first present the decomposition in the function space
based on the elliptic operator −∆ subject to the zero Neumann
boundary condition on Ω . Let

0 = µ0 < µ1 < µ2 < µ3 < · · · < µi < · · · (4.1)

be the sequence of eigenvalues for this elliptic operator −∆ and
each µi has multiplicity mi ≥ 1. Let ϕij, i ≥ 0, 1 ≤ j ≤ mi,
be the normalized eigenfunctions corresponding to µi. Let Xi be
the eigenspace associated with µi in H1(Ω;R2). Then the set
{ϕij, i ≥ 0, j = 1, 2, . . . ,mi} forms a complete orthogonal basis
in L2(Ω). Let X = [H1(Ω)]2 and Xij = {cϕij : 1 ≤ j ≤ mi, c ∈ R2

}.
Then

X =

∞⨁
i=1

Xi, Xi =

mi⨁
j=1

Xij, (4.2)

where
⨁

denotes the direct sum of subspaces.
It is obvious that system (1.4) has two constant solutions (0, 0)

and (r(1), 1)). In order to compute the degree index of (r(1), 1)),
we linearize (1.4) at (r(1), 1)) and have the eigenvalue problem
associated with the linearized system as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆w −
σ

r(1)w +
σ r ′(1)
r(1) v = ρw, x ∈ Ω,

∆v +
1

dr(1)w −
1
d

(
1 +

r ′(1)
r(1)

)
v = ρv, x ∈ Ω,

∂w
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω.

(4.3)

It is easily verified that eigenvalues ρi of (4.3) satisfy

ρ2
i + Diρi + Ei = 0, i = 0, 1, 2, . . . , (4.4)

where

Di =
1

dr(1)
[r ′(1) + r(1) + 2dr(1)µi + dσ ],

Ei =
1

dr(1)

{
(1 + dµi)σ +

[
r ′(1) + (1 + dµi)r(1)

]
µi
}
.

It is obvious that

Ei < 0 ⇔ σ < −

[
r ′(1)

1 + dµi
+ r(1)

]
µi

def
= σi. (4.5)

Now we give some results on eigenvalues in (4.4), which is easy
to be verified.

Lemma 4.1. For d > 0 and σ > 0, the following statements are
true:

(1) If either

r ′(1) + r(1) ≥ 0

or

r ′(1) + r(1) < 0 and σ > −
r ′(1) + r(1)

d
Then Reρi < 0 for all i ∈ {0, 1, 2, . . . ,∞}, namely (r(1), 1)
(resp.(1, 1)) is linearly stable to (1.4)(resp.(1.3)).

(2) Assume that

0 < σ < σi for some i ∈ {1, 2, . . . ,∞}, (4.6)
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then ρ+

i is a positive eigenvalue and ρ−

i is a negative one, and the al-

gebraic multiplicity of each one is mi, where ρ±

i =
−Di±

√
D2
i −4Ei

2 . This
implies that (r(1), 1) (resp.(1, 1)) is linearly unstable to (1.4)(resp.
(1.3)) if (4.6) holds.

(3) If (4.6) is satisfied, then there exists an integer ic ≥ 1 such
that

σi > 0 for i ∈ [1, ic], σic+j ≤ 0 for j = 1, 2, 3, . . . ; (4.7)

Moreover, let

σa = max
1≤i≤ic

σi = −

[
r ′(1)

1 + dµia
+ r(1)

]
µia and 0 < σ < σa. (4.8)

Then (4.4) has at least one positive root ρ+

ia with the algebraic
multiplicity mia . Usually, we call ka =

√
µia the admissible wave

number.
(4) If (4.7) holds and σ > σa, then Ei > 0 for all i ∈

{0, 1, 2, . . . ,∞}, so that for each i Eq. (4.4) has two distinct roots
with either positive real parts or negative real parts, which implies
that the number of positive real eigenvalues (counting multiplicity)
must be even.

We now treat µi as a real number, then at

µi =
1
d

(√
−r ′(1)
r(1)

− 1

)
, (4.9)

the maximum of σi, i ∈ [1, ic] is attained as

σc = max
µi

σi =
1
d

(√
−r ′(1) −

√
r(1)

)2
. (4.10)

It is obvious that σc ≥ σa, and σc = σa only when there exists
i = ia such that (4.9) holds. Since the odd number of the positive
eigenvalues plays a critical role on the computation of the degree
index of (r(1), 1), by (3) and (4) in Lemma 4.1, in what follows we
shall always assume the condition (4.7) holds and let σ satisfy

0 < σ < σc . (4.11)

4.2. Main results

We now define a set as

X+
= {(w, v) ∈ X : w, v > 0, x ∈ Ω} ,

and rewrite the system (1.4) in X+ in the matrix form{
W = (I − ∆)−1

[W + H(σ , d,W )], x ∈ Ω,

∇W · ν = 0, x ∈ ∂Ω,
(4.12)

where W =

(
w

v

)
, (I − ∆)−1 represents the inverse of I −∆ with

homogeneous Neumann boundary conditions, and

H(σ , d,W ) =

⎛⎜⎜⎝
σw
r(v)

(
1 −

w
r(v)

)
1
d

(
w
r(v) − v

)
⎞⎟⎟⎠ .

Then we define an operator P by

P(σ , d,W ) = W − (I − ∆)−1
[W + H(σ , d,W )], W ∈ X+. (4.13)

Now we look for solutions of (1.4), which is equivalent to finding
zero points of the operator P . We will apply the topological
degree theory to prove the existence of non-constant zero points
of P . By a computation, the linearized system of P(σ , d,W ) = 0
at the constant steady state W ∗

= (r(1), 1) is in the form of

W − (I − ∆)−1 (I + ∇WH(σ , d,W ∗)
)
W = 0,

where ∇W =
∂

∂W and

∇WH(σ , d,W ∗) =
1

dr(1)

(
−dσ dσ r ′(1)
1 −(r ′(1) + r(1))

)
. (4.14)

It is well known that if the linear operator

∇WP(σ , d,W ∗) = I − (I − ∆)−1 (I + ∇WH(σ , d,W ∗)
)

is invertible, then the index of P at W ∗ is computed by

index(P,W ∗) = (−1)γ , (4.15)

where γ stands for the number of the negative eigenvalues of
∇WP(σ , d,W ∗). The decomposition of function space (4.2) im-
plies that, for each integer i ≥ 0 and 1 ≤ j ≤ mi, the
subspace Xij is an invariant space under ∇WP(σ , d,W ∗) and λ ∈

R is an eigenvalue of ∇WP(σ , d,W ∗) in Xi if and only if λ is
an eigenvalue of (1 + µi)−1 (µiI − ∇WH(σ , d,W ∗)). Hence, the
invertibility of ∇WP(σ , d,W ∗) is equivalent to that of the matrix
(µiI − ∇WH(σ , d,W ∗))

def
= Mi for all i ≥ 0. We now define a

function by

Γ (σ , d, χ ) = det(χ I − ∇WH(σ , d,W ∗)).

If Γ (σ , d, µi) ̸= 0, then the number of negative eigenvalues of
Mi is 1 if and only if Γ (σ , d, µi) < 0; When Γ (σ , d, µi) > 0, the
number of the negative eigenvalues of Mi is 0 or 2. The algebraic
multiplicity of each of them is mi. As such, if Γ (σ , d, µi) ̸= 0 for
any i ≥ 0, then by (4.15), we have (see [10,17])

γ =

∑
i≥0,Γ (σ ,d,µi)<0

mi. (4.16)

It is easy to see that the eigenvalue ρi of (4.3) and the eigenvalue
λi of ∇WP(σ , d,W ∗) satisfy ρi = −(1 + µi)λi. Thus, by (3) and
(4) in Lemma 4.1, under the condition (4.11) the formula (4.16)
is well posed.

Using (4.14), we have

Γ (σ , d, χ ) = χ2
+

r ′(1) + r(1) + dσ
dr(1)

χ +
σ

dr(1)
. (4.17)

Note that (4.6) implies that r ′(1)+ r(1) < 0. Therefore if (4.11) is
true, then dσ < −(r ′(1)+r(1)) and [r ′(1)+r(1)+dσ ]

2
−4dσ r(1) >

0. Thus, the equation Γ (σ , d, χ ) = 0 has two positive distinct
roots χ±(σ , d) given by

χ±(σ , d) =
−[r ′(1) + r(1) + dσ ] ±

√
[r ′(1) + r(1) + dσ ]2 − 4dσ r(1)
2dr(1)

.

(4.18)

We are now in a position to present the main result of this
section.

Theorem 4.1. Let (4.11) hold and further assume that there exist
j > i ≥ 0 such that

(i) µi < χ−(σ , d) < µi+1 and µj < χ+(σ , d) < µj+1;
(ii)

∑j
k=i+1 mk is odd.

Then (1.4) has at least one non-constant solution for d > d0 and
σ > 0, where d0 is a given positive constant.

Proof. Proposition 2.1 indicates that there exists a constant c > 1
independent of d > d0 and σ > 0 such that all positive solutions
of (1.4) are located in the following set

D =
{
(w, v) ∈ C(Ω̄) × C(Ω̄) :

1
c + 1

< w, v < c + 1
}
. (4.19)

By Lemmas 3.1(ii) and 3.4, one can choose sufficiently large
positive constants d∗ and σ ∗ such that



8 M. Ma, R. Peng and Z. Wang / Physica D 402 (2020) 132259

(A1) Γ (σ ∗, d∗, χ ) > 0 for all χ ≥ 0, i.e., d∗σ ∗ >
(√

−r ′(1) −
√
r(1)

)
2;

(A2) The system (1.4) has no non-constant solutions if dσ ≥

d∗σ ∗.
Let us define an operator Φ : [0, 1] × D → C(Ω) × C(Ω) by

Φ(t,W ) = (I − ∆)−1

⎛⎜⎜⎝w +
((1−t)σ∗

+tσ )w
r(v)

(
1 −

w
r(v)

)
v +

( 1−t
d∗ +

t
d

) (
w
r(v) − v

)
⎞⎟⎟⎠ .

It is obvious that Φ(t,W ) is compact for each t ∈ [0, 1], a solution
of (1.4) is just a fixed point of Φ(1, ·), and Φ(t, ·) has no fixed
points in ∂D for all t ∈ [0, 1]. Thus the Leray–Schauder degree
deg(I − Φ(t, ·),D, 0) is well-defined and is a constant for all
t ∈ [0, 1] due to the homotopy invariance of the topological
degree, that is,

deg(I − Φ(1, ·),D, 0) = deg(I − Φ(0, ·),D, 0). (4.20)

By (4.13), we know that I−Φ(1, ·) = P(σ , d, ·). Thus, if we assume
that (1.4) has no non-constant solutions, then (4.15), (4.16) and
the given condition (ii) lead to

deg(I − Φ(1, ·),D, 0) = index(P(σ , d, ·),W ∗) = (−1)
∑j

k=i+1 mk

= −1. (4.21)

On the other hand, by (A2), we have that W ∗ is the unique fixed
point of Φ(0, ·). Moreover, (A1) and (4.15) yield γ is even, then

deg(I − Φ(0, ·),D, 0) = index(I − Φ(0, ·),W ∗) = 1. (4.22)

Obviously, (4.20) contradicts (4.21)–(4.22). Hence, our assump-
tion is false, and as a consequence (1.4) has at least one non-
constant solution. The proof is complete. □

Theorem 4.1 gives general sufficient conditions on parameters
σ and d such that system (1.4) admits non-constant solutions. If
we fix one of them, then the conditions can be more specifically
expressed. As an illustration, below we shall fix the diffusion rate
d > 0 and identify the more specific conditions on σ to guarantee
the existence of non-constant solutions to (1.4).

Hereafter, we shall use the notation χ±(σ ) =: χ±(σ , d) to
emphasize the dependence on σ only by fixing the value of d > 0,
where χ±(σ , d) is defined in (4.18). Furthermore, for the sake of
presentation, we re-denote by

0 = µ0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · ≤ µi ≤ · · · (4.23)

all eigenvalues (counting multiplicity) of the elliptic operator −∆

with zero Neumann boundary condition. In order to calculate the
degree index in (4.15), we give some properties of χ±(σ ) below,
which can be easily verified by simple calculations.

Lemma 4.2. Let the positive constant d be fixed and (4.11) hold.
The following statements are true.

(i) χ±(σ ) > 0, χ−(σc) = χ+(σc) =

√
σc

dr(1) .
(ii) χ−(σ ) is monotone decreasing and χ+(σ ) is monotone in-

creasing. Furthermore, it holds that

lim
σ→0+

χ−(σ ) = −
r ′(1) + r(1)

dr(1)
, lim

σ→σ−
c

χ−(σ ) =

√
σc

dr(1)
,

and

lim
σ→0+

χ+(σ ) = 0, lim
σ→σ−

c

χ+(σ ) =

√
σc

dr(1)
.

By the discussion above, we know that χ = µi − (1 + µi)λ,
where λ is an eigenvalue of ∇WP(σ , d,W ∗) and µi is defined in

(4.23). Hence, ∇WP(σ , d,W ∗) has negative eigenvalues λi(σ ) if
and only if

λi(σ ) =
µi − χ(σ )
1 + µi

< 0, i = 0, 1, 2, . . . .

To proceed, we define two indicators as

γ−(σ ) = the number of {i ∈ N ∪ {0} : χ−(σ ) > µi}

and

γ+(σ ) = the number of {i ∈ N ∪ {0} : χ+(σ ) > µi},

where N represents the set of positive integers. Obviously, γ−(σ )+
γ+(σ ) is the number of negative eigenvalues (counting multiplic-
ity) of ∇WP(σ , d,W ∗). Then the power exponent γ in (4.15), now
denoted by γ (σ ) to emphasize the dependence on σ , is

γ (σ ) = γ+(σ ) + γ−(σ ).

Since χ±(σ ) > 0 = µ0, we have γ (σ ) ≥ 2 for σ ∈ (0, σc). To
compute γ (σ ), we set

ic = max{i : χ±(σc) > µi}, j0 = max{j : χ−(0) > µic+j}, (4.24)

and

σ i
= inf{0 < σ < σc : χ+(σ ) > µi},

σ j = sup{0 < σ < σc : χ−(σ ) > µic+j}. (4.25)

Then Lemma 4.2 yields

σ 1
≤ σ 2

≤ · · · ≤ σ i
≤ · · · → σc as i → ic and

σ 1 ≥ σ 2 ≥ · · · ≥ σ i ≥ · · · → 0 as j → j0.

Let σ ic def
= σc and σ 0

= 0, then

γ+(σ ) = i + 1 for σ ∈ (σ i, σ i+1), i = 0, 1, . . . , ic − 1, (4.26)

and let σ 0
def
= σc and σ j0 = 0, then

γ−(σ ) = j+ ic +1 for σ ∈ (σ j+1, σ j), j = 0, 1, . . . , j0 −1, (4.27)

where σ i
̸= σ i+1 and σ j+1 ̸= σ j. For sufficiently large σ the

degree index of the operator P(σ , d, ·) is given in the following
lemma.

Lemma 4.3. Let d > 0 be fixed and let σ ∗ be a suitably large
constant such that σ ≥ σ ∗ > σc . Then it follows that

deg(P(σ , d, ·),D, 0) = 1,

where the set D is defined as before, but here it is enough for the
constant c to be independent of σ , σc is the same as in (4.10).

Proof. By Lemma 3.4, we can choose σ ∗ sufficiently large so that
(1.4) has a unique solution W ∗ in D for σ ≥ σ ∗ > σc . Then we
have

deg(P(σ , ·),D, 0) = index(P(σ , ·),W ∗) = (−1)γ .

Since σ > σc , Lemma 4.1(4) indicates that γ is even. Thus, the
desired result follows. □

We now present a more specific version of Theorem 4.1 by
fixing the value of d > 0.

Corollary 4.1. Let d be fixed. Then the system (1.4) has at least one
non-constant solution provided that

(i) 0 < σ < σc , where σc is defined in (4.11).
(ii) if σ ∈ (σ i, σ i+1) ∩ (σ j+1, σ j) with σ i

̸= σ i+1 for some
i ∈ {0, 1, . . . , ic − 1} and σ j+1 ̸= σ j for some j ∈ {0, 1, . . . , j0 − 1},
then γ (σ ) = ic + j + i is odd.
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Proof. Define Ψ (t, ·) : [0, 1] × D → C(Ω) × C(Ω) by

Ψ (t,W ) = (I − ∆)−1
[W + H((1 − t)σ ∗

+ tσ , d,W )],

where the set D and σ ∗ are taken from Lemma 4.3.
It is clear that Ψ (t, ·) is a compact operator and its all fixed

points are located in the interior of D for t ∈ [0, 1]. Thus, by the
homotopy invariance of the topological degree, we have

deg(I − Ψ (1, ·),D, 0) = deg(I − Ψ (0, ·),D, 0). (4.28)

Since I − Ψ (0, ·) = P(σ ∗, d, ·), from Lemma 4.3 it follows that

deg(I − Ψ (0, ·),D, 0) = index(P(σ ∗, ·),W ∗) = 1. (4.29)

Obviously, I − Ψ (1, ·) = P(σ , d, ·). Thus, if we suppose, to
the contrary, that there is no other solution for (1.4) except the
constant one W ∗ in D, then, from the condition (ii) it follows that

deg(I − Ψ (1, .),D, 0) = index(I − Ψ (1, .),W ∗)
= index(P(σ , d, .),W ∗) = (−1)γ+(σ )+γ−(σ )

= (−1)jc+j+i
= −1,

which contradicts (4.28) and (4.29). Thus, our assumption is false,
which in turn asserts that there is at least one non-constant
solution to (1.4). The proof is complete. □

Similarly if σ is fixed, more specified conditions on d can be
found for the existence of non-constant solutions. But we shall
not explore this cumbersome procedure again here. For illustra-
tion, below we shall present an example to verify Corollary 4.1 in
one dimensional interval [0, l]. It is worthwhile to remind that
the Neumann operator −∆ has eigenvalues µi =

( iπ
l

)2
, i =

0, 1, 2, . . . in [0, l].

4.3. Example

Taking into account condition (H1), we consider the following
motility function

r(v) =
1

1 + e8(v−1) . (4.30)

Let us consider problem (1.1) in (0, l) with l = 2π and choosing
d = 0.4. Then we have⎧⎪⎪⎨⎪⎪⎩

σc =
1
d

(√
−r ′(1) −

√
r(1)

)2
= 1.25,

χ±(σc) =

√
σc

dr(1)
= 2.5, χ−(0) =

r ′(1) + r(1)
dr(1)

= 7.5.

Thus (4.24) leads to ic = 3, ia = 3 and the admissible wave
number ka = 1.5. If we choose σ = 0.2, then χ+(σ ) ≈ 0.1438 and
χ−(σ ) ≈ 6.9562. By (4.25)–(4.27), we have i = 0, j = 2, and the
degree index γ = ic + j + i = 5. If we choose σ = 0.6, similarly
we will have i = 1, j = 1 and hence γ = ic + j + i = 5. Thus,
by Corollary 4.1, the non-constant positive steady state of (1.1)
will arise, as numerically shown in Fig. 1(a) and (b). We find that
when the value of σ (like σ = 0.2) is far away from the critical
value, the pattern is unstable and second bifurcation will occur
and evolve into periodic-like patterns as observed in Fig. 1(a).
However if the value of σ is close to the critical value, the pattern
becomes stable as shown in Fig. 1(b). On the other hand, when
the condition (ii) of Corollary 4.1 is not satisfied, the pattern may
still arise as shown in Fig. 1(c) for σ = 1 which gives degree
index γ = 6. This indicates that the condition (ii) in Corollary 4.1
may not be necessary for pattern formation. In Fig. 2, we increase
the domain size and find similar patterning processes. In both
figures, we observe that when the value of σ is away from the
critical value σc = 1.25, the pattern may keep changing in time
and periodic (or chaotic) patterns arise. However if the value of σ

is close to the critical value, the pattern appears to be stable. This

implies within the instability region, the pattern dynamics will
be more delicate as the parameter value is getting away from the
critical regime. However how to qualitatively characterize this
patterning phenomenon seems to be very challenging.

5. Propagation of pulsating waves

In this section, based on the results obtained in the previous
sections, we will investigate how the pattern invades the whole
domain when the size of the spatial domain is large for the system
(1.1). To this end, we have to take into account the slow modula-
tion of the amplitude of wave-pattern solutions in space. Hence
below we shall distinguish the slow and fast spatial variables,
and employ a weakly nonlinear multiple scale analysis to derive a
Ginzburg–Landau type equation which captures the evolution of
the amplitude of the propagating waves. This method has been
widely used in the literature (e.g. see [18,19]). For simplicity, we
shall consider the problem in one dimension only below.

5.1. Multiple scale analysis

Let Ω = (0, l) with some positive constant l. Then (1.1) can be
rewritten in the form of⎧⎪⎨⎪⎩

ut = ∂xx(r(v)u) + σu(1 − u), x ∈ (0, 1), t > 0,
vt = d∂xxv − v + u, x ∈ (0, l), t > 0,
∂xu = ∂xv = 0, x = 0, l, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, l).

(5.1)

Since the pattern bifurcates from the constant steady state (1, 1),
we set

U = u − 1, V = v − 1.

Then (5.1) is changed to{
Ut = ∂xx(r(V + 1)(U + 1)) − σU(U + 1),
Vt = d∂xxV + U − V .

(5.2)

Introduce the time and space scales as{
t = t(T1, T2, T3, . . .), Ti = εit, i = 1, 2, . . . ,
x = x(x, X), X = εx,

(5.3)

where X and x are the slow and the fast spatial variables, re-
spectively, and 0 < ε ≪ 1. Then the corresponding derivatives
decouple as⎧⎨⎩

∂t → ε∂T1 + ε2∂T2 + ε3∂T3 + · · · ,

∂x → ∂x + ε∂X ,

∂xx → ∂xx + 2ε∂xX + ε2∂XX .

(5.4)

The asymptotic expansion of W =

(
U
V

)
and σ in the parameter

ε are taken as{
σ = σa + εσ1 + ε2σ2 + ε2σ3 + · · · ,

W = εW1 + ε2W2 + ε3W3 + · · · ,
(5.5)

where σa is defined in (4.8), Wi =

(
W1i
W2i

)
, i = 1, 2, 3, . . ..

Substituting of (5.4) and (5.5) into (5.2) and equating of the
coefficients with the same powers of ε lead to the following
systems

O(ε) : M(σa)W1 = 0, (5.6)
O(ε2) : M(σa)W2 = K (W1), (5.7)
O(ε3) : M(σa)W3 = L(W1,W2), (5.8)
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Fig. 1. Numerical simulations of pattern formation of system (1.1) in [0, 2π ], where r(v) is given by (4.30), d = 0.4 and the initial value (u0, v0) is set as a small
random perturbation of the constant steady state (1, 1).

Fig. 2. Numerical simulations of pattern formation of system (1.1) in [0, 20], where r(v) is given by (4.30), d = 0.4 and the initial value (u0, v0) is set as a small
random perturbation of the constant steady state (1, 1).
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where K =

(
K1
K2

)
, L =

(
L1
L2

)
, and M(σa) =(

r(1)∂xx − σa r ′(1)∂xx
1 d∂xx − 1

)
with⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

K1 =
∂W11
∂T1

− r ′′(1)[(∂xW21)2 + W21∂xxW21]

− r ′(1)[∂x(W11∂xW21) + ∂x(W21∂xW11) + 2∂xXW21]

−2r(1)∂xXW11 + σaW 2
11 + σ1W11,

K2 =
∂W21
∂T1

− 2d∂xXW21

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1 =
∂W11
∂T2

+
∂W12
∂T1

− r ′′′(1)[W21(∂xW21)2 +
1
2W

2
21∂xxW21]

− r ′′(1)[W11(∂xW21)2 + W11W21∂xxW21 + W21∂xxW22

+W22∂xxW21]

− r ′′(1)[2W21∂xW21∂xW11 + 2∂xW21∂xW22 +
1
2W

2
21∂xxW11]

− r ′(1)[∂x(W21∂xW12) + ∂x(W12∂xW21) + ∂x(W11∂xW22)

+∂x(W22∂xW11)]

− 2[r ′′(1)∂X (W21∂xW21) + r ′(1)∂X (W11∂xW21)

+r ′(1)∂X (W21∂xW11)]

− [2r ′(1)∂xXW22 + 2r (1)∂xXW12 + r ′(1)∂XXW21

+r(1)∂XXW11]

+ 2σaW11W12 + σ1(W 2
11 + W12) + σ2W11,

L2 =
∂W21
∂T2

+
∂W22
∂T1

− 2d∂xXW22 − d∂XXW21.

Here ∂x and ∂xx represent the first and the second partial deriva-
tives with respect to x, respectively. Substituting (5.4) and (5.5)
into the boundary condition U ′

= V ′
= 0, x = 0, l, we have

∂W1

∂x
= 0,

∂W2

∂x
= −

∂W1

∂X
,

∂W3

∂x
= −

∂W2

∂X
, . . . . (5.9)

Solving (5.6) with (5.9) yields

W1 = ρA(X, T1, T2) cos(kax), ρ =

(
1 + dk2a

1

)
, (5.10)

where ka =
iaπ
l , the letter A represents the amplitude of the

pattern and the vector ρ ∈ kerM(σa)|W1 is defined up to a
constant. Using (5.10), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 =

[
(1 + dk2a)

∂A
∂T1

+ σ1(1 + dk2a)A
]
cos(kax)

+
[
r ′′(1)k2a + 2r ′(1)(1 + dk2a)k

2
a +

1
2σa(1 + dk2a)

2
]

×A2 cos(2kax)

+
[
2r(1)(1 + dk2a)ka

∂A
∂X + 2r ′(1)ka ∂A

∂X

]
sin(kax)

+
1
2σa(1 + dk2a)

2A2,

K2 =
∂A
∂T1

cos(kax) + 2dka ∂A
∂X sin(kax).

For the use of solving system (5.7), we find the solution of the
adjoint system of (5.6) is

W 1 =

(
W 11

W 12

)
= ρA(X, T1, T2) cos(kax), ρ =

(
1+dk2a

−r ′(1)k2a
1

)
, (5.11)

where ρ is the kernel of the adjoint of the operator M(σa)|W1 . We
will apply the solvability condition for (5.7), i.e.,

⟨K ,W 1⟩ =

∫ 2π
ka

0
K1W 1 + K2W 2dx = 0. (5.12)

Here we should mention that due to the homogeneous Neumann
boundary condition, the Fredholm alternative has to be used on
the interval [0, 2π

ka
]. Then we can obtain a solution of (5.1) on the

whole domain by employing the method of reflection symmetry
and periodic extension.

By (5.12), we have σ1 = 0, T1 = 0. Thus, the expression of
solution of (5.7) is in the form of{
W12 = A2(c11 + c12 cos(2kax)) +

∂A
∂X c13 sin(kax),

W22 = A2(c21 + c22 cos(2kax)) +
∂A
∂X c23 sin(kax),

(5.13)

where cij (i = 1, 2, j = 1, 2, 3) solve, respectively, the
following systems

Φ0(σa)
(
c11
c21

)
= −

(
σa
2

(
1 + dk2a

)2
0

)
,

Φ2(σa)
(
c12
c22

)
= −

(
σa
2

(
1 + dk2a

)2
+
[
r ′′(1) + 2r ′(1)(1 + dk2a)

]
k2a

0

)
,

Φ1(σa)
(
c13
c23

)
= 2ka

(
−r ′(1) − r(1)

(
1 + dk2a

)
d

)
,

with

Φp(σa) =

⎛⎝p2r(1)k2a + σa p2r ′(1)k2a

1 −1 − p2dk2a

⎞⎠ , p = 0, 1, 2.

Substituting (5.10) and (5.13) into L, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L1 =

[
(1 + dk2a)

∂A
∂T2

− L(1)1
∂2A
∂X2 + H1A3

+ σ2(1 + dk2a)A
]
cos(kax)

+H2A3 sin2(kax) cos(kax) + H3A3 cos(kax) cos(2kax)
+H4A3 cos3(kax) + L∗

1,

L2 =

(
∂A
∂T2

− d ∂2A
∂X2 − 2dkac23 ∂2A

∂X2

)
cos(kax) + L∗

2,

where L∗

1 and L∗

2 satisfy ⟨L∗

1,W 11⟩ = 0 and ⟨L∗

2,W 21⟩ = 0, and
their expressions depend on the parameters of the system (1.1)
and are too cumbersome to give them here. Furthermore,

L(1)1 = r ′(1)(1 + 2kac23) + r(1)(1 + dk2a + 2kac13),
H1 =

[
r ′′(1)c21 + r ′(1)c11

]
k2a +

[
r ′(1)k2ac21 + 2σac11

]
(1 + dk2a),

H2 = −r ′′′(1)k2a − 3r ′′(1)k2a(1 + dk2a),
H3 =

[
r ′′(1)c22 + r ′(1)c12

]
k2a +

[
r ′(1)k2ac22 + 2σac12

]
(1 + Dk2a),

H4 =

[
1
2
r ′′′(1) +

3
2
r ′′(1)(1 + dk2a)

]
k2a.

Again from the solvability condition of (5.8), i.e., ⟨L,W 1⟩ = 0, it
follows that
∂A
∂T2

= κ
∂2A
∂X2 + ςA − ϱA3, (5.14)

where

κ =
(1 + dk2a)L

(1)
1 − dr ′(1)k2a(1 + 2kac23)

(1 + dk2a)2 − r ′(1)k2a
,

ς =
−σ2(1 + dk2a)

2

(1 + dk2a)2 − r ′(1)k2a
> 0,

ϱ =

(1 + k2a)
(
L(2)1 + L(3)1

)
(1 + dk2a)2 − r ′(1)k2a

,

L(2)1 + L(3)1 = H1 +
1
4
H2 +

1
2
H3 +

3
4
H4.

Eq. (5.14) gives the third order approximation of the amplitude
of pattern solution for (1.1). It is the typical Ginzburg–Landau
equation. The coefficient ς is always positive. However, ϱ can
be positive or negative depending on the values of the system
parameters. Usually, it is called that if ϱ is positive (negative), one
has a supercritical (subcritical) bifurcation. Since the expression for
ϱ is quite involved, it is hard to perform a general analytical study
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Fig. 3. An illustration of modulated progressing wave produced by system (1.1) where the pattern is formed sequentially and the traveling wavefront is the precursor
to patterning. The red dash line is the third order approximate solution given by (5.17). The blue solid line is a numerical solution of system (1.1) with the initial
value (u0, v0) = (1, 1) + ερA(X, 0) cos(kax).

of its sign. In what follows, we will present an example with
supercritical bifurcation to demonstrate that Eq. (5.14) can govern
the evolution of the amplitude of pattern solution of (1.1). But for
the subcritical case, it is naturally required to push the weakly
nonlinear expansion at a higher order so that one can obtain a
higher order Ginzburg–Landau equation to capture the evolution
of the amplitude. This is extraordinarily difficult and will not be
pursued here.

For the supercritical case, we can use ‘‘tanh’’ method to obtain
the exact solution of (5.14) in R of the form

A(X, T2) =
1
2

√
ς

ϱ

(
1 − tanh

(√
ς

κ

Y − Y0

2
√
2

))
, (5.15)

where Y = X − cT2, c = 3
√

ςκ/2, which is a traveling wave
solution of (5.14) connecting 0 and

√
ς/ϱ.

5.2. Numerical verifications

Below shall numerically demonstrate that the Ginzburg–
Landau equation (5.14) gives a very good approximation of the
amplitude of propagating waves generated by the motility model
(1.1). For definiteness, we consider

r(v) =
1

1 + e8(v−1)

and assume the system parameters d = 1, σ = 0.4, l = 4π .
Then system (5.1) reads⎧⎪⎨⎪⎩

ut = ∂xx
( 1
1+e8(v−1) u

)
+ 0.4u(1 − u), x ∈ (0, 4π ), t > 0,

vt = ∂xxv − v + u, x ∈ (0, 4π ), t > 0,
∂xu = ∂xv = 0, x = 0, 4π,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, 4π ).

(5.16)

By a direct computation, one can find that the admissible mode
ia = 4 and the corresponding admissible wave number ka = 1,

ρ =

(
2
1

)
, and the critical value of σ is σc = σa = 0.5. Based

on the discussion in Section 4, we find that the degree index

γ = 7. Then Corollary 4.1 guarantees that (5.16) admits at least
one stationary non-constant solution.

Through a tedious computation, we have c11 = −2, c12 ≈

7.7778 and c13 = 0.4; c21 = −2, c22 ≈ 1.5556 and c23 = −0.8;
κ ≈ 0.6667, ς ≈ 6.6667, and ϱ ≈ 4.2963. Therefore, by (5.10)
and (5.13), the third approximation of the solution component
u(X, T2) now is given by

u = 1 + 2εA(X, T2) + 5.7778ε2A2(X, T2), (5.17)

where A(X, T2) is a solution of (5.14) given by (5.15).
We plot the graph of u given by (5.17) in Fig. 3 (see the red

dashed line), which quantitatively well captures the evolution of
the amplitude of the propagating pattern (see the blue solid line
in Fig. 3) generated by system (1.1). There is a subtle quantitative
discrepancy at the first bent which results from the neglect of
the higher terms. We observe that the pattern propagates into
the whole domain in the form of oscillatory waves.

6. Summary and discussion

The concept ‘‘density-suppressed motility’’ has been advo-
cated recently in [2,3] and the mathematical analysis of the
relevant model (1.1) has been touched only on the existence of
global solutions and stability of constant steady states in two
dimensions or in higher dimensions for large growth rate σ in the
work [4,5] for σ > 0. When σ = 0, the global existence of solu-
tions in two or higher dimensions was established in [7–9] under
various assumptions. The results on the stationary problem of
(1.1) have been unavailable yet. Motivated by a previous work [4]
where the numerical simulations have demonstrated that the
model (1.1) is capable of producing various interesting patterns
for appropriate values of d, σ and motility function r(v), we
investigate the existence/nonexistence of non-constant stationary
solutions for the density-suppressed motility model (1.1) sup-
plemented with numerical illustrations. The primary analytical
results of this paper are given in Theorems 3.1 and 4.1. Moreover
the multiple-scale analysis is performed in Section 5 to show
that the model (1.1) can generate periodic traveling waves which
qualitatively interpret the expanding strip patterns observed in
the experiment of [2] and the model is hence justified. Given a
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class of decreasing motility function r(v) satisfying the condition
(H1), Theorem 3.1(a) asserts that for large chemical diffusion
coefficient d or bacterial intrinsic growth rate σ , the model (1.1) is
incapable of producing pattern formation. Furthermore if the de-
cay of r(v) is very slow (i.e., sublinear or linear) in v such as r(v) =

1
(α+βv)ξ with ξ < 1 or β < α and ξ = 1, Theorem 3.1(b) shows
that no pattern formation can develop from the model (1.1) when
d > 0 or σ > 0 is small. These results together reveal that the
model (1.1) can generate pattern formation only in a moderate
(narrow) regime of parameters of d and σ where the decay rate
of r(v) with respect to v will play a role. Therefore the rigorous
proof of the existence of non-constant stationary solutions of (1.1)
will be very intricate. In this paper, we explore this question and
present some sufficient conditions on d, σ and γ (v) warranting
the existence of non-constant stationary solutions of (1.1) (see
Theorem 4.1 and Corollary 4.1). By expanding the Laplacian term
in the first question and set χ (v) = −r ′(v) > 0, (1.1) becomes a
Keller–Segel type chemotaxis system as follows⎧⎪⎪⎨⎪⎪⎩

ut = ∇ · (r(v)u − uχ (v)∇v) + σu(1 − u), x ∈ Ω, t > 0,
vt = d∆v + u − v, x ∈ Ω, t > 0,
∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(6.1)

Even if we regard (6.1) as a chemotaxis system, it is also a new
type of chemotaxis systems since the diffusion rate depends on
the chemical (signal) concentration. As we know, the available
analytical results of (6.1) are limited to the case of constant r(v)
(e.g., see [20–22] and references therein). When both r(v) and
χ (v) are constant, the complex patterns/dynamics of (6.1) have
been numerically illustrated in [23,24] and only part of them
have been analytically understood (cf. [10,25]). Hence we may
anticipate that the system (6.1) with non-constant r(v) and χ (v)
will have rich dynamics and complex patterns as illustrated in
the numerical simulations of [4]. Accordingly the mathematical
analysis of these dynamics/patterns will be intriguing yet diffi-
cult. This paper takes a step forward to understand the complex
dynamics underlying the model (6.1) for the case χ (v) = −r ′(v)
(namely the model (1.1)). However our results are far from the
complete understanding of the dynamics of (1.1) in the whole
parameter space. For instance, the critical regime of d and σ

for the existence/non-existence of non-constant steady states is
unknown, and how the decay rate of r(v) in v will affect the pat-
tern formation still remains poorly understood. There are many
interesting analytical questions for future studies and our cur-
rent work has provided an illuminating insight into the complex
dynamics underlying the model (6.1) with general r(v) and χ (v).
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