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Nonlinear stability of phase transition steady states to a
hyperbolic—parabolic system modeling vascular networks

Guangyi Hong, Hongyun Peng, Zhi-An Wang and Changjiang Zhu

ABSTRACT

This paper is concerned with the existence and stability of phase transition steady states to
a quasi-linear hyperbolic—parabolic system of chemotactic aggregation, which was proposed
in [Ambrosi, Bussolino and Preziosi, J. Theoret. Med. 6 (2005) 1-19; Gamba et al., Phys.
Rev. Lett. 90 (2003) 118101.] to describe the coherent vascular network formation observed in
vitro experiment. Considering the system in the half line R} = (0, c0) with Dirichlet boundary
conditions, we first prove the existence and uniqueness of non-constant phase transition steady
states under some structure conditions on the pressure function. Then we prove that this unique
phase transition steady state is nonlinearly asymptotically stable against a small perturbation.
We prove our results by the method of energy estimates, the technique of a priori assumption
and a weighted Hardy-type inequality.

1. Introduction

Experiments of in vitro blood vessel formation demonstrate that endothelial cells randomly
dispersing on a gel substrate (matrix) can spontaneously organize into a coherent vascular
network (see [1, 13] and figures therein), which is called angiogenesis — a major factor driving
the tumor growth. How endothelial cells self-organize geometrically into capillary networks and
how separate individual cells cooperate in the formation of coherent patterns remain poorly
understood biologically up to date. These networking patterns cannot be explained by the
macroscopic aggregation models such as Keller—-Segel type chemotaxis models that lead to
point-wise blowup or rounded aggregates, nor by the microscopic kinetic models that describe
individual cell behaviors, as commented in [6]. Strikingly they can be numerically reproduced
by a hydrodynamic (hyperbolic-parabolic) models of chemotaxis proposed in [1, 13] as follows

Op+ V- (pu) =0,
9(pu) + V- (pu @ u) + Vp(p) = ppVeo — apu, (1.1)
Op — A =ap —bg
where p denotes the endothelial cell density, u the cell velocity, and ¢ the concentration of
chemoattractant secreted by cells; p is a pressure function accounting for the fact that closely

packed cells resist to compression due to the impenetrability of cellular matter, the parameter
1 > 0 measures the intensity of cell response to the chemoattractant and apu corresponds to a
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damping (friction) force due to the interaction between cells and underlying substratum with a
drag coefficient o > 0; a and b are positive constants accounting for the growth and death rates
of the chemoattractant. The convective term V - (pu ® u) models the cell persistence (inertia
effect). We refer more detailed biological interpretations on the model (1.1) to [1, 13]. The
hydrodynamic system (1.1) has been (formally) derived from the following kinetic equation in
[7] via the mean-field approximation

887{: +v- V.?)f = A(T[¢](v/’ U)f(tv z,v’) - T[gi)](v,v’)f(t,:zr,v))dv/,

where f(t,z,v) denotes cell density distribution at time ¢, position x € R? moving with a
velocity v from a compact set V' in R?, and tumbling kernel T'[¢](v’, v) describes the frequency
of changing trajectories from velocity v’ (anterior) to v (posterior) in response to a chemical
concentration ¢.

At first glance from mathematical point of view, the above hydrodynamic system (1.1) is
analogous to the well-known damped Euler—Poisson system where the ¢-equation is elliptic
(that is, —A¢ = ap) which appears in various important applications depending on the
sign of u, such as the propagation of electrons in semiconductor devices (cf. [22]) and the
transport of ions in plasma physics (cf. [8]) and the collapse of gaseous stars due to self-
gravitation [5]. However, the parabolic ¢-equation in (1.1) will bring substantial differences in
mathematical analysis and many existing mathematical frameworks developed for the Euler—
Poisson system are inapplicable directly to (1.1). Due to the competing interactions between
parabolic dissipation and hyperbolic anti-dissipation effect plus nonlinear convection, the global
well-posedness and regularity of solutions to (1.1) is very complicated as can be glimpsed
from the Euler—Poisson equations for which the understanding of solution behaviors is rather
incomplete despite numerous studies attempted. Up to date, there are only few results obtained
for (1.1) in the literature. First when the initial value (po,uo,¢o) is a small perturbation of
a constant ground state (p,0,¢) in H*(R%)(s > d/2+ 1) with p > 0 sufficiently small, the
global existence and stability of solutions with nonvacuum (that is, inf,cga p > 0) to (1.1)
was established in [9, 11]. The linear stability of constant ground state (p, 0, ¢) was obtained
under the condition p’(p) > “Fp in [16] where an additional viscous term Aw is supplied to
the second equation of (1.1). The stationary solutions of (1.1) with vacuum (bump solutions)
in a bounded interval with zero-flux boundary condition and in R were constructed in [2] and
further elaborated in [3]. The model (1.1) with p(p) = p and periodic boundary conditions in
one dimension was numerically explored in [12]. These appear to be the only results available
to the system (1.1) in the literature and further studies are highly in demand. For results on
some other types of hyperbolic—parabolic chemotaxis models, we refer to [10, 17, 18, 24, 27]
and references therein.

Note that the above-mentioned mathematical works on (1.1) prescribe initial data as a small
perturbation of constant equilibria and the large-time profile of solutions is also constant, which
cannot explain the experimental observations of [1, 13] showing prominent phase transition
patterns connecting regions clear (or low density) of cells. This motivates us to explore the
possible non-constant phase transition profiles of solutions. The aim of this paper is to study
the existence and stability of phase transition steady states without vacuum to the system (1.1)
in one-dimensional half space Ry = (0, 00). For the convenience of presentation in the sequel,
we set m = pu, namely m denotes the momentum of cells, and recast the one-dimensional
system (1.1) in R as

pr+m, =0, xRy, >0, (1.2a)

m2
met ("4 000)) = oo — am, (1.2b)
S = e +ap — bo. (1.2¢)
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As in [16], we assume the pressure function p depends only on the density and satisfies

p(p) € CH(0,00), ¥/(p) = ==p >0 for any p > 0. (1.3)

A typical form of p is p(p) = %pz with K > . We supplement the system (1.2a)—(1.2c) with
the following boundary conditions

m(0,t) =0, ¢(0,t)=¢_, (1.4)

and the initial value

(p,m,(b)(x,O) = (pOam07¢0)(m) — (p+a07¢+) as T — +OO’ (15)

where ¢_, py >0, ¢ > 0 are constants and ¢p_ # ¢..
In this paper, we shall first use delicate analysis to show that the system (1.2a)-(1.2c) has
a unique non-constant stationary solution (p,0, ¢) without vacuum satisfying

J0) =6 and lm (5.6)(@) = (ps.61),

where p and ¢ are monotone. Then we show that the stationary solution (p,0,¢) is
asymptotically stable, namely the solution of (1.2a)-(1.2c) converges to (p,0,$) point-wisely
as t — oo if the initial value (pg,mo, ¢o) is an appropriate small perturbation of (p,0, #). The
monotonicity of 5 and ¢ indicates that the steady states have phase transition profiles. To the
best of our knowledge, there are not such results available in the literature for (1.2a)—(1.2c) and
even for the Euler—Poisson equations (cf. [14, 19—-21, 26]. To prove our results, we fully capture
the structure of (1.2a)—(1.2c) where the stationary solution has exponential decay at far field,
which is not enjoyed by the Euler—Poisson (or Euler) equations. Although part of the proof of
our results is inspired by some ideas of [14, 15, 25, 26] on Euler—Poisson or Euler equations,
we have added lot of extra efforts to deal with complicated couplings and boundary effects.
The coupling term pp¢, leads to two linear terms in the linearized system around stationary
solutions and how to make these linear terms under control is crucial to the asymptotic stability
against small perturbations. We resolve this issue by the structural assumption (1.3) to take up
the dissipation and use the exponentially weighted Hardy inequality in half space to compensate
for the lack of dissipation in the hyperbolic equations. Due to the couplings and boundary
effects, the energy estimates are very sophisticated, where the lower-order estimates involve
higher-order estimates and vice versa. We use the delicate energy estimates along with the
technique of a priori assumptions to unravel these tangles and gradually achieve our results.

The rest of this paper is organized as follows. In Section 2, we state our main results on
the existence of non-constant stationary solutions (Theorem 2.1) and stability of stationary
solutions (Theorem 2.2). In Section 3, we study the stationary problem and prove Theorem 2.1.
The proof of Theorem 2.2 is given in Section 4.

2. Statement of main results

In this section, we shall state the main results of this paper. To be precise, we first introduce
some notations used. Throughout the paper, we use || - |, || - || and || - || to denote the norms
of usual L= (R, ), L*(R,) and the standard Sobolev space H*(R ), respectively. We also use
1o o fu)ll (respectively, (... fu)l) to denote L f1]| + - + [|full (respectively, £l +
4+ || fullx) for some n € Z. We denote by C' a generic constant that may vary in the context,
and by C,, a constant depending on 7. Occasionally, we simply write f ~ g if C~! < f < Cg
for some constant C' > 0.



PHASE TRANSITION STEADY STATE TO A HYPERBOLIC-PARABOLIC SYSTEM 1483

It can be verified that the system (1.2a)—(1.2c) possesses the following energy functional (cf.
2, 7))

OV¢F<+b¢%dz—¢/ péda

1 1 1
Flo.wdl =5 [ oot [ G+ o
20 Jr, BJr, 2a Ry

Ry

which, subject to the boundary condition (1.4), satisfies

d 1
GFd + 2 [ pido s [ jafas o,
de wJr, aJr,

where pG”(p) = p'(p). Thus the stationary solution satisfying < F[p,u,¢] =0 gives rise to
pu =0 and ¢, = 0 in R . Since we are interested in non-constant profile for p, u = 0 is the only
(physical) stationary profile for the velocity u. Therefore stationary solutions of (1.2a)—(1.2c)
without vacuum must possess the form (p, 0, ¢), where (p, ¢) satisfies

p(ﬁ)a: = Nﬁéwa z € Ry, (2'13)
é(o) = (b,, (2lc)
Jim (p,0) = (p4,64). (2.1d)

Here the pressure p satisfies (1.3) and the constants p; and ¢+ are the same as in (1.4) and
(1.5).

Then our first result concerning the existence and uniqueness of solutions to the stationary
problem (2.1a)—(2.1d) is given below.

THEOREM 2.1. Let p4 > 0 and ¢_ # ¢4 such that apy = bpy. If

¢_—¢++/Op+p()d >0, (2.2)

s

then there is a unique constant p_ > 0 such that the problem (2.1a)-(2.1d) with (1.3) admits
a unique solution (p, ¢) satisfying p(0) = p_ and

pl(x) <0, (z) <0 ifdp- > ¢y, (2.3)
pl(x)>0,¢(x)>0 ifp <. '
Moreover, if |¢p_ — ¢ | is small enough, it holds that
2 —
S e (28 + 9(0) = pel +1660) — 6. < Co Vo —6ul, w20 (2

k=1

for some constants C > 0 and A\ > 0 which may depend on p,, a and b, but independent of

o — P4

REMARK 2.1. Under the condition (1.3), the integral fp+ Ps) ds in (2.2) is positive, but not

necessarily finite since 2 ( ) s 400 as s — 0 is possible. While in the case of Jor p“f) ds = 400,

the condition (2.2) is free for any given ¢_ and ¢ .

Our second result is the asymptotic stability of the stationary solutions obtained in
Theorem 2.1, which is stated in the following theorem.
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THEOREM 2.2. Let the conditions in Theorem 2.1 hold and define
oo== [ (ov) = plu)dy. B0 = n(a) = &

If poe€ H3NHIRY), moe H*NH(Ry), and &y € H*NH(Ry) with irg po(x) >0
zeR4
(namely irg {@os + p} > 0), then there exists a constant §y > 0 such that if
reRL

lpolls + [lmoll2 + [ @olls + [ — ¢+| < do,

the problem (1.2a)—(1.2¢) subject to the initial-boundary conditions (1.4)—(1.5) admits a unique
classical solution (p(x,t),m(z,t), $(z,t)) in Ry x (0,00) satisfying irﬁ{ p(x) >0 for any t >0
reERy

and

lim sup |(p,m,¢)(z,t) — (p,0,¢)(z)| — 0. (2.5)

t—o0 zeR,

REMARK 2.2. With the condition ®, € H*, we can define the initial values of ¢; and ¢
through the equation for ¢. That is

(I)t() = ¢t0 = (q)O)TT + a(@O)m - b(I)Oa (26)

Dyro = Pri0 = (@to)m - a(m())x — bDyp. (2.7)

These initial values of time derivatives are of importance in deriving the higher order estimates
in Section 4. Furthermore, we always assume that the initial data are compatible with the
boundary conditions at x = 0.

3. Stationary problem (Proof of Theorem 2.1)

In this section, we shall study the stationary problem (2.1a)—(2.1d) and complete the proof of
Theorem 2.1. To this end, we first reformulate our problem (2.1a)—(2.1d), and then prove the
existence and uniqueness of solutions. Finally, we derive the monotone and decay properties
of solutions.

3.1. Reformulation of our problem
We start by proving the following lemma, which plays a key role in the reformulation of our

problem.

LEMMA 3.1. If f is a solution to the problem

{fx =w(f()), =Ry, 51)

f(+00) = ko,
where w is a continuous function and kg is a constant, then we have

lim f, =w(ko) =0.

T—r+00

Proof. Since w is continuous, and lim,_, ., f(z) = ko, we have lim, 1 f, = w(ko). It
remains to show w(kg) = 0. We proof this by contradiction. Supposing that w(kg) # 0, without
loss of generality, we assume w(ko) > 0. Due to the continuity of w and lim,_, 4~ f(z) = ko,



PHASE TRANSITION STEADY STATE TO A HYPERBOLIC-PARABOLIC SYSTEM 1485

there exists a constant Xy € Ry such that for any = > Xy, w(f(x)) > @ > (. This along
with (3.1); implies

* k
f(x) = f(Xo) —|—/ w(f(x)dz > f(Xo) + w(QO)(x — Xy) > 400 as z — +oo,
Xo
which contradicts the fact f(4o00) = ko. Hence, w(ky) =0. The proof of Lemma 3.1 is
complete. O
Define
S /
ﬂ@:/’“ﬂw (3.2)
py HT

for any s > 0. Clearly, F(p+) = 0. We claim that under the conditions (1.3), (2.2) and p4+ > 0,
there exists a unique constant p_ > 0 such that

Flp-)=¢- — ¢+ (3.3)
and

- > ¢ = p_>p;p (resp. ¢ < ¢4 = p_ < py). (3.4)

Indeed, in view of (1.3), we know that

> % > 0. (3.5)
This implies that the function F(s) is strictly monotonically increasing. Furthermore, we have
F(s) <0if s < py, and lims_, 4 oo F(s) = +00. For the case ¢_ > ¢, since F(py) =0 < ¢_ —
¢4 < 00, then there exists a unique constant p_ € (p4,+00) such that (3.3) holds. For the

case ¢_ < ¢1, we have ¢p_ — ¢ < 0. If fO” %dT = 00, we know that lims_,o FI(s) = —o0 <
¢_ — ¢ <0=F(py), then similar to the case ¢_ > ¢, there exists a unique constant p_ €
(0, p+) such that F(p_) = ¢_ — ¢+. Now it remains to consider the case when ¢_ < ¢, and
Op+ %dT < o0o. In this case, since the F(s) is continuous, monotonic, and bounded below,
we can extend F(s) by defining F(0) := lim,_,¢ F'(s) > —o0. Then the extended function F(s)
is continuous on [0, p+]. Furthermore, from (2.2), we get F(0) < ¢_ — ¢ < 0= F(p;). Hence,
there exists a unique constant p_ € (0, p4.) such that F(p_) = ¢_ — ¢,. Then (3.3) is proved.
Moreover, with the help of (3.3) and (3.5), we immediately get (3.4). We thus finish the proof
of the claim.
To proceed, assume that (p, @) is a classical solution to (2.1a)—(2.1d) with p > 0. Dividing

(2.1a) by p and integrating the resulting equation over (z,+00), we get

¢(z) = F(p(x)) — F(p+) + ¢+, (3.6)

where F'(s) is as in (3.2). Sending z — 0T along with (2.1d), (3.3), and the fact F(py) = 0, we
get

lim F(p(x)) = F(p-).

z—0t

By using the monotonicity and continuity of F(s), we further have that
5(0) = lim p(z) = lim F~L(F(p(x)) = F~'(F(p_)) = p..
x—0F z—0t
Inserting (3.6) into (2.1b), we get
[F(p)lae = b[F(p) — F(p+)] + bdy — ap. (3.7)
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Multiplying (3.7) by 2F’(p)ps, it follows that
Ja

2F (p)pu[F' (p)pa)e = 2{b[F(p) — F(p+)] + bdy — ap} =: 2H (p)F' (p)pa, (3.8)
with
H(s) :=b[F(s) = F(p4)] + b4 — as. (3.9)
Thus,
[F'(p)p.)? = G(p) + Co >0, z€R, (3.10)
for some constant Cj and some function G(s) with
G'(s) = 2F'(s)H(s). (3.11)
By virtue of (1.3) and (3.9), we get
H'(s) =bF'(s) —a >0 (3.12)

for any s > 0. Due to the condition apy = b¢_, it holds that H(ps) = 0. This along with (3.12)
yields that
H(s) > H(py)=0if s > py and H(s) < H(py) =0if s < p;. (3.13)
Then by (3.5), (3.11), and (3.13), we get G'(s) >0 if s > p; and G'(s) <0 if s < p4. This
gives
G(s)—G(p+) >0 (3.14)
for any s # py. We claim that Cy = —G(py). Otherwise, we have Cy < —G(py) or Cp >

—G(p+). If Cy < —G(p4), by the continuity of G and p, there exists a constant Ky > 0 such
that if x > Ko,

G(p+) — Co
2
Then G(p) + Cy < 0 for > Ky. This contradicts to (3.10). If Cy > —G(p.), using (3.14), we

get p, # 0 for any x € R. Therefore, for any x € R, it holds that

_ G(p)+Co . _ G(p) +Co

pm:_F/i(ﬁ) lfp7 >p+ and px:F/i(f))
With the fact p(+00) = p4 and Lemma 3.1, we have Cy = —G(p,). This is a contradiction.
Hence, we have Cy = —G(p) and

[F'(p)pa]” = G(p) — G(p+), x € Ry,
p(0) = p—, p(+00) =py.

(0
This together with (3.5) and (3.14) implies that p, < 0if p_ > p; and p, > 0if pL > p_, and
that

G(p) <

< =Cy.

if p_ < py.

(3.15)

pz(x) =0 if and only if p(z) = p4 (3.16)
for any x € R,. Hence, we can solve p, from (3.15) that
_ G(p) — G(p+) . _ G(p) — Glp4) .
g =——————"if¢p_ >¢, and p,=F+————"""if ¢_ < ¢4,
g F(p) e F'(p) :

where we have used (3.4).
Summing up, we have the following lemma.
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LEMMA 3.2. Under the conditions of Theorem 2.1, if (p, ¢) is a classical solution to the
problem (2.1a)—(2.1d) satistying p(x) > 0 for any = € R, then (p, ®) is also a solution to the
following problem:

Pm:—G(pF)/Eﬁ?(p*) if p_ > py (reps. px:G(pF)/(_p)G(p” ifp_ < po),
3(w) = F(p(@) — Flps) + 61, (3.17)
p(0) =p—, p(+00) = ps.

Here F(s) and G(s) are given in (3.2) and (3.11), respectively, and p_ > 0 is determined by
(3.3).

In the following, we shall show that the problem (3.17) is indeed equivalent to (2.1a)—(2.1d).

LeEMMA 3.3 (Reformulation). Suppose that the conditions of Theorem 2.1 hold. Then
(p(x), d(x)) is a classical solution to the problem (2.1a)—(2.1d) satisfying p > 0, if and only
if it is a classical solution to the problem (3.17).

Proof. In view of Lemma 3.2, it remains to show that if (p, ¢) is a solution to the problem
(3.17), then (p, ¢) solves the problem (2.1a)—(2.1d). By using (3.17)3 and (3.5), one can easily
derive (2.1a). Due to (3.3) and (3.17)3, we have ¢(0) = ¢_ and ¢(+00) = ¢4. To show (2.1b),
by (3.8), (3.15), and (3.17)3, it suffices to show that p, # 0 for any « € R;.. We prove this for
the case p_ > py (that is,¢_ > ¢ ), and the proof for the case p_ < p, (that is,¢_ < ¢) is

similar. Since p_ > p,, we have p, < 0 for any z € R;. Denote

G(p) — Glpy)
Fp)

We claim that D(p) is Lipschitz continuous on [p, p_]. With this claim, we can prove that
pz <0 for x € Ry, and hence finish the proof. Indeed, if there exists a point xg € Ry such
that p;(zo) = 0, then from (3.16), we have p(z¢) = p4. This implies that p is a solution to the
following problem

D(p) = -

* = D(p*), 0< < o,

p*(z0) = p+-.

Since D(p) is Lipschitz continuous on [p;, p_], the problem (3.18) admits a unique solution on
[0, z9]. While p* = p. is also a solution to (3.18), and obviously, p # p4. This is a contradiction.
Therefore, p, < 0 for any z € R;. Now it remains to prove the claim that D(p) is Lipschitz
continuous on [pi,p_]. With the help of (1.3), (3.5), and (3.14), we know that D(p) is
differentiable if p # p. Furthermore, a direct computation gives
G(p) -G H(p
D) = YD G0 priy . B __ (319)
[ (p)] G(p) - G(p+)
By using (3.11), (3.12), and L’Hépital’s rule, we have

2(5 1(= =
lim 7H (P) = lim 72[{ ([I)){{(p) = lim

pon: GO = Glor)  popt G popr F'(D) Fllpy)
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From (3.13) and (3.14), we get — @) __ > 0for 5> p.. This along with (3.20) yields

G(p)—Glp+)
= 2(5 3 ! _
lim _H (p) B TN 1) _ JaF (/p+) b
=0t A G(p) — G(p+) p—oi G(p) — G(p+) F'(p+)
Therefore,
Hp)  [aFip)—b

lim D'(p) = — lim

o p—p m - F'(p+)

Note that 22 =Pw+) — D) for 5> p,, and that

=P+ P—P+
D(p) — D 2 1 p) — H(p
Jim [P®) (p2+)| S S, G(p) G(§+) — qim P)
p—p+ 1p— pil [F'(p+)]? p—p+ Ip— poil p=p+ P — Pt
H'(p F -
— i H) _aFp) =b
=+ F'(py) Fpy)

due to (3.11), (3.12), and L’Hopital’s rule, we have

L L 2\ 2 ; -
D, (o) = lim D(pz_ Dlpy) _ Jim ID(pz D(P;)| 2 (/p+) @
p=pl PP+ oD = py F'(p+)

where D/, (p4) is the right derivative of D(p) at p;.. We thus have lim , .+ D'(p) = D/ (p4).

o]
This in combination with (3.19) yields that D’(p) is continuous on [p4, p—], and thus |D'(p)| <
C(p—, p+) for some constant C(p_, p+) > 0 depending on p_ and p,. This implies that D(p)
is Lipschitz continuous on [p;, p_]. The proof of the present lemma is complete. O

3.2. Existence and uniqueness of solutions

In this section, we will prove that the problem (2.1a)—(2.1d) admits a unique solution (p, ¢) with
p > 0. Due to Lemma 3.3, it now suffices to consider the problem (3.17). As before, we focus
only on the case p_ > py (that is, ¢_ > ¢, ), the proof for the case p_ < p (that is, ¢_ < ¢4)
is similar and so omitted. Let us begin with the following ODE problem

By the Lipschitz continuity of D(p) on [p4, p—], we conclude that the problem (3.21) admits
a unique solution on [0, X,) for some X, € R;. Then by the contradiction argument and
discussions in Step 1 on the uniqueness of solutions to (3.18), we get p(z) > p4 for any x €
[0, X.). This, along with the standard extension theorem for ordinary differential equations,
implies that the solution p to the problem (3.21) exists globally in Ry, and for any = € Ry,
p(x) > pi. In addition, note from (3.16) that p,(x) = 0 if and only if p(x) = p, we have that

pz <0 forany z € Ry, (3.22)

and that lim,_, - p(z) exists. Denoting p(400) := lim,_, 4« p(z), from Lemma 3.1, we obtain
G(p(400)) — G(p+) = 0. This combined with (3.14) give rise to p(+00) = p+. With p(z) at
hand, we can define ¢(x) from (3.17)y. Clearly, (p,$) is a solution to (3.17) for p_ > p,.
Finally, since p; < p(z) < p—, the uniqueness of solutions can be proved by the Lipschitz

continuity of D(p) on [p4, p—].
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3.3. Monotonicity and decay properties

Recalling (3.4) and (3.22), we get p'(z) < 0 if ¢_ > ¢+. In a manner similar to the derivation
of (3.22), we have p'(x) > 0 if ¢_ < ¢. With the help of (3.5), (3.6), and the properties of p,
we have

be <0if p_ > ¢, and ¢, > 0if ¢_ < ¢

This gives (2.3). Now let us turn to the decay properties of the solution. By using (3.3) and

(3.5), we get
P+
/ F'(s)ds

p—

6 — | = > Zlp- = psl (3.23)

Thus |¢p_ — ¢4 | < 1 implies |p_ — p4| < 1. In the following, without loss of generality, we
assume that [p4,p-] C [p+,p+ + 1], and thus for any continuous function f defined on R,
SUPgep, o] /() depends only on p.. If ¢ > ¢ (that is, p— > py), recalling (2.3) and (3.17),
we have

Gl — o)
F'(p)
for any € Ry. Owing to (1.3), (3.5), (3.11), and the condition ap; = bo, we get
G"(s) =2[F'(s)H(s)] = 2F'(s)H'(s) + 2F" (s)H(s)

p—>p>py and pp = — (3.24)

= 2F"(s)(bF'(s) — a) + %(sp"(é’) =1/ (5))(b[F'(s) = Fpy)] + by — as)

> 9F/(s)(bF'(s) — a) — |s — py|  sup /jglubp"(mp’m)(b sup F’<L>+a>

LE[p4.p— tElpy.p-]
> 2F/(s)(bF'(s) — a) — Clpy )]s — s (3.25)

for any s € [p4, p—], where C(p4) > 0 is a constant depending on p,. From (3.11) and (3.13),
we get G'(p4) = 0. This combined with (3.5), (3.25), and the Taylor expansion implies

G(p) — Glps) = G(p) — Glps) — G'(p4) (5 — p1) = / / G (P = py) + pa)drds|p— po

> S[2F'(s)(bF'(s) — a) — Clp:)|p — p |5 — po

N |

> Clpy)lp—psl, (3.26)

provided |p_ — p4| is suitably small, where C(p,) is a positive constant depending on p..
Combining (3.26) with (3.24), we get

G —Glow) _ /G —Glps)

p— r = X < —M(p—
(p p+) F/(ﬁ) sup F/(ﬁ) 1(p p"r)
rERy
for some constant A\; > 0 depending on p,, provided |p_ — p | is suitably small, where we have

used (1.3) and (3.5). Consequently, with (3.23), we have the following decay estimate:

_ _ _ _ b _
p=pel=p=pr <(p-—pr)e ™ =lp- = pile™™ <l =gl >0 (3.27)
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For the case ¢_ < ¢4 (that is, p_ < p4), it holds that

Gp) —Glo).

) (3.28)

p— <p<ptand p, =

Using (3.5), (3.26), and (3.28), we get

5> Y Clp+)|p — p+|

~ SUPze[p_,p4] Fp

) 2 7)‘2(:5 - P+),

that is,

(p+ —P)a +A2(py —p) <O

for some constant Ay > 0 depending on p., provided |p— — p| is suitably small. It thus holds
that

b

lpr = ol =pr =< (py —p)e " < g|¢— —dile™ T @ >0.

Finally, by (2.1b), (3.3), (3.6), (3.7), and (3.27), we get (2.4). The proof is complete. O

4. Global existence and asymptotic stability

In this section, we are devoted to studying the asymptotic stability of the unique stationary
solution to (1.2a)—(1.2a) obtained in Section 3. To this end, we first reformulate the problem
with the technique of taking anti-derivative for p.

4.1. Reformulation of problem

Combining (1.2a)—(1.2¢) with (2.1a)—(2.1c), we have

(0= P+, =0, (1.1a)
W+(fj;wwwmwh=wm—w%—wm (4.1b)
(¢—0)=(¢—0),, +alp—p)—bo—9) (4.1c)

It follows from (4.1a) and m(0,t) = 0 that
/ (p—p)dz = / (po = p)dx = 0(0),
Ry Ry
which, together with the condition ¢ € H3(Ry) N H} (R, ) in Theorem 2.2, gives

A+@—pﬂx=0

Defining the perturbation function (¢, v, @)
<P=—/ (p—p)dy, b=m, ®=¢—0¢, (4.2)
with

(@07w07q)0) = <_/ (Po _ﬁ)dy7m0a¢0 _¢>a
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we get the reformulated problem:

@t""flpzov

2
Pe + (@:ﬁ ﬁ)z + (s + D)o = P(P)e = p(pds — Pds) — i),

Dy =D, + ap, — bD,
((pa ¢7 q>>|t:0 = (SDOa ¢0a q)0)7
(905 ¥, (I))|I:0 = (07 0, O),

and its linearized problem around p is

eu— (P'(P)pa), +apr =F +H, (4.3a)
B, — By + b = aipy, (4.3b)
(@, 1, )] ;=0 = (¥0, —%0, Po), (4.3¢c)
(0, 01, @), = (0,0,0), (4.3d)
Y =—p, (4.3¢)
where
F=F+F, H= (@2) : (4.4)
Yo t+p),
and
Fi = [p(pa +p) — p(p) = P (P)a)e; Fo=—pt0a®s + ©uta + pPq]. (4.5)

To proceed, we define the solution space of the problem (4.3a)—(4.3d) as follows:
X(0,7) = {(p, 9, ®)| ¢ € C([0, T]; H*) N C'([0,T}; H?), ¥ € C([0, T]; H*) n C* ([0, T]; H'),
& € C(0, 7}, ') n € (0, T); H2))}

for any T € (0, +00).
Since we are interested in the case where the solution has no vacuum, naturally we require
that inf po(z) > 0, namely
TERy

inf {@o. + p} > 0. 4.
xlefﬁh{% +p}>0 (4.6)

For simplicity, we denote
No = [leoll3 + [[oll3 + 1Doll3-

Then by the standard parabolic theory and fixed point theorem (cf. [23]), we have the following
local existence result.

ProrosITION 4.1 (Local existence). Let the conditions of Theorem 2.1 hold. Assume
o € H3*NH}(Ry), v € H* N H(Ry), and &g € H* N H} (R,) such that (4.6) holds. Then
there exists a positive constant Ty depending on Ny such that the initial-boundary value
problem (4.3a)—(4.3d) admits a unique solution (p(z,t),¥(x,t), ®(z,t)) € X(0,Ty) such that
inf,er, {¢s +p} >0 for an 0 <t < 7T and

sup ([lll3 + w13 + 1 2[13) < 2N

te]0,To
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In what follows, we are devoted to proving the following theorem on the global existence and
uniqueness of solutions to the problem (4.3a)—(4.3d).

PROPOSITION 4.2. Let the conditions in Theorem 2.1 hold and assume @ € H?, 1y € H?,
and ®, € H* satisfying (4.6). Then there exists a suitably small constant §; > 0 independent
of t such that if

lolls + lIdollz + 1®olla + |¢— — ¢4 < 41,

the problem (4.3a)—(4.3d) admits a unique global solution (¢(x,t),9(z,t), ®(z,t)) € X(0,00)
such that for any t > 0 there holds that

lells + [14ll2 + [[@]ls < Cdy (4.7)

and

t
jg (B + [[(9er 0r 0, B E + | (@rr e B |2)dr < C2, (48)

where C' is a constant independent of t.

Theorem 2.2 will be proved by Propositions 4.1 and 4.2. Next, we are devoted to proving
Proposition 4.2.

4.2. Some preliminaries

The proof of Proposition 4.2 is based on the combination of the local existence result in
Proposition 4.1 with the a priori estimates given in (4.7) and (4.8). In the sequel, we assume
that (¢, 1, ®) € X(0,T) is a solution to the problem (4.3a)—(4.3d) obtained in Proposition 4.1
for some T > 0 and derive the a priori estimates (4.7) and (4.8) based on the technique of a
priori assumption. That is we first assume that the solution (¢, 1, @) of (4.3a)—(4.3d) satisfies

sup {2,013 + I I3} < 2 (49)
T

0<t<

where € > 0 is a constant to be determined later, and then derive the a priori estimates to
obtain the global existence of solutions. Finally we justify that the global solutions obtained
satisfy the above a priori assumption and thus close our argument.

Using the fact ¢, = —t from (4.3e) and the Sobolev inequality, we have

2 1
Z ||6]x€(<p7 (I))(7 t)||L°°(R+) + Z ||8]x€(wa @t)('a t) “LOO(R+) < Ce. (410)
k=0 k=0
Denote 6 := |¢— — ¢4| by (2.4), one can find a constant ¢; > 0 depending on p, a, and b such
that
et <ple) < e, (4.11)
provided ¢ is suitably small. Combining (4.11) with (4.10), we get
1
-<p=w.+p<g (4.12)
c

for some constant ¢ > 0 depending on p4, a and b, provided € and ¢ are small enough. The
boundary condition (4.3d) together with equation (4.3a) leads to the following boundary
conditions on higher order derivatives:

(01, 010, @i, Prt) la=0 = 0, (0 D))y + F)l,_g =0, (W' (P)pw), +F),|,_, =0. (4.13)

Moreover, the following Hardy inequality plays a key role in deriving the a priori estimates.
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LEMMA 4.1. Let k > 0 be a constant, it holds that
/ e * f2dz < Oy, fidx (4.14)
Ry Ry

for any f € H}(R,), where Cy > 0 is a constant depending on k but independent of f.

Proof. From [4, Lemma 3.4], we get
/ (1+2)2f3de <4 fAda
Ry Ry

for any f € H}(R,). This along with the basic fact e #*(1 + z)? < C}, with some positive
constant Cj, > 0 for any « € R implies

/ e ke f2dx < C’k/ (14 z)"?f*dz < Cy, fAd.
R, R, R,
We thus get (4.14). O

4.3. Energy estimates

In this section, we will derive some estimates for the solution (¢, ®) of (4.3a)—(4.3d) under the
a priori assumption (4.9) by the method of energy estimates. The estimates for ¢ follows from
the fact ¢ = —py.

We begin with the lower order estimates.

LEMMA 4.2. Let the assumptions in Proposition 4.2 hold. If € and § :=|¢_ — ¢4 | are
sufficiently small, then the solution (p, ®) of (4.3a)—(4.3d) satisfies

t
1o, @)IT + el +/0 105 @, @, D, D7) *dT < C(ll (00, Po)IT + Il%0]1%) (4.15)

for any t € (0,T), where C' > 0 is a constant independent of T

Proof. Multiplying (4.3a) by ¢ and integrating the resulting equation over R, , we get

d S 7=
at J. (wt 50 )dx+/R+p (p)prdx

NP+ [ Fipdot [ Fapdos [ Hod (4.16)
+ + +

By the Taylor expansion, we get
Pz +p) = p(p) =1/ (p)s = 1" (P + V1902) 97
for some 91 € (0,1). Then it follows from (1.3), (4.5), (4.10), and (4.11) that
Fipdz = — [ [p(pe +p) = p(p) — 1 (p)pu]uda < Cellpall?, (4.17)
Ry Ry
provided € and § are suitably small. Integrating by parts, we have

Fopdr = *u/ PuPrpda — u/ Pudrpdr — u/ PP, pdr

Ry Ry Ry Ry

= —,u/ <pw<I>w<pda:—,u/ @wqga,wdm+u/ ﬁw@)tpdx—ku/ pPp,dx. (4.18)
Ry Ry R, Ry
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In view of (4.10) and the Cauchy—Schwarz inequality, we deduce
—M/R 02 ®@apdz < Ololl=leall| @] < Cell (0, B2)lI. (4.19)
+
By the fact |(p., ¢.)| < Cde=** from (2.4) and the Hardy inequality (4.14), it holds that

- ﬂ/ <P:z:€?>x€0d$ + ,U'/ ﬁqupdx
Ry Ry

-z _ Ay P
< Cllpelllle™**¢]| + Colle™ 27 ||[le” 27|

< CO[(pa, @)%, (4.20)

where the Cauchy—Schwarz inequality has been used. Inserting (4.19) and (4.20) into (4.18)
leads to

Fapde < O+ (o @) +11 [ pgd (4.21)

R, R,

For the last term on the right-hand side of (4.16), from (4.4), (4.10), (4.12), integration by
parts and Cauchy—Schwarz inequality, we have

2
2
[ o - - / Lz < C / Slpaldz < Cllgelllleelllesl < Cell (e )l
.

+ @ZE + p ]R+
(4.22)
Substituting (4.17), (4.21), and (4.22) into (4.16), we get

d a 9 =)
- Zp?)d d
dt/nh (WPH‘ 5 ) x+/R+p(p)% T

< CG+ ) (0 @) 2 + Cllgel + 1 / P, d. (4.23)

+

Multiplying (4.3b) by £p® and integrating the resulting equation over R, one has

1d H_z2 M/ ~52 | =52
- —p®der + — bp® d7)d
2at o, "G Dh(p +p®3)dx

- f/ ﬁﬁz(I)(I)mderu/ P, de,
R, @ Ry

where, due to the fact |5,| < Cde~** from (2.4) and the Hardy inequality (4.14), the following
inequality holds

- [ pvv.ds < Bl e ] < Cl0.
Ry @

Therefore,
LA [ kg2, 4 & P> 4 b’ 5 2
pd2dx + (bp®” + p®3)dz < p | pPpydx + CH||P,|°. (4.24)
2dt Ry a a Ry Ry

Combining (4.24) with (4.23), we obtain

d o b
— (Wt +o2+ B ﬁ¢2>dw + / B 502 4 (1 (p)¢% — 2up®¢, + 2507 ) | dar
dt Jr, 2 2a R, [2a a

<O +e)lleal® + Cllge)? (4.25)
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for suitably small € and §. By (1.3) and (4.11), we have
5 - pb
P (P)@% = 2upPes + ——p@* > C(p2 + )

for some constant C' > 0 independent of ¢. Then, for sufficiently small ¢ and ¢, we have from
(4.25) that

(67

s
S6% + 250 )da + Cll (g2, @, 2,) 2 < Cile] (4.26)

AT - (%0% +
for some constant Cy > 0, where we have used (4.11). Now let us turn to the estimate for ;.
Multiplying (4.3a) by ¢; and integrating the resulting equation over R, , we get

1d

@ [gof —|—p’(ﬁ)cpg25]dx + / acpfdx = Froda + Faprda + Hodz.  (4.27)
Ry

Ry R Ry Ry

Next, we estimate the terms on the right-hand side of (4.27). First, it follows from a direct
computation that

Frpde = - / p(es +5) — p(B) — 1 (P)pa purd

R+ +

=S ] ([ wora = pore — 3 @16t )

dt Jo, \J,

Second, due to (4.10), Cauchy-Schwarz inequality, and the fact |(p,, )| < e~ from (2.4),
we have

Foprda = f,u/

Pz Prppdr — u/
Ry

(pacd_)m@tdx + :u'/
Ry

P2 Pprdx Jr,u/ PPy, de,
Ry

R+ R+

< Cllgallr=l12alllloe + 6l ollezllleell + Colle™ @[]l |

d
+— | wupPpydr — u/ pPipdx

d _ _
<CE+0enen @ + 5 [ wpbpudo—p [ phiguds,  @29)
+

+
where we have used the fact ||e=**®||> < C||®,||? by the Hardy inequality (4.14). Finally, using
(4.10), (4.12), and integration by parts, one has

2

Hedz = —/ Pl pdz < Cllarllilell? < Cellge® (4.29)
R, R, Pzt P

Hence, for suitably small § and &, we find from (4.27) that

1d

B «
—— | [} +P(p)ei]dz + 7/ prdz
2dt Jq, .

2

i
<i/ 5Dy — /ﬁm (s)dy — p(P)ee — =1/ (5) 2 | da
S q R+up P ar - ; p Y —pp)Px 217 P)Pz

"y / P pada + O + &)l (e @)%, (4.30)
Ry
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where the terms [|¢;]|> on the right-hand side of (4.28) and (4.29) have been absorbed. To
proceed, we multiply (4.3b) by £p®; and integrate the resulting equation over R, to get
wd

£ 502 4 pdb2 £ / 502
5 1 R+(bp +p *)dx+a p®;dx

Ry

— / @, da + / PO, da
R, @ R,

< ,J/R PP dx + 0|(Dy, @,)|1°, (4.31)
N

where (2.4) and the Cauchy—Schwarz inequality have been used. Combining (4.31) with (4.30)
gives

1d bu _ _ _ W « 1z _
S— —p®? = 2up®p, + P ()7 + = p®s + 7 Jdr + S lled* + = | p@ida
2 dt Ry a a 2 a Ry

d Pt+pa B 1 _
< _E/R (/ p(s)dy — p(p) s — 2p’(p)sﬂi)dw+C(5+€)Il(s0m‘1>x7‘1>t)|27 (4.32)
+ P
where
b‘LL _(p2 2 _(b /(= 2 @2 2
5 PP 200%p + P (D)en ~ @7+l

due to (1.3) and (4.11). Given any constant Ky > 0, adding (4.26) with (4.32) multiplied by

Ky leads to
1d bu _ _ _ _
S | [ae? 200, + Kog? + Ko 2 p®% — 205, + 1/ ()92 + =02 ) |da
2dt Jgr, a a

aKO

# Ol .2l + (3

K
oy
a Ry
ptoa ~ 1, ) )
S—g [ Kol [ p)dy—p(d)es = 57/ (P)¢ )do + CKo(3 + &) (pr, Py 21)I7,
p
(4.33)

where C is as in (4.26). From (4.11), it holds that

MK 0
a

[ pvias < crofo)?
Ry

for some constant C' > 0 which depends on p;, p, and a. Taking K large enough such that
afo > ¢y and
5 > (1 an
« Ky
S0 e+ el = C (" +¢])
for some constant C' > 0, then for suitably small § and ¢, we have from (4.33) that

1d

b Pt =, — —
2dt Jy [aw + 200, + Kow? + Ko <5p<1>2 —2upPp, + ' (p) 7 + Zp@i)] dz
+

d Pt B 1
T (/ p<8>dy—p<p>saw—2p'<p>¢i)dx+0(|¢>||%+||<%,got,<1>t>|2)<o,

+ \Jp
(4.34)



PHASE TRANSITION STEADY STATE TO A HYPERBOLIC-PARABOLIC SYSTEM 1497

where
b _ _ _ _
ag® + 2pp; + Ko <</>? + ;ﬂp@r‘) — 2up®p, +p'(p) 7 + Zpéi) ~ @+ ol 4] + 0+ @2

Applying the Taylor expansion to the function h(s) := [’ N

(@) p(s)ds along with (4.10) leads to

AR 1 1 .
/ p(s)dy — p(p)p. — =P (P)¢2| = g}p”(ﬁ + Do)l | < Ceyl (4.35)

5 2

for some constant 95 € (0,1). With (4.35), integrating (4.34) with respect to ¢, by taking ¢ and
¢ suitably small, we get (4.15) and hence complete the proof. O

LEMMA 4.3. Let the assumptions in Proposition 4.2 hold. If € and § are sufficiently small,
then for any t € (0,T), the solution (p, ®) of (4.3a)—(4.3d) satisfies

t
||(§017<I)x)||% + HSOMHQ +/0 | (Pzzs Py Poas Pars (I>z7_)H2dT

t
< C(ll(woz, Pox) 1T + Ilv0z]1?) +C/0 (leal® + ezl @aer ) dr- (4.36)

Proof. Differentiating (4.3a)—(4.3b) with respect to x, we get
Patt + APyt — (p/(ﬁ)@l)”lz = ]:;L + Hw7 (437&)
Dy = Pppy + apry — b, (4.37Db)
Multiplying (4.37a) by ¢., and integrating it over R, we get, due to (4.13), that

d a _
- (*soi + sozsozt)dw + / P (p)ps.de — / @3 d
=— / P (D) prprPerdr — Flopedr — Foperdr + H.pdx. (4.38)
R, R, R, R,

Recalling the definitions of F; and JFs in (4.5), using (1.3), (4.11), (4.10), the fact |(ps, ¢ )| <
Cde™* from (2.4), and Cauchy-Schwarz inequality, we have

_/ p”(ﬁ)ﬁﬂpm(paxxdx - ]:2<Pacwdx
Ry Ry

= _/]R (p//(ﬁ)ﬁz - N&m)@x@xmdm + ,u/ 02 Prprzda + M/ PPy predr
"

R, R,
< Collgalllwall + Clia 1@all L sl + s /R PO, prada
+
< C@ + )| (P pue) I + 1 /R P (4.39)
+

and

1 s
Frppedr = —/ / / " (p+ Tgax)descpiﬁxgpmdz
Ry Ry Jo Jo

1
— / / P (P + sps)dspapl,da
Ry JO
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< Cllpzllz=llpellll@zzll + Cllgz|ze ||‘P:zrx||2

< 05”(90179006:13)”27

where we have used the following identity
Fi =[P (e + ) =P (p) = " (D)l P + [P (00 + P) = P (P))paa
1
0
due to the Taylor expansion. For the last term on the right hand of (4.38), due to (2.4), (4.4),

(4.10), (4.12), Cauchy—Schwarz inequality, and the Hardy inequality (4.14), it holds for suitably
small € and § that

o2
’Hzgazdz:f/ < ¢ > Yrzdr
R4 Ry L)OZE'i_p z

2 xT 2 Trr 7\7)
:/ ( C1pte 0} (Parx + ))(pmdx
Ry

$o+p (‘P'Jr +ﬁ)2

1 s
= / / P (p+ T )drdse’ p. + / P (P + 502)dspePue (4.40)
0 0

<C / orll@eell@aslda + C / 2 (|sa] + 172D gualdz
.

Ry
< Cllellzeslpealllpzell + Cligel e loasll® + Collpel e le™ ot lllpaall
< Cellota|easll + Ce?lleasll* + Cedllpeallllzs |
< Cle + ) (ota, pua) 1. (4.41)
We thus conclude from (4.38)—(4.41) that

d o
&/ <5<PZ + wpmt)dl’ +/ P ()¢l da
R, R

n
<CE+ (e prrs a1t [ pBoprada + ol (4.42)
Ry
Multiplying (4.37b) by £p®,, and integrating it to get

d
p ﬁ@idx-f'ﬁ/
a

b
lad p02 dz + / P02 da
2(1, dt ]R+ ]R+ a

Ry

o
=—=—p(0 (przq)z
,P(0)

=0 Ry Ry

< O0)/(s, @20)| = Lp-@s0,

i / Pprada, (4.43)
=0 Ry

where (2.4), (4.11), and Cauchy—Schwarz inequality have been used. Since ® =0 at = 0 and
hence ®; = 0 at x = 0, recalling (4.3b), we have

b, = —ap, at z = 0. (4.44)

This along with the Sobolev inequality || f[| - < C||f]|Z||f.]|Z and Young’s inequality implies

W _
- EP(O)‘I)x:z:‘I):v 0 = HP(O)@xfpﬂg@:o < COllgzllp=|®z |l

< Ol @all? || a2 1921 || B ||
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1 1
< Clleall leaell (192 + [|Pazll)

1499

<n||(q)wa(1)xm7(pxm)H2+Cn“@$||2 (4'45)
for any n > 0. Substituting (4.45) into (4.43), we get
d b
Ll pP2dz + H/ p®2 dx + ﬂ/ pP2dx
2a dt R, a R, a R,
< C(n+9)|[(Ps, CI)M)||2 + 77“‘:09600”2 + CWHSO:EHQ + M/R PPzaPoda. (4.46)
+
Combining (4.46) with (4.42), we get after taking d, €, and 7 suitably small that
d a o [ 2
= o r¥x a (I) )d TT}¢T7®T’I‘
T (2<Pm+sa ot + 5Pz )dz + Ol (Paw, Po, Paa) |
< [1+CE +)llpael* + Clles?, (4.47)
where we have used (4.11) and the following inequality
_ _ by
P (P)¢he = 2uPpaa®a + —p@7 > C(¢, + 3) (4.48)
due to (1.3). Next, we integrate (4.37a) multiplied by ¢, over Ry to get
1d 2 "(5)02 Vd 2
2dt Jg,
= 7/ p/l(ﬁ)pm@m@mmtdx - fl‘pzxmtdx - JT"Q‘PTdeI + H.’L‘Sﬁfntdx~ (449)
Ry R, R, R,
A direct computation along with (2.4) and Cauchy—Schwarz inequality gives
d NG N\
_/ ( )px@xwmwtdx dt /(p)pa:(;oac(pmmdx +/ p//(p)pa:(pzt@xxdx
R, Ry
d /(= = 2
S _& - p (p)pIQOaL'(pxmdx+06H(<pwta§0wz)” . (450)
+
Recalling (4.40), we arrive at
1
- Froperdr = _**/ [p (pz +p) — ( )]Spizdx + */ p”(QOm + ﬁ)@xt‘pimdx
8 2dt 2 Je
+ +
dt [p (0x +p) = P'(P) = P"(P) el pupuada
+ [P"(% +p) — p//(ﬁ)]th@xzﬁmdm' (4.51)

Ry
From (1.3), (2.4), (4.10), and (4.12), it holds that
1 . _ _
3 P (e + D) parpindr + | [P (0o + ) — P (D) PatPanpad

+ R

%\

< Cllpaslroe lotallleaell + Clloell L llpatllleae |
< C(0+ )l (paas )17
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Therefore, we have

1d B _
R4 Ry
d _ _ _ _
“a [0 (0 + p) — P (P) — D" (D)) Pz puade. (4.52)
.

Similar to (4.51)—(4.52), the third term on the right-hand side of (4.49) can be estimated as
follows:

d _

- ,u/ (prtq)x + 0u Pyt + @xt&m)‘ﬂxwdx
Ry

gi
dt Ry Ry

+ Cll x| @atlllfazll + Clloall Lo | @atlllfazll + Clidwll L |atll ool

d _
dt Jx, .

+

Noticing

)

et/ PxtD (Pt D)
we get, due to integration by parts and the boundary condition ¢; = 0 at = 0, that

2 —
Hopmda = — / ¢<M> dz 42 / @<W> e
R, R, (pz+p)? /, Ry Yrt+p),
2 2
Pra — Pt 2 43
/]R+ |:< 2 )t ! (90:1:+P)2 ]R+ K 8014’,0 T
d <P? (1 2 - ) / 2 ( Pt )
= 5 | 5P T Peprs Jdz+ | 03 ~ | dx
dt Jr, (e +p)?\2 v, “\eet+p/),

; ; ’ ) ( SO% )
\/R+ <2 (@I + p)2 t

d/ a1 (1& + P )d:c-i—D +D (4.54)
= 73 o | aPrx rPrx 1 2. .
de Ry (pz +p)? \ 2

Next, we estimate Dy and D,. First, we utilize (2.4), (4.10), and (4.12) to get

Dl — / Lpit Pzt - @t(‘pmﬁ 'i:p;) dx
Ry Pzt P (¢z + )

< Cllgatll=lloat® + Cligelze (I@zall e + 152l o) lat I

< Cle +0)llpatll®, (4.55)



PHASE TRANSITION STEADY STATE TO A HYPERBOLIC-PARABOLIC SYSTEM 1501

provided e and ¢ are suitably small. For Dy, by using (2.4), (4.10), (4.12), Cauchy—Schwarz
inequality, and the Hardy inequality (4.14), we obtain

1 _ 20101t @?@wt
? R, \2 (0o +0)?  “(pa+0)?

< Clleaal® (leellze lpeelize + el lpatllze)

+ Céllaallle™ @il 2 lprell L + Cllpll e 17 lowel
< C(8+ )| (pats ) lI, (4.56)

where we have used the following inequality
el < ClP' (P)Pa) llL= + Cllpelle + [ Fill + | Folle + CllH[L~ < Ce,  (4.57)
due to (2.4), (4.3a), (4.4), (4.5), (4.10), and (4.12). With (4.55) and (4.56), we update (4.54)

as

d 2 1 _
Hopzde < E/ (pt2<250ix +pz§0m>dx+C(5+5)||(<Pzta@zz)”2~ (4.58)
R, t Jr. ( )

4 @z +p
Substituting (4.50), (4.52), (4.53), and (4.58) into (4.49), we get
1d _ 2
2 dt (‘th +p ( )90;@ 2up¢)w@ww)dx + a”@wt“
< *5@/ [P (9 + p) — P/ (p)] 03, de — 7/ ' (0z + ) = P'(p) — P"(P)a) P prad
+— ( D, + 0rda) dx—i—d 7¢? LNy da
+ C(0 +&)[(@ats Paa, (I)xt)”Q - /~L/ PPt pradr. (4.59)
Ry
Multiplying (4.37b) by £p®,;, and integrating it to get
pb d 2 pod 2 .U/ ~ &2
—— pPide + —— p®: . dx + — d2.d
2a dt +2 d¢ o w—i—a R+p ot O
a = Ry Ry

where, in view of (2.4), (4.44), the Sobolev inequality ||f||z~ < C||f]|2]/f.]|Z, and Cauchy-
Schwarz inequality, the following inequalities hold:

_/]R Dy Pt prdr < C|| el oo || Pua ||| Pue]] < 05||((I)xtvq)rr)”2a
.

S A P L P

=0
1 1 1 1
< Ol 12 |0za |2 | Pat |2 | Rt || 2
1 1
< Clleall2 a2 (1Rt + [|2zll)

< (@at, Pao) I + Cyllpall| Paat
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for any n > 0. Then, combining (4.60) with (4.59) gives

1d ~ B b _ o
R / (wit + 0/ (0)¢5s = 21PPapus + PO + a/@iw>dx + Cl| 00| + el e
Ry

1d

d — — — _
Ry

d ‘P% (1 2 . )
+ 0(5 + E)H(Wxta P, (I)zt)||2 + 77”((1)“’ QD:m:)HQ + On”‘ﬂmH ||(I):c;rt|| (4-61)

for any i > 0, provided e and ¢ are suitably small, where we have used (4.11).
Finally, similar to the proof of Lemma 4.2, adding (4.47) with (4.61) multiplied by a constant
Ky > %, it follows that

+ E ((pa:q) + @m¢z)(pzzdx + =+

d
TN O + Cll(par, Do, Doz, ®2)|* + (i = 1)l

< CO+)(@ats Paas Pat) I + 0ll(Rats aa)I” + Coll0all @il + Collgal®,  (4.62)
where Kjao— 1> 1, G1(¢) is given by

K,y
Ql(t):z/ { > 2, + 2<P$+¢¢¢Lt+2*‘1’2
Ry

K
+ S D — 20000 + P 002 1 02, }dx

K _ _ B B _ _
+ 71 A [P/ (e +p) — P (D)) 7, da — A Ki[p' (g2 + p) — 0 (p) — 0" (D)0 P prada
+ +

2
7 Pt 1, -
/]R+ + (SDCE + p)2 2
=GiotGi1+G12+G13+G1a (4.63)
Taking K large enough such that

1 (0%
5 P T %+ erar > Ceh + ¢7)

for some constant C' > 0 independent of ¢, recalling (4.48), we have
gLO ~ ”(‘va Ozas Pty Pay <DTT)||2
By (1.3), (2.4), (4.10), (4.12), Cauchy—Schwarz inequality, and the Taylor expansion, we have

G11 < Cllpallzes ez lllewall < Coll(ea, un)lI,
G12 < CllpaallllfellLllez? < Coll(¢a, ua)lI?,
G153 < Cllewall @zl @zl + 1¢allLlleall) < Cle + O)ll(pa; an)lI*,

G14 < Cllezall (lealll®all e + lldzllL=llezll) < Cle + 8)lI(¢a, pu)lI*.
Therefore, for sufficiently small € and §, we have from (4.63) that

G~ [(©as Py Pty oy @) || (4.64)
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With (4.64), after integrating (4.62) over (0,¢) and taking e, §, n sufficiently small, we get
(4.36) and thus finish the proof of Lemma 4.3. O

To close the a priori assumption (4.9), some higher order estimates of solutions are needed.
Let us begin with the estimates on (Qup0, Prut)-

LEMMA 4.4. Let the assumptions in Proposition 4.2 hold. If € and § are sufficiently small,
then the solution (¢, ®) of (4.3a)—(4.3d) satisfies

t
m%mwmmﬁ+én%mww

t t
<C(5+€)/0 ||(‘I>xm<pm;)|\2d7+0/0 Iz, 001 + 1(Par, Pao)[I* + [|®arr]|*)dr

+ C(H(%M/}o)ll% + ||(I)OM||2) + C(”(@za @T)H? + H((I)mn (I)l-.,—)||2) (4-65)
for any t € (0,T), where the constant C > 0 is independent of T'.

Proof. Multiplying (4.37a) by —((p'(p)¢x)zz + Fz )+ followed by an integration over R, we
obtain

1d B _
2 | POEdeta [ poede
d 1d
=~ TT zxfd — 533 '(p z)rx Jrac2d
dt/ﬂh(so ¢+ e Frd 2dt/R+[(p(p)s0) + Faldx
d b e
- 1. PratP (p)par@:vtdx +/ PratD (p)paz(ﬁpmtt - (Pzt)dx
at o, -
Ty
+/ (Qaat + @Pzg ) Freda — Ho (P (P)pz)wa + Fu)rda . (4.66)
R, R,
Iz IS
Denote
1
g2(t) P= 5/ p/(ﬁ)gpimtdx +/ (‘p:mt + a‘pzx)]:tdx
R, R,

1 - o
b3 [ @O+ FoPldo [ o D,
R, Ry

then (4.66) can be rewritten as

d

&Qg(t) + a/ P (p)p2 . de =T + Ty + Ts. (4.67)

R+
Noting that

Ji = [p/(Sﬁﬂr +p) — p/(ﬁ)}@mt =+ [p//(@t +p) — p//(ﬁ)]@mtﬁm er//(@m + D) Pt Prr

— (et Pa + P2Put + oo + pPat),
we utilize (1.3), (2.4), (4.10), (4.11), and the mean value theorem to get
|Ft| < Celpwat| + Cle + 8)(|@at] + [Put]) + ClPut| < Celprat| + C|pat| + [Pasl).
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Then by (2.4) and Cauchy—Schwarz inequality, we have

+

‘/ Soxxtp/(ﬁ)ﬁx@mtdx / ((pccxt + a‘pzm)ftdx
R4 R4

< Cle + )|l @aatl® + Cll(@az, Pat, Bur) > (4.68)
A direct computation leads to
Fa = [p/(%v +p) — p/(/j) - p//(ﬁ)%pw}ﬁww + [p/(% +p) — p/(ﬁ)]‘:@wm
+10"(px +0) = 9"(0) — 1" (D)l + 20" (00 + 1) — 9" (D) Paape

+0"(0r + P)Ph + Par®e + 02Pus + Prade + pPoa, (4.69)

(P (D)Pa)ze = P (D) Pawa + 20" (D) DaPaa + P (P)Paape + 0" (D) 15 P- (4.70)

Combining the above identities with (1.3), (2.4), (4.10)—(4.12), and the Taylor expansion
yields

|Fe| < Celpuaa| + Cle + 0)([pz] + 0z]) + CPuzl, (4.71)

|(p/(ﬁ)@x)m _p/(ﬁ)‘Pmm| < Co(|pz| + [0zal)- (4.72)
We thus deduce that

/ [(ﬂ(ﬁ)‘ﬂﬁmr + }-w]de = / |p/(ﬁ)§0aw¢ + (p/(ﬁ)<p17)ar:t - p/(ﬁ)@wwx + ]:w|2dx
R R

> / 19 (3)uas P — 2 / 1P (D) @saal (Fol + 10 (0)2)e — P (D) pwaal )
+ +

_ 2
>3 [ W Dprarlda = Ol )P (4.73)
+

for suitably small € and §, and that
/]R [(p/(p)<ﬂw):m + -7:-1;]2(155 < C(”‘P:ﬁ”% + ”(I)a:a"Hz) (4-74)
n

Here (1.3), (4.11), and Cauchy—Schwarz inequality have been used. Due to (4.68), (4.73), and
(4.74), it follows that

Ga(t) < C(llpatllf + 1w ll3 + [(@ras Pat)]?), (4.75)
gQ(t) = O“(LIO‘L.LIE)()O.L.L.L)HQ - C(H‘pz”% + H(q)xwaq’:z:ta@mt)HQ):

where we have used (1.3) and the bounds of 5. Now let us turn to the estimates of Z;. From
(4.3a), we get

att = (0'(D) )y — 0Pt + Fo + Ha. (4.76)
A direct computation leads to

2 2 2 xTrx 4 xr T 72? 2 T 7IfL’ 2 2 T 75[? 2
_ i + 2010100 Ap1P1a(Paa + Pa) _ Pi(Pave + Pra) | 207 (Pon + Pu)” (4.77)

Pz t+ P (pz +p)? (¢z + p)? (pz +p)?

Ha
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This along with (1.3), (2.4), (4.10), and (4.12) implies

[Ha| < Ce(|paaz| + |paat]) + Cloat] + [02]) (4.78)
for sufficiently small € and §. Therefore, it holds that
lpatell < CHP'(P)Pa) goll + Nlowtll + 1 Fall + 1[Hall < CUI(2as 00)ll2 + |1 Raall),  (4.79)

where we have used (1.3), (2.4), (4.11), (4.71), and (4.78). Resorting to (2.4), (4.79), and
Cauchy—Schwarz inequality, we get

T, < O3 @aatll [ (@atts 02l < OOl (P 2ran) 2+ C (2w @I + 1 5l?):
For 75, a direct computation gives
Fir = [P'(¢x + p) = P/ (D) @awtt + 20" (02 + P)PatPant + [0 (02 + P) = D" (D) PatePa
+ 0" (0 + D)pe + 1" (00 + D)Porre + 0" (00 + D)Puttra
- ,U(Q%tt‘l’z + 200t Put + PaPatt + Partdu + ﬁq)xtt)

= [p'(pz + ) = ' (P)pware + T,
where, due to (1.3), (2.4), and (4.10), J can be estimated as follows
|71 < Cle + 0)(lpate] + [@at] + [Pat) + Celpaat] + ClPatl.

Then, owing to (1.3), (4.10)—(4.12), (4.79), Cauchy—Schwarz inequality, and the mean value
theorem, we have

7, = / (@rat + 0020) (7 (5 + ) — 0 (B)]omate + T}z
Ry

d

i (1 ) )
T Aty (et p) =P (P (2")2” + %Wmt) de — OZ/R ' (e +P) = 0/ (D)5, d
+

i
1
*/ p//(@r+p)¢zt (Q‘Pimt+¢zm@mmt)dx+/ (Prat + pry) T dx
Ry R
< g / =N /(= 1 2 d C 2
<@ [P (pz + ) =P (P)]{ 520t + PazPant |d + Cllgal| e[| @]
n
2
4 Clgarl e (I0setl® + [@salllantl) + Cl @arts 21171
< —
dt

) /1
' (0z + p) — P/ (P)] (Q%mt + somsamt) dz + C(e + 6) | (Paats Paza)|?

+ C(”(Wma ‘Pt)H% + ||(q)xt7 q)mr)”2) + 77H<Pmt||2 + C71||q)xttH2
for any 1 > 0. To deal with Z3, we rearrange H, in (4.77) as follows:

Hy = 290t90ta:a: @?(‘waz + ﬁaﬂ) + [ 290%:1: _ 4501590159:(909:9: + ﬁﬂi) 2@?(303” + pw)Q
Pxtp (0o + 5)? Putp (z +P)° (e +p)?
2 X €T
_ 2060t #7(Prao +pm) L (4.80)
Oz + P (¢s +p)?
with

10:L1| < C(g + 9)|paat| + Cclpraa| + Cle + 0)(|0¢| + |@ut]) (4.81)
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for suitably small ¢ and §, due to (2.4), (4.10) and (4.12). Based on (4.80), we split Z3 into
three parts:

_ [ 2P s Y B )
7= [ 2 g+ Fopide — [ BT (0 p)p)an + P

+/ (0" (P)w)aw + Fu)tLade =T51 + Is o + L 3.
R+

Next, we estimate Z3 ;. Recalling (4.69) and (4.70), we have

((p/(ﬁ)ga.L).L‘L + ]:;L)t = (SO.L + P)@:mmt + [(( ( )@L)aw + F )t - (Spw + ﬁ)‘pwa;wt]

= p/(§0w + p)‘pmzwt + £27

where, in view of (1.3), (2.4), (4.10), and (4.11), the following inequality holds

|£2‘ < C(‘€ + 5)(‘9019575‘ + |30w9:a:|) + C|¢)wwt| + C(l@wt| + |(I)wt|)'

We thus have

2 ,
I3,1 = / M(p/(wa + ﬁ)@t@Lt + [12)(:137
R, Pz TP

P (¢ + D)t
<- / ( )2 da 4 Cllgrll el puee 1ol
Yz +p x

/ 2o at] + |0t(Pnn + Po) )z + Cell@ane | Lol

R

0(5 + 6)“(@uh Prrx, @tﬁ)”Q + C€||(I)xtH1

and
2 —
Pt (‘Pﬂcm& + pxﬂc) / _

T30 = —/ " (' (02 + P)Przat + Lo)dx

Ry (9096 + /J)2 ( ! )

1d /(907 + ﬁ)‘ﬂ%(%@ﬂ"ﬁf + ﬁrr)2

_1d . AR 2 ) c
s [ 2+ O+ 0)(anell + o)1l
1 e (P e+ P)pmipl | 20 (pe + P)pron P (x4 P)Pupl )
+ ((an:x + me) 2 —~2 2 3 X
2 R4 (¢z +p) (¢z +p) (¢z +p)

1 d ! xT + 0 2 Trxrx + 7(13"1/' 2
P(@x ¥ D)0 Paze +Pa) g1y ey 5 (el2 4 (B2 + mne ).

2dt R4 (¢ + p)?
where we have used (1.3), (2.4), (4.10), (4.12), (4.57), Cauchy—Schwarz inequality, and the
integration by parts. For Z3 3, the integration by parts leads to

Tys=— / (0 (9)p2)s + F)esLade,
R

), (4.5), (4.10), (4.81), and Cauchy—Schwarz inequality implies

which combined with (4.4

I35 < C/R (lozt| + 122 )[C (€ + 0)(|Pwat| + |0t + |@at]) + Cel@rea|]da
+

< C(e + 0)(@avar Paat)II” + C(lloelT + [®aell?)-
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Hence, we have

I < _lg P'(pa + ﬁ)‘p?(@iif; + ﬁ.m:)zdx
2dt Ry (¢z +p)

+ Oe + )| (Paaas Paots Paa) I + CleellF + @t ]?).-
Plugging Z; (i = 1,2, 3) into (4.67), we now reach

d y Ld [ p'(ex+ D)t (Paze + Pua)’
—Go(t) + '(P)papdr + = — ! d
dtg2( ) a/]l%+p (p)@:mct z + 2dt R, ((Px + ,’3)2 z

d _ (1
=@ ) [P’ (¢a + ) — P (P)] <290§m + cpmgom>dx + C(6 4 0)[(Panrs Prats Pazt)|?
.

+0ll@watl® + Cyll@arel® + Cll(@a; @) + Cll(Paas P )II? (4.82)

for any n > 0. Consequently, due to (1.3), (4.10)—(4.12), (4.75), and the mean value theorem,
we obtain (4.65) after integrating (4.82) over (0,t¢) and taking 4, e, and 7 small enough. The
proof of Lemma 4.4 is complete. O

In the next lemma, we shall estimate the higher order terms on the right-hand side of (4.65).

LEMMA 4.5. Let the assumptions in Proposition 4.2 hold. If € and § are sufficiently small,
then the solution (¢, ®) of (4.3a)—(4.3d) satisfies

t t
(@, B, B2 + / 1D s P + / 1(@rr, B B, B )|
0 0
t
< CBoll2 + lgosll? + [Y0sll?) + Cll(gams )] + C/O (1@ @2 + [ Bal|2)dr

t
+C/O (el (@aor, Poza) I + l@zor || @ar|l) dr, (4.83)

and that

t
/ / @20, dadr < Cll(0e 0ats )12 + Clllo0s 2 + [oall?)
0o JRy

t t
+06+2) [ 1@unrlfar +C [ (lerl+ 1@ar @)l + )
(4.84)

Proof. We divide the proof into two steps.
Step 1: Estimates on (P, Pyot, Prie). Differentiating (4.37b) with respect to ¢, we have

(I)xtt = q)rxxt + aPzzt — b(I)xt (485)
Multiplying (4.85) by ®,; and integrating the resulting equation over Ry, we get by the Holder’s

inequality that
1d
i / 2, dx + b/ ®2,dx + / P2 da
2 dt R+ R+ ]R+

- - (Dm:rtq)mtb:o + a/ CPTTf(DTtdx
Ry

< _(I)mtq)mt|x:0 + Cl| @t |zt |- (4.86)
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In view of (4.44), for smooth solution (p, ®), we have .4 = ap,; at = 0. Then it holds
that
_q)ma:tq)zt‘xzo < |l patll Lo | Pt oo
< Cllparll* ot 1 2ot 1 @uoel =
< Cllmatll* [t (lgaill + 2ol
<l ®aatl* + Cyll@aelllowae ] + Cllpael? (4.87)
for any 7> 0, where the Sobolev inequality |f||~ < C||fl2]|f-]|2 and Cauchy Schwarz

inequality have been used. Plugging (4.87) into (4.86), we get after taking 7 suitably small
that

t
1@ + / |(®ars @) 2dlr

¢
< C/O (||‘PMT||||<I)IT|| + H‘»DITHQ)dT + C(”(I)UHg + H‘POszQ)a (4.88)
where we have used (2.6). By (4.37b) and (4.88), we have
1Pacal® < CllPatll? + Cll(@aa, o)1
t
< C/O (lpzarlll®ar | + lparI?)dr + Cll(#as, ®2)lI* + CIIPoll3 + llposz ). (4.89)

Differentiating in (4.3b) with respect to ¢ twice gives
Qitt = Puatt + aputr — bPy. (4.90)

Multiplying (4.90) by ®;;, we have

1d
(thdx—l—b/

Sq ®Z,dx + / 2, dr =a / Ot ®rpda. (4.91)
Ry Ry Ry Ry

Due to (1.3), (2.4), (4.11), (4.71), (4.72), (4.76), (4.78), Cauchy—Schwarz inequality, and
integration by parts, one has

a / P21t Pydr
Ry

= G/R p/(ﬁ)(pzxacq)ttdx + G/R [((p/(ﬁ)()oa:)mg - p/(ﬁ)@mmm) — Pt + ]:x + Hz](bttdl'
+ +

< _a/ p/(ﬁ)(pwmq)a:ttdz - a/ p”(ﬁ)ﬁ.’t@.’ﬂ.’lt(bttdm + C”(thH ”(I)tf”
R R

+ Cll(Fo, Ho)lll| et ]l + Cll P (P) ) o — P (P) e || Rt

<O+ e+ 0)12ull® + | orell + Cell(Paats Pawa) I + Coll(pr, 02) 7 + [aall?) (4.92)
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for any n > 0. Substituting (4.92) into (4.91), we get after taking 7, €, 6 small enough that

t
e / (@ s, By )27
t
CUIR0lE + I 9osl2 + s 1?) + Ce / |(@aars Pase)IPdr

t
e / (1 (@rs @) 2 + |12z 2)dr, (4.93)

where we have used (2.7). Combining (4.93) with (4.88) and (4.89), then we get (4.83).
Step 2: Estimates on @g... Multiplying (4.37a) by —(@rze — (’; )tbm) with p_ as in (3.3),
and integrating the resulting equation over Ry x (0,t) for any t € (0,T), we get

t
|| v
0 JR,

/ / 4101‘ zx T ( )@Luc Spmc;rdde"‘/ / pr xx ,/Up &, dxdr
R, R, p'(p-)

_ o, ~ P
- /]R (‘pa:t + ‘Pz) <90m:1:w Sy >(Z‘, O)dl‘ + /]R (‘p:tt + Qoa:) <<P1u _EP ) (x, t)dl‘
+ +

P (p-) p'(p-)

t
,up—q)mz)
- ot T QP rxr dxdr
/(; A+(¢ t ()0 )<SO p/(pi) .
t
O
- Hy + Fu ( rrw — >dzd7
/0 /R+( )\ P (p-)

Pi. (4.94)

I
2 IiMe
X

3

Due to (1.3) and (4.11), one can find a constant C' > 0 such that

C// memdxdT // gommdxdT
Ry Ry

Now let us estimate P; (1 < i < 6) term by term. Recalling (4.72), it holds that

t t
P <Cs / / (sl + [2e])@analdadr < / o2,
o Jr, 0

and that

P R R T I A L

t
< / / (6(10a] + |paal) + [Pasel)|Basldrdr
0o Jry
t t
< / | ponall|®seldr + C6 / (s s @)l
0 0

t t t
n / | Pass2dr + C, / 1@, |27 + C5 / 1625 ua)[2dr
0 0 0
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for any n > 0, where the Cauchy—Schwarz has been used. Again, by Cauchy—Schwarz inequality,
it holds that

Ry

< Cllpozllz + 1(Woz, Poza)1?)-

From the boundary conditions in (4.13), we get

(som - pf‘(i_)cbm)

N {up(p,(%: p p’zﬁ) " p’(wi: p) ) b

x=0
1 / - /[ = —_ <)O’I'¢_)’I' }
———— W (s +p)—p [ vy )
P gz + p)( (o tp) =P (P))7 P(ex+0) ). 0
1o _ 1 1 P
Prx — (I)a:) = {MP( -~ — — + = )(PJ,
( P(r-) )il P(pz+p) P(p) pP(pz+p)
1 / _ 10\ = 901(5:1: }
P (pa + p)( (o t0) =P (2D P +p) )il
Due to (1.3), (2.4), and (4.10)—(4.12), we further have that
'(% _ b cbx) < Cle+8)(1Balle + lpellze),
p (pf) 2=0
(4.95)

< Cle+0)([Patllze + llatllLo)-

(i),

By (4.95), Cauchy-Schwarz inequality, the Sobolev inequality ||f||z= < C| f]l1, and the
integration by parts, we have

=0

pp—
4 R, ((P t TP )(SD p/(p_) )

[1p— [ip—
= - zxt T Pax x:c_iq)z dx — zt T Pz < mm_q):r>
| o+ e~ @0~ (ot 00) (e

P (p-) 2=0

< Ollpaat | (@ae, @) | + Cll(@wa, @2)lI” + Cle + ) wtll Lo (1ol L + @l zo<)
+ Cle + 0)llpallLos (1Pl Lo + llxllzo)

and

t t
pp—Pa pp—Pa
Ps = / / Prer T 0Pze ( rr — ) dxdr — / zr + Pz ( rr )
0 R+( ¢ P'(p-) r 0 (o o)\ @ P (p-) r

t

t L
<c / |(@rar Pa Bar)|Pdr + Cle + ) / (sl + [l z=) (1®ar o + [@or < )dr

dr
=0

t t
<C(+4) / @40 |Pdr + C / (1o 0ar)2 + [Bar ) dr.
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For Pg, we utilize (4.71), (4.78), and Cauchy—Schwarz inequality to get

t
Pe<C / | Fo) [ (Pars @)l

t t
< C(e+9) / |(@oeas fasr)|Pdr + C / (1ors 02) 2 + |92 ?)dr.

Inserting the estimates for P; (i = 1,...,6) into (4.94), we get

t
/ / 2ndadr < Ol (0o ot ®2) 12 + C(ll0al + I0sll?)
0 +

t t
+C(E+e) | 1 PoarllPdr + C/ (e ll3 + 1(@ar, Poa) 1 + llalIT)dr,
0 0
provided € and § are suitably small. The proof of Lemma 4.5 is complete. O
From Lemmas 4.4 and 4.5, we have the following higher order estimates.

LEMMA 4.6. Under the conditions of Proposition 4.2, for any t € (0,T), we have

t
H (‘p:lfa;wa Prat, (I)a:t7 q)tt) (b.L.II) H2 + / (H((pbuTa ()D.L.IJ,)H2 + H(‘pra (DTT)”%)dT
0

t
< C([12ollf + II(woz, o) 13) +C||(soz,<pt,<1>x)||?+0/o (IGpr, )T + (®ar, aw)|?)dr,
(4.96)

provided € and ¢ are sufficiently small.

Proof. First, to control the terms related to (®,¢, Pput, Pure) on the right-hand side of (4.65),
we add (4.65) with (4.83) multiplied by a large positive constant to get

t
||(@Ix$7¢xmtaq)xtaq)tta(I):cxa:)”z +/0 H((I)a:‘rv(I)Taq)m‘r'raéxx'rasomx'r)HQdT
< Cl1oll3 + 1oz, o)lI2) + C (Il (wa, )T + P2z )

t t
+C(5+6)/0 II%MHQdTﬂLC/O (I, ) 1T + 1(Par, o) [|*)dT, (4.97)

provided € and § are suitably small, where the Cauchy—Schwarz inequality has been used.
Combining (4.97) with (4.84), for sufficiently small € and d, we have

t
||(‘)01II, Prat, (I)mta (I)tta (szz) ||2 + / ||((I)z‘r; (I)Tra (I)m‘rﬂ'a ¢II77 Prar, @zmz)”QdT
0

¢
< C(I12oll + I (pox: $0)13) + Cll(prs 1, @) + C/ (1(ers ) 1T + 1(@ar, Pra) [*)d7.
0
This gives rise to (4.96) and thus finishes the proof of Lemma 4.6. d

4.4. Proof of Proposition 4.2

By the local existence result in Proposition 4.1 and the standard extension criterion, it suffices
to show the estimates (4.7) and (4.8) to prove Proposition 4.2. We first close the a priori
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assumption (4.9). To this end, we add (4.96) to (4.36) multiplied by a suitable positive constant
and get

t
H(<)0I7(I>I)||§ + ”‘PItH% + H(‘I)Itvq)tt)H2 +/ ‘|(<pxx7§0$7'7¢)acvq)z‘ra(I)TT)H%dT
0

t t
< C(IDo]2 + | (@om w0} 12) + Cllerll? + € / |(or 0 [2dr + C / loall[®zer 1,

where the smallness of ¢ and § has been used. This along with the Cauchy—Schwarz inequality
gives

t
1(0; @) 13 + lpatll} + 1(@at, o) +/O 1oz, 9o, Bay Par, Brr) | 1dT

t
<C(II‘I’oHiﬂLII(%I,wo)H%)+C||sot||2+0/0 1z, o)1 dT. (4.98)

Furthermore, multiplying (4.15) by a suitable positive constant, and adding the resulting
inequality to (4.98), we obtain

t
1o, @15 + Nellz + (o, Do) 1* + /0 (leall3 + ll(or, @7, )3 + [ @7+ ][ )dr

< C(llwoll3 + llwoll3 + lI®oll3)- (4.99)
Then by setting
e? =20(|lwoll3 + w03 + l|1Roll3)
and taking |l¢o|ls + [[1o]2 + [|®oll4 suitably small, we have

sup {110, ®)C, D)5 + e D3} < <

0<t<

which hence closes the a priori assumption (4.9). To complete the proof of (4.7) and (4.8), now
it remains to show the following

t
||q)xmm||2 +/0 (||<I)mx||2 + ||(<Pr'ra%07m)||2)d7' < C(H@O”% + ||1/}0||§ + ||(I)0H421)'

Collecting (4.37b), (4.57), (4.79), and (4.99), one immediately has

t
/0 (1®awall® + 1(0rr, rra)1?)dr < C(llollf + ol3 + [1Roll3)-

To derive the estimate for ®,,,,, we first deduce from (4.3b) and (4.99) that
19:]1* < Cll(Paas ay B)I* < Cll00ll3 + llt00ll3 + [1D0]]3).- (4.100)
Next, differentiating (4.3b) with respect to ¢ leads to
q)tt = (I)wzt + apqt + b(I)t

This along with (4.100) and (4.99) yields

[1®0aell” < Cll(@re, ey pue)II” < C(llwoll3 + llsboll3 + o)
Finally, differentiating (4.37b) with respect to x, we have

(I)xx:rm = CI):rxt — QPzzy + bq)x:r;
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and thus
[1®sz0all? < Cl(@as Pawts Paaa)|I* < C(llwoll3 + [[ol3 + 1 @oll7)-
The proof of Proposition 4.2 is complete. O

4.5. Proof of Theorem 2.2

In view of Proposition 4.2, the problem (1.2a)—(1.2¢), (1.4)—(1.5) admits a unique classical
solution (p,m,¢) in Ry x (0,00). Moreover, due to (4.2), (4.7), and (4.8), it holds that

1(p—p,m)|I3+ |0 — olI3 < C(lleoll3 + ltoll3 + | Poll3),
and that

t
/O (Itp = 2. m)I5 + 6 = SII5 + I (pr, mr, &) [17)d7 < C(llpoll3 + NIl + [@oll)  (4.101)

for any ¢ > 0. In the following, we shall prove the large time behavior of (p,m, #) as in (2.5).
For this, recalling the Sobolev inequality || f||z~ < C||f||Z[lf2]|Z, it suffices to show that

In fact, with the help of (4.101) and Cauchy—Schwarz inequality, we get

T p 5)(-,t)]|*|dt
[ |6 pomeo - oo

+o0 B
<C [ (p=pmo=dP+lumeo)P)at <o (@.109)
0
The estimate (4.101) in combination with (4.103) gives (4.102). Then (2.5) is proved and we
complete the proof of Theorem 2.2. O
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