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Abstract

We consider the following attraction—repulsion Keller—Segel system:

ur=Au—V-(xuVv)+V-(EuVw), xe,t>0,

vy = Av+au — B, xe, t>0,
0=Aw+yu—dw, xe, t>0,
u(x,0) =ugp(x), vix,0) =vox), x €,

with homogeneous Neumann boundary conditions in a bounded domain  C R? with smooth boundary.
The system models the chemotactic interactions between one species (denoted by u#) and two competing
chemicals (denoted by v and w), which has important applications in Alzheimer’s disease. Here all pa-
rameters x, &, «, B, y and § are positive. By constructing a Lyapunov functional, we establish the global
existence of uniformly-in-time bounded classical solutions with large initial data if the repulsion dominates
or cancels attraction (i.e., £y > a ). If the attraction dominates (i.e., £y < a ), a critical mass phenomenon
is found. Specifically speaking, we find a critical mass my = 01X4+SV such that the solution exists globally
with uniform-in-time bound if M < m, and blows up if M > my and M ¢ {4”7”’ :m € NT} where NT
denotes the set of positive integers and M = fQ ugdx the initial cell mass.
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1. Introduction

This paper is concerned with the initial-boundary value problem of the following attraction—
repulsion chemotaxis system

ur=Au—V-(xuVv)+ V. (EuVw), xeQ, t>0,
T = Av + au — B, xe, t>0,
w; = Aw + yu — dw, xeQ, t>0, (1.1
du _ dv _ dw ), x€dR, t >0,

v — 9v — v
u(x,0) =up(x), tiv(x,0) =11v9(x), Dw(x,0) =12Wo(x), x €L,

where € is a bounded domain in R? with smooth boundary 92 and v denotes the outward nor-
mal vector of 9€2. The model (1.1) was proposed in [28] to describe the aggregation of Microglia
in the central nervous system in Alzheimer’s disease due to the interaction of chemoattractant
(B-amyloid) and chemorepellent (TNF-«), where u(x, 1), v(x, t) and w(x,t) in the model (1.1)
denote the concentrations of Microglia, chemoattractant and chemorepellent which are produced
by Microglia, respectively. The positive parameters x and £ are called the chemotactic coef-
ficients, and x, B, y,8 > 0 are chemical production and degradation rates. tj, T» are constants
equal to 0 or 1 justifying whether the change of chemicals is stationary or dynamical in time. The
model (1.1) was also a particularized system introduced in the paper [33] to model the quorum
sensing effect in the chemotactic movement.

Well-known as the Keller—Segel model (see [23]), the prototype of classical attractive chemo-
taxis model reads as

{utzAu—V-(Xqu), (12)

T = Av + au — Bo.

One prominent property of the Keller—Segel model (1.2) is the existence of a Lyapunov func-
tional which continuously stimulates a vast amount of mathematical studies on various aspects
of mathematics such as blowup, boundedness, traveling waves, pattern formations, critical mass
phenomenon and critical sensitivity exponents (e.g. see [4,5,15,16,19,29,31,32,37,40,41] and the
references therein, and review articles [13,18,39]).

On the other hand, for the classical repulsive chemotaxis model which reads as follows:

ur=Au+V-EuVw),
nw; =Aw+ yu — dw,

a Lyapunov functional different from that of the attractive Keller—Segel model was found in [6],
which led to the global existence of classical solutions in two dimensions and weak solutions in
three and four dimensions. The results on the repulsive Keller—Segel model are very limited and
a further study on such model was recently given in [36].

Mathematically the three-component attraction—repulsion chemotaxis system (1.1) modeling
the aggregation of Microglia is a coupled attractive and repulsive Keller—Segel model, and hence
is referred to as the attraction—repulsion Keller—Segel (abbreviated as ARKS) model. It is hard
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to analyze in general due to the complicated interactions between three species u, v and w, and
the difficulty of constructing a Lyapunov functional. A few known results are the following. In
one dimension, the stationary solutions and time-asymptotic behavior of solutions were estab-
lished in [21,26], and the time-periodic orbits were found recently in [27] by employing the
local and global Hopf bifurcation theory. The traveling wave solutions of an attraction-repulsion
chemotaxis system with a volume-filling effect were investigated in [34]. The multi-dimensional
analysis was recently given by Tao and Wang [38] where the competing effects of blowup from
the attraction and smoothing from the repulsion were untangled. It mainly dealt with a special
scenario § = § (i.e., two competing chemical signals have the same death rates) for which the
system (1.1) can be formally transformed into the classical Keller—Segel model and hence the
methods based on the Lyapunov functional can be employed. It was found in [38] that the so-
lution behavior of the ARKS model was essentially determined by the competition of attraction
and repulsion which is characterized by the sign of y« — £y. For the convenience of statement,
we call the number

0 =xa—E&y
the competition index in this paper and the biological interpretation of the sign of 6 is as follows:

e 0 <0 < repulsion dominates;
e 0 =0 < repulsion balances/cancels attraction;
e 0 > 0 & attraction dominates.

For the case 8 = §, the main results of [38] asserted that: (1) if & < 0, then the ARKS model (1.1)
has a unique classical global solution which converges to a unique constant steady state asymp-
totically in time for both 71 = 1 =0 and 71 = 1p = 1; (2) if > 0, the solution may blow up in
finite time in two dimensions if the cell mass is larger than a threshold number for 71 = 70 = 0.
For the case g # §, it was proved in [38] that the classical solutions of (1.1) with 6 < 0 exist
with large data if t; = 70 = 0 or with small data if t; = 75 = 1, where the solution bound is
independent of time in the former case and dependent on time in the latter case.

Clearly the results for the cases f#5ort1+ o =1(Ge. t11=1,p=00r71 =0, 0 =
1) or both were left open in [38]. Recently some of these open questions are solved. When
B # 6 and 6 > 0, the blowup of solutions was proved in [9] for 71 = 15 = 0. When § # § and
6 < 0, the global classical solutions with uniform-in-time bound were established in [25] for
71 = 12 = 1. So far, all the results are obtained either for 71 + 72 = 0 or for t; + 1p = 2, where
the dual gradient in the first equation of the ARKS model can be reduced to a single gradient
with a transformation (see the details in [38]). Up to date, the result 71 + tp = 1 completely
remains open. The main difficulty of such problem lies in their irreducibility to a two-component
classical chemotaxis model even for the simplified case 8 = § such that conventional methods
and techniques can be utilized as done in [38]. The purpose of this paper will be to make a
substantial step forward towards one of these open questions mentioned above, and hope our
results may shed lights on the studies of remaining cases. Specifically we shall consider the case
11=1,n=0forall x,& «,8,y,5§ >0 and 6 € R. In particular, our results will include the
case B # § which also remains as one of the afore-mentioned open questions except for 71 =
7o = 0. A key element in our analysis is a Lyapunov functional that we find for the irreducible
three-component ARKS model (1.1), which enables us to study the boundedness of solutions and
the critical mass phenomenon. The main results are stated as follows.
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Theorem 1.1. Assume that 0 < (ug, vo) € [WH®(Q)]> and x, &, a,B,y,8 > 0. Then if 0 <0
(repulsion dominates or balances attraction), there exists a unique triple (u, v, w) of nonnegative
functions in C(Q x [0,00)) N C>1( x (0, 00)) which solves (1.1) with 11 = 1 and v =0
classically such that

lu(, Dllpe =C
where C is a constant independent of t.

Remark 1.1. For the case 11 = 1, 7o = 0, the ARKS model (1.1) is irreducible to a two-
component chemotaxis model. Here we succeed in finding a Lyapunov functional to prove the
uniform-in-time boundedness of solutions, which was not found in [38]. As we know, it is the
first result that presents a Lyapunov functional for an irreducible three component attraction—
repulsion chemotaxis model. However it still remains unknown if there is a Lyapunov functional
forthecaseti =t =1lorty=0and 1o = 1 if B #§.

Theorem 1.2. Let the assumptions in Theorem 1.1 hold and let M = fQ up(x)dx. If 6 > 0 (at-
traction dominates), then the following two conclusions hold:

(i) If M < 47”, then the system (1.1) with t1 = 1 and 1, = 0 admits a unique classical solution
(u, v, w) € C(2 x [0,00)) NC>1(Q x (0, 00)) such that |u(-,t)| .~ < C for a constant C
independent of t.

(ii) If M > 47” and M ¢ {4”Tm :m € Nt} where N denotes the set of positive integers, then
there exist initial data such that the solutions of (1.1) with 11 = 1 and © = 0 blow up in
finite or infinite time.

The results in Theorem 1.1 and Theorem 1.2 cover the situation 8 # §, which was left in [38]
as a major open question. Our results in this paper, together with the previous results in [9,25,38],
show that solution behaviors of time-dependent ARKS model, including boundedness, blowup
and critical mass, are independent of the values of parameters 8 and § (they only rely on the
sign of 8 = ya — &y). It seems that 8 = § and B # 6 make no difference to the time-dependent
solutions. It turns out this is only partially true. It was shown in [27] that the time-periodic
solution of the system (1.1) is impossible for 8 = §, however, it does occur for 8 # §. We also
point out that the critical mass phenomenon for the three-component chemotaxis model with two
species and one signal was studied in [8,20], which is apparently different from the ARKS model
(1.1) which contains one species and two signals.

Our results in Theorem 1.1 and Theorem 1.2 show that the ARKS model (1.1) admits glob-
ally bounded solution if the repulsion dominates (i.e. 8 < 0), but has a critical mass phenomenon
if attraction dominates (i.e. 6 > 0). Since blowup is generally not accepted as an interpretation
for the aggregation process and it is unknown if the existing globally bounded solution (includ-
ing the case 6§ < 0 and subcritical case for 6§ > 0) approaches a constant asymptotically, the
critical mass phenomenon is insufficient to indicate the pattern formation. The numerical sim-
ulations performed in [22,38] have shown that the above-mentioned global solutions actually
converge to constant asymptotically. Hence the ARKS model (1.1) appears to be inadequate
to explain the aggregation phase of Microglia in Alzheimer’s disease from the results obtained
in this paper together with previously existing results in [9,25,38]. But the existence of critical
mass phenomenon strongly indicates that the ARKS model (1.1) may provide a useful basic PDE
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framework to model the aggregates of Microglia resulting from the interaction of attraction and
repulsion. Hence to understand the complete dynamics and the validity of the model, further
mathematical study is demanded and new modeling ideas might be needed in order to fully inter-
pret the aggregation phase occurring in Alzheimer’s disease. We are currently working on such
issue in a separate paper [22].

2. Basic inequalities

For reader’s convenience, we present a few known inequalities which will be frequently used
in the paper.

Lemma 2.1. (See [24].) Let 2 be a bounded domain in R" with smooth boundary. Assume there
is a constant C > 0 such that

lulls <C, forallte(0,T).

Ifvg € WHo°(Q), then there exists some constant Cy suchthat foreveryt € (0,T)and1 <s <n,
the solution of the problem

v=Av+au—Bvin 2, 2—3:00n8§2
satisfies
vllwre < Cq .1
forall g < ;. If s = n, then (2.1) is true for all ¢ < oo, and if s > n, then (2.1) is true with
q = oo.

Lemma 2.2 (Trudinger—Moser inequality). (See [30].) Let S be a bounded domain in R* with
smooth boundary. Then for any ¢ > 0 there exist a constant C. depending on ¢ and 2 such that

1 1
/exp luldx < C, exp { (g + s> IVull?, + @HMHL] } . (2.2)
Q

Lemma 2.3. (See [10].) Let 2 be a bounded domain in R" with smooth boundary 0S2. Assume
l<p<nandue W"P(Q). Thenu € LP" () with the estimate

el px < Cllullyrp, 2.3)

np
n—p

where p* = and the constant C depends only on p, n and Q.

Lemma 2.4. (See [30].) Let  be a bounded domain in R* with smooth boundary. Then for any
& > 0, there exists a positive constant C such that

2 1 1
lullzs < elVul ) lulnull} + Ce(lulnul g+ flull; ). 2.4
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Lemma 2.5 (Gagliardo—Nirenberg inequality). (See [11].) Let Q2 be a bounded domain in R"
with smooth boundary. Let | and k be any integers satisfying 0 <l <k, and let 1 < q,r < 00,
and p e R, % <a <1 such that

1 l (1 k) 1
LR Y . 2.5)
p n q n r

Then, for any u € W54(Q) N L7 (), there exists a constant ¢ depending only on Q, q, k, r and
n such that:

ID ullLr < c(ID ulldy lully* + NullLr), (2.6)

with the following exception: if 1 <q < oo and k —1 — g is a nonnegative integer, then (2.6)

holds only for a satisfying é <a<l.
3. Preliminaries on boundedness

With 1 =1 and ) =0, the system (1.1) becomes the following one:

ur=Au—V-(xuvVv)+V.-(¢EuVw), xeQ,t>0,

vy = Av+au — pu, x€Q, t>0,
0=Aw+yu—dw, xeQ, t>0, (3.1)
fu=fv_w_y, x€dQ, t>0,

u(x,0) =uo(x), v(x,0) =vo(x), x €.

The local existence theorem of (3.1) can be proved by the fixed point theorem and maximum
principle along the same line shown in [38].

Lemma 3.1. Assume that 0 < (ug, vo) € [W°(Q)]2. Then there exist Tigx € (0, 00] and a
unique triple (u,v, w) of nonnegative functions from C(2 x [0, Tax)) N C*1 (2 x (0, Thax))
solving (3.1) classically in Q2 x (0, Tyuax). Moreover u > 0 in Q2 x (0, Tyuay) and

if Tinax < 00, then |u(-,t)||pc = 00 ast / Tyax- (3.2)

By the blowup criterion given in Lemma 3.1, it suffices to derive |ju(-, )|~ < oo for all

¢t > 0 to obtain the global-in-time solutions. In this section, we will present the basic framework
used in this paper to derive the boundedness of solutions of system (3.1). We first notice that

L'-norm of the solutions of (3.1) is bounded by integrating equations of (3.1) over .

Lemma 3.2. The solution (u, v, w) of (3.1) satisfies the following properties

luC, Ol = lluollpr :=M, (3.3)
o o _
v, Dl = 5 luollpr — (Elluollu - ||vo||L1> e P, (3.4)

lw(. )l = % ol 1 - (3.5)
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Next we give a lemma concerning the uniform-in-time bound of ||u||; > irrespective of the sign
of 6 = xya — &y. This result will be essentially used to prove the boundedness of solutions for
both # <0 and 6 > 0. In the sequel, we use C; or ¢j, i = 1,2, 3, - - -, to denote generic constants
which may vary in the context.

Lemma 3.3. If we can find a constant C1 > 0 such that the solution of (3.1) satisfies

lluInu||z: +/ lve (D)17.d7 < C1, (3.6)

then there exists a constant Co > 0 such that the solution of (3.1) satisfies

lullz2 < Ca. (3.7

Proof. Multiplying the first equation of (3.1) by u, integrating the result with respect to x, and
using the second and third equation of (3.1), we have

d
o 2dx+/|Vu|2dx

/Vu -Vvdx — %/ -Vwdx
Q

Q

| =

l\.)|>< b\

:-%/uz(vt—au+ﬁv)dx+%/u2(5w—yu)dx
Q Q

_ )
_X*—sy 4 wdx + E— wwdx — X uvidx — ﬁ u?vdx
2 2 2 2
Q

Q Q Q

0 )
< —/u3a’x+$—/u2wdx— l/u%,dx,
2 2 2
Q

Q Q

which yields

Q..|Q‘

/ dx+2/|Vu|2dx<§8/u wdx — /u u,dx+|9|/ wdx. (3.8)
Q

Q Q

Next, we estimate the first term on the right-hand side in (3.8). By the Young’s inequality:

—r/q.,.—1yr 1 1
ab <ea? 4+ (eq)™"/9r='b" forany a,b>0, ¢ >0, g, r >0, —+—=1, (3.9)
q r

we have
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2 1 3 16 3 3
E6 | u wdxfi u dx—i—E(SS) w’dx. (3.10)
Q Q Q
The combination of (3.8) and (3.10) yields that

d
—/uzdx+2/|Vu|2dx
dt

Q

Q

1+2]6 16
< 7+2| |/u3dx+E(§5)3/w3dX—X/“2Utdx~ (G.11)
Q Q @

To estimate the term fQ w3dx, we apply the Agmon—Douglis—Nirenberg L”-estimates [1,2] to
the following linear elliptic equations with zero Neumann boundary conditions:

—Aw+Séw=7yu, inQ
dw — ), on I

v
where § > 0, and find a constant ¢ such that
lw(, Ollwar <cilluC, Oy (3.12)
Specially, we choose p =2 in (3.12) to obtain
lwC, Dllw2z <cillu, )l (3.13)

The by the Sobolev embedding inequality, Holder inequality and interpolation inequality
1 3

T L3
loell 2 < Ml ull 5 = M3 |lull5, we have

3 3 3 3 7
lwlly s < c2llwlljya, < csllully, < c3IM|*{lull;,

which, combined with the Young’s inequality, yields a constant ¢4 > 0 such that

16 1
27 C° [widr <3l + s (3.14)
Q

Inserting (3.14) into (3.11), we obtain that
d
E/uzdx+2/|Vu|2dx <1+ |9|)/u3dx—xfu2v,dx+C4. (3.15)
Q Q Q Q

Furthermore by Holder and Gagliardo—Nirenberg inequalities, we have
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2 2
—x/u vedx < x urll 2 lull2,

Q | | 2

<cslluill2 (uwnzznunzz + ||u||Lz)
2
< 2es il (I Vall 2l 2+ el )
2 2 2 2

< 1VullZa + (3ol + 265 llol2) Nl (3.16)

Collecting (3.15) and (3.16) with (2.4), we obtain

d 2 2
E ”M”LZ + ||VM||L2
3 2 2 2
< (U 10D0ul3s + (ol + 25 url 2 ) lul2, + s

<A+ 0D [Vull?, lulnull g+ cs(lulnul}, + lull L)

+ (3 lvell3 2 + 2es ol 2) 3 5 + ca. (3.17)

Using the facts ||ulnul|;1 < c7 from the condition in Lemma 3.3 and ||u||; 1 = M, we let ¢ be
small enough such that 1+ O] llulnull 1 < %, and have from (3.17)

d 2 1 2 2 2 2
Tl + S0Vl = (¢ ol +2es ol ) el + cs. (3.18)

On the other hand the Gagliardo—Nirenberg inequality and Cauchy—Schwarz inequality with the
fact ||u|l;1 = M yield

1
lullZa < co(IVullg2llullp + lullg) < SIVulZ, +co. (3.19)

Then adding (3.18) and (3.19), and using the Young’s inequality, we can find two constants
cl1:=cg+cioandcyp = 3c§ such that

d 2 2 2 2 2
s+l = (e ol 4+ 2es ol 2) el + s + o
2 2 2 2 1 2
< (ol +22 hurlZ: + 3 ) el +enn

1
2 2 2
= cnallo 2l + 5 Nl + .

which yields

d 1
ol + (5 —cn ||v,||iz> lull?, < cur. (3.20)
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By the Gronwall’s inequality, it follows that

t

112, < llugl2, e~ o A/2—erlu®iidr [ = [0/ 2=enlu @I ;o
L? L?

0

With (3.6), a simple calculation yields a constant ¢y3 such that ||u||i2 < c13. The proof of this
lemma is completed. O

Lemma 3.4. [f (3.7) holds, then there exists a constant C independent of t such that the solution
(u, v, w) of (3.1) satisfies

[(Vv, Vw)| = < C. (3.21)

Proof. First, the combination of (3.12) and (3.7) generates a constant ¢y > 0 such that

lwlly22 <ci. (3.22)

Using the Gagliardo—Nirenberg inequality, (3.5) and (3.22), one can find two constants ¢, ¢3 > 0
such that

5 1 5 1

2 3 2 /¥\s 1 ¥YM

1Vl s < e2(ID2wl g lwl, + i) < Cz(Cf (%) Mo+ 2= ) = (323)
Furthermore, from Lemma 2.1 and (3.7), we obtain a constant ¢4 > 0 such that

IVoll 4 < c. (3.24)

Next, we will prove (3.21) by using (3.23) and (3.24). Multiplying the first equation of (3.1) by

u? to get that
1d
gd_/ 3dx + - /qu%|2dx
Q
—2)(/ u*Vu - Vvdx—ZS/ u*Vu - Vwdx
X § 3
5?/ IVu2 Vu|dx+—/|u2Vu2 Vw|dx (3.25)
Q

Applying Holder inequality and the Gagliardo—Nirenberg inequality, and using (3.23) and (3.24),
we have
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3

4x 33 3
?/|u2 uz Vv|dx+—/|u2Vu2 Vw|dx
Q

1
§/|Wz|2dx +4x /u [Vv|?dx + = /|Vu2|2dx+2§ /u [Vw|>dx
Q Q Q
< LIV 12, + 4P 12V 0, + 262 2 V)2
<3 2 a2 VIR, + 282 k2 Vw2,
1 3
= SIVut I3+ (4cha? + 2c§€2> lu? 12,
1 39 3 3.2
Sgll u?|lp, +es | Va2 2||u2|| 3+||u2|| s
1 32 5 3.3 2
= g”V"ﬂ ||L2 +cscg | Vuz ”L2 + c2cq
< 5 IVuEIg +en
3 3
where we have used the inequality ||u2 ||L% = ||lu?|| 22 < cg, and the following estimate

5 303 2 _2 32
¢sq IVu|l 2 +cacg < §||Vu2 72 +c7.

Substituting (3.26) into (3.25), we have that

d :
E/u3dx+ IV |12, < 3¢r.

Furthermore the Gagliardo—Nirenberg inequality gives
3 3 b3 2 3 3 b2
e < es (Va2 2l 17y + i g ) < s (Va2 jacg +co)
by which we find two constant cg, c19 > 0 by using (3.7) such that

3 36 1 32
wWdx = uz S, < — Va2 |2, + cpo.
€9
Q

Inserting (3.28) into (3.27), we have

3 3
g7 llzs +collullys =37+ cocro =cur,

which, along with Gronwall’s inequality, implies

lull} 5 < e " uoll? s + g <cn.

(3.26)

(3.27)

(3.28)

(3.29)
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Then using Lemma 2.1 and (3.29), we can find a constant c¢13 > 0 such that
[VullLe < ci3. (3.30)

Furthermore, from (3.12) and (3.29), one has [|w(:, #)[ly23 < c14 which, along with the Sobolev
embedding theorem, asserts that |Vw| p~ < c14. This, combined with (3.30), completes the
proof of the lemma. O

Next we shall show that (3.6) is a sufficient condition to ensure the global boundedness of
solutions of (3.1). To this end we cite the following known result (see [14], Lemma 1) which was
proved based on the iteration method (e.g., see [3]).

Lemma 3.5. Let the components of the vector field ® : Q x (0, 00) — R" be uniformly bounded,
and let up € L () N LY(Q) with ug > 0. Ifu € C(Q x [0, T)) N C>(Q x (0, T)) is a solution
of the following initial-boundary value problem:

uy=V-(Vu—ud), xe€,t>0,
Vu —ud)-v=0, x€eod, t>0,
u(x,0) =uox), x e

then there exists a constant ¢ > 0, only depending on | ®| L= (@), lluoll 11 (q) and l|uollL=(g), such
that

lu@ Lo <c  forallt€(0,T).

Then the following lemma concerning the global existence of classical solutions of (3.1) with
uniform-in-time bound can be proved.

Lemma 3.6. Assume that 0 < (ug, vo) € [W°(Q)]% If_(3.6) holds, then the_re exists a unique
triple (u, v, w) of nonnegative functions belonging to C (2 x [0, 0c0)) N CZ'I(Q x (0, 00)) which

solves (3.1) classically such that ||u(-,t)|| < < C, where C is a constant independent of t.

Proof. If (3.6) holds, then from Lemma 3.3, we can find a constant ¢; > 0 such that ||u||;2 < c;.
Then using Lemma 3.4, we can find a constant ¢ > 0 such that

[(Vv, Vw)||Le < co. (3.31)
Now we write the first equation of (3.1) as u; = V- (Vu —u®) with ® = x Vv —&Vw. Note that

the zero Neumann boundary condition implies the zero-flux boundary condition in Lemma 3.5.
Then the application of Lemma 3.5 with (3.31) produces a constant c3 > 0 such that

Nlu(,t)po <c3 forallt e (0,T). (3.32)
Thus the assertion of Lemma 3.6 is an immediate consequence of (3.32) and Lemma 3.1. O
From Lemma 3.6, we see that it suffices to prove (3.6) to obtain the global existence of clas-

sical solutions of (3.1). In the subsequent sections, we shall show that (3.6) indeed holds either
for® <Qorforf >0and M < 47”.
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4. Boundedness for 0 <0

In this section, we are devoted to proving Theorem 1.1. Although the ARKS model (3.1) is
irreducible to the classical two-component chemotaxis model, we are fortunately able to find a

Lyapunov functional:

F(u,v,w)=/ulnudx+21/(ﬂv2+|Vv|2)dx
o
Q

Q

4o [Gu? o+ vuiax -y [uvds,
14
Q

Q

Lemma 4.1. Let F (u, v, w) be defined in (4.1). Then the solutions of (3.1) satisfy

d
_F(ua v, w) + G(“) v, w) = Os
dt

where

G(u,v,w):l/vtzdx+‘/‘u|V(lnu—Xv+Ew)|2dx.
o
Q Q

4.1

4.2)

(4.3)

Proof. Multiplying the first equation of (3.1) by Inu — xv 4+ £w and integrating the result with

respect to x over 2, we have

/u,(lnu—xv+§w)dx=/V~(Vu—Xqu+§qu)(lnu—Xv+$w)dx

Q Q

—/u|V(lnu — XV —|—$w)|2dx.
Q

Using the fact that [, u;dx = 0, we have

/u,(lnu —xv+E&w)dx
Q

d d
=Efulnudx—XE/uvdx+Xfuvtdx+€/utwdx.
Q Q Q

Q

From the second equation of (3.1), one has u = évt

1
/uvde=—/v2d +——/|V 2dx +——/ vidx.
o

Q Q

- éAv + gv, which gives

Similarly, from the third equation of (3.1), we can derive that

4.4)

4.5)

(4.6)
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§ d

/u,wdx——— +——/|Vw|2dx. .7
2y dt

Q Q

The combination of (4.5), (4.6) and (4.7) leads to

/u,(lnu —xv+E&w)dx

d 3
=E/‘<ulnu—xuv+'§—xv2+ Ol|Vv|2+j—ywz—i-2§—J/|Vw|2>dx—i—gv/vtza’x,
Q Q

which together with (4.4) leads to (4.1). The proof of Lemma 4.1 is completed. O
Next, we will prove Theorem 1.1 by using the Lyapunov functional (4.1) for the case 6 < 0.

Proof of Theorem 1.1. From Lemma 3.6, Theorem 1.1 can be proved directly if (3.6) holds.
Next, we will show if 6 <0, (3.6) actually holds. First we rewrite the third equation of (3.1) as

8 1
u=—w— —Aw. 4.8)
14 14

Then using (4.8) and the Cauchy—Schwarz inequality, one can derive that

3
X/uvdx:x—/‘vwdx+£/Vw~Vvdx
14 14

Q Q Q

8
<X i/ widx + 2 [ v2ax | + £ ifIlezderL/IVvlzdx
v \2x) %

v \ 2x 28
Q Q
£ [, 6/ > E/ 2 x2/ 2
== [ w?dx +— dx + = [ |[Vw|?’dx + Z— | |Vv|%dx. 4.9)
23/9 28y 21/9 ZSJ/Q

Substituting (4.9) into (4.1), we have

25 2
F(u,v,w)z/ulnudx—i— 'BX X0 /vzdx—i— X _ X /|Vv|2dx
20 2y 20 28y
Q Q Q

zfulnudx L+ M/vzdx n M/Wzdx, 4.10)
2y 28y a
Q Q Q

Integrating (4.2) with respect to t and using (4.10), we have
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t
/ulnudx+M/|w|2dx+5//v,2dxdz
28y« o
Q 0 Q

Q

t
+//M|V(lnu—xv+$w)|2dxdt§F(uo,vo)+Xlsyﬂ X '/ vdx. (4.11)

To complete the proof of this lemma, it remains to estimate the last term of (4.11). Using
Lemma 2.1 and u € L'(R), we can find a constant ¢; > 0 such that lvllwir < c1 for all
1 < p < 2. Hence using Lemma 2.3 and choosing p = 1, we obtain

lvllL2 < exllvllwin < crer. 4.12)

Substituting (4.12) into (4.11) and using the condition £y — xo > 0, we have

t t
/ulnudx+ﬁ/fv,zdxdwf/uwanu—Xv+gw)|2dxdr
o
Q 0 Q 0 Q

x|EyB — xasdlcicl

< F(ug, vo) + Sty <cz,

which implies

/ulnudx—i—

Q

QX
oY

/ vidxdrt <c3. (4.13)
Q
Noticing that u Inu > —% for all u > 0, it follows from (4.13) that

f/ pasir <o+ )
xdt < —(c3+ — 4.14)

and

/|ulnu|dx
Q
Q

Then the combination of (4.14) and (4.15) implies (3.6) holds, and hence the assertion of Theo-
rem 1.1 follows from Lemma 3.6. O

ulnu + - — —
e e

1 1 1 2|2
dxff ulnu + — dx+/—dx503+—. (4.15)
e e
Q Q
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5. Critical mass phenomenon for 6 > 0

177

In this section, we will show that if 6 > 0, there exists a critical value m, = 47” such that the
solution is bounded uniformly in time if fQ uop(x)dx < m, (subcritical mass) and may blow up

if [ uo(x)dx > m, (supercritical mass).

5.1. Boundedness for subcritical mass

Lemma 5.1. If 6 > 0 and fQ uo(x)dx < X then there exists a constant C > 0 independent of t

such that (3.6) holds.

Proof. For convenience, we denote F[t] = F(u, v, w). Then from (4.1), we have

o
Q Q

o [eur s vutar - [ uva
2y o
Q

Q

%
F[ﬂ:/ulnudx— —/uvdx-kzi/(lgl}_i_wvlz)dx
o
Q

Using the third equation of (3.1) and the Cauchy—Schwarz inequality one can derive that

)
S—y/uvd)c:%—/vwd)c+g/Vw-Vvdx
o o o

Q Q

Q

5 5
5s—/wzdx—f—gL/Uzdx—f—i/le|2dx+§—y/|Vv|2dx.
2y 202 2y 202
Q Q Q Q

Substituting (5.2) into (5.1), then for any 1 > O we have

0 0 —&ys
F[t]z/ulnudx——/uvdx+2—2 |Vv|2dx+mfv2dx
o

Q

o 202
Q Q

0
:[ulnudx— <—+n)/uvdx+n/uvdx
o
Q Q Q

0 —&ys
+—/|Vv|2dx+m/v2dx
202
Q

202
Q

(g
2—/ulne dx+—/|Vv|2dx

Q

—&y$
+M/v2dx+n/uvdx.
202
Q Q

(5.1)

(5.2)

(5.3)
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Since — In z is a convex function for all z > 0 and fQ 37dx = 1, then using the Jensen’s inequality,
we obtain

g4
—In l/e(gﬂ)”dx =—1In /€< n)vidx
M u M
Q Q
atn)v
5/ —In e< ) idx
u M
Q
1 e(§+n)v
=——/uln dx. 5.4
M u
Q

Collecting (5.3) and (5.4), we have

1
Flt]>—MIn M/ ( dx +—/|Vv|2dx

Q

—&y$
+m/v2dx+n/uvdx. 5.5)
202
Q Q

Using the Trudinger—Moser inequality (2.2) and the fact ||[v]|;1 < c1 (see (3.4)), we can obtain
two constants ¢ > 0 and ¢3 > 0 depending on ¢ such that

o 2
] v
fe(“ '7) “dx <Cze<8” 8)( ’7) Vol 2 \Q\ vl

Q
< c3e(8%,+a)(g+,7)2llvv\liz‘ (5.6)

Substituting (5.6) into (5.5), we can find a constant ¢4 = M In CM’ such that

Flr]> i_(iJr i " /|v 2d
— | 22 gr ) a7 vhax
Q

—&yé
+M/v2dx+n/uvdx—m. 5.7
202
Q Q

Since M = [ uodx < #_we can choose ¢ > 0 and 1 > 0 small enough such that

i L) (24 2M 0 (5.8)
— [ —+¢]) = > 0. .
202 87 o

Substituting (5.8) into (5.7) and using the fact (4.12), we can find a constant c5 > 0 such that
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—&y8
F[t]zn/uvdx+mfv2dx—q

202
Q Q
— &y
Zn/uvdx—w/vzdx—m
200
Q Q
> n/uvdx —cs, 5.9)
Q
which implies
F[t] > —cs. (5.10)

Since F[t] < F[0], then from (5.9) we see for any 1 > O that

/uvdxfm. 5.11)

n
Q

Using (4.1) and (5.11) and the fact F[t] < F[0], one has

/ulnudx < F[t]—i—)([uvdx
Q Q
5F[z]+X/uudx§<1+l) FIo] + 22 < . (5.12)
n n

Noticing again that ulnu > —%, which along with (5.12) indicates that (see also the proof
of (4.15))

2|€2]
—

/|ulnu|dx§c6+ (5.13)
Q

Integrating (4.2) with respect ¢, we have

t t
ﬁf/ufdxdr+//u|vanu—xv+gw)|2dxdrgF[O]—F[t]gF[O]+c5. (5.14)
o

0 Q 0 Q

The combination of (5.13) and (5.14) yields (3.6). Then the proof is completed. O
The following lemma gives the first part of Theorem 1.2.

Lemma 5.2. Assume that 0 < (ug, vg) € [W12° (1% and 6 > 0. Ifo up(x)dx < 47”, then there
exists a unique triple (u, v, w) of nonnegative bounded functions in C(Q2 x [0,00)) N C+L(Q x
(0, 00)) which solves (3.1) classically. Furthermore, there exists a constant C independent of t
such that ||u(-, )|~ <C.
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Proof. If 6 > 0 and fQ upg(x)dx < 47”, from Lemma 5.1, one has (3.6). Then Lemma 5.2 is an
immediate consequence of Lemma 3.6. O

5.2. Blowup for supercritical mass

In this subsection, we are devoted to proving the second part of Theorem 1.2 concerning the
blowup of solutions for supercritical mass. For the convenience of constructing the initial date of
blowup solutions, we introduce the following change of variables:

V=v—0, W=w-—w, (5.15)

where f = ﬁ fQ fdx. From the second and third equation of (3.1), we have v, = ot — fv and
yu = Sw, respectively. Substituting these results and (5.15) into (3.1) and dropping the tildes for
convenience, we obtain

uy=Au—V-(xuvVv)+ V. (¢EuVw), xeQ, t>0,

vy=Av+a(u —u)— B, xeQ, t>0,

O=Aw—+ywm —u)—sw, xeQ, t>0, (5.16)
9 9 p)

ﬁ:a—zzﬁ:o7 x€897t>0,

u(x,0) =up(x), v(x,0) =vo(x), x €.

Then the stationary problem of (5.16) reads

0=Au—V-(xuVv)+ V- (¢EuVw), xe,t>0,

O0=Av+a(u—u)— P, xe, t>0,
O0=Aw+yu—u) —dw, xe, t>0, 5.17)
du — Jv _ dw x€d, t>0,

v~ 9v — v
Joudx =M, [qvdx = [qwdx=0.

To proceed, we denote

w 5_9_)(01—5)/
Yy a a

¢ =

v
o

Solving the first equation of (5.17) subject to the Neumann boundary conditions gives

u=nreXVEW = Aes”‘pe(w?wu = b7V (5.18)
where A > 0 is a constant satisfying
/ udx
M
Y - (5.19)
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Then substituting (5.18) into the second equation of (5.17), and using the second and third equa-
tions of (5.17), we can reduce the stationary problem (5.17) to the following one:

—Av + Bv — aref79ev — %’{, x €,

—A¢ +8p =P xeQ
=% -0, x €9Q,
Jovdx = [q¢dx =0

(5.20)

where u is determined by (5.18) under the constraint (5.19). The existence of nontrivial solutions
of the problem (5.20) still remains open. This is, however, not needed to achieve our goal. We
only need the following result.

Lemma 5.3. Let (v, ¢) satisfy (5.20). Then there exists a constant C > 0 such that

ollwie < C. (5.21)

Proof. Note that [|aref7%ef? — WHLI =allu — il =a [qlu—ildx <2aM. Then by the
n

L'-regularity theory (see [35]), it follows that v € W19(Q) with ¢ < ~27 with space dimen-
sion n. With the Sobolev embedding: Wl’g(Q) < L3() with n =2, one has lvll;3 <ci1. Now
applying the Agmon-Douglis—Nirenberg L”-estimate to ¢ satisfying the second equation of
(5.20), we have

lpllw2s < c2llvlls <ciea,

which implies (5.21) by the Sobolev embedding theorem with space dimensionn =2. 0O

Noting that F(u, v, w) defined by (4.1) is also a Lyapunov functional of the transformed
system (5.16), we obtain the following result.

Lemma 5.4. Suppose that (u, v, w) is a global and bounded solution of (5.16). Then there ex-
ist a sequence of times ty — 00 and nonnegative function (Ueso, Voo, Weo) € [C 2(K_Z)]3 such that
(-, 1), v, 1), W, 1)) = (oo, Voo, Woo) i [C2(Q)P. Furthermore, (Uoo, Voo, Woo) IS a SO-
lution of (5.17), such that

F (oo, Voo, Woo) < F(uo, vo, wo)- (5.22)

Proof. From the boundedness of (u, v, w) and Schauder regularity theory (e.g. see [12]), it
follows that (u(-, ), v(-, 1), w(-,1));>1 is relatively compact in [C2(2)]°. Hence we can find
a suitable sequence of times (fx)x>1 such that (u(-, %), v(-, %), w(-, %)) = (Yoo, Voo, Weo) 1N
[CZ(Y_Z)]3 as tp — 0o. Note that F (1, v, w) is bounded from below (see (5.10)). Then Lemma 4.1
implies that

o0 o0
1// dxdr+//u|V(lnu—Xv+§w)|2dxdr<oo (5.23)
o

0 Q 0
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Then by the Arzela—Ascoli theorem, a sequence of times, still denoted by (#)x>1, can be ex-
tracted such that

v 1) — 0 in LX(Q) (5.24)
and
u(, )| Vnu(-, i) — xv(, i) +EwC, 5))> = 0 ae. in Q (5.25)
as t; — oo. Evaluating the second equation of (5.16) at # = #; and letting k — oo, we have
—AVoo + Broo = 0t (Uoo — U). (5.26)
Using (5.25) and taking k — 0o, we obtain
Uso|V(INUso — X Voo —i—éwoo)l2 =0 inQ.

By the same argument as in [40] (details are omitted here for brevity), one can show that u, > 0
for all x € 2. Hence

V(N itso — X Voo + EWs) =0 in .

which indicates

M
— X Voo —EWeo —
Uso = e , A= —fQ X Evm gy 5.27)
Furthermore, from the third equation of (5.16), we have
—AWeso + dWoo = Y (Uoo — U). (5.28)

Thus the combination of (5.26), (5.27) and (5.28) shows that (1o, voo,_woo) satisfy (5.17) by
noting (5.18). Since (u(-, 1), v(-, 1x), W(-, k) = (Uoos Voo, Weo) in [CZ($2)]? and thus

F(u(.ﬂ tk)’ v(.v tk)a U)(', tk)) g F(MOOa Voo, wOO)a as fy — 00
then (5.22) follows from the property F[¢] < F[0]. The proof of Lemma 5.4 is completed. O

5.2.1. Lower bound for steady-state energy

Next, we use an idea in [16,17.42] to show that if [, uo(x)dx # 4”7’" for any m € N, then
there exists a constant K > 0 such that F(u, v, w) > —K for all solutions of system (5.17). In
summary, we can obtain the following results.

Lemma 5.5. Suppose M # 4”7’" for all m € N Then there exists a constant K > 0 such that
F(u,v,w)>—-K (5.29)

holds for any solution v of system (5.17).
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Proof. We will prove the lemma by the argument of contradiction. Suppose that there is no
constant K such that (5.29) holds true for all solutions of (5.17). Then we claim there exists a
sequence (vg)keN of solutions of (5.20) such that

IVvell 2 — oo, (5.30)
/eévkdx — 00, (5.31)
Q

and
max v (x) — oo (5.32)
xe

as k — oo. Indeed, if (5.30) does not hold, which means that there exists a constant ¢; > 0 such
that ||Vugll;2 < c1 as k — oo. Then, using the Poincaré inequality and the fact —Awvy + Bvx =
o(ur —u) and fQ vrdx =0, we can find a constant ¢ > 0 depending on €2 such that

— 1 2 ﬁ 2 1 2 2 1
upvgdx = — | [Vul"dx + = [ vidx < | = +c2 ) | [Vuldx =ci| =+ 2 ),
o o o o
Q Q Q Q

which implies that F(ug, vg, wg) (= —c%(é + ¢)) is bounded from below, which contradicts
fQ urdx

Ja 79k DV dx

substituting (5.2) into (5.1), using the Jensen’s inequality (see (5.4)) by the facts —Inu is a

convex function for all ¥ > 0 and fQ %dx =1, we can derive from (5.3) that

our assumption, where uy = ApefVPeefve with oy = and wy = y(:’x—k — ¢). Next

. ] —Ey8
F(u,v,w)Z/ulnudx—@/uvdx+—/|Vv|2dx+m/v2dx
2o 202
Q

Q Q
Q0o | i
2—/uln—dx—63 >—-Mln —fe‘)”dx —c3. (5.33)
u M
Q Q

This indicates that if (5.31) is false then F(ug, vk, wy) is bounded from below, which again

contradicts our assumption. Lastly if (5.32) does not hold, then ¢?% is bounded and hence
F(ug, vi, wg) is bounded from below from (5.33). This verifies our claim that (5.30)—(5.32)
will hold if (5.29) is false. Let vy = v; + g\_jgl Then from (5.20), we know that each v solves
the problem

—Av; + Bug = //Lkeéyqj"eéﬁk, x e

e — 0, x €0, (5.34)
Jo Ukdx = %,

where ||@k || 1.0 < c4 (see Lemma 5.3) and
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aM
upy=———————>0 ask— oo. (5.35)

fQ e§V¢ke96kd_x

Now we claim that (5.30)—(5.32) imply that there exists a subsequence of (vUx)ien (denoted by
(Ux)ken again for simplicity) such that for some m € N*

- 4
Uk / EV gy ? as k — oo, (5.36)

Q

which contradicts the assumption M # 2 4” n 4;79’" since [tk f EY P dx — o M from (5.35).
Then the proof of the lemma is completed under the claim (5.36). O

Note that the proof of Lemma 5.5 replies on the claim (5.36). The rest of this subsection will be
devoted to proving (5.36). Under the assumption that (5.29) does not hold for any constant K > 0,
by the proof of Lemma 5.5, a sequence (Ug)ren of solutions of (5.34) satisfying (5.30)—(5.32) is
obtained. First, we establish the following Pohozaev’s identity for the system (5.34)—(5.35).

Lemma 5.6. Let vy be a solution of (5.34). Then the following Pohozaev’s identity holds:

2 / ke % F (b )dx + &y / (x - V) ure®? % F (Br)dx — / Uidx
Q

1 ~ 2 ~ 8vk
=—= | (x-V)|Vog|°dS+ | (x-Voxr)—dS
2 av
/ (x - VetV F(5)dS — & f (x -v)07dS (5.37)
Q2
where F (V) = % (eéik — 1).

Proof. We multiply the first equation of system (5.34) by x - Vo, = Z Xj , and integrate the

resulting equation by parts in €2 to obtain

—/Af)k(x -Vog)dx
Q

—/V (Vo) (x - Vg)
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/|Vvk| dx + - /ij—(|Vvk| ydx — Z /(x Vvk)—dS
i,j= 139
/|Vvk|2dx—/|Vvk|2dx+ /(x V)| Vir|?dS — Z /(x Vvk)—dS
Lj=lyq
~ 12 - Uk
= 5/(x-v)|Vvk| dS—/(vak)—dS (5.38)

1] d

On the other hand, we can let F(v;) = foﬁk Os s = % ( O _ 1) such that

/ (ukesyd”‘eéﬁ" - ,Bfik) (x - VUr)dx

Q
2 OF@) B 0

— EY Pk . . kYd
. /(“"e N, 2 fax,) *
J=1g

- / 1SR (5 dx — £y / (x - Vg ke F (i) dx
Q

Q
/(x v),ukesy‘mF(vk)dS—f—,B/ ,%dx - é/()c v)v,%dS

(5.39)
The combination of (5.38) and (5.39) yields (5.37)

O

Since we assume (5.29) does not hold, then we have (5.32) and define the following blowup
set which is non-empty:
S:= {x € Q:3ur — 0 and x; — x such that vy (xz) — oo as k — oo}

(5.40)
Since (urefY%e?) oy is bounded in L!(2), then using the Prokhorov’s theorem we may

extract a subsequence (still denoted (zuxe? % ") ex for simplicity) such that g e5? % e?% con-
verges in the sense of measure on €2 to some nonnegative bounded measure 7, i.e

/ukeg”"b"eéakwdx—) /wdn,

(5.41)
Q

for every ¢ € C5°(L2). Following the nomenclature in [16,42], we call xo € Qa §-regular point
if there is a function ¥ € C3°(2), 0 < ¢ < 1, with ¥ = 1 in a neighborhood of x( such that

/W o4
J H 6(1+38)

(5.42)
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We also denote by X(8) the set of points which are not 8-regular points in . Then using the
same argument as in [16,42], we state the following proposition without proof.

Proposition 5.7. (i) If xo is a §-regular point, then the sequence (Vx)reN is uniformly bounded
in L% (2N Br,(x0)) for some Ry > 0. (ii) S = X (8) for any § > 0.

Furthermore we have the following result.
Proposition 5.8. 1 < card S < oo, where card S stands for the cardinality of set S.

Proof. Since max vg(x) — oo as k — oo (see (5.32)), we know that card S > 1. Clearly x¢ €

xeQ
X (§) iff n({xo}) > 0(1+3a) Since n is a bounded measure with fQ dn = oM form (5.41), it

follows that X (§) is finite and

0(1 +38)M
card (8) < (:# < 0. (5.43)
T

Hence from (5.43) and Proposition 5.7 (ii), we have 1 < card S = card ¥ (§) < oo. The proof is
completed. O

Dueto 1 <cardS < oo, without loss of generality, we assume S = {p1, - - -, py}. We decom-
pose S into a boundary blowup set §; = S N d2 and an interior blowup set S =S N Q. For a
small r > 0, we set

ok () = / s 79 (5.44)
B (p))

Then for all small » > 0, we have the following equality:
} N
li Evdr Ok gy — li k. 5.45
kgg()/uke e’ tdx _X;kggooj(r) (545)
]=
Then we can obtain the following equality by taking r — 0 in (5.45)

lim | ppef?% "vkdx—th lim o7 (r), (5.46)

k— 00 r—>0k—o00
Q

which gives (5.36), provided that the following Lemma 5.9 holds.

Lemma 5.9. Let o' (r) be defined by (5.44). Then

. DjE€SI,

lim lim o; kiry = (5.47)

r—0k—o00

Q>1| ?( Q>1| §

, DPjES.
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Proof. The proof of this lemma closely follows an argument in [16], Lemma 3.4. The differences
lie in the modified Pohozaev’s type inequality and an extra term ¢ whose regularity need to be
proved. We first consider the case when p; € S;. Without loss of generality, we assume the
blowup point p; =0. Let U, = B-(0) N Q. Assume the function ¢y is a solution of the following
problem

{Aw—ﬂ<p=0, x e U, (5.48)

80 = du, x €U,
Then clearly ¢ = O(1) in C*(U,) since |%| <CondU,.If welet hy = (v — gok)/a]].‘(r), then
hy — G(-,0) in C2 (B,(0)NQ\ {0}) as k — oo (see the proof in [43], Lemma 2.6 or see [16]),

loc

where G (-, 0) satisfies

G _
36—, x €dU,,

{—AG—{—,BG:SO, xeU,

with &p denoting the Dirac measure on U, giving unit mass to the point 0. By the potential theory,
as |x| = r is small, G(-, 0) has the following form (e.g., see [7])

1 _
G(-,0) = —;lnlxl + H(r)in U,
where H (r) is of class C! in U,. Hence
1
5k=ojl.‘(r)<— ;ln|x|+H(r)> inclU,). (5.49)

From the second equation of (5.20), we have

L) _

—=0onlU
ov

Ade+ 50k = P (5= M \in g, \u
— = Uk — in ,
k k o k 819 r
where U = dU, N d2. Then by the elliptic regularity theorem (e.g. Agmon—Douglis—Nirenberg
theorem), we have

b € C*(U,). (5.50)
Now using Lemma 5.6 in U, we have
2 gy (00 4 ever (00 ~2
5 Ure e’%* —1)dx + 7 (x - Vo) ure e’ —1)dx — B | vidx
U, U,

U,
Ehj 1
- /(x-Vf)k)%dS—z /(x-v)|v5k|2ds—§/(x-u)ﬁ,fds
aU, AU, AU,

2 ~_
+2 /(x V) g (69”" - 1) ds. (5.51)
QBU
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Next, we will estimate the terms on both sides of (5.51). First with the fact that g fQ 57 Bk Ok dx

= oM from (5.35), one can derive that ”ﬁk“%‘/]A/S < C for some constant C > 0 by the Ag-
mon-Douglis—Nirenberg estimate [2] and Gagliardo—Nirenberg inequality. Then it follows that

/{)I%dx = O(r”ﬁk”i4) = 0(r||1~)k||%;vl,4/3) = 0(r). (5.52)
Uy
Furthermore, we have the following estimates

2 5= Ey F
= Evér ( 00k . §y bk Uk
5 /,LLke (e 1)dx+ 5 f(x Vo) ure (e 1>dx

U, U,

2 - 2 -
= G / eV PV gy — g/ukesy‘mdx + %/ (x - Vo) eV % (e Uk — 1) dx
U, U, U,

2
= 50}‘@) + O(urr?®) + 0(r), (5.53)
where we have used (5.21) which leads to

2 <
-3 / e P dx + %V / (- Ve (77— 1) dx = 0Gur?) + O ().
U, U,

Using the equalities (5.49) and %—ﬁ‘f =v - Vi, we have

D" XV Uj]-((") ?
/()VVU/{)WLZ'S:/ -7 - +0() |dS
U,

U,
ok’
ol G T+ 0(r), (5.54)
and
k 2
! /(x )|V 2dS = (Uf—(r)> T Low). (5.55)
2 T 2
AU,
Using (5.49) and (5.50), we have
f (x - v)dS = 0(r), (5.56)

aU,

and
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/ (x - v)ukesm"eéﬁ"dS = O(ruk I?g[)} (eé”qbkeéak)) = O (uir). (5.57)
X r
aU,
Furthermore, we can derive that
/ (x - VetV %dS = O (uyr). (5.58)
U,

Substituting (5.52)—(5.58) into (5.51), and letting kK — oo first and then r — 0, we can obtain
that

2 T 1 2
= lim lim o; (r) — - —(llm lim o7 (r))
9 r—0k—o00 2 JT r—>0k—o00

W thh ln’lplles
llm llm O (’)—_ (55 )
=~ . . 9

When the blowup point 0 € S,, we consider ¢ satisfying

{Aw—ﬁ<p=0, x €U, (5.60)

© = U, x €oU,.
Let hy = (v — go)/aj]?(r). Then hy — G(-,0) in CIZOC(B,(O) N\ {0}), where G(-, 0) satisfies

“AG+BG =8y, xeU,,
G=0, x € 0U,.

In this case, the Green’s function has the following expansion near 0
1 -
G(,0)=——1In|x|+ H(r) in U,
2
with H(r) € C'(U,), which implies

1
ﬁkza]]?(r)(—glnul—i-H(r)). (5.61)

Next we can follow the similar arguments and calculations for the case O € S to obtain the same
estimate for 0 € S except that

2
/ (x - wk)aﬂds < ;”) 21 + O(r), (5.62)

AU,

and
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k

|Vvk|2 (% <r>>2
f( dsS = T+ O(r). (5.63)
2

Then using the Pohozaev’s identity in Lemma 5.6 again, we have

Z lim lim o¥(r) = — (lim lim a’?(r)) ,
9r—>0k—>oo 47 \r>0k—o00 7/

which yields

8
lim lim ak(r) Tﬂ
r—>0k—o00 0

(5.64)

Hence the proof of Lemma 5.9 is completed. O
Finally, we remark that the claim (5.36) is proved by (5.46), (5.59) and (5.64).

5.2.2. Initial data with large negative energy
In this subsection, we assert that there exist initial data with supercritical mass having energy
below any prescribed bound. Using the third the equation of (5.16), we have

g/uwarx = i/(8w2+ [Vw|?)dx, (5.65)
2 2y
Q Q

which implies the Lyapunov function F'(u«, v, w) can be written as follows

F(u,v,w):/ulnudx—X/uvdx—}—S/uwdx
Q

Q Q

+ X /(ﬁv2 Vo) — = /(5w2 + Vw)dx. (5.66)
20 2y
Q Q

Next, we look for a sequence (ug, Ve, We)e>o satisfying fQ Ve (x)dx = fQ wedx = 0 and
fQ u.dx = M such that lirrz) F(ug, ve, w;) = —oo. From [44], p. 615, we know that the func-
&—

tions

82
(€2 +7|x — x0l?)?

ws(x>=1n< ),8>o, o € R?

are solutions of —A(x) = e’ x e R? satisfying fRZ e?®dx < 0o. We note that as ¢ — 0,

Ve (x) — —oo for all x # xq and V¥, (xg) — oco. Using the same notation § = g = ”ai as in
Section 5.2.1, we choose the sequence (g, Ve, We)e>0 With
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o
Ve (x) = —we(x)

Y
! Ve (x) ! fl/f (x)d
== X)— — X)ax
o\’ Q) "
Q
1 &2 1 &2
== |In —— | In dx |, (5.67
0 ((82+ﬂ|x—m|2)2) IQI/ ((82+ﬂ|x—xo|2)2> * 667
L Q
and
Mfve)
Ug(x) = ————, (5.68)
fQ e@vg(x)dx
as our candidate to obtain the property lin}) F(ug, ve, wg) = —oo with supercritical mass.
&—>

Lemma 5.10. Assume M > 47”. If (ug, ve, We)e=0 are defined by (5.67)—(5.68) and xo € 9S2, then
as € — 0, we have

Flus, ve, w) — —00  and /|va|2dx - 3/|Vw£|2dx o0 (5.69)
y
Q

Proof. Without loss of generality, we assume xo = O for convenience. Using (5.66) and the fact
we (x) = Lve (x), we obtain that

F(ug, ve, we)

. 6 —Ey$
:/uglnugdx—9/u8v8dx+—/|Vv8|2dx+m/vgdx. (5.70)
2o 202
Q Q Q Q

From (5.68), we can derive

/uglnugdx

Q

M ~ - ~

=—— [ [ InM+6v.—In edx | | dx
Jo €fvedx

Q2 Q Q

oM 5 5
=MInM + T/vgeevadx —Mln /e"”sdx , (5.71)
Ve
er dx 2 J

and
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. oM 5
Gfusvgdxz 7/e9”6v8dx. (5.72)

Jo evedx

Q Q

Substituting (5.71) and (5.72) into (5.70), one has

6 xop —Eys
F(ug,vg,wg):%/Wvdzdx—}—T v2dx
Q Q
—MIn /eévsdx +MInM. (5.73)
Q
From (5.67), we have
d /|v 2d 8”2/ 2y (5.74)
-— v X =—— ——=ax. .
20 ¢ 0 (82 4 mx?2)2
Q Q
Substituting y = 7, we obtain that
4 ,  8xn? Iy
Vv =— | ——_dy, 5.75
12 = /(1+n|y|2)2 v (5.75)
o

where Q. = {yley € Q}. Applying the polar coordinates around origin 0 € 92 to (5.75), and
denoting the maximum distance between the pole and boundary of 2 by R, we obtain

0 8 2 2
—||Vv€||iz=L L”
20 0 (1 4+m|yl?)

£

<M 1+1(2+ RH -1+ e
— n— ne T —  E——
-0 g2 2+ R?
87 1
< —-In—+0i(1), (5.76)
&

where |O1(1)| < C as ¢ — 0. Moreover, we can deduce that

2
1 1
vs2 == ln(s2 + 7'r|)c|2)2 - — / ln(@2 + n|x|2)2dx
0 12| J
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1 2 2
== (ln(82+71|x|2)2) —ﬁln(sz+n|x|2)2/1n(82+71|x|2)2dx
Q
2
|
+—— | | m@E®+7xP3%dx | (5.77)
For Qf (e +71x]

which gives that

KL =0 [ tan = ZEZE2 [ nie? a2 2

202 262
Q Q
2
aff — &y
—% /ln(82+n|x|2)2dx —0y(1), (5.78)
Q

where |0,(1)| < C as ¢ — 0. Using (5.67), we have the estimates

~ 1 &2 2
/eevfdx =|Qle ™ Jo ln<<€2+”2>2)dx/ — Vax
(82 +7|x|?)?
Q Q

and

1 /évd 1 |Q|/ £ 1/1( e d
n e “fdx = 1In — = =adX —_ n\ ————- X.
(€2 +m|x|?)? 12| (€2 4 m|x|?)?
Q Q Q

Then we have the following estimate

—MIn /eévgdx
Q

M1 |sz|f £y ! /1 e d
=-M|In —————dx|—— | In| ——— | dx
J (€2 4 7|x|?)2 IQIQ (e + m|x|?)?

M/l 20x + Y [ n(e? 4w xP)2dx — M1 |sz|f ey

= — neax —_— ne T (X X — n ——= 54X

1€2] €2 (€2 +m|x|?)?
Q Q Q

By the polar coordinates, one can readily estimate that

| 2 </ &2 e £2
_ < x<l—o—o
nr} + &2 (€2 +m|x[?)? nry + &2
Q
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where r1 and r, denote the maximum and minimum distance between the pole and the boundary
of Q. Hence we have

—MIn feévsdx =2M1Ine + O5(1), (5.79)
Q

where |O3(1)| < C as ¢ — 0. Then the combination of (5.76), (5.78) and (5.79) implies

4 1
F(ug,vg,we)§2(7—M) In-+0(Q), (5.80)
&

where O(1) = O1(1) + O2(1) + O3(1) and |O(1)] < C as ¢ — 0. Then (5.80) leads to the
assertion of the lemma. O

Remark 5.1. In this lemma, we only consider the case xo € 992. If x¢ € €2, then we have the same

;:sti(;nates as above except changing the estimate in (5.76) to % [IVvg ||i2 < 167” In é 4+ 01 (1). This
eads to

8 1
F(ug,ug,wg)gz(g—M) In=+0q), (5.81)
&

which implies that F (u, ve, wg) - —0case — 0if M > 87”.

Lemma 5.11. Assume M > 47” and M ¢ {4”7'” :m € NTY. Then there exists initial data (ug, vo)
such that the corresponding solution of (3.1) blows up.

Proof. Since M ¢ {4”7’” :m € N1}, then by Lemma 5.5, we can find a constant K > 0 such that

(5.29) holds. Furthermore, for this constant K > 0, if M > 47”, then by Lemma 5.10 we can
choose a small gp > 0 such that

(0 =Ly =2 1 i L i d
Ven (X)) = —we,(x) = — | In - n X0
W=y = M G —w?) T i) "\ @ e — ol

and

w MePveo@
Mgo X)) = ———"
Jo V50X gy

such that

F(uso’ Vgg» wso) <—K.

It can be readily verified that (ug,, ve,) € (W1 (2)]? and fQ ug,(x)dx = M. Hence, if we define
(1o, vo) = (Ug,, Vg,) as the initial data, then the corresponding solution of chemotaxis model
(5.16) must blow up. Otherwise, if the corresponding solution (u, v, w) of (5.16) is global and
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bounded in 2 x (0, c0), then from Lemma 5.4, we have F(txso, Voo, Woo) < F(ug, vg, wo) <
—K. But Lemma 5.5 says that F(#xo, Voo, Weo) = —K since (Ueo, Voo, Woo) 1S a solution of
(5.17) by Lemma 5.4, which is a contradiction. The lemma is proved. O

5.2.3. Proof of Theorem 1.2
Theorem 1.2 is a direct consequence of Lemma 5.2 and Lemma 5.11.
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