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a b s t r a c t

This paper studies the existence, asymptotic decay rates, nonlinear stability, wave speed and chemical
diffusion limits of traveling wave solutions to a chemotaxis model describing the initiation of angiogen-
esis and reinforced random walk. By transforming the chemotaxis system, via a Hopf-Cole transforma-
tion, into a system of conservation laws, the authors studied the traveling wave solutions of the
transformed system in previous papers. One of the purposes of this paper is to transfer the results of
the transformed system to the original Keller–Segel chemotaxis model. It turns out that only partial
results of the transformed system have physical meaning when they are passed back to the original sys-
tem. Thus the transformed system is not entirely equivalent to the original system. Particularly the chem-
ical growth rate parameter appeared in the original system vanishes in the transformed system. Hence to
understand the role of this parameter, one has to go back to the original system. Moreover, we establish
some new results on zero chemical diffusion limits of traveling wave solutions. Numerical simulations of
steadily propagating waves are shown.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Chemotaxis describes the oriented movement of cells toward
the chemical concentration gradient. The prototype of the popula-
tion-based chemotaxis model was proposed by Keller–Segel in the
1970s [13,14] to describe the aggregation of cellular slime molds
Dictyostelium discoideum in response to the chemical cyclic adeno-
sine monophosphate (cAMP). The first mathematical model
describing the traveling waves was also proposed by Keller and
Segel [15], as follows

ut ¼ ðDux � vuc�1cxÞx;
ct ¼ ecxx � ucm;

(
ð1:1Þ

where ðx; tÞ 2 R� ½0;1Þ; uðx; tÞ denotes the cell density and cðx; tÞ
the chemical (or oxygen) concentration. D > 0 and e P 0 are diffu-
sion coefficients of cells and the chemical, respectively. v is a posi-
tive constant often referred to as chemosensitivity.The model (1.1)
aimed at describing the propagation of traveling bands of bacteria
observed in a pioneering experiment by Adler [1,2], where the bac-
teria move toward the chemical concentration gradient and con-
sume the chemical along the movement. A vast amount of results
on the traveling wave solutions of model (1.1) have been developed
subsequently for the case 0 6 m < 1, cf. [31,32,29,30,28,23,26] and
references therein, which led to a traveling pulse in u that explains

the traveling band formation of bacterial chemotaxis. In this paper,
we consider the traveling wave solutions of the following chemo-
taxis model

ut ¼ ðDux � vuc�1cxÞx;
ct ¼ ecxx � uc þ bc;

(
ð1:2Þ

with initial data

ðuðx;0Þ; cðx;0ÞÞ ¼ ðu0ðxÞ; c0ðxÞÞ ! ðu�; c�Þ as x! �1: ð1:3Þ

When b ¼ 0, the model (1.2) may be used to describe the directed
movement of endothelial cells toward the signaling molecule vas-
cular endothelial growth factor (VEGF) during the initiation of angi-
ogenesis [4,5,16,6,34], where u denotes the density of endothelial
cells and c stands for the concentration of VEGF. When e ¼ 0 and
b > 0, then the model (1.2) describes a model of reinforced random
walk derived in [17], where u is the particle density and c accounts
for the concentration of a non-diffusive ‘‘active agent’’. Formally the
model (1.2) with b ¼ 0 becomes a special case of model (1.1) when
m ¼ 1. We shall show in the paper that the model (1.2) generates a
traveling wavefront in u and interprets an ‘‘invasive’’ pattern, which
is in contrast to the case 0 6 m < 1 where the traveling pulse
explains traveling band formation of bacterial chemotaxis. Before
proceeding, it is helpful to discuss the physical region of ðu; cÞ in
(1.2). Since both u and c in denote densities, we assume
uðx; tÞP 0; cðx; tÞP 0 for all ðx; tÞ 2 R� ½0;1Þ. Hence we suppose
that u0ðxÞP 0; c0ðxÞP 0 and consider (1.2) in the region

X1 ¼ fðu;vÞju P 0; c P 0; u� P 0; c� P 0g: ð1:4Þ
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The traveling wave solution of (1.2) and (1.3) subject to (1.4) is a
particular solution in the form

ðuðx; tÞ; cðx; tÞÞ ¼ ðU;CÞðzÞ; z ¼ x� st;

which is bounded and satisfies differential equations

�sUz ¼ ðDUz � vUC�1CzÞz;
�sCz ¼ eCzz � UC þ bC

(
ð1:5Þ

and boundary conditions

Uð�1Þ ¼ u�; Cð�1Þ ¼ c�; Uzð�1Þ ¼ Czð�1Þ ¼ 0; ð1:6Þ

where z is called the traveling wave variable and s is the traveling
wave speed.

It is difficult to solve (1.5) directly due to the singularity term
and high dimensionality. In a series of studies in [17,18,35,20–
22], a Hopf-Cole type transformation (2.1) was skillfully employed
to transform the system (1.2) into a system of conservation laws
which was then extensively studied, see system (2.2) in Section
2. However the translation of the results from the transformed sys-
tem to the original Keller–Segel model (1.2) was not examined yet.
Moreover the transformed system (2.2) no longer contains the
parameter b and thus the role of b to the original chemotaxis mod-
el (1.2) is not displayed in (2.2). In the present paper, we show that
only partial results of the transformed system (2.2) have physical
meaning. Indeed, certain conditions on the end states are needed
in order to obtain the physically meaningful results for the original
system (1.2). We compare the differences between the original and
transformed models. Next, we first state the main results obtained
for the system (1.2) and (1.3) based on the results for the trans-
formed system (2.2) and leave the proofs in Section 3.

The first result concerns the existence of traveling wave solutions.

Theorem 1.1. Let b P 0. Then the model (1.2) and (1.3) has a unique
(up to a translation) monotone traveling wave solution ðU;CÞðx� stÞ
with Uz < 0; Cz > 0 such that cþ > c� ¼ 0; u� > uþ ¼ b P 0 pro-
vided that e P 0 is small, where the wave speed s is given by

s ¼ v u�
vþ eð1� uþ=u�Þ

� �1=2

¼
v

ffiffiffiffiffiffi
u�
vþe

q
; b ¼ 0;

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u�
vþeð1�b=u�Þ

q
; b > 0:

8<
: ð1:7Þ

Moreover the solution has the following asymptotic behavior

UðzÞ �
u� þ aekþz; as z! �1;
uþ þ aek�z; as z!1

�

and

CðzÞ � ae�v�z� a
kþ

ek�z
; as z! �1;

cþe�
a

k�ekþz
; as z!1;

(

where a is an arbitrary generic positive constant, k� < 0; kþ > 0 and

v� ¼
sðb� u�Þ

vu�
:

Remark 1.1. The explicit formula (1.7) for wave speed implies
that: (1) the wave speed s does not depend on the asymptotic
states of the chemical c; (2) the wave speed s is enhanced by the
chemosensitivity v and suppressed by the chemical diffusion e;
(3) the wave speed s – 0 if v – 0.

Remark 1.2. The smallness assumption on chemical diffusion e
imposed in Theorem 1.1 can be removed by a distinct approach
if uþ ¼ 0, see [34]. However the approach in [34] does not apply
to the case uþ > 0 even for small e. Hence the existence of traveling
wave solutions for uþ > 0 and for large e > 0 still remains open.

Next we shall present the asymptotic nonlinear stability results
of traveling wave solutions. To state the stability theorem, we
introduce some notations. Let kfk denote the L2 norm of any func-

tion f 2 L2ðRÞ where kfk ¼ ð
R

R
jf ðxÞj2dxÞ1=2. Let HpðRÞ denote the

usual Sobolev space Wp;2ðRÞ, and let kfkp denote the Hp norm for

any f 2 HpðRÞ where kfkp ¼ ð
R

R

Pp
i¼0j di

dxi f ðxÞj2dxÞ1=2
; p P 1.

The stability theorem is as follows:

Theorem 1.2. Let ðU;CÞðx� stÞ be a traveling wave profile of (1.2)
and (1.3) obtained in Theorem 1.1. If e P 0 is small uþ > 0, then there
exists a constant e0 > 0 such that if ku0 � Uk1 þ kðln c0Þx � ðln CÞxk1þ
kð/0;w0Þk 6 e0, where

/0ðxÞ ¼
Z x

�1
ðu0 � UÞðyÞdy; w0ðxÞ ¼ � ln c0ðxÞ þ ln CðxÞ;

then the Cauchy problem (1.2) and (1.3) has a unique global solution
ðu; cÞðx; tÞ satisfying uðx; tÞ > d0 for all x 2 R; t P 0 for some d0 > 0,
with

ðu� U; cx=c � Cx=CÞ 2 Cð½0;1Þ; H1Þ \ L2ð½0;1Þ; H1Þ

and the following asymptotic behavior

sup
x2R
jðu; cÞðx; tÞ � ðU;CÞðx� stÞj ! 0 as t !1:

The last theorem addresses the chemical diffusion limits of
traveling wave solutions as e! 0.

Theorem 1.3. Let ðUe;CeÞ be the traveling wave solution of system
(1.2) and (1.3) with e P 0. Then for each z ¼ x� st 2 R

jðUe;CeÞðzÞ � ðU0;C0ÞðzÞj ! 0; as e! 0;

provided that Ceð0Þ ¼ C0ð0Þ.
Before concluding this section, we want to recall some related

results on traveling wave solutions of chemotaxis models obtained
previously in [27,3,10,8]. First, [27] considered the existence and
instability of traveling wave solutions to the same model (1.2) with
b > 0. There are three major differences between [27] and our
present studies: (1) the wave profile ðU;CÞ considered in [27] is a
(front, pulse), however, a (front, front) is considered in the present
paper; (2) [27] proves the instability of traveling wave profile
(front, pulse), and the present paper shows the nonlinear stability
of traveling wave profile (front, front); (3) In the present paper, the
unique wave speed is identified, however in [27] only the mini-
mum wave speed is found. These differences are caused by assum-
ing the integration constant of the first equation of (1.5) to be zero
in [27], and nonzero in the present paper. Previously in [10], given
that wave profile U is a pulse by assuming a fixed finite cell mass, a
class of chemical kinetic function gðu; cÞ was identified through a
constructive approach such that the second equation of (1.2) with
ct ¼ ecxx þ gðu; cÞ admits the traveling wave solutions. However the
existence result of [10] does not apply to the problem in the pres-
ent paper whereby the wave profile U is a front. Furthermore with-
out assuming that cell has a fixed finite mass (and hence the
integration constant of the first equation of (1.5) can be nonzero),
the existence of families of traveling wave solutions was first
shown in [3] for a range of gðu; cÞ for e ¼ 0. In the present paper,
we allow e P 0 and hence the results are not covered by [3]. Finally
we mention a work [8] where the transversal stability of traveling
wave solutions of a chemotaxis model with a bistable cell growth
term and a linear chemical kinetics (i.e. gðu;vÞ ¼ u� v) was stud-
ied, which is different from what we study here. It is worth stress-
ing that the method of Hopf-Cole transformation employed in the
paper entirely differs from those developed in afore-mentioned
works.
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The rest of this paper is organized as follows. In Section 2, we
transform our problem to a system of conservation laws by a
change of variable, and state the main results of the transformed
system. In Section 3, we prove the main Theorems 1.1,1.2 and
1.3 using the known results for the transformed system. In Section
4, numerical simulations and biological implications are presented.
Several interesting open questions are proposed in Section 5.

2. Preliminary

2.1. Transformation of the problem

The crucial step of establishing our results is to convert the
Keller–Segel model (1.2) into a system of conservation law by a
Hopf-Cole like transformation

v ¼ � cx

c
¼ �ðln cÞx; ð2:1Þ

which was originally introduced in [17] for the model (1.2) with
e ¼ 0 and then in [35] with e > 0. Indeed with (2.1), we derive a sys-
tem of viscous conservation laws from (1.2) as follows (see also
[22])

ut � vðuvÞx ¼ Duxx;

v t þ ðev2 � uÞx ¼ evxx:

�
ð2:2Þ

We impose the following initial conditions

ðu; vÞðx;0Þ ¼ ðu0; v0ÞðxÞ !
ðu�; v�Þ as x! �1;
ðuþ; vþÞ as x! þ1:

�
ð2:3Þ

Because the chemotaxis model (1.2) describes the directed move-
ment of cells toward the chemical which is consumed by cells when
they encounter, the wave is an ‘‘invasion’’ pattern. That is, the wave
profile of u decreases from its tail to front and that of c increases
from its tail to the front, which means cx > 0. By transformation
(2.1), v 6 0. Hence the physical region of ðu;vÞ is

X2 ¼ fðu;vÞju P 0; v 6 0; u� P 0; v� 6 0g: ð2:4Þ

In the region X2, we shall prove that the solution of conservation
law (2.2) and (2.3) will approach a traveling wave as t !1without
the smallness constrains on wave strength. It is worthwhile to re-
mark that the small wave strength is generally an assumption im-
posed in most of the studies for the conservation laws (e.g. see
[19,24]).

The blowup criterion and long-time behavior of classical solu-
tions of (2.2) with e ¼ 0 in multi-dimensional spaces was recently
considered in [18].

2.2. Existence of traveling wave solutions to the transformed problem

In the absence of viscosity terms, the system (2.2) becomes

ut � vðuvÞx ¼ 0;
v t þ ðev2 � uÞx ¼ 0;

�
ð2:5Þ

which is hyperbolic and genuinely nonlinear when 0 < e < 1 (see
[22]). We now look for traveling waves or viscous shock profiles
of (2.2) with the traveling wave ansatz

ðu;vÞðx; tÞ ¼ ðU;VÞðzÞ; z ¼ x� st;

where s denotes the traveling wave speed and z the traveling wave
variable. Substituting the above ansatz into (2.2), one obtains the
wave equations

�sUz � vðUVÞz ¼ DUzz;

�sVz þ ðeV2 � UÞz ¼ eVzz;

(
ð2:6Þ

with boundary conditions

ðU;VÞðzÞ ! ðu�;v�Þ as z! �1; ð2:7Þ

where u� P 0 and v� 6 0.
Integrating (2.6) once yields that

DUz ¼ �sU � vUV þ .1 ¼: FðU;VÞ;

eVz ¼ �sV þ eV2 � U þ .2 ¼: GðU;VÞ;

8<
: ð2:8Þ

where .1 and .2 are constants satisfying

.1 ¼ su� þ vu�v� ¼ suþ þ vuþvþ;

.2 ¼ sv� � eðv�Þ2 þ u� ¼ svþ � eðvþÞ2 þ uþ;
ð2:9Þ

which gives

sðuþ � u�Þ ¼ vðu�v� � uþvþÞ;
sðvþ � v�Þ ¼ eðvþÞ2 � eðv�Þ2 þ u� � uþ:

ð2:10Þ

Eliminating s from (2.10) yields

uþ � u�
vþ � v�

¼ vðu�v� � uþvþÞ
eðvþÞ2 � eðv�Þ2 þ u� � uþ

: ð2:11Þ

When u� and v� fulfill the condition (2.11), we can solve wave
speed s from (2.10) and obtain two wave speeds with opposite
signs, where the negative s corresponds to the wave speed of the
first characteristic family and the positive one to the second charac-
teristic family of shock waves of (2.5) [22]. We consider only the
case s > 0 and the analysis applies to the case s < 0.

We have the following existence of traveling wave results for
the transformed system (2.2).

Proposition 2.1. Let e > 0 be small. Assume that u� and v� satisfy
(2.11). Then there exists a monotone shock profile ðU;VÞðx� stÞ to
system (2.6) and (2.7), which is unique up to a translation and
satisfies Uz < 0; Vz > 0, where the wave speed s is given by

s ¼ �vv�
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2v2

� þ 4uþv 1� e
v2
þ � v2

�
uþ � u�

� �s
: ð2:12Þ

Moreover the solution profile ðU;VÞ decays exponentially at �1 with
rates

U
V

� �
�

u�
v�

� �
þ

C1�

C2�

� �
er�z; as z! �1;

where C1� and C2� are constants and

r� ¼ �
sþ vv�

2D
þ s� 2ev�

2e

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ vv�

2D
� s� 2ev�

2e

� �2

þ vu�
eD

s
:

Proof. The existence of traveling wave solutions as well as the
wave speed have been given in [22, Theorem 2.1]. It only remains
to derive the asymptotic decay rates. This can be done by lineariz-
ing the system (2.8) around the equilibrium ðu�;v�Þ, which leads
to a Jacobian matrix

Jðu�; v�Þ ¼
�s�vv�

D � vu�
D

� 1
e

�sþ2ev�
e

" #
;

whose eigenvalue r satisfies

r2 þ sþ vv�
D

þ s� 2ev�
e

� �
rþ 1

eD
ðsþ vv�Þðs� 2ev�Þ � vu�ð Þ ¼ 0:

ð2:13Þ

Denote the two roots of (2.13) by r1 and r2. Since 0 6 uþ < u�; v�
< vþ 6 0; sþ vv� > 0 (see [22]), then

T. Li, Z.-A. Wang / Mathematical Biosciences 240 (2012) 161–168 163
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r1 þ r2 ¼ �
sþ vv�

D
þ s� 2ev�

e

� �
< 0:

Furthermore it was shown in [22] that

r1r2jðu� ;v�Þ < 0; r1r2jðuþ ;vþÞ > 0:

Therefore the equilibrium ðu�;v�Þ is a saddle and ðuþ;vþÞ is a stable
node. Computing the eigenvalues of (2.13), we obtain the results di-
rectly by the standard argument of phase plane analysis. h

2.3. Stability of traveling wave solutions to the transformed problem

Now we study the asymptotic stability of traveling wave solu-
tions obtained in Proposition 2.1 under the small initial perturba-
tions of the formZ þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � VðxÞ

� �
dx ¼ x0

uþ � u�
vþ � v�

� �
þ gr1ðu�; v�Þ; ð2:14Þ

where r1ðu�;v�Þ denotes the first eigenvector evaluated at ðu�;v�Þ
of the Jacobian matrix of the system (2.5) corresponding to the first
characteristic field of shock waves. The coefficients x0 and g are un-
iquely determined by the initial data ðu0ðxÞ;v0ðxÞÞ. For the stability
of small-amplitude waves of conservation laws corresponding to
the case g – 0, the reader is referred to [25,33] and references
therein. In this paper, we assume that g ¼ 0 as in [9,12] but consider
the large-amplitude waves in contrast to the small-amplitude
waves in [9,12]. Now by the systems (2.2) and (2.6), we derive thatZ þ1

�1

uðx; tÞ � Uðxþ x0 � stÞ
vðx; tÞ � Vðxþ x0 � stÞ

� �
dx ¼

Z þ1

�1

u0ðxÞ � Uðxþ x0Þ
v0ðxÞ � Vðxþ x0Þ

� �
dx

¼
Z þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � VðxÞ

� �
dxþ

Z þ1

�1

UðxÞ � Uðxþ x0Þ
VðxÞ � Vðxþ x0Þ

� �
dx

¼
Z þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � VðxÞ

� �
dx� x0

uþ � u�
vþ � v�

� �
¼

0
0

� �
:

Since (2.2) is a system of conservation laws, we make use of the
technique of taking anti-derivatives of the perturbations. We
decompose the solution ðu;vÞ as

ðu;vÞðx; tÞ ¼ ðU;VÞðx� st þ x0Þ þ ð/x;wxÞðx; tÞ; ð2:15Þ

where

ð/ðx; tÞ;wðx; tÞÞ ¼
Z x

�1
ðuðy; tÞ � Uðyþ x0 � stÞ;vðy; tÞ � Vðyþ x0 � stÞÞdy

ð2:16Þ

for all x 2 R and t P 0.
It then holds that

/ð�1; tÞ ¼ 0; wð�1; tÞ ¼ 0 for all t > 0:

We further assume, without loss of generality, that the translation
constant x0 ¼ 0. Then (2.14) becomesZ þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � VðxÞ

� �
dx ¼

0
0

� �
: ð2:17Þ

The initial conditions of the perturbation ð/;wÞ are thus given by

/0ðxÞ ¼
Z x

�1
ðu0 � UÞðyÞdy ð2:18Þ

and by the Hopf-Cole transformation (2.1)

w0ðxÞ ¼
Z x

�1
ðv0 � VÞðyÞdy ¼ �

Z x

�1
ððln c0Þy � ðln CÞyÞðyÞdy

¼ � ln c0ðxÞ þ ln CðxÞ: ð2:19Þ

The asymptotic stability of traveling wave solutions of (2.2) means
that ðu� U;v � VÞðx; tÞ ¼ ð/x;wxÞðx; tÞ ! 0 as t !1.

The theorem of the asymptotic stability for the transformed sys-
tem (2.2) is as follows, see [22, Theorem 2.1].

Proposition 2.2 [22]. Let ðU;VÞðx� stÞ be a viscous shock profile of
(2.2) obtained in Theorem 2.1. If e > 0 is small and uþ > 0, then there
exists a constant e0 > 0 such that if ku0 � Uk1 þ kv0 � Vk1þ
kð/0;w0Þk 6 e0, the Cauchy problem (2.2) and (2.3) has a unique
global solution ðu;vÞðx; tÞ satisfying uðx; tÞP d0 > 0 for some d0 > 0
for all x 2 R; t P 0, and

ðu� U; v � VÞ 2 ðCð½0;1Þ; H1Þ \ L2ð½0;1Þ; H1ÞÞ2:

Furthermore, the solution ðu; vÞ has the following asymptotic nonlinear
stability

sup
x2R
jðu;vÞðx; tÞ � ðU;VÞðx� stÞj ! 0 as t !1: ð2:20Þ

When � ¼ 0, the existence and stability of traveling wave solu-
tions were proved in [20].

3. Passing the results to the original system

In this section, we prove the main theorems stated in the Intro-
duction by passing the results of the transformed system (2.2) back
to the original Keller–Segel model (1.2) and (1.3).

Proof of Theorem 1.1. Noting that u remains the same in systems
(1.2) and (2.2), we only need to transform the results from V to C.
Recalling the transformation (2.1), we have

VðzÞ ¼ �ðln CÞz;

which yields that

CðzÞ ¼ Cð0Þe�
R z

0
VðyÞdy

;

where Cð0Þ is a positive number.

Since VðzÞ 6 0, then
R z

0 VðyÞdy!1 as z! �1 and hence Cð�1Þ
¼ c� ¼ 0. However for the right end state cþ ¼ Cð1Þ, there are
two cases to consider.

Case 1. If vþ < 0, then jvþj 6 �V 6 jv�j and hence Cð0Þejvþjz 6
CðzÞ 6 Cð0Þejv�jz which leads to Cð1Þ ¼ cþ ¼ 1. In this case, there
is no bounded traveling wave solution C.

Case 2. If vþ ¼ 0, then �
R1

0 VðyÞdy is bounded since VðzÞ ! vþ ¼ 0
exponentially as z!1. Let �

R1
0 VðyÞdy ¼ M, then Cð1Þ ¼ cþ

¼ Cð0ÞeM > 0. In this case, we obtain a uniformly bounded travel-
ing wave solution C with

CðzÞ ! 0; as z! �1;
CðzÞ ! cþ; as z!1:

From above analysis, we see that only the case vþ ¼ 0 leads to phys-
ical traveling wave solutions for C. Therefore we assume vþ ¼ 0
which results in cþ > 0. Furthermore by the transformation (2.1),
one has

V ¼ �Cz

C
;

which yields Cz ¼ �VC > 0 due to V < 0 and C > 0 for any z 2 R. The
fact Uz < 0 is inherited from Proposition 2.1 directly. To find the role
of the parameter b, we evaluate the second equation of (1.5) at
z ¼ 1 and obtain that

cþðb� uþÞ ¼ 0;

which gives uþ ¼ b since cþ > 0.
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Next we derive the wave speed s given in Theorem 1.1. Indeed,
the first equation of (2.9) gives

v� ¼
sðuþ � u�Þ

vu�
;

where the fact vþ ¼ 0 has been used. Substituting the above iden-
tity into the second equation of (2.9), we obtain

s2½vu�ðuþ � u�Þ � eðuþ � u�Þ2� ¼ v2u2
�ðuþ � u�Þ:

Noticing that b ¼ uþ < u�, we get (1.7) immediately. To finish the
proof, it remains to derive the asymptotic behavior announced in
the theorem, which can be obtained directly from the asymptotic
decay rates given in Proposition 2.1. Then the proof of Theorem
1.1 is complete. h

Proof of Theorem 1.2. The results for u has been given in Propo-
sition 2.2. It remains to pass the results from v to c.

By the transformation (2.1) and (2.16), one deduces that

cðx; tÞ
Cðx� stÞ ¼ e

R x

�1
ðVðn�stÞ�vðn;tÞÞdn ¼ ewðx;tÞ:

Next we show that wðx; tÞ ! 0 as t !1. Indeed it has been shown
in [22], see the Proposition 4.3 and the Proof of Theorem 4.1 in [22],
that kwð�; tÞk <1 and kwxð�; tÞk1 ! 0 as t !1. Then

w2ðx; tÞ ¼ 2
Z x

�1
wwyðy; tÞdy

6 2
Z

R

w2dy
� �1=2 Z

R

w2
y dy

� �1=2

! 0 as t !1;

which implies wðx; tÞ ! 0 as t !1 for all x 2 R. Note that Cðx� stÞ
is a traveling wave solution which is bounded, say, by M1 > 0. Then

jcðx; tÞ � Cðx� stÞj ¼ jCðx� stÞewðx;tÞ � Cðx� stÞj
¼ Cðx� stÞj1� ewðx;tÞj 6 M1j1� ewðx;tÞj ! 0

as t !1

for all x 2 R.
The proof is complete. h

Proof of Theorem 1.3. We shall employ the geometric singular
perturbation theory [7,11] to prove Theorem 1.3. To this end, we
rewrite (2.8) as

U0 ¼ � s
D U � v

D UV þ .1
D ¼: FðU;VÞ;

eV 0 ¼ �sV þ eV2 � U þ .2 ¼: GðU;V ; eÞ;

(
ð3:1Þ

where 0 ¼ d
dz. System (3.1) is referred to as the slow system [11].

Clearly the solution of (2.6) and (2.7) is the solution of (3.1) con-
necting ðu�;v�Þ and ðuþ;vþÞ.

Now we define the rescaling s ¼ z
e, and convert the system (3.1)

into a so-called fast system

_U ¼ eFðU;VÞ;
_V ¼ GðU;V ; eÞ

(
ð3:2Þ

where _f ¼ df
ds.

Setting e ¼ 0 in (3.1), we obtain an invariant manifold M0 define
by

M0 ¼ ðU;VÞjV ¼ h0ðUÞ ¼ .2 � U
s

� �
;

where UðzÞ satisfies

U0 ¼ v
D

UðU � .2Þ �
s
D

U þ .1

D
: ð3:3Þ

It has been shown in [20] that (3.3) has a unique solution U0 satis-
fying U0ðzÞ ! u� as z! �1. Therefore (3.1) with e ¼ 0 has a unique
traveling wave solution ðU0;V0Þ.

Note that at any point of M0;
@G
@V ¼ �s – 0, see (1.7) and (2.12).

Hence M0 is normally hyperbolic for fast system (3.2) with e ¼ 0.
By Fenichel’s invariant manifold theorem [11], for e > 0 sufficiently
small, there is a slow manifold Me that lies within OðeÞ neighbor-
hood of M0 and is diffeomorphic to M0. Moreover it is locally
invariant under the flow of (3.2) and can be written as

Me ¼ fðU;VÞjV ¼ heðUÞ ¼ h0ðUÞ þ OðeÞg: ð3:4Þ

Then the slow system (3.1) on Me can be written as

U0 ¼ FðU; heðUÞÞ ¼ v
sD

UðU � .2Þ �
s
D

U þ .1

D
þ OðeÞ; ð3:5Þ

which is a regular perturbation of (3.3).
It has been shown in [20] that Eq. (3.3) has a one-dimensional

unstable manifold near u�, denoted by U�, and a one-dimensional
stable manifold near uþ, denoted by Sþ. The transversal intersec-
tion U� \Sþ gives the heteroclinic orbit U0ðzÞ. Then by the
geometric singular perturbation theory (see [7] or [11]), for
sufficiently small e > 0, there is a heteroclinic orbit UeðzÞ of (3.1)
on Me, which is a small perturbation of U0ðzÞ with

kUeðzÞ � U0ðzÞkL1ðRÞ ¼ OðeÞ ! 0 as e! 0: ð3:6Þ

Note that on Me; VeðzÞ ¼ .2�UeðzÞ
s þ OðeÞ. Moreover V0ðzÞ ¼ .2�U0ðzÞ

s .
Then it is evident that

kV eðzÞ � V0ðzÞkL1ðRÞ ¼ OðeÞ ! 0 as e! 0: ð3:7Þ

Now we are only left to prove the convergence of Ce. Indeed it fol-
lows from (2.1) that

Ce

C0 ðzÞ ¼ e�
R z

0
ðVe�V0ÞðyÞdy

;

provided that Ceð0Þ ¼ C0ð0Þ. Then (3.7) and the boundedness of
C0ðzÞ immediately yield that for each z 2 R

jCeðzÞ � C0ðzÞj ! 0; as e! 0:

This completes the proof of Theorem 1.3. h

4. Simulations and biological implications

Due to the singularity term c�1 in model (1.2), it is impossible to
obtain the numerical solutions without using the approximation
technique. The Hopf-Cole transformation (2.1) enable us not only
to analytically study the traveling wave solutions as exposed here,
but also to explore numerical solutions using standard numerical
schemes without approximation. In this section, we shall illustrate
the numerical simulations of propagating traveling waves, and dis-
cuss the biological implications.

As the most interesting solution component, the cell density u
remains the same in the original model (1.2) and the transformed
system (2.2). Hence we find the numerical solution u via the trans-
formed model (2.2) which can be numerically solved based on the
finite-difference method. The process of traveling wave propaga-
tion will be simulated in a finite spatial domain with Dirichlet con-
ditions to be compatible with the initial data. The parameter values
will be chosen to satisfy the Rankine–Hugoniot condition (2.11). In
our simulation, the initial data are set as

u0ðxÞ ¼ ~uðxÞ ¼ �uþ 1=ð1þ expð2ðx� 20ÞÞÞ;
v0ðxÞ ¼ ~vðxÞ ¼ �v þ 1=ð1þ expð�2ðx� 20ÞÞÞ;

ð4:1Þ

which is also a wavefront profile with end states ~u� ¼ �uþ 1; ~uþ ¼
�u; ~v� ¼ �v; ~vþ ¼ �v þ 1. In relation to the applications, we hereby

T. Li, Z.-A. Wang / Mathematical Biosciences 240 (2012) 161–168 165



Author's personal copy

consider two sets of parameter values: (1) e ¼ 0 and b > 0; (2) e > 0
and b ¼ 0. The former may describe the reinforced random walk
and the latter may account for the directed movement of endothe-
lial cells toward the signalling molecules during the initiation of
angiogenesis, see Section 1 for details.

In Fig. 1, we simulate the wave propagation of model (2.2) with
e ¼ 0 and b > 0, where the domain X ¼ ð0;300Þwith mesh size 0.5.
We choose D ¼ 2; �u ¼ 1; �v ¼ �1 and v ¼ 0:5, hence ~u� ¼ 2; ~uþ ¼
1; ~v� ¼ �1; ~vþ ¼ 0. Fig. 1(a) is a three dimensional visualization
of traveling waves propagating in the spatial field, and Fig. 1(b)
plots the temporal-spatial wave pattern formation. From
Fig. 1(a), we see that the solution oscillates for a short time and
then quickly evolves to a stable propagating wave with the same
end states as those of the initial data. In relation to the biological
motivation of model (2.2) with e ¼ 0; b > 0, Fig. 1 illustrates a spa-
tial movement pattern of random walkers in response to the chem-
ical signal. Here b > 0 is reflected by the fact b ¼ uþ ¼ 1.

Fig. 2 plots the propagating waves generated by the model (2.1)
with e ¼ 0:1 > 0; v ¼ 0:9 and b ¼ 0, where �u ¼ 0 and other param-
eters are the same as those in Fig. 1. Here Fig. 2(a) plots the tem-
poral-spatial pattern of traveling waves propagating in the field,
and Fig. 2(b) plots the process of the solution u evolving from the
initial profile to a monotone wavefront, which fits our theoretical

results. In this case the model (1.2) describes the directed migra-
tion of endothelial cells toward the signalling molecule VEGF. Such
process is exactly shown by our simulations where b ¼ uþ ¼ 0. An
observable variation between Figs. 1 and 2 is that the transient
time taken from initial data to a steady wave in Fig. 1 is longer than
that in Fig. 2. This implies that the chemical diffusion e may en-
hance the process of wave formation, which is an interesting
numerical discovery not proved by our theoretical results.

We continue to simulate the stability of traveling wave solution.
We consider the initial data ðu0;v0Þ in the form of

u0ðxÞ ¼ 1þ 1
1þ expð2ðx� 100ÞÞ þ

0:5 sin x

ððx� 100Þ=10Þ2 þ 1
;

v0ðxÞ ¼ �1þ 1
1þ expð�2ðx� 100ÞÞ þ

0:5 sin x

ððx� 100Þ=10Þ2 þ 1
;

ð4:2Þ

where the initial perturbation belongs to H1ðRÞ as required by Prop-
osition 2.2. Then the evolution of the numerical solution u for the
case e > 0 is plotted in Fig. 3. It is clear to visualize that the solution
gradually stabilizes to a traveling wavefront, as proved by our the-
oretical results.

Our numerical simulations indicate that the traveling wave-
front, which may interpret the migration of endothelial cells to-
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Fig. 1. Numerical simulation of propagation of the traveling wavefronts of cell density u to model (2.2) in the spatial domain as time evolves with a three-dimensional
visualization in (a) and two-dimensional visualization in (b), where e ¼ 0; D ¼ 2; v ¼ 0:5 and the initial data are u0 ¼ 1þ 1=ð1þ expð2ðx� 20ÞÞÞ; v0 ¼
�1þ 1=ð1þ expð�2ðx� 20ÞÞÞ. The arrow indicates the propagating direction of traveling waves.
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Fig. 2. Numerical simulation of propagating traveling wavefront u of model (2.2), where e ¼ 0:1; D ¼ 2; v ¼ 0:9 and the initial data are u0 ¼ 1=ð1þ expð2ðx� 20ÞÞÞ;
v0 ¼ �1þ 1=ð1þ expð�2ðx� 20ÞÞÞ. The arrow indicates the propagating direction of traveling waves.
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ward the signalling molecule VEGF during the early stage of angi-
ogenesis, or the propagation of particles toward a non-diffusive
chemical field, are stable against perturbations.

5. Open questions

This paper studied various aspects of traveling wave solutions,
including the existence, nonlinear stability, asymptotic decay rates
and wave speed, to a chemotaxis model describing the initiation of
angiogenesis and reinforced random walk. The results are achieved
by using a Hopf-Cole transformation of variable which transforms

the model into a system of conservation laws. The main results of
this paper include: (1) using the backward change of variable to
derive the existence and stability of traveling wave solutions to
the original Keller–Segel chemotaxis model based on the results
for the transformed system, see Theorems 1.1 and 1.2; (2) deriving
the explicit wave speed (1.7) in terms of model parameters such as
the chemosensitivity v and chemical diffusion e, and finding the
asymptotic decay rates of traveling wave solutions, see Theorem
1.1; (3) using the geometric singular perturbation method to show
the zero chemical diffusion limit of traveling wave solutions, see
Theorem 1.3. Our results show that if the right end state of v of
the transformed system is non-zero (i.e. vþ < 0), the traveling
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Fig. 3. Numerical simulation of the stability of traveling wavefront u for e ¼ 0:1 > 0, where D ¼ 2; v ¼ 0:45 and the initial data are given by (4.2).

0 50 100 150 200 250 300 350 400

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Space x

C
el

l d
en

si
ty

 u

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Space x

C
el

l d
en

si
ty

 u

(a) (b)

Fig. 4. Numerical simulations of the stability of traveling wavefront u to model (2.2) for uþ ¼ 0 in (a) and for large initial perturbation in (b), where e ¼ 0:1; D ¼ 2. Other

parameter and initial data are: (a) u0 ¼ 1
1þexpð2ðx�100ÞÞ þ 0:5 sin x

ððx�100Þ=10Þ2þ1
; v0 ¼ �1þ 1

1þexpð�2ðx�100ÞÞ þ 0:5 sin x
ððx�100Þ=10Þ2þ1

; v ¼ 0:9; (b) u0 ¼ 1þ 1
1þexpð2ðx�100ÞÞ þ sin x

ððx�100Þ=10Þ2þ1
; v0 ¼ �1

þ 1
1þexpð�2ðx�100ÞÞ þ sin x

ððx�100Þ=10Þ2þ1
; v ¼ 0:45. The arrow indicates the propagating direction of traveling waves.
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wave solution CðzÞ corresponding to the original system blows up
as z!1 and loses physical meaning. The meaningful case is when
vþ ¼ 0 which corresponds to cþ > 0. In addition, we show that the
parameter b, which represents the growth rate of the chemical but
vanishes in the transformed system, is indeed also a parameter
equivalent to the right end of cell density (i.e. b ¼ uþ).

Despite various results obtained in current and previous studies
[35,20–22], there are still many interesting open questions. The
existence of traveling wave fronts of model (1.2) has been estab-
lished for both uþ > 0 and uþ ¼ 0. However the nonlinear stability
of traveling wave solutions was derived only for the case uþ > 0,
where the method of energy estimates was employed (see
[20,21]). This method no longer applies for the case uþ ¼ 0. The
simulation presented in Fig. 4(a) illustrates that traveling wave
solutions are still stable when uþ ¼ 0. Hence novel approach needs
to be developed to prove the stability of traveling wave solution for
the case uþ ¼ 0.

As commented in Remark 1.2 and results given in Theorem 1.2,
the existence and stability of traveling wave solutions with uþ > 0
for large e > 0 still largely remain unsolved. All approaches ap-
peared in existing literature seem to fail. The numerical simulation
(not shown here) illustrates that the solution behavior for uþ > 0
for large e > 0 is different from the case of small e. One reason is
that system (2.2) changes its type and is no longer hyperbolic for
large e. Hence new method is needed to examine the solution
behavior for large e.

Another interesting question is the stability of traveling wave
solutions for large perturbations. The stability Theorem 1.2 re-
quires the initial perturbations to be small and the method of en-
ergy estimates in [20–22] made use of this assumption. However
the numerical simulation in Fig. 4(b) shows that stability still holds
for large perturbations, which raises a challenging question for the
future.
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