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Abstract

We consider the following attraction–repulsion Keller–Segel system:

⎧⎪⎪⎨
⎪⎪⎩

ut = �u − ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ �, t > 0,

vt = �v + αu − βv, x ∈ �, t > 0,

0 = �w + γ u − δw, x ∈ �, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �,

with homogeneous Neumann boundary conditions in a bounded domain � ⊂ R
2 with smooth boundary. 

The system models the chemotactic interactions between one species (denoted by u) and two competing 
chemicals (denoted by v and w), which has important applications in Alzheimer’s disease. Here all pa-
rameters χ , ξ , α, β, γ and δ are positive. By constructing a Lyapunov functional, we establish the global 
existence of uniformly-in-time bounded classical solutions with large initial data if the repulsion dominates 
or cancels attraction (i.e., ξγ ≥ αχ ). If the attraction dominates (i.e., ξγ < αχ ), a critical mass phenomenon 
is found. Specifically speaking, we find a critical mass m∗ = 4π

αχ−ξγ such that the solution exists globally 

with uniform-in-time bound if M < m∗ and blows up if M > m∗ and M /∈ { 4πm
θ

: m ∈ N
+} where N+

denotes the set of positive integers and M = ∫
� u0dx the initial cell mass.
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1. Introduction

This paper is concerned with the initial–boundary value problem of the following attraction–
repulsion chemotaxis system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = �u − ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ �, t > 0,

τ1vt = �v + αu − βv, x ∈ �, t > 0,

τ2wt = �w + γ u − δw, x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), τ1v(x,0) = τ1v0(x), τ2w(x,0) = τ2w0(x), x ∈ �,

(1.1)

where � is a bounded domain in R2 with smooth boundary ∂� and ν denotes the outward nor-
mal vector of ∂�. The model (1.1) was proposed in [28] to describe the aggregation of Microglia
in the central nervous system in Alzheimer’s disease due to the interaction of chemoattractant 
(β-amyloid) and chemorepellent (TNF-α), where u(x, t), v(x, t) and w(x, t) in the model (1.1)
denote the concentrations of Microglia, chemoattractant and chemorepellent which are produced 
by Microglia, respectively. The positive parameters χ and ξ are called the chemotactic coef-
ficients, and χ, β, γ, δ > 0 are chemical production and degradation rates. τ1, τ2 are constants 
equal to 0 or 1 justifying whether the change of chemicals is stationary or dynamical in time. The 
model (1.1) was also a particularized system introduced in the paper [33] to model the quorum 
sensing effect in the chemotactic movement.

Well-known as the Keller–Segel model (see [23]), the prototype of classical attractive chemo-
taxis model reads as {

ut = �u − ∇ · (χu∇v),

τ1vt = �v + αu − βv.
(1.2)

One prominent property of the Keller–Segel model (1.2) is the existence of a Lyapunov func-
tional which continuously stimulates a vast amount of mathematical studies on various aspects 
of mathematics such as blowup, boundedness, traveling waves, pattern formations, critical mass 
phenomenon and critical sensitivity exponents (e.g. see [4,5,15,16,19,29,31,32,37,40,41] and the 
references therein, and review articles [13,18,39]).

On the other hand, for the classical repulsive chemotaxis model which reads as follows:

{
ut = �u + ∇ · (ξu∇w),

τ2wt = �w + γ u − δw,

a Lyapunov functional different from that of the attractive Keller–Segel model was found in [6], 
which led to the global existence of classical solutions in two dimensions and weak solutions in 
three and four dimensions. The results on the repulsive Keller–Segel model are very limited and 
a further study on such model was recently given in [36].

Mathematically the three-component attraction–repulsion chemotaxis system (1.1) modeling 
the aggregation of Microglia is a coupled attractive and repulsive Keller–Segel model, and hence 
is referred to as the attraction–repulsion Keller–Segel (abbreviated as ARKS) model. It is hard 
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to analyze in general due to the complicated interactions between three species u, v and w, and 
the difficulty of constructing a Lyapunov functional. A few known results are the following. In 
one dimension, the stationary solutions and time-asymptotic behavior of solutions were estab-
lished in [21,26], and the time-periodic orbits were found recently in [27] by employing the 
local and global Hopf bifurcation theory. The traveling wave solutions of an attraction–repulsion 
chemotaxis system with a volume-filling effect were investigated in [34]. The multi-dimensional 
analysis was recently given by Tao and Wang [38] where the competing effects of blowup from 
the attraction and smoothing from the repulsion were untangled. It mainly dealt with a special 
scenario β = δ (i.e., two competing chemical signals have the same death rates) for which the 
system (1.1) can be formally transformed into the classical Keller–Segel model and hence the 
methods based on the Lyapunov functional can be employed. It was found in [38] that the so-
lution behavior of the ARKS model was essentially determined by the competition of attraction 
and repulsion which is characterized by the sign of χα − ξγ . For the convenience of statement, 
we call the number

θ = χα − ξγ

the competition index in this paper and the biological interpretation of the sign of θ is as follows:

• θ < 0 ⇔ repulsion dominates;
• θ = 0 ⇔ repulsion balances/cancels attraction;
• θ > 0 ⇔ attraction dominates.

For the case β = δ, the main results of [38] asserted that: (1) if θ ≤ 0, then the ARKS model (1.1)
has a unique classical global solution which converges to a unique constant steady state asymp-
totically in time for both τ1 = τ2 = 0 and τ1 = τ2 = 1; (2) if θ > 0, the solution may blow up in 
finite time in two dimensions if the cell mass is larger than a threshold number for τ1 = τ2 = 0. 
For the case β 	= δ, it was proved in [38] that the classical solutions of (1.1) with θ ≤ 0 exist 
with large data if τ1 = τ2 = 0 or with small data if τ1 = τ2 = 1, where the solution bound is 
independent of time in the former case and dependent on time in the latter case.

Clearly the results for the cases β 	= δ or τ1 + τ2 = 1 (i.e. τ1 = 1, τ2 = 0 or τ1 = 0, τ2 =
1) or both were left open in [38]. Recently some of these open questions are solved. When 
β 	= δ and θ > 0, the blowup of solutions was proved in [9] for τ1 = τ2 = 0. When β 	= δ and 
θ < 0, the global classical solutions with uniform-in-time bound were established in [25] for 
τ1 = τ2 = 1. So far, all the results are obtained either for τ1 + τ2 = 0 or for τ1 + τ2 = 2, where 
the dual gradient in the first equation of the ARKS model can be reduced to a single gradient 
with a transformation (see the details in [38]). Up to date, the result τ1 + τ2 = 1 completely 
remains open. The main difficulty of such problem lies in their irreducibility to a two-component 
classical chemotaxis model even for the simplified case β = δ such that conventional methods 
and techniques can be utilized as done in [38]. The purpose of this paper will be to make a 
substantial step forward towards one of these open questions mentioned above, and hope our 
results may shed lights on the studies of remaining cases. Specifically we shall consider the case 
τ1 = 1, τ2 = 0 for all χ, ξ, α, β, γ, δ > 0 and θ ∈ R. In particular, our results will include the 
case β 	= δ which also remains as one of the afore-mentioned open questions except for τ1 =
τ2 = 0. A key element in our analysis is a Lyapunov functional that we find for the irreducible 
three-component ARKS model (1.1), which enables us to study the boundedness of solutions and 
the critical mass phenomenon. The main results are stated as follows.
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Theorem 1.1. Assume that 0 ≤ (u0, v0) ∈ [W 1,∞(�)]2 and χ, ξ, α, β, γ, δ > 0. Then if θ ≤ 0
(repulsion dominates or balances attraction), there exists a unique triple (u, v, w) of nonnegative 
functions in C(�̄ × [0, ∞)) ∩ C2,1(�̄ × (0, ∞)) which solves (1.1) with τ1 = 1 and τ2 = 0
classically such that

‖u(·, t)‖L∞ ≤ C

where C is a constant independent of t .

Remark 1.1. For the case τ1 = 1, τ2 = 0, the ARKS model (1.1) is irreducible to a two-
component chemotaxis model. Here we succeed in finding a Lyapunov functional to prove the 
uniform-in-time boundedness of solutions, which was not found in [38]. As we know, it is the 
first result that presents a Lyapunov functional for an irreducible three component attraction–
repulsion chemotaxis model. However it still remains unknown if there is a Lyapunov functional 
for the case τ1 = τ2 = 1 or τ1 = 0 and τ2 = 1 if β 	= δ.

Theorem 1.2. Let the assumptions in Theorem 1.1 hold and let M = ∫
�

u0(x)dx. If θ > 0 (at-
traction dominates), then the following two conclusions hold:

(i) If M < 4π
θ

, then the system (1.1) with τ1 = 1 and τ2 = 0 admits a unique classical solution 
(u, v, w) ∈ C(�̄ × [0, ∞)) ∩ C2,1(�̄ × (0, ∞)) such that ‖u(·, t)‖L∞ ≤ C for a constant C
independent of t .

(ii) If M > 4π
θ

and M /∈ { 4πm
θ

: m ∈ N
+} where N+ denotes the set of positive integers, then 

there exist initial data such that the solutions of (1.1) with τ1 = 1 and τ2 = 0 blow up in 
finite or infinite time.

The results in Theorem 1.1 and Theorem 1.2 cover the situation β 	= δ, which was left in [38]
as a major open question. Our results in this paper, together with the previous results in [9,25,38], 
show that solution behaviors of time-dependent ARKS model, including boundedness, blowup 
and critical mass, are independent of the values of parameters β and δ (they only rely on the 
sign of θ = χα − ξγ ). It seems that β = δ and β 	= δ make no difference to the time-dependent 
solutions. It turns out this is only partially true. It was shown in [27] that the time-periodic 
solution of the system (1.1) is impossible for β = δ, however, it does occur for β 	= δ. We also 
point out that the critical mass phenomenon for the three-component chemotaxis model with two 
species and one signal was studied in [8,20], which is apparently different from the ARKS model 
(1.1) which contains one species and two signals.

Our results in Theorem 1.1 and Theorem 1.2 show that the ARKS model (1.1) admits glob-
ally bounded solution if the repulsion dominates (i.e. θ ≤ 0), but has a critical mass phenomenon 
if attraction dominates (i.e. θ > 0). Since blowup is generally not accepted as an interpretation 
for the aggregation process and it is unknown if the existing globally bounded solution (includ-
ing the case θ ≤ 0 and subcritical case for θ > 0) approaches a constant asymptotically, the 
critical mass phenomenon is insufficient to indicate the pattern formation. The numerical sim-
ulations performed in [22,38] have shown that the above-mentioned global solutions actually 
converge to constant asymptotically. Hence the ARKS model (1.1) appears to be inadequate 
to explain the aggregation phase of Microglia in Alzheimer’s disease from the results obtained 
in this paper together with previously existing results in [9,25,38]. But the existence of critical 
mass phenomenon strongly indicates that the ARKS model (1.1) may provide a useful basic PDE 
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framework to model the aggregates of Microglia resulting from the interaction of attraction and 
repulsion. Hence to understand the complete dynamics and the validity of the model, further 
mathematical study is demanded and new modeling ideas might be needed in order to fully inter-
pret the aggregation phase occurring in Alzheimer’s disease. We are currently working on such 
issue in a separate paper [22].

2. Basic inequalities

For reader’s convenience, we present a few known inequalities which will be frequently used 
in the paper.

Lemma 2.1. (See [24].) Let � be a bounded domain in Rn with smooth boundary. Assume there 
is a constant C > 0 such that

‖u‖Ls ≤ C, for all t ∈ (0, T ).

If v0 ∈ W 1,∞(�), then there exists some constant Cq such that for every t ∈ (0, T ) and 1 ≤ s < n, 
the solution of the problem

vt = �v + αu − βv in �,
∂v

∂ν
= 0 on ∂�

satisfies

‖v‖W 1,q ≤ Cq (2.1)

for all q < ns
n−s

. If s = n, then (2.1) is true for all q < ∞, and if s > n, then (2.1) is true with 
q = ∞.

Lemma 2.2 (Trudinger–Moser inequality). (See [30].) Let � be a bounded domain in R2 with 
smooth boundary. Then for any ε > 0 there exist a constant Cε depending on ε and � such that

∫
�

exp |u|dx ≤ Cε exp

{(
1

8π
+ ε

)
‖∇u‖2

L2 + 1

|�| ‖u‖L1

}
. (2.2)

Lemma 2.3. (See [10].) Let � be a bounded domain in Rn with smooth boundary ∂�. Assume 
1 ≤ p < n and u ∈ W 1,p(�). Then u ∈ Lp∗

(�) with the estimate

‖u‖Lp∗ ≤ C‖u‖W 1,p , (2.3)

where p∗ = np
n−p

and the constant C depends only on p, n and �.

Lemma 2.4. (See [30].) Let � be a bounded domain in R2 with smooth boundary. Then for any 
ε > 0, there exists a positive constant Cε such that

‖u‖L3 ≤ ε ‖∇u‖
2
3
L2 ‖u lnu‖

1
3
L1 + Cε(‖u lnu‖L1 + ‖u‖

1
3
L1). (2.4)
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Lemma 2.5 (Gagliardo–Nirenberg inequality). (See [11].) Let � be a bounded domain in Rn

with smooth boundary. Let l and k be any integers satisfying 0 ≤ l < k, and let 1 ≤ q, r ≤ ∞, 
and p ∈ R

+, l
k

≤ a ≤ 1 such that

1

p
− l

n
= a

(
1

q
− k

n

)
+ (1 − a)

1

r
. (2.5)

Then, for any u ∈ Wk,q(�) ∩ Lr(�), there exists a constant c depending only on �, q , k, r and 
n such that:

‖Dlu‖Lp ≤ c(‖Dku‖a
Lq ‖u‖1−a

Lr + ‖u‖Lr ), (2.6)

with the following exception: if 1 < q < ∞ and k − l − n
q

is a nonnegative integer, then (2.6)

holds only for a satisfying l
k

≤ a < 1.

3. Preliminaries on boundedness

With τ1 = 1 and τ2 = 0, the system (1.1) becomes the following one:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = �u − ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ �, t > 0,

vt = �v + αu − βv, x ∈ �, t > 0,

0 = �w + γ u − δw, x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �.

(3.1)

The local existence theorem of (3.1) can be proved by the fixed point theorem and maximum 
principle along the same line shown in [38].

Lemma 3.1. Assume that 0 ≤ (u0, v0) ∈ [W 1,∞(�)]2. Then there exist Tmax ∈ (0, ∞] and a 
unique triple (u, v, w) of nonnegative functions from C(�̄ × [0, Tmax)) ∩ C2,1(�̄ × (0, Tmax))

solving (3.1) classically in � × (0, Tmax). Moreover u > 0 in � × (0, Tmax) and

if Tmax < ∞, then ‖u(·, t)‖L∞ → ∞ as t ↗ Tmax. (3.2)

By the blowup criterion given in Lemma 3.1, it suffices to derive ‖u(·, t)‖L∞ < ∞ for all 
t > 0 to obtain the global-in-time solutions. In this section, we will present the basic framework 
used in this paper to derive the boundedness of solutions of system (3.1). We first notice that 
L1-norm of the solutions of (3.1) is bounded by integrating equations of (3.1) over �.

Lemma 3.2. The solution (u, v, w) of (3.1) satisfies the following properties

‖u(·, t)‖L1 = ‖u0‖L1 :≡ M, (3.3)

‖v(·, t)‖L1 = α

β
‖u0‖L1 −

(
α

β
‖u0‖L1 − ‖v0‖L1

)
e−βt , (3.4)

‖w(·, t)‖L1 = γ

δ
‖u0‖L1 . (3.5)
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Next we give a lemma concerning the uniform-in-time bound of ‖u‖L2 irrespective of the sign 
of θ = χα − ξγ . This result will be essentially used to prove the boundedness of solutions for 
both θ ≤ 0 and θ > 0. In the sequel, we use Ci or ci , i = 1, 2, 3, · · ·, to denote generic constants 
which may vary in the context.

Lemma 3.3. If we can find a constant C1 > 0 such that the solution of (3.1) satisfies

‖u lnu‖L1 +
t∫

0

‖vt (τ )‖2
L2dτ ≤ C1, (3.6)

then there exists a constant C2 > 0 such that the solution of (3.1) satisfies

‖u‖L2 ≤ C2. (3.7)

Proof. Multiplying the first equation of (3.1) by u, integrating the result with respect to x, and 
using the second and third equation of (3.1), we have

1

2

d

dt

∫
�

u2dx +
∫
�

|∇u|2dx

= χ

2

∫
�

∇u2 · ∇vdx − ξ

2

∫
�

∇u2 · ∇wdx

= −χ

2

∫
�

u2(vt − αu + βv)dx + ξ

2

∫
�

u2(δw − γ u)dx

= χα − ξγ

2

∫
�

u3dx + ξδ

2

∫
�

u2wdx − χ

2

∫
�

u2vtdx − χβ

2

∫
�

u2vdx

≤ θ

2

∫
�

u3dx + ξδ

2

∫
�

u2wdx − χ

2

∫
�

u2vtdx,

which yields

d

dt

∫
�

u2dx + 2
∫
�

|∇u|2dx ≤ ξδ

∫
�

u2wdx − χ

∫
�

u2vtdx + |θ |
∫
�

u3dx. (3.8)

Next, we estimate the first term on the right-hand side in (3.8). By the Young’s inequality:

ab ≤ εaq + (εq)−r/qr−1br for any a, b ≥ 0, ε > 0, q, r > 0,
1

q
+ 1

r
= 1, (3.9)

we have
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ξδ

∫
�

u2wdx ≤ 1

2

∫
�

u3dx + 16

27
(ξδ)3

∫
�

w3dx. (3.10)

The combination of (3.8) and (3.10) yields that

d

dt

∫
�

u2dx + 2
∫
�

|∇u|2dx

≤ 1 + 2|θ |
2

∫
�

u3dx + 16

27
(ξδ)3

∫
�

w3dx − χ

∫
�

u2vtdx. (3.11)

To estimate the term 
∫
�

w3dx, we apply the Agmon–Douglis–Nirenberg Lp-estimates [1,2] to 
the following linear elliptic equations with zero Neumann boundary conditions:

{−�w + δw = γ u, in �
∂w
∂ν

= 0, on ∂�

where δ > 0, and find a constant c1 such that

‖w(·, t)‖W 2,p ≤ c1 ‖u(·, t)‖Lp . (3.12)

Specially, we choose p = 2 in (3.12) to obtain

‖w(·, t)‖W 2,2 ≤ c1 ‖u(·, t)‖L2 . (3.13)

The by the Sobolev embedding inequality, Hölder inequality and interpolation inequality 

‖u‖L2 ≤ ‖u‖
1
4
L1 ‖u‖

3
4
L3 = M

1
4 ‖u‖

3
4
L3 , we have

‖w‖3
L3 ≤ c2‖w‖3

W 2,2 ≤ c3‖u‖3
L2 ≤ c3|M| 3

4 ‖u‖
9
4
L3

which, combined with the Young’s inequality, yields a constant c4 > 0 such that

16

27
(ξδ)3

∫
�

w3dx ≤ 1

2
‖u‖3

L3 + c4. (3.14)

Inserting (3.14) into (3.11), we obtain that

d

dt

∫
�

u2dx + 2
∫
�

|∇u|2dx ≤ (1 + |θ |)
∫
�

u3dx − χ

∫
�

u2vtdx + c4. (3.15)

Furthermore by Hölder and Gagliardo–Nirenberg inequalities, we have
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−χ

∫
�

u2vtdx ≤ χ ‖vt‖L2 ‖u‖2
L4

≤ c5 ‖vt‖L2

(
‖∇u‖

1
2
L2‖u‖

1
2
L2 + ‖u‖L2

)2

≤ 2c5 ‖vt‖L2

(
‖∇u‖L2 ‖u‖L2 + ‖u‖2

L2

)
≤ ‖∇u‖2

L2 +
(
c2

5 ‖vt‖2
L2 + 2c5 ‖vt‖L2

)
‖u‖2

L2 . (3.16)

Collecting (3.15) and (3.16) with (2.4), we obtain

d

dt
‖u‖2

L2 + ‖∇u‖2
L2

≤ (1 + |θ |)‖u‖3
L3 +

(
c2

5 ‖vt‖2
L2 + 2c5 ‖vt‖L2

)
‖u‖2

L2 + c4

≤ ε3(1 + |θ |)‖∇u‖2
L2 ‖u lnu‖L1 + c6(‖u lnu‖3

L1 + ‖u‖L1)

+ (c2
5 ‖vt‖2

L2 + 2c5 ‖vt‖L2)‖u‖2
L2 + c4. (3.17)

Using the facts ‖u lnu‖L1 ≤ c7 from the condition in Lemma 3.3 and ‖u‖L1 = M , we let ε be 
small enough such that ε3(1 + |θ |) ‖u lnu‖L1 < 1

2 , and have from (3.17)

d

dt
‖u‖2

L2 + 1

2
‖∇u‖2

L2 ≤
(
c2

5 ‖vt‖2
L2 + 2c5 ‖vt‖L2

)
‖u‖2

L2 + c8. (3.18)

On the other hand the Gagliardo–Nirenberg inequality and Cauchy–Schwarz inequality with the 
fact ‖u‖L1 = M yield

‖u‖2
L2 ≤ c9(‖∇u‖L2‖u‖L1 + ‖u‖2

L1) ≤ 1

2
‖∇u‖2

L2 + c10. (3.19)

Then adding (3.18) and (3.19), and using the Young’s inequality, we can find two constants 
c11 := c8 + c10 and c12 := 3c2

5 such that

d

dt
‖u‖2

L2 + ‖u‖2
L2 ≤

(
c2

5 ‖vt‖2
L2 + 2c5 ‖vt‖L2

)
‖u‖2

L2 + c8 + c10

≤
(

c2
5 ‖vt‖2

L2 + 2c2
5 ‖vt‖2

L2 + 1

2

)
‖u‖2

L2 + c11

= c12 ‖vt‖2
L2 ‖u‖2

L2 + 1

2
‖u‖2

L2 + c11,

which yields

d

dt
‖u‖2

L2 +
(

1

2
− c12 ‖vt‖2

L2

)
‖u‖2

L2 ≤ c11. (3.20)
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By the Gronwall’s inequality, it follows that

‖u‖2
L2 ≤ ‖u0‖2

L2 e
− ∫ t

0 (1/2−c12‖vt (τ )‖2
L2 )dτ + c11

t∫
0

e
− ∫ t

s (1/2−c12‖vt (τ )‖2
L2 )dτ

ds.

With (3.6), a simple calculation yields a constant c13 such that ‖u‖2
L2 ≤ c13. The proof of this 

lemma is completed. �
Lemma 3.4. If (3.7) holds, then there exists a constant C independent of t such that the solution 
(u, v, w) of (3.1) satisfies

‖(∇v,∇w)‖L∞ ≤ C. (3.21)

Proof. First, the combination of (3.12) and (3.7) generates a constant c1 > 0 such that

‖w‖W 2,2 ≤ c1. (3.22)

Using the Gagliardo–Nirenberg inequality, (3.5) and (3.22), one can find two constants c2, c3 > 0
such that

‖∇w‖L4 ≤ c2

(
‖D2w‖

5
6
L2‖w‖

1
6
L1 + ‖w‖L1

)
≤ c2

(
c

5
6
1

(γ

δ

) 1
6
M

1
6 + γM

δ

)
= c3. (3.23)

Furthermore, from Lemma 2.1 and (3.7), we obtain a constant c4 > 0 such that

‖∇v‖L4 ≤ c4. (3.24)

Next, we will prove (3.21) by using (3.23) and (3.24). Multiplying the first equation of (3.1) by 
u2 to get that

1

3

d

dt

∫
�

u3dx + 8

9

∫
�

|∇u
3
2 |2dx

= 2χ

∫
�

u2∇u · ∇vdx − 2ξ

∫
�

u2∇u · ∇wdx

≤ 4χ

3

∫
�

∣∣u 3
2 ∇u

3
2 · ∇v

∣∣dx + 4ξ

3

∫
�

∣∣u 3
2 ∇u

3
2 · ∇w

∣∣dx. (3.25)

Applying Hölder inequality and the Gagliardo–Nirenberg inequality, and using (3.23) and (3.24), 
we have
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4χ

3

∫
�

∣∣u 3
2 ∇u

3
2 · ∇v

∣∣dx + 4ξ

3

∫
�

∣∣u 3
2 ∇u

3
2 · ∇w

∣∣dx

≤ 1

9

∫
�

|∇u
3
2 |2dx + 4χ2

∫
�

u3|∇v|2dx + 2

9

∫
�

|∇u
3
2 |2dx + 2ξ2

∫
�

u3|∇w|2dx

≤ 1

3
‖∇u

3
2 ‖2

L2 + 4χ2‖u 3
2 ‖2

L4‖∇v‖2
L4 + 2ξ2‖u 3

2 ‖2
L4‖∇w‖2

L4

= 1

3
‖∇u

3
2 ‖2

L2 +
(

4c2
4χ

2 + 2c2
3ξ

2
)

‖u 3
2 ‖2

L4

≤ 1

3
‖∇u

3
2 ‖2

L2 + c5

(
‖∇u

3
2 ‖

4
3
L2‖u

3
2 ‖

2
3

L
4
3

+ ‖u 3
2 ‖2

L
4
3

)

≤ 1

3
‖∇u

3
2 ‖2

L2 + c5c
2
3
6 ‖∇u

3
2 ‖

4
3
L2 + c2c

2
6

≤ 5

9
‖∇u

3
2 ‖2

L2 + c7, (3.26)

where we have used the inequality ‖u 3
2 ‖

L
4
3

= ‖u2‖
3
4
L2 ≤ c6, and the following estimate

c5c
2
3
6 ‖∇u

3
2 ‖

4
3
L2 + c2c

2
6 ≤ 2

9
‖∇u

3
2 ‖2

L2 + c7.

Substituting (3.26) into (3.25), we have that

d

dt

∫
�

u3dx + ‖∇u
3
2 ‖2

L2 ≤ 3c7. (3.27)

Furthermore the Gagliardo–Nirenberg inequality gives

‖u 3
2 ‖L2 ≤ c8

(
‖∇u

3
2 ‖

1
3
L2‖u

3
2 ‖

2
3

L
4
3

+ ‖u 3
2 ‖

L
4
3

)
≤ c8

(
‖∇u

3
2 ‖

1
3
L2c

2
3
6 + c6

)

by which we find two constant c9, c10 > 0 by using (3.7) such that

∫
�

u3dx = ‖u 3
2 ‖6

L2 ≤ 1

c9
‖∇u

3
2 ‖2

L2 + c10. (3.28)

Inserting (3.28) into (3.27), we have

d

dt
‖u‖3

L3 + c9‖u‖3
L3 ≤ 3c7 + c9c10 = c11,

which, along with Gronwall’s inequality, implies

‖u‖3
L3 ≤ e−c9t‖u0‖3

L3 + c11 ≤ c12. (3.29)

c9
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Then using Lemma 2.1 and (3.29), we can find a constant c13 > 0 such that

‖∇v‖L∞ ≤ c13. (3.30)

Furthermore, from (3.12) and (3.29), one has ‖w(·, t)‖W 2,3 ≤ c14 which, along with the Sobolev 
embedding theorem, asserts that ‖∇w‖L∞ ≤ c14. This, combined with (3.30), completes the 
proof of the lemma. �

Next we shall show that (3.6) is a sufficient condition to ensure the global boundedness of 
solutions of (3.1). To this end we cite the following known result (see [14], Lemma 1) which was 
proved based on the iteration method (e.g., see [3]).

Lemma 3.5. Let the components of the vector field � : � × (0, ∞) → R
n be uniformly bounded, 

and let u0 ∈ L∞(�) ∩ L1(�) with u0 ≥ 0. If u ∈ C(�̄ × [0, T )) ∩ C2,1(�̄ × (0, T )) is a solution 
of the following initial–boundary value problem:⎧⎨

⎩
ut = ∇ · (∇u − u�), x ∈ �, t > 0,

(∇u − u�) · ν = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), x ∈ �

then there exists a constant c > 0, only depending on ‖�‖L∞(�), ‖u0‖L1(�) and ‖u0‖L∞(�), such 
that

‖u(t)‖L∞(�) ≤ c for all t ∈ (0, T ).

Then the following lemma concerning the global existence of classical solutions of (3.1) with 
uniform-in-time bound can be proved.

Lemma 3.6. Assume that 0 ≤ (u0, v0) ∈ [W 1,∞(�)]2. If (3.6) holds, then there exists a unique 
triple (u, v, w) of nonnegative functions belonging to C(�̄ × [0, ∞)) ∩ C2,1(�̄ × (0, ∞)) which 
solves (3.1) classically such that ‖u(·, t)‖L∞ ≤ C, where C is a constant independent of t .

Proof. If (3.6) holds, then from Lemma 3.3, we can find a constant c1 > 0 such that ‖u‖L2 ≤ c1. 
Then using Lemma 3.4, we can find a constant c2 > 0 such that

‖(∇v,∇w)‖L∞ ≤ c2. (3.31)

Now we write the first equation of (3.1) as ut = ∇ · (∇u −u�) with � = χ∇v − ξ∇w. Note that 
the zero Neumann boundary condition implies the zero-flux boundary condition in Lemma 3.5. 
Then the application of Lemma 3.5 with (3.31) produces a constant c3 > 0 such that

‖u(·, t)‖L∞ ≤ c3 for all t ∈ (0, T ). (3.32)

Thus the assertion of Lemma 3.6 is an immediate consequence of (3.32) and Lemma 3.1. �
From Lemma 3.6, we see that it suffices to prove (3.6) to obtain the global existence of clas-

sical solutions of (3.1). In the subsequent sections, we shall show that (3.6) indeed holds either 
for θ ≤ 0 or for θ > 0 and M ≤ 4π .
θ
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4. Boundedness for θ ≤ 0

In this section, we are devoted to proving Theorem 1.1. Although the ARKS model (3.1) is 
irreducible to the classical two-component chemotaxis model, we are fortunately able to find a 
Lyapunov functional:

F(u, v,w) =
∫
�

u lnudx + χ

2α

∫
�

(βv2 + |∇v|2)dx

+ ξ

2γ

∫
�

(δw2 + |∇w|2)dx − χ

∫
�

uvdx. (4.1)

Lemma 4.1. Let F(u, v, w) be defined in (4.1). Then the solutions of (3.1) satisfy

d

dt
F (u, v,w) + G(u,v,w) = 0, (4.2)

where

G(u,v,w) = χ

α

∫
�

v2
t dx +

∫
�

u|∇(lnu − χv + ξw)|2dx. (4.3)

Proof. Multiplying the first equation of (3.1) by lnu − χv + ξw and integrating the result with 
respect to x over �, we have

∫
�

ut (lnu − χv + ξw)dx =
∫
�

∇ · (∇u − χu∇v + ξu∇w)(lnu − χv + ξw)dx

= −
∫
�

u|∇(lnu − χv + ξw)|2dx. (4.4)

Using the fact that 
∫
�

utdx = 0, we have

∫
�

ut (lnu − χv + ξw)dx

= d

dt

∫
�

u lnudx − χ
d

dt

∫
�

uvdx + χ

∫
�

uvtdx + ξ

∫
�

utwdx. (4.5)

From the second equation of (3.1), one has u = 1
α
vt − 1

α
�v + β

α
v, which gives

∫
�

uvtdx = 1

α

∫
�

v2
t dx + 1

2α

d

dt

∫
�

|∇v|2dx + β

2α

d

dt

∫
�

v2dx. (4.6)

Similarly, from the third equation of (3.1), we can derive that
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∫
�

utwdx = δ

2γ

d

dt

∫
�

w2dx + 1

2γ

d

dt

∫
�

|∇w|2dx. (4.7)

The combination of (4.5), (4.6) and (4.7) leads to

∫
�

ut (lnu − χv + ξw)dx

= d

dt

∫
�

(
u lnu − χuv + βχ

2α
v2 + χ

2α
|∇v|2 + ξδ

2γ
w2 + ξ

2γ
|∇w|2

)
dx + χ

α

∫
�

v2
t dx,

which together with (4.4) leads to (4.1). The proof of Lemma 4.1 is completed. �
Next, we will prove Theorem 1.1 by using the Lyapunov functional (4.1) for the case θ ≤ 0.

Proof of Theorem 1.1. From Lemma 3.6, Theorem 1.1 can be proved directly if (3.6) holds. 
Next, we will show if θ ≤ 0, (3.6) actually holds. First we rewrite the third equation of (3.1) as

u = δ

γ
w − 1

γ
�w. (4.8)

Then using (4.8) and the Cauchy–Schwarz inequality, one can derive that

χ

∫
�

uvdx = χδ

γ

∫
�

vwdx + χ

γ

∫
�

∇w · ∇vdx

≤ χδ

γ

⎛
⎝ ξ

2χ

∫
�

w2dx + χ

2ξ

∫
�

v2dx

⎞
⎠ + χ

γ

⎛
⎝ ξ

2χ

∫
�

|∇w|2dx + χ

2ξ

∫
�

|∇v|2dx

⎞
⎠

= ξδ

2γ

∫
�

w2dx + χ2δ

2ξγ

∫
�

v2dx + ξ

2γ

∫
�

|∇w|2dx + χ2

2ξγ

∫
�

|∇v|2dx. (4.9)

Substituting (4.9) into (4.1), we have

F(u, v,w) ≥
∫
�

u lnudx +
(

βχ

2α
− χ2δ

2ξγ

)∫
�

v2dx +
(

χ

2α
− χ2

2ξγ

)∫
�

|∇v|2dx

=
∫
�

u lnudx + χ(ξγβ − χαδ)

2αξγ

∫
�

v2dx + χ(ξγ − χα)

2ξγ α

∫
�

|∇v|2dx. (4.10)

Integrating (4.2) with respect to t and using (4.10), we have
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∫
�

u lnudx + χ(ξγ − χα)

2ξγ α

∫
�

|∇v|2dx + χ

α

t∫
0

∫
�

v2
t dxdτ

+
t∫

0

∫
�

u|∇(lnu − χv + ξw)|2dxdτ ≤ F(u0, v0) + χ |ξγβ − χαδ|
2αξγ

∫
�

v2dx. (4.11)

To complete the proof of this lemma, it remains to estimate the last term of (4.11). Using 
Lemma 2.1 and u ∈ L1(�), we can find a constant c1 > 0 such that ‖v‖W 1,p ≤ c1 for all 
1 ≤ p < 2. Hence using Lemma 2.3 and choosing p = 1, we obtain

‖v‖L2 ≤ c2‖v‖W 1,1 ≤ c1c2. (4.12)

Substituting (4.12) into (4.11) and using the condition ξγ − χα ≥ 0, we have

∫
�

u lnudx + χ

α

t∫
0

∫
�

v2
t dxdτ +

t∫
0

∫
�

u|∇(lnu − χv + ξw)|2dxdτ

≤ F(u0, v0) + χ |ξγβ − χαδ|c2
1c

2
2

2αξγ
≤ c3,

which implies

∫
�

u lnudx + χ

α

t∫
0

∫
�

v2
t dxdτ ≤ c3. (4.13)

Noticing that u lnu > − 1
e

for all u ≥ 0, it follows from (4.13) that

t∫
0

∫
�

v2
t dxdτ ≤ α

χ

(
c3 + |�|

e

)
(4.14)

and

∫
�

|u lnu|dx

=
∫
�

∣∣∣∣u lnu + 1

e
− 1

e

∣∣∣∣dx ≤
∫
�

(
u lnu + 1

e

)
dx +

∫
�

1

e
dx ≤ c3 + 2|�|

e
. (4.15)

Then the combination of (4.14) and (4.15) implies (3.6) holds, and hence the assertion of Theo-
rem 1.1 follows from Lemma 3.6. �
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5. Critical mass phenomenon for θ > 0

In this section, we will show that if θ > 0, there exists a critical value m∗ = 4π
θ

such that the 
solution is bounded uniformly in time if 

∫
�

u0(x)dx < m∗ (subcritical mass) and may blow up 
if 

∫
�

u0(x)dx > m∗ (supercritical mass).

5.1. Boundedness for subcritical mass

Lemma 5.1. If θ > 0 and 
∫
�

u0(x)dx < 4π
θ

, then there exists a constant C > 0 independent of t
such that (3.6) holds.

Proof. For convenience, we denote F [t] = F(u, v, w). Then from (4.1), we have

F [t] =
∫
�

u lnudx − θ

α

∫
�

uvdx + χ

2α

∫
�

(βv2 + |∇v|2)dx

+ ξ

2γ

∫
�

(δw2 + |∇w|2)dx − ξγ

α

∫
�

uvdx. (5.1)

Using the third equation of (3.1) and the Cauchy–Schwarz inequality one can derive that

ξγ

α

∫
�

uvdx = ξδ

α

∫
�

vwdx + ξ

α

∫
�

∇w · ∇vdx

≤ ξδ

2γ

∫
�

w2dx + ξγ δ

2α2

∫
�

v2dx + ξ

2γ

∫
�

|∇w|2dx + ξγ

2α2

∫
�

|∇v|2dx. (5.2)

Substituting (5.2) into (5.1), then for any η > 0 we have

F [t] ≥
∫
�

u lnudx − θ

α

∫
�

uvdx + θ

2α2

∫
�

|∇v|2dx + χαβ − ξγ δ

2α2

∫
�

v2dx

=
∫
�

u lnudx −
(

θ

α
+ η

)∫
�

uvdx + η

∫
�

uvdx

+ θ

2α2

∫
�

|∇v|2dx + χαβ − ξγ δ

2α2

∫
�

v2dx

≥ −
∫
�

u ln
e

(
θ
α
+η

)
v

u
dx + θ

2α2

∫
�

|∇v|2dx

+ χαβ − ξγ δ

2α2

∫
v2dx + η

∫
uvdx. (5.3)
� �
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Since − ln z is a convex function for all z ≥ 0 and 
∫
�

u
M

dx = 1, then using the Jensen’s inequality, 
we obtain

− ln

⎛
⎝ 1

M

∫
�

e

(
θ
α
+η

)
v
dx

⎞
⎠ = − ln

⎛
⎝∫

�

e

(
θ
α
+η

)
v

u

u

M
dx

⎞
⎠

≤
∫
�

⎛
⎝− ln

e

(
θ
α
+η

)
v

u

⎞
⎠ u

M
dx

= − 1

M

∫
�

u ln
e

(
θ
α
+η

)
v

u
dx. (5.4)

Collecting (5.3) and (5.4), we have

F [t] ≥ −M ln

⎛
⎝ 1

M

∫
�

e

(
θ
α
+η

)
v
dx

⎞
⎠ + θ

2α2

∫
�

|∇v|2dx

+ χαβ − ξγ δ

2α2

∫
�

v2dx + η

∫
�

uvdx. (5.5)

Using the Trudinger–Moser inequality (2.2) and the fact ‖v‖L1 ≤ c1 (see (3.4)), we can obtain 
two constants c2 > 0 and c3 > 0 depending on ε such that

∫
�

e

(
θ
α
+η

)
v
dx ≤ c2e

(
1

8π
+ε

)(
θ
α
+η

)2‖∇v‖2
L2 +

θ
α +η

|�| ‖v‖
L1

≤ c3e

(
1

8π
+ε

)(
θ
α
+η

)2‖∇v‖2
L2 . (5.6)

Substituting (5.6) into (5.5), we can find a constant c4 = M ln c3
M

such that

F [t] ≥
[

θ

2α2
−

(
1

8π
+ ε

)(
θ

α
+ η

)2

M

]∫
�

|∇v|2dx

+ χαβ − ξγ δ

2α2

∫
�

v2dx + η

∫
�

uvdx − c4. (5.7)

Since M = ∫
�

u0dx < 4π
θ

, we can choose ε > 0 and η > 0 small enough such that

θ

2α2
−

(
1

8π
+ ε

)(
θ

α
+ η

)2

M > 0. (5.8)

Substituting (5.8) into (5.7) and using the fact (4.12), we can find a constant c5 > 0 such that
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F [t] ≥ η

∫
�

uvdx + χαβ − ξγ δ

2α2

∫
�

v2dx − c4

≥ η

∫
�

uvdx − |χαβ − ξγ δ|
2α2

∫
�

v2dx − c4

≥ η

∫
�

uvdx − c5, (5.9)

which implies

F [t] ≥ −c5. (5.10)

Since F [t] ≤ F [0], then from (5.9) we see for any η > 0 that∫
�

uvdx ≤ F [0] + c5

η
. (5.11)

Using (4.1) and (5.11) and the fact F [t] ≤ F [0], one has∫
�

u lnudx ≤ F [t] + χ

∫
�

uvdx

≤ F [t] + χ

∫
�

uvdx ≤
(

1 + χ

η

)
F [0] + χc5

η
≤ c6. (5.12)

Noticing again that u lnu ≥ − 1
e
, which along with (5.12) indicates that (see also the proof 

of (4.15)) ∫
�

|u lnu|dx ≤ c6 + 2|�|
e

. (5.13)

Integrating (4.2) with respect t , we have

χ

α

t∫
0

∫
�

v2
t dxdτ +

t∫
0

∫
�

u|∇(lnu − χv + ξw)|2dxdτ ≤ F [0] − F [t] ≤ F [0] + c5. (5.14)

The combination of (5.13) and (5.14) yields (3.6). Then the proof is completed. �
The following lemma gives the first part of Theorem 1.2.

Lemma 5.2. Assume that 0 ≤ (u0, v0) ∈ [W 1,∞(�)]2 and θ > 0. If 
∫
�

u0(x)dx < 4π
θ

, then there 
exists a unique triple (u, v, w) of nonnegative bounded functions in C(�̄ × [0, ∞)) ∩ C2,1(�̄ ×
(0, ∞)) which solves (3.1) classically. Furthermore, there exists a constant C independent of t
such that ‖u(·, t)‖L∞ ≤ C.
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Proof. If θ > 0 and 
∫
�

u0(x)dx < 4π
θ

, from Lemma 5.1, one has (3.6). Then Lemma 5.2 is an 
immediate consequence of Lemma 3.6. �
5.2. Blowup for supercritical mass

In this subsection, we are devoted to proving the second part of Theorem 1.2 concerning the 
blowup of solutions for supercritical mass. For the convenience of constructing the initial date of 
blowup solutions, we introduce the following change of variables:

ṽ = v − v̄, w̃ = w − w̄, (5.15)

where f̄ = 1
|�|

∫
�

f dx. From the second and third equation of (3.1), we have v̄t = αū − βv̄ and 
γ ū = δw̄, respectively. Substituting these results and (5.15) into (3.1) and dropping the tildes for 
convenience, we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = �u − ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ �, t > 0,

vt = �v + α(u − ū) − βv, x ∈ �, t > 0,

0 = �w + γ (u − ū) − δw, x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈ �.

(5.16)

Then the stationary problem of (5.16) reads

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = �u − ∇ · (χu∇v) + ∇ · (ξu∇w), x ∈ �, t > 0,

0 = �v + α(u − ū) − βv, x ∈ �, t > 0,

0 = �w + γ (u − ū) − δw, x ∈ �, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂�, t > 0,∫
�

udx = M,
∫
�

vdx = ∫
�

wdx = 0.

(5.17)

To proceed, we denote

φ = v

α
− w

γ
, θ̃ = θ

α
= χα − ξγ

α
.

Solving the first equation of (5.17) subject to the Neumann boundary conditions gives

u = λeχv−ξw = λeξγφe
(χα−ξγ )v

α = λeξγφeθ̃v (5.18)

where λ > 0 is a constant satisfying

λ =

∫
�

udx

∫
eχv−ξwdx

= M∫
eξγφeθ̃vdx

. (5.19)
� �
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Then substituting (5.18) into the second equation of (5.17), and using the second and third equa-
tions of (5.17), we can reduce the stationary problem (5.17) to the following one:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�v + βv = αλeξγφeθ̃v − αM
|�| , x ∈ �,

−�φ + δφ = (δ−β)v
α

, x ∈ �

∂v
∂ν

= ∂φ
∂ν

= 0, x ∈ ∂�,∫
�

vdx = ∫
�

φdx = 0

(5.20)

where u is determined by (5.18) under the constraint (5.19). The existence of nontrivial solutions 
of the problem (5.20) still remains open. This is, however, not needed to achieve our goal. We 
only need the following result.

Lemma 5.3. Let (v, φ) satisfy (5.20). Then there exists a constant C > 0 such that

‖φ‖W 1,∞ ≤ C. (5.21)

Proof. Note that ‖αλeξγφeθ̃v − αM
|�| ‖L1 = α‖u − ū‖L1 = α

∫
�

|u − ū|dx ≤ 2αM . Then by the 

L1-regularity theory (see [35]), it follows that v ∈ W 1,q(�) with q < n
n−1 with space dimen-

sion n. With the Sobolev embedding: W 1, 6
5 (�) ↪→ L3(�) with n = 2, one has ‖v‖L3 ≤ c1. Now 

applying the Agmon–Douglis–Nirenberg Lp-estimate to φ satisfying the second equation of 
(5.20), we have

‖φ‖W 2,3 ≤ c2‖v‖L3 ≤ c1c2,

which implies (5.21) by the Sobolev embedding theorem with space dimension n = 2. �
Noting that F(u, v, w) defined by (4.1) is also a Lyapunov functional of the transformed 

system (5.16), we obtain the following result.

Lemma 5.4. Suppose that (u, v, w) is a global and bounded solution of (5.16). Then there ex-
ist a sequence of times tk → ∞ and nonnegative function (u∞, v∞, w∞) ∈ [C2(�̄)]3 such that 
(u(·, tk), v(·, tk), w(·, tk)) → (u∞, v∞, w∞) in [C2(�̄)]3. Furthermore, (u∞, v∞, w∞) is a so-
lution of (5.17), such that

F(u∞, v∞,w∞) ≤ F(u0, v0,w0). (5.22)

Proof. From the boundedness of (u, v, w) and Schauder regularity theory (e.g. see [12]), it 
follows that (u(·, t), v(·, t), w(·, t))t>1 is relatively compact in [C2(�̄)]3. Hence we can find 
a suitable sequence of times (tk)k≥1 such that (u(·, tk), v(·, tk), w(·, tk)) → (u∞, v∞, w∞) in 
[C2(�̄)]3 as tk → ∞. Note that F(u, v, w) is bounded from below (see (5.10)). Then Lemma 4.1
implies that

χ

α

∞∫ ∫
v2
t dxdτ +

∞∫ ∫
u|∇(lnu − χv + ξw)|2dxdτ < ∞. (5.23)
0 � 0 �
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Then by the Arzelà–Ascoli theorem, a sequence of times, still denoted by (tk)k≥1, can be ex-
tracted such that

vt (·, tk) → 0 in L2(�) (5.24)

and

u(·, tk)|∇(lnu(·, tk) − χv(·, tk) + ξw(·, tk))|2 → 0 a.e. in �̄ (5.25)

as tk → ∞. Evaluating the second equation of (5.16) at t = tk and letting k → ∞, we have

−�v∞ + βv∞ = α(u∞ − ū). (5.26)

Using (5.25) and taking k → ∞, we obtain

u∞|∇(lnu∞ − χv∞ + ξw∞)|2 = 0 in �̄.

By the same argument as in [40] (details are omitted here for brevity), one can show that u∞ > 0
for all x ∈ �̄. Hence

∇(lnu∞ − χv∞ + ξw∞) = 0 in �̄.

which indicates

u∞ = λeχv∞−ξw∞ , λ = M∫
�

eχv∞−ξw∞dx
. (5.27)

Furthermore, from the third equation of (5.16), we have

−�w∞ + δw∞ = γ (u∞ − ū). (5.28)

Thus the combination of (5.26), (5.27) and (5.28) shows that (u∞, v∞, w∞) satisfy (5.17) by 
noting (5.18). Since (u(·, tk), v(·, tk), w(·, tk)) → (u∞, v∞, w∞) in [C2(�̄)]3 and thus

F(u(·, tk), v(·, tk),w(·, tk)) → F(u∞, v∞,w∞), as tk → ∞
then (5.22) follows from the property F [t] ≤ F [0]. The proof of Lemma 5.4 is completed. �
5.2.1. Lower bound for steady-state energy

Next, we use an idea in [16,17,42] to show that if 
∫
�

u0(x)dx 	= 4πm
θ

for any m ∈ N
+, then 

there exists a constant K > 0 such that F(u, v, w) ≥ −K for all solutions of system (5.17). In 
summary, we can obtain the following results.

Lemma 5.5. Suppose M 	= 4πm
θ

for all m ∈N
+. Then there exists a constant K > 0 such that

F(u, v,w) ≥ −K (5.29)

holds for any solution v of system (5.17).



H.-Y. Jin, Z.-A. Wang / J. Differential Equations 260 (2016) 162–196 183
Proof. We will prove the lemma by the argument of contradiction. Suppose that there is no 
constant K such that (5.29) holds true for all solutions of (5.17). Then we claim there exists a 
sequence (vk)k∈N of solutions of (5.20) such that

‖∇vk‖L2 → ∞, (5.30)∫
�

eθ̃vk dx → ∞, (5.31)

and

max
x∈�̄

vk(x) → ∞ (5.32)

as k → ∞. Indeed, if (5.30) does not hold, which means that there exists a constant c1 > 0 such 
that ‖∇vk‖L2 ≤ c1 as k → ∞. Then, using the Poincaré inequality and the fact −�vk + βvk =
α(uk − ū) and 

∫
�

vkdx = 0, we can find a constant c2 > 0 depending on � such that

∫
�

ukvkdx = 1

α

∫
�

|∇vk|2dx + β

α

∫
�

v2
kdx ≤

(
1

α
+ c2

)∫
�

|∇vk|2dx ≤ c2
1

(
1

α
+ c2

)
,

which implies that F(uk, vk, wk) (≥ −c2
1(

1
α

+ c2)) is bounded from below, which contradicts 

our assumption, where uk = λke
ξγφk eθ̃vk with λk =

∫
� ukdx∫

� eξγφk eθ̃vk dx
and wk = γ (

vk

α
− φk). Next 

substituting (5.2) into (5.1), using the Jensen’s inequality (see (5.4)) by the facts − lnu is a 
convex function for all u ≥ 0 and 

∫
�

u
M

dx = 1, we can derive from (5.3) that

F(u, v,w) ≥
∫
�

u lnudx − θ̃

∫
�

uvdx + θ̃

2α

∫
�

|∇v|2dx + χαβ − ξγ δ

2α2

∫
�

v2dx

≥ −
∫
�

u ln
eθ̃v

u
dx − c3 ≥ −M ln

⎛
⎝ 1

M

∫
�

eθ̃vdx

⎞
⎠ − c3. (5.33)

This indicates that if (5.31) is false then F(uk, vk, wk) is bounded from below, which again 
contradicts our assumption. Lastly if (5.32) does not hold, then eθ̃vk is bounded and hence 
F(uk, vk, wk) is bounded from below from (5.33). This verifies our claim that (5.30)–(5.32)
will hold if (5.29) is false. Let ṽk = vk + αM

β|�| . Then from (5.20), we know that each ṽk solves 
the problem

⎧⎪⎨
⎪⎩

−�ṽk + βṽk = μke
ξγφk eθ̃ ṽk , x ∈ �

∂ṽk

∂ν
= 0, x ∈ ∂�,∫

�
ṽkdx = αM

β
,

(5.34)

where ‖φk‖W 1,∞ ≤ c4 (see Lemma 5.3) and



184 H.-Y. Jin, Z.-A. Wang / J. Differential Equations 260 (2016) 162–196
μk = αM∫
�

eξγφk eθ̃ ṽk dx
→ 0 as k → ∞. (5.35)

Now we claim that (5.30)–(5.32) imply that there exists a subsequence of (ṽk)k∈N (denoted by 
(ṽk)k∈N again for simplicity) such that for some m ∈N

+

μk

∫
�

eξγφk eθ̃ ṽk dx → 4πm

θ̃
, as k → ∞, (5.36)

which contradicts the assumption M 	= 4πm
θ

= 4πm

αθ̃
since μk

∫
�

eξγφk eθ̃ ṽk dx = αM from (5.35). 
Then the proof of the lemma is completed under the claim (5.36). �

Note that the proof of Lemma 5.5 replies on the claim (5.36). The rest of this subsection will be 
devoted to proving (5.36). Under the assumption that (5.29) does not hold for any constant K > 0, 
by the proof of Lemma 5.5, a sequence (ṽk)k∈N of solutions of (5.34) satisfying (5.30)–(5.32) is 
obtained. First, we establish the following Pohozaev’s identity for the system (5.34)–(5.35).

Lemma 5.6. Let ṽk be a solution of (5.34). Then the following Pohozaev’s identity holds:

2
∫
�

μke
ξγφkF (ṽk)dx + ξγ

∫
�

(x · ∇φk)μke
ξγφkF (ṽk)dx − β

∫
�

ṽ2
kdx

= −1

2

∫
∂�

(x · ν)|∇ṽk|2dS +
∫
∂�

(x · ∇ṽk)
∂ṽk

∂ν
dS

+
∫
∂�

(x · ν)μke
ξγφkF (ṽk)dS − β

2

∫
∂�

(x · ν)ṽ2
kdS (5.37)

where F(ṽk) = 1
θ̃

(
eθ̃ ṽk − 1

)
.

Proof. We multiply the first equation of system (5.34) by x · ∇ṽk =
2∑

j=1
xj

∂ṽk

∂xj
and integrate the 

resulting equation by parts in � to obtain

−
∫
�

�ṽk(x · ∇ṽk)dx

= −
∫
�

∇ · (∇ṽk)(x · ∇ṽk)

=
∫ ⎛

⎝|∇ṽk|2 +
2∑

i,j=1

xj

∂ṽk

∂xi

∂2ṽk

∂xi∂xj

⎞
⎠dx −

2∑
i,j=1

∫
∂ṽk

∂xi

∂ṽk

∂xj

xj νidS
� ∂�
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=
∫
�

|∇ṽk|2dx + 1

2

∫
�

2∑
j=1

xj

∂

∂xj

(|∇ṽk|2)dx −
2∑

i,j=1

∫
∂�

(x · ∇ṽk)
∂ṽk

∂ν
dS

=
∫
�

|∇ṽk|2dx −
∫
�

|∇ṽk|2dx + 1

2

∫
∂�

(x · ν)|∇ṽk|2dS −
2∑

i,j=1

∫
∂�

(x · ∇ṽk)
∂ṽk

∂ν
dS

= 1

2

∫
∂�

(x · ν)|∇ṽk|2dS −
∫
∂�

(x · ∇ṽk)
∂ṽk

∂ν
dS. (5.38)

On the other hand, we can let F(ṽk) =
∫ ṽk

0 eθ̃sds = 1
θ̃

(
eθ̃ ṽk − 1

)
such that

∫
�

(
μke

ξγφk eθ̃ ṽk − βṽk

)
(x · ∇ṽk)dx

=
2∑

j=1

∫
�

(
μke

ξγφkxj

∂F (ṽk)

∂xj

− β

2
xj

∂ṽ2
k

∂xj

)
dx

= −
∫
�

2μke
ξγφkF (ṽk)dx − ξγ

∫
�

(x · ∇φk)μke
ξγφkF (ṽk)dx

+
∫
∂�

(x · ν)μke
ξγφkF (ṽk)dS + β

∫
�

ṽ2
kdx − β

2

∫
∂�

(x · ν)ṽ2
kdS. (5.39)

The combination of (5.38) and (5.39) yields (5.37). �
Since we assume (5.29) does not hold, then we have (5.32) and define the following blowup 

set which is non-empty:

S := {
x ∈ �̄ : ∃μk → 0 and xk → x such that ṽk(xk) → ∞ as k → ∞}

. (5.40)

Since (μke
ξγφk eθ̃ ṽk )k∈N is bounded in L1(�), then using the Prokhorov’s theorem we may 

extract a subsequence (still denoted (μke
ξγφk eθ̃ ṽk )k∈N for simplicity) such that μke

ξγφk eθ̃ ṽk con-
verges in the sense of measure on � to some nonnegative bounded measure η, i.e.

∫
�

μke
ξγφk eθ̃ ṽkψdx →

∫
�

ψdη, (5.41)

for every ψ ∈ C∞
0 (�). Following the nomenclature in [16,42], we call x0 ∈ �̄ a δ-regular point 

if there is a function ψ ∈ C∞
0 (�), 0 ≤ ψ ≤ 1, with ψ = 1 in a neighborhood of x0 such that

∫
ψdμ <

4π

θ̃(1 + 3δ)
. (5.42)
�
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We also denote by �(δ) the set of points which are not δ-regular points in �̄. Then using the 
same argument as in [16,42], we state the following proposition without proof.

Proposition 5.7. (i) If x0 is a δ-regular point, then the sequence (ṽk)k∈N is uniformly bounded 
in L∞(�̄ ∩ BR0(x0)) for some R0 > 0. (ii) S = �(δ) for any δ > 0.

Furthermore we have the following result.

Proposition 5.8. 1 ≤ cardS < ∞, where cardS stands for the cardinality of set S .

Proof. Since max
x∈�̄

vk(x) → ∞ as k → ∞ (see (5.32)), we know that cardS ≥ 1. Clearly x0 ∈
�(δ) iff η({x0}) ≥ 4π

θ̃(1+3δ)
. Since η is a bounded measure with 

∫
�

dη = αM form (5.41), it 
follows that �(δ) is finite and

card �(δ) ≤ θ(1 + 3δ)M

4π
< ∞. (5.43)

Hence from (5.43) and Proposition 5.7 (ii), we have 1 ≤ cardS = card �(δ) < ∞. The proof is
completed. �

Due to 1 ≤ cardS < ∞, without loss of generality, we assume S = {p1, · · · , pN }. We decom-
pose S into a boundary blowup set S1 = S ∩ ∂� and an interior blowup set S2 = S ∩ �. For a 
small r > 0, we set

σk
j (r) =

∫
Br(pj )

μke
ξγφk eθ̃ ṽk dx. (5.44)

Then for all small r > 0, we have the following equality:

lim
k→∞

∫
�

μke
ξγφk eθ̃ ṽk dx =

N∑
j=1

lim
k→∞σk

j (r). (5.45)

Then we can obtain the following equality by taking r → 0 in (5.45)

lim
k→∞

∫
�

μke
ξγφk eθ̃ ṽk dx =

N∑
j=1

lim
r→0

lim
k→∞σk

j (r), (5.46)

which gives (5.36), provided that the following Lemma 5.9 holds.

Lemma 5.9. Let σk
j (r) be defined by (5.44). Then

lim
r→0

lim
k→∞σk

j (r) =

⎧⎪⎪⎨
⎪⎪⎩

4π

θ̃
, pj ∈ S1,

8π

θ̃
, pj ∈ S2.

(5.47)
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Proof. The proof of this lemma closely follows an argument in [16], Lemma 3.4. The differences 
lie in the modified Pohozaev’s type inequality and an extra term φk whose regularity need to be 
proved. We first consider the case when pj ∈ S1. Without loss of generality, we assume the 
blowup point pj = 0. Let Ur = Br(0) ∩ �̄. Assume the function ϕk is a solution of the following 
problem

{
�ϕ − βϕ = 0, x ∈ Ur,
∂ϕ
∂ν

= ∂ṽk

∂ν
, x ∈ ∂Ur .

(5.48)

Then clearly ϕk = O(1) in C2(Ur) since | ∂ṽk

∂ν
| ≤ C on ∂Ur . If we let hk = (ṽk −ϕk)/σ

k
j (r), then 

hk → G(·, 0) in C2
loc(Br(0) ∩ �̄ \ {0}) as k → ∞ (see the proof in [43], Lemma 2.6 or see [16]), 

where G(·, 0) satisfies

{−�G + βG = δ0, x ∈ Ur,
∂G
∂ν

= 0, x ∈ ∂Ur,

with δ0 denoting the Dirac measure on Ur giving unit mass to the point 0. By the potential theory, 
as |x| = r is small, G(·, 0) has the following form (e.g., see [7])

G(·,0) = − 1

π
ln |x| + H(r) in Ūr

where H(r) is of class C1 in Ūr . Hence

ṽk = σk
j (r)

(
− 1

π
ln |x| + H(r)

)
in C1(∂Ur). (5.49)

From the second equation of (5.20), we have

−�φk + δφk = δ − β

α

(
ṽk − αM

β|�|
)

in Ūr \ U ,
∂φk

∂ν
= 0 on U

where U = ∂Ur ∩ ∂�. Then by the elliptic regularity theorem (e.g. Agmon–Douglis–Nirenberg 
theorem), we have

φk ∈ C2(Ūr ). (5.50)

Now using Lemma 5.6 in Ur , we have

2

θ̃

∫
Ur

μke
ξγφk

(
eθ̃ ṽk − 1

)
dx + ξγ

θ̃

∫
Ur

(x · ∇φk)μke
ξγφk

(
eθ̃ ṽk − 1

)
dx − β

∫
Ur

ṽ2
kdx

=
∫

∂Ur

(x · ∇ṽk)
∂ṽk

∂ν
dS − 1

2

∫
∂Ur

(x · ν)|∇ṽk|2dS − β

2

∫
∂Ur

(x · ν)ṽ2
kdS

+ 2

θ̃

∫
(x · ν)μke

ξγφk

(
eθ̃ ṽk − 1

)
dS. (5.51)
∂Ur
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Next, we will estimate the terms on both sides of (5.51). First with the fact that μk

∫
�

eξγφk eθ̃ ṽk dx

= αM from (5.35), one can derive that ‖ṽk‖2
W 1,4/3 ≤ C for some constant C > 0 by the Ag-

mon–Douglis–Nirenberg estimate [2] and Gagliardo–Nirenberg inequality. Then it follows that

∫
Ur

ṽ2
kdx = O(r‖ṽk‖2

L4) = O(r‖ṽk‖2
W 1,4/3) = O(r). (5.52)

Furthermore, we have the following estimates

2

θ̃

∫
Ur

μke
ξγφk

(
eθ̃ ṽk − 1

)
dx + ξγ

θ̃

∫
Ur

(x · ∇φk)μke
ξγφk

(
eθ̃ ṽk − 1

)
dx

= 2

θ̃

∫
Ur

μke
ξγφk eθ̃ ṽk dx − 2

θ̃

∫
Ur

μke
ξγφkdx + ξγ

θ̃

∫
Ur

(x · ∇φk)μke
ξγφk

(
eθ̃ ṽk − 1

)
dx

= 2

θ̃
σ k

j (r) + O(μkr
2) + O(r), (5.53)

where we have used (5.21) which leads to

−2

θ̃

∫
Ur

μke
ξγφkdx + ξγ

θ̃

∫
Ur

(x · ∇φk)μke
ξγφk

(
eθ̃ ṽk − 1

)
dx = O(μkr

2) + O(r).

Using the equalities (5.49) and ∂ṽk

∂ν
= ν · ∇ṽk , we have

∫
∂Ur

(x · ∇ṽk)
∂ṽk

∂ν
dS =

∫
∂Ur

⎡
⎣x · ν

r2

(
σk

j (r)

π

)2

+ O(1)

⎤
⎦dS

=
(

σk
j (r)

π

)2

π + O(r), (5.54)

and

1

2

∫
∂Ur

(x · ν)|∇ṽk|2dS =
(

σk
j (r)

π

)2
π

2
+ O(r). (5.55)

Using (5.49) and (5.50), we have

∫
∂Ur

(x · ν)ṽ2
kdS = O(r), (5.56)

and
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∫
∂Ur

(x · ν)μke
ξγφk eθ̄ ṽk dS = O

(
rμk max

x∈∂Ur

(eξγφk eθ̄ ṽk )
)

= O(μkr). (5.57)

Furthermore, we can derive that

∫
∂Ur

(x · ν)μke
ξγφkdS = O(μkr). (5.58)

Substituting (5.52)–(5.58) into (5.51), and letting k → ∞ first and then r → 0, we can obtain 
that

2

θ̃
lim
r→0

lim
k→∞σk

j (r) = π

2
· 1

π2

(
lim
r→0

lim
k→∞σk

j (r)
)2

,

which implies

lim
r→0

lim
k→∞σk

j (r) = 4π

θ̃
. (5.59)

When the blowup point 0 ∈ S2, we consider ϕk satisfying

{
�ϕ − βϕ = 0, x ∈ Ur,

ϕ = ṽk, x ∈ ∂Ur .
(5.60)

Let hk = (ṽk − ϕ)/σ k
j (r). Then hk → G(·, 0) in C2

loc(Br(0) ∩ �̄ \ {0}), where G(·, 0) satisfies

{−�G + βG = δ0, x ∈ Ur,

G = 0, x ∈ ∂Ur .

In this case, the Green’s function has the following expansion near 0

G(·,0) = − 1

2π
ln |x| + H(r) in Ūr

with H(r) ∈ C1(Ūr ), which implies

ṽk = σk
j (r)

(
− 1

2π
ln |x| + H(r)

)
. (5.61)

Next we can follow the similar arguments and calculations for the case 0 ∈ S1 to obtain the same 
estimate for 0 ∈ S2 except that

∫
∂Ur

(x · ∇ṽk)
∂ṽk

∂ν
dS =

(
σk

j (r)

2π

)2

2π + O(r), (5.62)

and
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∫
∂Ur

(x · ν)
|∇ṽk|2

2
dS =

(
σk

j (r)

2π

)2

π + O(r). (5.63)

Then using the Pohozaev’s identity in Lemma 5.6 again, we have

2

θ̃
lim
r→0

lim
k→∞σk

j (r) = 1

4π

(
lim
r→0

lim
k→∞σk

j (r)
)2

,

which yields

lim
r→0

lim
k→∞σk

j (r) = 8π

θ̃
. (5.64)

Hence the proof of Lemma 5.9 is completed. �
Finally, we remark that the claim (5.36) is proved by (5.46), (5.59) and (5.64).

5.2.2. Initial data with large negative energy
In this subsection, we assert that there exist initial data with supercritical mass having energy 

below any prescribed bound. Using the third the equation of (5.16), we have

ξ

2

∫
�

uwdx = ξ

2γ

∫
�

(δw2 + |∇w|2)dx, (5.65)

which implies the Lyapunov function F(u, v, w) can be written as follows

F(u, v,w) =
∫
�

u lnudx − χ

∫
�

uvdx + ξ

∫
�

uwdx

+ χ

2α

∫
�

(βv2 + |∇v|2)dx − ξ

2γ

∫
�

(δw2 + |∇w|2)dx. (5.66)

Next, we look for a sequence (uε, vε, wε)ε≥0 satisfying 
∫
�

vε(x)dx = ∫
�

wεdx = 0 and ∫
�

uεdx = M such that lim
ε→0

F(uε, vε, wε) = −∞. From [44], p. 615, we know that the func-

tions

ψε(x) = ln

(
8ε2

(ε2 + π |x − x0|2)2

)
, ε > 0, x0 ∈R

2

are solutions of −�ψ(x) = eψ(x), x ∈ R
2 satisfying 

∫
R2 eψ(x)dx < ∞. We note that as ε → 0, 

ψε(x) → −∞ for all x 	= x0 and ψε(x0) → ∞. Using the same notation θ̃ = θ
α

= χα−ξγ
α

as in 
Section 5.2.1, we choose the sequence (uε, vε, wε)ε≥0 with
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vε(x) = α

γ
wε(x)

= 1

θ̃

⎛
⎝ψε(x) − 1

|�|
∫
�

ψε(x)dx

⎞
⎠

= 1

θ̃

⎡
⎣ln

(
ε2

(ε2 + π |x − x0|2)2

)
− 1

|�|
∫
�

ln

(
ε2

(ε2 + π |x − x0|2)2

)
dx

⎤
⎦ , (5.67)

and

uε(x) = Meθ̃vε(x)∫
�

eθ̃vε(x)dx
, (5.68)

as our candidate to obtain the property lim
ε→0

F(uε, vε, wε) = −∞ with supercritical mass.

Lemma 5.10. Assume M > 4π
θ

. If (uε, vε, wε)ε≥0 are defined by (5.67)–(5.68) and x0 ∈ ∂�, then 
as ε → 0, we have

F(uε, vε,wε) → −∞ and
∫
�

|∇vε|2dx = α

γ

∫
�

|∇wε|2dx → ∞. (5.69)

Proof. Without loss of generality, we assume x0 = 0 for convenience. Using (5.66) and the fact 
wε(x) = γ

α
vε(x), we obtain that

F(uε, vε,wε)

=
∫
�

uε lnuεdx − θ̃

∫
�

uεvεdx + θ̃

2α

∫
�

|∇vε|2 dx + χαβ − ξγ δ

2α2

∫
�

v2
εdx. (5.70)

From (5.68), we can derive

∫
�

uε lnuεdx

= M∫
�

eθ̃vεdx

∫
�

eθ̃vε

⎡
⎣lnM + θ̃vε − ln

⎛
⎝∫

�

eθ̃vεdx

⎞
⎠

⎤
⎦dx

= M lnM + θ̃M∫
�

eθ̃vεdx

∫
�

vεe
θ̃vεdx − M ln

⎛
⎝∫

�

eθ̃vεdx

⎞
⎠ , (5.71)

and
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θ̃

∫
�

uεvεdx = θ̃M∫
�

eθ̃vεdx

∫
�

eθ̃vεvεdx. (5.72)

Substituting (5.71) and (5.72) into (5.70), one has

F(uε, vε,wε) = θ̃

2α

∫
�

|∇vε|2 dx + χαβ − ξγ δ

2α2

∫
�

v2
εdx

− M ln

⎛
⎝∫

�

eθ̃vεdx

⎞
⎠ + M lnM. (5.73)

From (5.67), we have

θ̃

2α

∫
�

|∇vε|2dx = 8π2

θ

∫
�

x2

(ε2 + πx2)2
dx. (5.74)

Substituting y = x
ε

, we obtain that

θ̃

2α
‖∇vε‖2

L2 = 8π2

θ

∫
�ε

|y|2
(1 + π |y|2)2

dy, (5.75)

where �ε = {y|εy ∈ �}. Applying the polar coordinates around origin 0 ∈ ∂� to (5.75), and 
denoting the maximum distance between the pole and boundary of � by R, we obtain

θ̃

2α
‖∇vε‖2

L2 = 8π2

θ

∫
�ε

|y|2
(1 + π |y|2)2

dy

≤ 8π2

θ

π∫
0

R
ε∫

0

r3

(1 + πr2)2
drdθ

≤ 4π

θ

(
ln

1

ε2
+ ln(ε2 + πR2) − 1 + ε2

ε2 + πR2

)

≤ 8π

θ
ln

1

ε
+ O1(1), (5.76)

where |O1(1)| ≤ C as ε → 0. Moreover, we can deduce that

v2
ε = 1

θ̃2

⎛
⎝ln(ε2 + π |x|2)2 − 1

|�|
∫

ln(ε2 + π |x|2)2dx

⎞
⎠

2

�
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= 1

θ̃2

⎡
⎣(

ln(ε2 + π |x|2)2
)2 − 2

|�| ln(ε2 + π |x|2)2
∫
�

ln(ε2 + π |x|2)2dx

⎤
⎦

+ 1

θ̃2|�|2

⎛
⎝∫

�

ln(ε2 + π |x|2)2dx

⎞
⎠

2

, (5.77)

which gives that

χαβ − ξγ δ

2α2

∫
�

v2
εdx = χαβ − ξγ δ

2θ2

∫
�

(ln(ε2 + π |x|2)2)2dx

− χαβ − ξγ δ

2θ2|�|

⎛
⎝∫

�

ln(ε2 + π |x|2)2dx

⎞
⎠

2

= O2(1), (5.78)

where |O2(1)| ≤ C as ε → 0. Using (5.67), we have the estimates

∫
�

eθ̃vεdx = |�|e− 1
|�|

∫
� ln

(
ε2

(ε2+π |x|2)2

)
dx

∫
�

(
ε2

(ε2 + π |x|2)2

)
dx

and

ln

⎛
⎝∫

�

eθ̃vεdx

⎞
⎠ = ln

⎛
⎝|�|

∫
�

ε2

(ε2 + π |x|2)2
dx

⎞
⎠ − 1

|�|
∫
�

ln

(
ε2

(ε2 + π |x|2)2

)
dx.

Then we have the following estimate

−M ln

⎛
⎝∫

�

eθ̃vεdx

⎞
⎠

= −M

⎡
⎣ln

⎛
⎝|�|

∫
�

ε2

(ε2 + π |x|2)2
dx

⎞
⎠ − 1

|�|
∫
�

ln

(
ε2

(ε2 + π |x|2)2

)
dx

⎤
⎦

= M

|�|
∫
�

ln ε2dx + M

|�|
∫
�

ln(ε2 + π |x|2)2dx − M ln

⎛
⎝|�|

∫
�

ε2

(ε2 + π |x|2)2
dx

⎞
⎠ .

By the polar coordinates, one can readily estimate that

1 − ε2

πr2
1 + ε2

≤
∫

ε2

(ε2 + π |x|2)2
dx ≤ 1 − ε2

πr2
2 + ε2
�
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where r1 and r2 denote the maximum and minimum distance between the pole and the boundary 
of �. Hence we have

−M ln

⎛
⎝∫

�

eθ̃vεdx

⎞
⎠ = 2M ln ε + O3(1), (5.79)

where |O3(1)| ≤ C as ε → 0. Then the combination of (5.76), (5.78) and (5.79) implies

F(uε, vε,wε) ≤ 2

(
4π

θ
− M

)
ln

1

ε
+ O(1), (5.80)

where O(1) = O1(1) + O2(1) + O3(1) and |O(1)| ≤ C as ε → 0. Then (5.80) leads to the 
assertion of the lemma. �
Remark 5.1. In this lemma, we only consider the case x0 ∈ ∂�. If x0 ∈ �, then we have the same 
estimates as above except changing the estimate in (5.76) to θ̃

2α
‖∇vε‖2

L2 ≤ 16π
θ

ln 1
ε
+O1(1). This 

leads to

F(uε, vε,wε) ≤ 2

(
8π

θ
− M

)
ln

1

ε
+ O(1), (5.81)

which implies that F(uε, vε, wε) → −∞ as ε → 0 if M > 8π
θ

.

Lemma 5.11. Assume M > 4π
θ

and M /∈ { 4πm
θ

: m ∈ N
+}. Then there exists initial data (u0, v0)

such that the corresponding solution of (3.1) blows up.

Proof. Since M /∈ { 4πm
θ

: m ∈ N
+}, then by Lemma 5.5, we can find a constant K > 0 such that 

(5.29) holds. Furthermore, for this constant K > 0, if M > 4π
θ

, then by Lemma 5.10 we can 
choose a small ε0 > 0 such that

vε0(x) = α

γ
wε0(x) = α

θ

⎡
⎣ln

(
ε2

0

(ε2
0 + π |x − x0|2)2

)
− 1

|�|
∫
�

ln

(
ε2

0

(ε2
0 + π |x − x0|2)2

)
dx

⎤
⎦ ,

and

uε0(x) = Meθ̃vε0 (x)∫
�

eθ̃vε0 (x)dx

such that

F(uε0 , vε0,wε0) < −K.

It can be readily verified that (uε0, vε0) ∈ [W 1,∞(�)]2 and 
∫
�

uε0(x)dx = M . Hence, if we define 
(u0, v0) = (uε0 , vε0) as the initial data, then the corresponding solution of chemotaxis model 
(5.16) must blow up. Otherwise, if the corresponding solution (u, v, w) of (5.16) is global and 
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bounded in � × (0, ∞), then from Lemma 5.4, we have F(u∞, v∞, w∞) ≤ F(u0, v0, w0) <
−K . But Lemma 5.5 says that F(u∞, v∞, w∞) ≥ −K since (u∞, v∞, w∞) is a solution of 
(5.17) by Lemma 5.4, which is a contradiction. The lemma is proved. �
5.2.3. Proof of Theorem 1.2

Theorem 1.2 is a direct consequence of Lemma 5.2 and Lemma 5.11.
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