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Nonlinear stability of phase transition steady states to a
hyperbolic–parabolic system modeling vascular networks

Guangyi Hong, Hongyun Peng, Zhi-An Wang and Changjiang Zhu

Abstract

This paper is concerned with the existence and stability of phase transition steady states to
a quasi-linear hyperbolic–parabolic system of chemotactic aggregation, which was proposed
in [Ambrosi, Bussolino and Preziosi, J. Theoret. Med. 6 (2005) 1–19; Gamba et al., Phys.
Rev. Lett. 90 (2003) 118101.] to describe the coherent vascular network formation observed in
vitro experiment. Considering the system in the half line R+ = (0,∞) with Dirichlet boundary
conditions, we first prove the existence and uniqueness of non-constant phase transition steady
states under some structure conditions on the pressure function. Then we prove that this unique
phase transition steady state is nonlinearly asymptotically stable against a small perturbation.
We prove our results by the method of energy estimates, the technique of a priori assumption
and a weighted Hardy-type inequality.

1. Introduction

Experiments of in vitro blood vessel formation demonstrate that endothelial cells randomly
dispersing on a gel substrate (matrix) can spontaneously organize into a coherent vascular
network (see [1, 13] and figures therein), which is called angiogenesis — a major factor driving
the tumor growth. How endothelial cells self-organize geometrically into capillary networks and
how separate individual cells cooperate in the formation of coherent patterns remain poorly
understood biologically up to date. These networking patterns cannot be explained by the
macroscopic aggregation models such as Keller–Segel type chemotaxis models that lead to
point-wise blowup or rounded aggregates, nor by the microscopic kinetic models that describe
individual cell behaviors, as commented in [6]. Strikingly they can be numerically reproduced
by a hydrodynamic (hyperbolic-parabolic) models of chemotaxis proposed in [1, 13] as follows

⎧⎪⎨
⎪⎩
∂tρ + ∇ · (ρu) = 0,
∂t(ρu) + ∇ · (ρu⊗ u) + ∇p(ρ) = μρ∇φ− αρu,

∂tφ− Δφ = aρ− bφ

(1.1)

where ρ denotes the endothelial cell density, u the cell velocity, and φ the concentration of
chemoattractant secreted by cells; p is a pressure function accounting for the fact that closely
packed cells resist to compression due to the impenetrability of cellular matter, the parameter
μ > 0 measures the intensity of cell response to the chemoattractant and αρu corresponds to a
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damping (friction) force due to the interaction between cells and underlying substratum with a
drag coefficient α > 0; a and b are positive constants accounting for the growth and death rates
of the chemoattractant. The convective term ∇ · (ρu⊗ u) models the cell persistence (inertia
effect). We refer more detailed biological interpretations on the model (1.1) to [1, 13]. The
hydrodynamic system (1.1) has been (formally) derived from the following kinetic equation in
[7] via the mean-field approximation

∂f

∂t
+ v · ∇xf =

∫
V

(T [φ](v′, v)f(t, x, v′) − T [φ](v, v′)f(t, x, v))dv′,

where f(t, x, v) denotes cell density distribution at time t, position x ∈ R
d moving with a

velocity v from a compact set V in R
d, and tumbling kernel T [φ](v′, v) describes the frequency

of changing trajectories from velocity v′ (anterior) to v (posterior) in response to a chemical
concentration φ.

At first glance from mathematical point of view, the above hydrodynamic system (1.1) is
analogous to the well-known damped Euler–Poisson system where the φ-equation is elliptic
(that is, −Δφ = aρ) which appears in various important applications depending on the
sign of μ, such as the propagation of electrons in semiconductor devices (cf. [22]) and the
transport of ions in plasma physics (cf. [8]) and the collapse of gaseous stars due to self-
gravitation [5]. However, the parabolic φ-equation in (1.1) will bring substantial differences in
mathematical analysis and many existing mathematical frameworks developed for the Euler–
Poisson system are inapplicable directly to (1.1). Due to the competing interactions between
parabolic dissipation and hyperbolic anti-dissipation effect plus nonlinear convection, the global
well-posedness and regularity of solutions to (1.1) is very complicated as can be glimpsed
from the Euler–Poisson equations for which the understanding of solution behaviors is rather
incomplete despite numerous studies attempted. Up to date, there are only few results obtained
for (1.1) in the literature. First when the initial value (ρ0, u0, φ0) is a small perturbation of
a constant ground state (ρ̄, 0, φ̄) in Hs(Rd)(s > d/2 + 1) with ρ̄ > 0 sufficiently small, the
global existence and stability of solutions with nonvacuum (that is, infx∈Rd ρ > 0) to (1.1)
was established in [9, 11]. The linear stability of constant ground state (ρ̄, 0, φ̄) was obtained
under the condition p′(ρ̄) > aμ

b ρ̄ in [16] where an additional viscous term Δu is supplied to
the second equation of (1.1). The stationary solutions of (1.1) with vacuum (bump solutions)
in a bounded interval with zero-flux boundary condition and in R were constructed in [2] and
further elaborated in [3]. The model (1.1) with p(ρ) = ρ and periodic boundary conditions in
one dimension was numerically explored in [12]. These appear to be the only results available
to the system (1.1) in the literature and further studies are highly in demand. For results on
some other types of hyperbolic–parabolic chemotaxis models, we refer to [10, 17, 18, 24, 27]
and references therein.

Note that the above-mentioned mathematical works on (1.1) prescribe initial data as a small
perturbation of constant equilibria and the large-time profile of solutions is also constant, which
cannot explain the experimental observations of [1, 13] showing prominent phase transition
patterns connecting regions clear (or low density) of cells. This motivates us to explore the
possible non-constant phase transition profiles of solutions. The aim of this paper is to study
the existence and stability of phase transition steady states without vacuum to the system (1.1)
in one-dimensional half space R+ = (0,∞). For the convenience of presentation in the sequel,
we set m = ρu, namely m denotes the momentum of cells, and recast the one-dimensional
system (1.1) in R+ as ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρt + mx = 0, x ∈ R+, t > 0, (1.2a)

mt +
(
m2

ρ
+ p(ρ)

)
x

= μρφx − αm, (1.2b)

φt = φxx + aρ− bφ. (1.2c)
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As in [16], we assume the pressure function p depends only on the density and satisfies

p(ρ) ∈ C3(0,∞), p′(ρ) − aμ

b
ρ > 0 for any ρ > 0. (1.3)

A typical form of p is p(ρ) = K
2 ρ

2 with K > aμ
b . We supplement the system (1.2a)–(1.2c) with

the following boundary conditions

m(0, t) = 0, φ(0, t) = φ−, (1.4)

and the initial value

(ρ,m, φ)(x, 0) = (ρ0,m0, φ0)(x) → (ρ+, 0, φ+) as x → +∞, (1.5)

where φ−, ρ+ > 0, φ+ > 0 are constants and φ− �= φ+.
In this paper, we shall first use delicate analysis to show that the system (1.2a)–(1.2c) has

a unique non-constant stationary solution (ρ̄, 0, φ̄) without vacuum satisfying

φ̄(0) = φ− and lim
x→+∞

(
ρ̄, φ̄

)
(x) = (ρ+, φ+),

where ρ̄ and φ̄ are monotone. Then we show that the stationary solution (ρ̄, 0, φ̄) is
asymptotically stable, namely the solution of (1.2a)–(1.2c) converges to (ρ̄, 0, φ̄) point-wisely
as t → ∞ if the initial value (ρ0,m0, φ0) is an appropriate small perturbation of (ρ̄, 0, φ̄). The
monotonicity of ρ̄ and φ̄ indicates that the steady states have phase transition profiles. To the
best of our knowledge, there are not such results available in the literature for (1.2a)–(1.2c) and
even for the Euler–Poisson equations (cf. [14, 19–21, 26]. To prove our results, we fully capture
the structure of (1.2a)–(1.2c) where the stationary solution has exponential decay at far field,
which is not enjoyed by the Euler–Poisson (or Euler) equations. Although part of the proof of
our results is inspired by some ideas of [14, 15, 25, 26] on Euler–Poisson or Euler equations,
we have added lot of extra efforts to deal with complicated couplings and boundary effects.
The coupling term μρφx leads to two linear terms in the linearized system around stationary
solutions and how to make these linear terms under control is crucial to the asymptotic stability
against small perturbations. We resolve this issue by the structural assumption (1.3) to take up
the dissipation and use the exponentially weighted Hardy inequality in half space to compensate
for the lack of dissipation in the hyperbolic equations. Due to the couplings and boundary
effects, the energy estimates are very sophisticated, where the lower-order estimates involve
higher-order estimates and vice versa. We use the delicate energy estimates along with the
technique of a priori assumptions to unravel these tangles and gradually achieve our results.

The rest of this paper is organized as follows. In Section 2, we state our main results on
the existence of non-constant stationary solutions (Theorem 2.1) and stability of stationary
solutions (Theorem 2.2). In Section 3, we study the stationary problem and prove Theorem 2.1.
The proof of Theorem 2.2 is given in Section 4.

2. Statement of main results

In this section, we shall state the main results of this paper. To be precise, we first introduce
some notations used. Throughout the paper, we use ‖ · ‖L∞ , ‖ · ‖ and ‖ · ‖k to denote the norms
of usual L∞(R+), L2(R+) and the standard Sobolev space Hk(R+), respectively. We also use
‖(f1, . . . , fn)‖ (respectively, ‖(f1, . . . , fn)‖k) to denote ‖f1‖ + · · · + ‖fn‖ (respectively, ‖f1‖k +
· · · + ‖fn‖k) for some n ∈ Z+. We denote by C a generic constant that may vary in the context,
and by Cη a constant depending on η. Occasionally, we simply write f ∼ g if C−1 � f � Cg
for some constant C > 0.
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It can be verified that the system (1.2a)–(1.2c) possesses the following energy functional (cf.
[2, 7])

F [ρ, u, φ] =
1
2μ

∫
R+

ρu2dx +
1
μ

∫
R+

G(ρ)dx +
1
2a

∫
R+

(|∇φ|2 + bφ2)dx−
∫
R+

ρφdx,

which, subject to the boundary condition (1.4), satisfies

d
dt

F [ρ, u, φ] +
α

μ

∫
R+

ρu2dx +
1
a

∫
R+

|φt|2dx = 0,

where ρG′′(ρ) = p′(ρ). Thus the stationary solution satisfying d
dtF [ρ, u, φ] = 0 gives rise to

ρu = 0 and φt = 0 in R+. Since we are interested in non-constant profile for ρ, u ≡ 0 is the only
(physical) stationary profile for the velocity u. Therefore stationary solutions of (1.2a)–(1.2c)
without vacuum must possess the form (ρ̄, 0, φ̄), where (ρ̄, φ̄) satisfies⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(ρ̄)x = μρ̄φ̄x, x ∈ R+, (2.1a)

φ̄xx + aρ̄− bφ̄ = 0, (2.1b)

φ̄(0) = φ−, (2.1c)

lim
x→+∞

(
ρ̄, φ̄

)
= (ρ+, φ+). (2.1d)

Here the pressure p satisfies (1.3) and the constants ρ+ and φ± are the same as in (1.4) and
(1.5).

Then our first result concerning the existence and uniqueness of solutions to the stationary
problem (2.1a)–(2.1d) is given below.

Theorem 2.1. Let ρ+ > 0 and φ− �= φ+ such that aρ+ = bφ+. If

φ− − φ+ +
∫ ρ+

0

p′(s)
μs

ds > 0, (2.2)

then there is a unique constant ρ− > 0 such that the problem (2.1a)–(2.1d) with (1.3) admits
a unique solution (ρ̄, φ̄) satisfying ρ̄(0) = ρ− and{

ρ̄′(x) < 0, φ̄′(x) < 0 if φ− > φ+,

ρ̄′(x) > 0, φ̄′(x) > 0 if φ− < φ+.
(2.3)

Moreover, if |φ− − φ+| is small enough, it holds that

2∑
k=1

∣∣∣∣ dk

dxk

(
ρ̄, φ̄

)∣∣∣∣ + |ρ̄(x) − ρ+| +
∣∣φ̄(x) − φ+

∣∣ � Ce−λx|φ− − φ+|, x � 0 (2.4)

for some constants C > 0 and λ > 0 which may depend on ρ+, a and b, but independent of
φ− − φ+.

Remark 2.1. Under the condition (1.3), the integral
∫ ρ+

0
p′(s)
μs ds in (2.2) is positive, but not

necessarily finite since p′(s)
μs → +∞ as s → 0 is possible. While in the case of

∫ ρ+

0
p′(s)
μs ds = +∞,

the condition (2.2) is free for any given φ− and φ+.

Our second result is the asymptotic stability of the stationary solutions obtained in
Theorem 2.1, which is stated in the following theorem.
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Theorem 2.2. Let the conditions in Theorem 2.1 hold and define

ϕ0 = −
∫ ∞

x

(ρ0(y) − ρ̄(y))dy, Φ0 = φ0(x) − φ̄.

If ϕ0 ∈ H3 ∩H1
0 (R+), m0 ∈ H2 ∩H1

0 (R+), and Φ0 ∈ H4 ∩H1
0 (R+) with inf

x∈R+
ρ0(x) > 0

(namely inf
x∈R+

{ϕ0x + ρ̄} > 0), then there exists a constant δ0 > 0 such that if

‖ϕ0‖3 + ‖m0‖2 + ‖Φ0‖4 + |φ− − φ+| � δ0,

the problem (1.2a)–(1.2c) subject to the initial-boundary conditions (1.4)–(1.5) admits a unique
classical solution (ρ(x, t),m(x, t), φ(x, t)) in R+ × (0,∞) satisfying inf

x∈R+
ρ(x) > 0 for any t > 0

and

lim
t→∞ sup

x∈R+

∣∣(ρ,m, φ)(x, t) − (ρ̄, 0, φ̄)(x)
∣∣ → 0. (2.5)

Remark 2.2. With the condition Φ0 ∈ H4, we can define the initial values of φt and φtt

through the equation for φ. That is

Φt0 := φt0 = (Φ0)xx + a(ϕ0)x − bΦ0, (2.6)

Φtt0 := φtt0 = (Φt0)xx − a(m0)x − bΦt0. (2.7)

These initial values of time derivatives are of importance in deriving the higher order estimates
in Section 4. Furthermore, we always assume that the initial data are compatible with the
boundary conditions at x = 0.

3. Stationary problem (Proof of Theorem 2.1)

In this section, we shall study the stationary problem (2.1a)–(2.1d) and complete the proof of
Theorem 2.1. To this end, we first reformulate our problem (2.1a)–(2.1d), and then prove the
existence and uniqueness of solutions. Finally, we derive the monotone and decay properties
of solutions.

3.1. Reformulation of our problem

We start by proving the following lemma, which plays a key role in the reformulation of our
problem.

Lemma 3.1. If f is a solution to the problem{
fx = ω(f(x)), x ∈ R+,

f(+∞) = k0,
(3.1)

where ω is a continuous function and k0 is a constant, then we have

lim
x→+∞ fx = ω(k0) = 0.

Proof. Since ω is continuous, and limx→+∞ f(x) = k0, we have limx→+∞ fx = ω(k0). It
remains to show ω(k0) = 0. We proof this by contradiction. Supposing that ω(k0) �= 0, without
loss of generality, we assume ω(k0) > 0. Due to the continuity of ω and limx→+∞ f(x) = k0,
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there exists a constant X0 ∈ R+ such that for any x � X0, ω(f(x)) > ω(k0)
2 > 0. This along

with (3.1)1 implies

f(x) = f(X0) +
∫ x

X0

ω(f(x))dx � f(X0) +
ω(k0)

2
(x−X0) → +∞ as x → +∞,

which contradicts the fact f(+∞) = k0. Hence, ω(k0) = 0. The proof of Lemma 3.1 is
complete. �

Define

F (s) :=
∫ s

ρ+

p′(τ)
μτ

dτ (3.2)

for any s > 0. Clearly, F (ρ+) = 0. We claim that under the conditions (1.3), (2.2) and ρ+ > 0,
there exists a unique constant ρ− > 0 such that

F (ρ−) = φ− − φ+ (3.3)

and

φ− > φ+ ⇐⇒ ρ− > ρ+ (resp. φ− < φ+ ⇐⇒ ρ− < ρ+). (3.4)

Indeed, in view of (1.3), we know that

F ′(s) =
p′(s)
sμ

>
a

b
> 0. (3.5)

This implies that the function F (s) is strictly monotonically increasing. Furthermore, we have
F (s) < 0 if s < ρ+, and lims→+∞ F (s) = +∞. For the case φ− > φ+, since F (ρ+) = 0 < φ− −
φ+ < ∞, then there exists a unique constant ρ− ∈ (ρ+,+∞) such that (3.3) holds. For the
case φ− < φ+, we have φ− − φ+ < 0. If

∫ ρ+

0
p′(τ)
μτ dτ = ∞, we know that lims→0 F (s) = −∞ <

φ− − φ+ < 0 = F (ρ+), then similar to the case φ− > φ+, there exists a unique constant ρ− ∈
(0, ρ+) such that F (ρ−) = φ− − φ+. Now it remains to consider the case when φ− < φ+ and∫ ρ+

0
p′(τ)
μτ dτ < ∞. In this case, since the F (s) is continuous, monotonic, and bounded below,

we can extend F (s) by defining F (0) := lims→0 F (s) > −∞. Then the extended function F (s)
is continuous on [0, ρ+]. Furthermore, from (2.2), we get F (0) < φ− − φ+ < 0 = F (ρ+). Hence,
there exists a unique constant ρ− ∈ (0, ρ+) such that F (ρ−) = φ− − φ+. Then (3.3) is proved.
Moreover, with the help of (3.3) and (3.5), we immediately get (3.4). We thus finish the proof
of the claim.

To proceed, assume that (ρ̄, φ̄) is a classical solution to (2.1a)–(2.1d) with ρ̄ > 0. Dividing
(2.1a) by ρ̄ and integrating the resulting equation over (x,+∞), we get

φ̄(x) = F (ρ̄(x)) − F (ρ+) + φ+, (3.6)

where F (s) is as in (3.2). Sending x → 0+ along with (2.1d), (3.3), and the fact F (ρ+) = 0, we
get

lim
x→0+

F (ρ̄(x)) = F (ρ−).

By using the monotonicity and continuity of F (s), we further have that

ρ̄(0) = lim
x→0+

ρ̄(x) = lim
x→0+

F−1(F (ρ̄(x))) = F−1(F (ρ−)) = ρ−.

Inserting (3.6) into (2.1b), we get

[F (ρ̄)]xx = b[F (ρ̄) − F (ρ+)] + bφ+ − aρ̄. (3.7)
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Multiplying (3.7) by 2F ′(ρ̄)ρ̄x, it follows that

2F ′(ρ̄)ρ̄x[F ′(ρ̄)ρ̄x]x = 2{b[F (ρ̄) − F (ρ+)] + bφ+ − aρ̄} =: 2H(ρ̄)F ′(ρ̄)ρ̄x, (3.8)

with

H(s) := b[F (s) − F (ρ+)] + bφ+ − as. (3.9)

Thus,

[F ′(ρ̄)ρ̄x]2 = G(ρ̄) + C0 � 0, x ∈ R+ (3.10)

for some constant C0 and some function G(s) with

G′(s) = 2F ′(s)H(s). (3.11)

By virtue of (1.3) and (3.9), we get

H ′(s) = bF ′(s) − a > 0 (3.12)

for any s > 0. Due to the condition aρ+ = bφ+, it holds that H(ρ+) = 0. This along with (3.12)
yields that

H(s) > H(ρ+) = 0 if s > ρ+ and H(s) < H(ρ+) = 0 if s < ρ+. (3.13)

Then by (3.5), (3.11), and (3.13), we get G′(s) > 0 if s > ρ+ and G′(s) < 0 if s < ρ+. This
gives

G(s) −G(ρ+) > 0 (3.14)

for any s �= ρ+. We claim that C0 = −G(ρ+). Otherwise, we have C0 < −G(ρ+) or C0 >
−G(ρ+). If C0 < −G(ρ+), by the continuity of G and ρ̄, there exists a constant K0 > 0 such
that if x � K0,

G(ρ̄) <
G(ρ+) − C0

2
< −C0.

Then G(ρ̄) + C0 < 0 for x � K0. This contradicts to (3.10). If C0 > −G(ρ+), using (3.14), we
get ρ̄x �= 0 for any x ∈ R+. Therefore, for any x ∈ R+, it holds that

ρ̄x = −
√
G(ρ̄) + C0

F ′(ρ̄)
if ρ− > ρ+ and ρ̄x =

√
G(ρ̄) + C0

F ′(ρ̄)
if ρ− < ρ+.

With the fact ρ̄(+∞) = ρ+ and Lemma 3.1, we have C0 = −G(ρ+). This is a contradiction.
Hence, we have C0 = −G(ρ+) and{

[F ′(ρ̄)ρ̄x]2 = G(ρ̄) −G(ρ+), x ∈ R+,

ρ̄(0) = ρ−, ρ̄(+∞) = ρ+.
(3.15)

This together with (3.5) and (3.14) implies that ρ̄x � 0 if ρ− > ρ+ and ρ̄x � 0 if ρ+ > ρ−, and
that

ρ̄x(x) = 0 if and only if ρ̄(x) = ρ+ (3.16)

for any x ∈ R+. Hence, we can solve ρ̄x from (3.15) that

ρ̄x = −
√

G(ρ̄) −G(ρ+)
F ′(ρ̄)

if φ− > φ+ and ρ̄x =

√
G(ρ̄) −G(ρ+)

F ′(ρ̄)
if φ− < φ+,

where we have used (3.4).
Summing up, we have the following lemma.
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Lemma 3.2. Under the conditions of Theorem 2.1, if (ρ̄, φ̄) is a classical solution to the
problem (2.1a)–(2.1d) satisfying ρ̄(x) > 0 for any x ∈ R+, then (ρ̄, φ̄) is also a solution to the
following problem:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
ρ̄x = −

√
G(ρ̄) −G(ρ+)

F ′(ρ̄)
if ρ− > ρ+ (reps. ρ̄x =

√
G(ρ̄) −G(ρ+)

F ′(ρ̄)
if ρ− < ρ+),

φ̄(x) = F (ρ̄(x)) − F (ρ+) + φ+,

ρ̄(0) = ρ−, ρ̄(+∞) = ρ+.

(3.17)

Here F (s) and G(s) are given in (3.2) and (3.11), respectively, and ρ− > 0 is determined by
(3.3).

In the following, we shall show that the problem (3.17) is indeed equivalent to (2.1a)–(2.1d).

Lemma 3.3 (Reformulation). Suppose that the conditions of Theorem 2.1 hold. Then
(ρ̄(x), φ̄(x)) is a classical solution to the problem (2.1a)–(2.1d) satisfying ρ̄ > 0, if and only
if it is a classical solution to the problem (3.17).

Proof. In view of Lemma 3.2, it remains to show that if (ρ̄, φ̄) is a solution to the problem
(3.17), then (ρ̄, φ̄) solves the problem (2.1a)–(2.1d). By using (3.17)3 and (3.5), one can easily
derive (2.1a). Due to (3.3) and (3.17)3, we have φ̄(0) = φ− and φ̄(+∞) = φ+. To show (2.1b),
by (3.8), (3.15), and (3.17)3, it suffices to show that ρ̄x �= 0 for any x ∈ R+. We prove this for
the case ρ− > ρ+ (that is, φ− > φ+), and the proof for the case ρ− < ρ+ (that is, φ− < φ+) is
similar. Since ρ− > ρ+, we have ρ̄x � 0 for any x ∈ R+. Denote

D(ρ̄) := −
√
G(ρ̄) −G(ρ+)

F ′(ρ̄)
.

We claim that D(ρ̄) is Lipschitz continuous on [ρ+, ρ−]. With this claim, we can prove that
ρ̄x < 0 for x ∈ R+, and hence finish the proof. Indeed, if there exists a point x0 ∈ R+ such
that ρ̄x(x0) = 0, then from (3.16), we have ρ̄(x0) = ρ+. This implies that ρ̄ is a solution to the
following problem {

ρ∗x = D(ρ∗), 0 � x � x0,

ρ∗(x0) = ρ+.
(3.18)

Since D(ρ̄) is Lipschitz continuous on [ρ+, ρ−], the problem (3.18) admits a unique solution on
[0, x0]. While ρ∗ ≡ ρ+ is also a solution to (3.18), and obviously, ρ̄ �≡ ρ+. This is a contradiction.
Therefore, ρ̄x < 0 for any x ∈ R+. Now it remains to prove the claim that D(ρ̄) is Lipschitz
continuous on [ρ+, ρ−]. With the help of (1.3), (3.5), and (3.14), we know that D(ρ̄) is
differentiable if ρ̄ �= ρ+. Furthermore, a direct computation gives

D′(ρ̄) =

√
G(ρ̄) −G(ρ+)

[F ′(ρ̄)]2
F ′′(ρ̄) − H(ρ̄)√

G(ρ̄) −G(ρ+)
. (3.19)

By using (3.11), (3.12), and L’Hôpital’s rule, we have

lim
ρ̄→ρ+

+

H2(ρ̄)
G(ρ̄) −G(ρ+)

= lim
ρ̄→ρ+

+

2H ′(ρ̄)H(ρ̄)
G′(ρ̄)

= lim
ρ̄→ρ+

+

H ′(ρ̄)
F ′(ρ̄)

=
bF ′(ρ+) − a

F ′(ρ+)
> 0. (3.20)
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From (3.13) and (3.14), we get H(ρ̄)√
G(ρ̄)−G(ρ+)

> 0 for ρ̄ > ρ+. This along with (3.20) yields

lim
ρ̄→ρ+

+

H(ρ̄)√
G(ρ̄) −G(ρ+)

=

(
lim

ρ̄→ρ+
+

H2(ρ̄)
G(ρ̄) −G(ρ+)

) 1
2

=

√
aF ′(ρ+) − b

F ′(ρ+)
.

Therefore,

lim
ρ̄→ρ+

+

D′(ρ̄) = − lim
ρ̄→ρ+

+

H(ρ̄)√
G(ρ̄) −G(ρ+)

= −
√

aF ′(ρ+) − b

F ′(ρ+)
.

Note that D(ρ̄)−D(ρ+)
ρ̄−ρ+

= D(ρ̄)
ρ̄−ρ+

< 0 for ρ̄ > ρ+, and that

lim
ρ̄→ρ+

|D(ρ̄) −D(ρ+)|2
|ρ̄− ρ+|2

=
1

[F ′(ρ+)]2
lim

ρ̄→ρ+

G(ρ̄) −G(ρ+)
|ρ̄− ρ+|2

= lim
ρ̄→ρ+

H(ρ̄)
ρ̄− ρ+

= lim
ρ̄→ρ+

H ′(ρ̄)
F ′(ρ+)

=
aF ′(ρ+) − b

F ′(ρ+)
> 0,

due to (3.11), (3.12), and L’Hôpital’s rule, we have

D′
+(ρ+) = lim

ρ̄→ρ+
+

D(ρ̄) −D(ρ+)
ρ̄− ρ+

= −
(

lim
ρ̄→ρ+

|D(ρ̄) −D(ρ+)|2
|ρ̄− ρ+|2

) 1
2

= −
√

bF ′(ρ+) − a

F ′(ρ+)
,

where D′
+(ρ+) is the right derivative of D(ρ̄) at ρ+. We thus have lim ρ̄→ρ+

+
D′(ρ̄) = D′

+(ρ+).
This in combination with (3.19) yields that D′(ρ̄) is continuous on [ρ+, ρ−], and thus |D′(ρ̄)| �
C(ρ−, ρ+) for some constant C(ρ−, ρ+) > 0 depending on ρ− and ρ+. This implies that D(ρ̄)
is Lipschitz continuous on [ρ+, ρ−]. The proof of the present lemma is complete. �

3.2. Existence and uniqueness of solutions

In this section, we will prove that the problem (2.1a)–(2.1d) admits a unique solution (ρ̄, φ̄) with
ρ̄ > 0. Due to Lemma 3.3, it now suffices to consider the problem (3.17). As before, we focus
only on the case ρ− > ρ+ (that is, φ− > φ+), the proof for the case ρ− < ρ+ (that is, φ− < φ+)
is similar and so omitted. Let us begin with the following ODE problem{

ρ̄x = D(ρ̄), x > 0,
ρ̄(0) = ρ−.

(3.21)

By the Lipschitz continuity of D(ρ̄) on [ρ+, ρ−], we conclude that the problem (3.21) admits
a unique solution on [0, X∗) for some X∗ ∈ R+. Then by the contradiction argument and
discussions in Step 1 on the uniqueness of solutions to (3.18), we get ρ̄(x) > ρ+ for any x ∈
[0, X∗). This, along with the standard extension theorem for ordinary differential equations,
implies that the solution ρ̄ to the problem (3.21) exists globally in R+, and for any x ∈ R+,
ρ̄(x) > ρ+. In addition, note from (3.16) that ρ̄x(x) = 0 if and only if ρ̄(x) = ρ+, we have that

ρ̄x < 0 for any x ∈ R+, (3.22)

and that limx→+∞ ρ̄(x) exists. Denoting ρ̄(+∞) := limx→+∞ ρ̄(x), from Lemma 3.1, we obtain
G(ρ̄(+∞)) −G(ρ+) = 0. This combined with (3.14) give rise to ρ̄(+∞) = ρ+. With ρ̄(x) at
hand, we can define φ̄(x) from (3.17)2. Clearly, (ρ̄, φ̄) is a solution to (3.17) for ρ− > ρ+.
Finally, since ρ+ � ρ̄(x) � ρ−, the uniqueness of solutions can be proved by the Lipschitz
continuity of D(ρ̄) on [ρ+, ρ−].
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3.3. Monotonicity and decay properties

Recalling (3.4) and (3.22), we get ρ̄′(x) < 0 if φ− > φ+. In a manner similar to the derivation
of (3.22), we have ρ̄′(x) > 0 if φ− < φ+. With the help of (3.5), (3.6), and the properties of ρ̄x,
we have

φ̄x < 0 if φ− > φ+ and φ̄x > 0 if φ− < φ+.

This gives (2.3). Now let us turn to the decay properties of the solution. By using (3.3) and
(3.5), we get

|φ− − φ+| =

∣∣∣∣∣
∫ ρ+

ρ−
F ′(s)ds

∣∣∣∣∣ � a

b
|ρ− − ρ+|. (3.23)

Thus |φ− − φ+| � 1 implies |ρ− − ρ+| � 1. In the following, without loss of generality, we
assume that [ρ+, ρ−] ⊂ [ρ+, ρ+ + 1], and thus for any continuous function f defined on R+,
supx∈[ρ+,ρ−] f(x) depends only on ρ+. If φ− > φ+ (that is, ρ− > ρ+), recalling (2.3) and (3.17),
we have

ρ− > ρ̄ > ρ+ and ρ̄x = −
√

G(ρ̄) −G(ρ+)
F ′(ρ̄)

(3.24)

for any x ∈ R+. Owing to (1.3), (3.5), (3.11), and the condition aρ+ = bφ+, we get

G′′(s) = 2[F ′(s)H(s)]′ = 2F ′(s)H ′(s) + 2F ′′(s)H(s)

= 2F ′(s)(bF ′(s) − a) +
2

μs2
(sp′′(s) − p′(s))(b[F (s) − F (ρ+)] + bφ+ − as)

� 2F ′(s)(bF ′(s) − a) − |s− ρ+| sup
ι∈[ρ+,ρ−]

2
μι2

|(|ιp′′(ι)| + p′(ι))|
(
b sup
ι∈[ρ+,ρ−]

F ′(ι) + a

)

� 2F ′(s)(bF ′(s) − a) − C(ρ+)|s− ρ+| (3.25)

for any s ∈ [ρ+, ρ−], where C(ρ+) > 0 is a constant depending on ρ+. From (3.11) and (3.13),
we get G′(ρ+) = 0. This combined with (3.5), (3.25), and the Taylor expansion implies

G(ρ̄) −G(ρ+) = G(ρ̄) −G(ρ+) −G′(ρ+)(ρ̄− ρ+) =
∫ 1

0

∫ s

0

G′′(τ(ρ̄− ρ+) + ρ+)dτds|ρ̄− ρ+|2

� 1
2
[2F ′(s)(bF ′(s) − a) − C(ρ+)|ρ̄− ρ+|]|ρ̄− ρ+|2

� C(ρ+)|ρ̄− ρ+|2, (3.26)

provided |ρ− − ρ+| is suitably small, where C(ρ+) is a positive constant depending on ρ+.
Combining (3.26) with (3.24), we get

(ρ̄− ρ+)x = −
√

G(ρ̄) −G(ρ+)
F ′(ρ̄)

� −
√
G(ρ̄) −G(ρ+)
sup
x∈R+

F ′(ρ̄)
� −λ1(ρ̄− ρ+)

for some constant λ1 > 0 depending on ρ+, provided |ρ− − ρ+| is suitably small, where we have
used (1.3) and (3.5). Consequently, with (3.23), we have the following decay estimate:

|ρ̄− ρ+| = ρ̄− ρ+ � (ρ− − ρ+)e−λ1x = |ρ− − ρ+|e−λ1x � b

a
|φ− − φ+|e−λ1x, x � 0. (3.27)
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For the case φ− < φ+ (that is, ρ− < ρ+), it holds that

ρ− < ρ̄ < ρ+ and ρ̄x =

√
G(ρ̄) −G(ρ+)

F ′(ρ̄)
. (3.28)

Using (3.5), (3.26), and (3.28), we get

ρ̄x �
√
C(ρ+)|ρ̄− ρ+|

supx∈[ρ−,ρ+] F
′(ρ̄)

� −λ2(ρ̄− ρ+),

that is,

(ρ+ − ρ̄)x + λ2(ρ+ − ρ̄) � 0

for some constant λ2 > 0 depending on ρ+, provided |ρ− − ρ+| is suitably small. It thus holds
that

|ρ+ − ρ̄| = ρ+ − ρ̄ � (ρ+ − ρ−)e−λ2x � b

a
|φ− − φ+|e−λ2x, x � 0.

Finally, by (2.1b), (3.3), (3.6), (3.7), and (3.27), we get (2.4). The proof is complete. �

4. Global existence and asymptotic stability

In this section, we are devoted to studying the asymptotic stability of the unique stationary
solution to (1.2a)–(1.2a) obtained in Section 3. To this end, we first reformulate the problem
with the technique of taking anti-derivative for ρ.

4.1. Reformulation of problem

Combining (1.2a)–(1.2c) with (2.1a)–(2.1c), we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ρ− ρ̄)t + mx = 0, (4.1a)

mt +
(
m2

ρ

)
x

+ [p(ρ) − p(ρ̄)]x = μρφx − μρ̄φ̄x − αm, (4.1b)

(φ− φ̄)t =
(
φ− φ̄

)
xx

+ a(ρ− ρ̄) − b(φ− φ̄). (4.1c)

It follows from (4.1a) and m(0, t) = 0 that∫
R+

(ρ− ρ̄)dx =
∫
R+

(ρ0 − ρ̄)dx = ϕ0(0),

which, together with the condition ϕ0 ∈ H3(R+) ∩H1
0 (R+) in Theorem 2.2, gives∫

R+

(ρ− ρ̄)dx = 0.

Defining the perturbation function (ϕ,ψ,Φ)

ϕ = −
∫ ∞

x

(ρ− ρ̄)dy, ψ = m, Φ = φ− φ̄, (4.2)

with

(ϕ0, ψ0,Φ0) :=
(
−

∫ ∞

x

(ρ0 − ρ̄)dy,m0, φ0 − φ̄

)
,
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we get the reformulated problem:

ϕt + ψ = 0,

ψt +
(

ψ2

ϕx + ρ̄

)
x

+ p(ϕx + ρ̄)x − p(ρ̄)x = μ
(
ρφx − ρ̄φ̄x

)− αψ,

Φt = Φxx + aϕx − bΦ,

(ϕ,ψ,Φ)|t=0 = (ϕ0, ψ0,Φ0),

(ϕ,ψ,Φ)|x=0 = (0, 0, 0),

and its linearized problem around ρ̄ is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕtt − (p′(ρ̄)ϕx)x + αϕt = F + H, (4.3a)

Φt − Φxx + bΦ = aϕx, (4.3b)

(ϕ,ϕt,Φ)|t=0 = (ϕ0,−ψ0,Φ0), (4.3c)

(ϕ,ϕt,Φ)|x=0 = (0, 0, 0), (4.3d)

ψ = −ϕt, (4.3e)

where

F = F1 + F2, H =
(

ϕ2
t

ϕx + ρ̄

)
x

, (4.4)

and

F1 = [p(ϕx + ρ̄) − p(ρ̄) − p′(ρ̄)ϕx]x, F2 = −μ[ϕxΦx + ϕxφ̄x + ρ̄Φx]. (4.5)

To proceed, we define the solution space of the problem (4.3a)–(4.3d) as follows:

X(0, T ) = {(ϕ,ψ,Φ)| ϕ ∈ C([0, T ];H3) ∩ C1([0, T ];H2), ψ ∈ C([0, T ];H2) ∩ C1([0, T ];H1),

Φ ∈ C([0, T ];H4) ∩ C1([0, T ];H2)
}

for any T ∈ (0,+∞).
Since we are interested in the case where the solution has no vacuum, naturally we require

that inf
x∈R+

ρ0(x) > 0, namely

inf
x∈R+

{ϕ0x + ρ̄} > 0. (4.6)

For simplicity, we denote

N0 := ‖ϕ0‖2
3 + ‖ψ0‖2

2 + ‖Φ0‖2
4.

Then by the standard parabolic theory and fixed point theorem (cf. [23]), we have the following
local existence result.

Proposition 4.1 (Local existence). Let the conditions of Theorem 2.1 hold. Assume
ϕ0 ∈ H3 ∩H1

0 (R+), ψ0 ∈ H2 ∩H1
0 (R+), and Φ0 ∈ H4 ∩H1

0 (R+) such that (4.6) holds. Then
there exists a positive constant T0 depending on N0 such that the initial-boundary value
problem (4.3a)–(4.3d) admits a unique solution (ϕ(x, t), ψ(x, t),Φ(x, t)) ∈ X(0, T0) such that
infx∈R+{ϕx + ρ̄} > 0 for an 0 � t � T0 and

sup
t∈[0,T0]

(‖ϕ‖2
3 + ‖ψ‖2

2 + ‖Φ‖2
4

)
� 2N0.
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In what follows, we are devoted to proving the following theorem on the global existence and
uniqueness of solutions to the problem (4.3a)–(4.3d).

Proposition 4.2. Let the conditions in Theorem 2.1 hold and assume ϕ0 ∈ H3, ψ0 ∈ H2,
and Φ0 ∈ H4 satisfying (4.6). Then there exists a suitably small constant δ1 > 0 independent
of t such that if

‖ϕ0‖3 + ‖ψ0‖2 + ‖Φ0‖4 + |φ− − φ+| � δ1,

the problem (4.3a)–(4.3d) admits a unique global solution (ϕ(x, t), ψ(x, t),Φ(x, t)) ∈ X(0,∞)
such that for any t � 0 there holds that

‖ϕ‖3 + ‖ψ‖2 + ‖Φ‖4 � Cδ1 (4.7)

and ∫ t

0

(‖Φ‖2
3 + ‖(ϕx, ϕτ , ψ,Φτ )‖2

2 + ‖(ϕττ , ψτ ,Φττ )‖2
1

)
dτ � Cδ2

1 , (4.8)

where C is a constant independent of t.

Theorem 2.2 will be proved by Propositions 4.1 and 4.2. Next, we are devoted to proving
Proposition 4.2.

4.2. Some preliminaries

The proof of Proposition 4.2 is based on the combination of the local existence result in
Proposition 4.1 with the a priori estimates given in (4.7) and (4.8). In the sequel, we assume
that (ϕ,ψ,Φ) ∈ X(0, T ) is a solution to the problem (4.3a)–(4.3d) obtained in Proposition 4.1
for some T > 0 and derive the a priori estimates (4.7) and (4.8) based on the technique of a
priori assumption. That is we first assume that the solution (ϕ,ψ,Φ) of (4.3a)–(4.3d) satisfies

sup
0�t<T

{
‖(ϕ,Φ)(·, t)‖2

3 + ‖ψ(·, t)‖2
2

}
� ε2, (4.9)

where ε > 0 is a constant to be determined later, and then derive the a priori estimates to
obtain the global existence of solutions. Finally we justify that the global solutions obtained
satisfy the above a priori assumption and thus close our argument.

Using the fact ϕt = −ψ from (4.3e) and the Sobolev inequality, we have
2∑

k=0

‖∂k
x(ϕ,Φ)(·, t)‖L∞(R+) +

1∑
k=0

‖∂k
x(ψ,ϕt)(·, t)‖L∞(R+) � Cε. (4.10)

Denote δ := |φ− − φ+| by (2.4), one can find a constant c1 > 0 depending on ρ+, a, and b such
that

c−1
1 � ρ̄(x) � c1, (4.11)

provided δ is suitably small. Combining (4.11) with (4.10), we get

1
c
� ρ = ϕx + ρ̄ � c, (4.12)

for some constant c > 0 depending on ρ+, a and b, provided ε and δ are small enough. The
boundary condition (4.3d) together with equation (4.3a) leads to the following boundary
conditions on higher order derivatives:

(ϕt, ϕtt,Φt,Φtt) |x=0 = 0, ((p′(ρ̄)ϕx)x + F)|x=0 = 0, ((p′(ρ̄)ϕx)x + F)t
∣∣
x=0

= 0. (4.13)

Moreover, the following Hardy inequality plays a key role in deriving the a priori estimates.
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Lemma 4.1. Let k > 0 be a constant, it holds that∫
R+

e−kxf2dx � Ck

∫
R+

f2
xdx (4.14)

for any f ∈ H1
0 (R+), where Ck > 0 is a constant depending on k but independent of f .

Proof. From [4, Lemma 3.4], we get∫
R+

(1 + x)−2f2dx � 4
∫
R+

f2
xdx

for any f ∈ H1
0 (R+). This along with the basic fact e−kx(1 + x)2 � Ck with some positive

constant Ck > 0 for any x ∈ R+ implies∫
R+

e−kxf2dx � Ck

∫
R+

(1 + x)−2f2dx � Ck

∫
R+

f2
xdx.

We thus get (4.14). �

4.3. Energy estimates

In this section, we will derive some estimates for the solution (ϕ,Φ) of (4.3a)–(4.3d) under the
a priori assumption (4.9) by the method of energy estimates. The estimates for ψ follows from
the fact ψ = −ϕt.

We begin with the lower order estimates.

Lemma 4.2. Let the assumptions in Proposition 4.2 hold. If ε and δ := |φ− − φ+| are
sufficiently small, then the solution (ϕ,Φ) of (4.3a)–(4.3d) satisfies

‖(ϕ,Φ)‖2
1 + ‖ϕt‖2 +

∫ t

0

‖(ϕx, ϕτ ,Φ,Φx,Φτ )‖2dτ � C(‖(ϕ0,Φ0)‖2
1 + ‖ψ0‖2) (4.15)

for any t ∈ (0, T ), where C > 0 is a constant independent of T .

Proof. Multiplying (4.3a) by ϕ and integrating the resulting equation over R+, we get

d
dt

∫
R+

(
ϕϕt +

α

2
ϕ2

)
dx +

∫
R+

p′(ρ̄)ϕ2
xdx

= ‖ϕt‖2 +
∫
R+

F1ϕdx +
∫
R+

F2ϕdx +
∫
R+

Hϕdx. (4.16)

By the Taylor expansion, we get

p(ϕx + ρ̄) − p(ρ̄) − p′(ρ̄)ϕx = p′′(ρ̄ + ϑ1ϕx)ϕ2
x

for some ϑ1 ∈ (0, 1). Then it follows from (1.3), (4.5), (4.10), and (4.11) that∫
R+

F1ϕdx = −
∫
R+

[p(ϕx + ρ̄) − p(ρ̄) − p′(ρ̄)ϕx]ϕxdx � Cε‖ϕx‖2, (4.17)

provided ε and δ are suitably small. Integrating by parts, we have∫
R+

F2ϕdx = −μ

∫
R+

ϕxΦxϕdx− μ

∫
R+

ϕxφ̄xϕdx− μ

∫
R+

ρ̄Φxϕdx

= −μ

∫
R+

ϕxΦxϕdx− μ

∫
R+

ϕxφ̄xϕdx + μ

∫
R+

ρ̄xΦϕdx + μ

∫
R+

ρ̄Φϕxdx. (4.18)
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In view of (4.10) and the Cauchy–Schwarz inequality, we deduce

−μ

∫
R+

ϕxΦxϕdx � C‖ϕ‖L∞‖ϕx‖‖Φx‖ � Cε‖(ϕx,Φx)‖2. (4.19)

By the fact |(ρ̄x, φ̄x)| � Cδe−λx from (2.4) and the Hardy inequality (4.14), it holds that

− μ

∫
R+

ϕxφ̄xϕdx + μ

∫
R+

ρ̄xΦϕdx

� Cδ‖ϕx‖‖e−λxϕ‖ + Cδ‖e−λ
2 xϕ‖‖e−λ

2 xΦ‖
� Cδ‖(ϕx,Φx)‖2, (4.20)

where the Cauchy–Schwarz inequality has been used. Inserting (4.19) and (4.20) into (4.18)
leads to ∫

R+

F2ϕdx � C(δ + ε)‖(ϕx,Φx)‖2 + μ

∫
R+

ρ̄Φϕxdx. (4.21)

For the last term on the right-hand side of (4.16), from (4.4), (4.10), (4.12), integration by
parts and Cauchy–Schwarz inequality, we have∫

R+

Hϕdx = −
∫
R+

ϕ2
t

ϕx + ρ̄
ϕxdx � C

∫
R+

ϕ2
t |ϕx|dx � C‖ϕt‖L∞‖ϕt‖‖ϕx‖ � Cε‖(ϕt, ϕx)‖2.

(4.22)

Substituting (4.17), (4.21), and (4.22) into (4.16), we get

d
dt

∫
R+

(
ϕϕt +

α

2
ϕ2

)
dx +

∫
R+

p′(ρ̄)ϕ2
xdx

� C(δ + ε)‖(ϕx,Φx)‖2 + C‖ϕt‖2 + μ

∫
R+

ρ̄Φϕxdx. (4.23)

Multiplying (4.3b) by μ
a ρ̄Φ and integrating the resulting equation over R+, one has

1
2

d
dt

∫
R+

μ

a
ρ̄Φ2dx +

μ

a

∫
R+

(
bρ̄Φ2 + ρ̄Φ2

x

)
dx

= −
∫
R+

μ

a
ρ̄xΦΦxdx + μ

∫
R+

ρ̄Φϕxdx,

where, due to the fact |ρ̄x| � Cδe−λx from (2.4) and the Hardy inequality (4.14), the following
inequality holds

−
∫
R+

μ

a
ρ̄xΦΦxdx � Cδ‖Φx‖‖e−λxΦ‖ � Cδ‖Φx‖2.

Therefore,

1
2

d
dt

∫
R+

μ

a
ρ̄Φ2dx +

μ

a

∫
R+

(
bρ̄Φ2 + ρ̄Φ2

x

)
dx � μ

∫
R+

ρ̄Φϕxdx + Cδ‖Φx‖2. (4.24)

Combining (4.24) with (4.23), we obtain

d
dt

∫
R+

(
ϕϕt +

α

2
ϕ2 +

μ

2a
ρ̄Φ2

)
dx +

∫
R+

[
μ

2a
ρ̄Φ2

x +
(
p′(ρ̄)ϕ2

x − 2μρ̄Φϕx +
μb

a
ρ̄Φ2

)]
dx

� C(δ + ε)‖ϕx‖2 + C‖ϕt‖2 (4.25)
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for suitably small ε and δ. By (1.3) and (4.11), we have

p′(ρ̄)ϕ2
x − 2μρ̄Φϕx +

μb

a
ρ̄Φ2 � C

(
ϕ2
x + Φ2

)
for some constant C > 0 independent of t. Then, for sufficiently small ε and δ, we have from
(4.25) that

d
dt

∫
R+

(
ϕϕt +

α

2
ϕ2 +

μ

a
ρ̄Φ2

)
dx + C‖(ϕx,Φ,Φx)‖2 � C1‖ϕt‖2 (4.26)

for some constant C1 > 0, where we have used (4.11). Now let us turn to the estimate for ϕt.
Multiplying (4.3a) by ϕt and integrating the resulting equation over R+, we get

1
2

d
dt

∫
R+

[
ϕ2
t + p′(ρ̄)ϕ2

x

]
dx +

∫
R+

αϕ2
tdx =

∫
R+

F1ϕtdx +
∫
R+

F2ϕtdx +
∫
R+

Hϕtdx. (4.27)

Next, we estimate the terms on the right-hand side of (4.27). First, it follows from a direct
computation that∫

R+

F1ϕtdx = −
∫
R+

[p(ϕx + ρ̄) − p(ρ̄) − p′(ρ̄)ϕx]ϕxtdx

= − d
dt

∫
R+

(∫ ρ̄+ϕx

ρ̄

p(s)dy − p(ρ̄)ϕx − 1
2
p′(ρ̄)ϕ2

x

)
dx.

Second, due to (4.10), Cauchy–Schwarz inequality, and the fact |(ρ̄x, φ̄x)| � δe−λx from (2.4),
we have∫

R+

F2ϕtdx = −μ

∫
R+

ϕxΦxϕtdx− μ

∫
R+

ϕxφ̄xϕtdx + μ

∫
R+

ρ̄xΦϕtdx + μ

∫
R+

ρ̄Φϕxtdx,

� C‖ϕx‖L∞‖Φx‖‖ϕt‖ + ‖φ̄x‖L∞‖ϕx‖‖ϕt‖ + Cδ‖e−λxΦ‖‖ϕt‖

+
d
dt

∫
R+

μρ̄Φϕxdx− μ

∫
R+

ρ̄Φtϕxdx

� C(ε + δ)‖(ϕx, ϕt,Φx)‖2 +
d
dt

∫
R+

μρ̄Φϕxdx− μ

∫
R+

ρ̄Φtϕxdx, (4.28)

where we have used the fact ‖e−λxΦ‖2 � C‖Φx‖2 by the Hardy inequality (4.14). Finally, using
(4.10), (4.12), and integration by parts, one has∫

R+

Hϕtdx = −
∫
R+

ϕ2
t

ϕx + ρ̄
ϕxtdx � C‖ϕxt‖L∞‖ϕt‖2 � Cε‖ϕt‖2. (4.29)

Hence, for suitably small δ and ε, we find from (4.27) that

1
2

d
dt

∫
R+

[
ϕ2
t + p′(ρ̄)ϕ2

x

]
dx +

α

2

∫
R+

ϕ2
tdx

� d
dt

∫
R+

μρ̄Φϕxdx− d
dt

∫
R+

(∫ ρ̄+ϕx

ρ̄

p(s)dy − p(ρ̄)ϕx − 1
2
p′(ρ̄)ϕ2

x

)
dx

− μ

∫
R+

ρ̄Φtϕxdx + C(δ + ε)‖(ϕx,Φx)‖2, (4.30)
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where the terms ‖ϕt‖2 on the right-hand side of (4.28) and (4.29) have been absorbed. To
proceed, we multiply (4.3b) by μ

a ρ̄Φt and integrate the resulting equation over R+ to get

μ

2a
d
dt

∫
R+

(
bρ̄Φ2 + ρ̄Φ2

x

)
dx +

μ

a

∫
R+

ρ̄Φ2
tdx

=
∫
R+

μ

a
ρ̄xΦtΦxdx + μ

∫
R+

ρ̄Φtϕxdx

� μ

∫
R+

ρ̄Φtϕxdx + δ‖(Φt,Φx)‖2, (4.31)

where (2.4) and the Cauchy–Schwarz inequality have been used. Combining (4.31) with (4.30)
gives

1
2

d
dt

∫
R+

(
bμ

a
ρ̄Φ2 − 2μρ̄Φϕx + p′(ρ̄)ϕ2

x +
μ

a
ρ̄Φ2

x + ϕ2
t

)
dx +

α

2
‖ϕt‖2 +

μ

a

∫
R+

ρ̄Φ2
tdx

� − d
dt

∫
R+

(∫ ρ̄+ϕx

ρ̄

p(s)dy − p(ρ̄)ϕx − 1
2
p′(ρ̄)ϕ2

x

)
dx + C(δ + ε)‖(ϕx,Φx,Φt)‖2, (4.32)

where
bμ

a
ρ̄Φ2 − 2μρ̄Φϕx + p′(ρ̄)ϕ2

x ∼ Φ2 + ϕ2
x,

due to (1.3) and (4.11). Given any constant K0 > 0, adding (4.26) with (4.32) multiplied by
K0 leads to

1
2

d
dt

∫
R+

[
αϕ2 + 2ϕϕt + K0ϕ

2
t + K0

(
bμ

a
ρ̄Φ2 − 2μρ̄Φϕx + p′(ρ̄)ϕ2

x +
μ

a
ρ̄Φ2

x

)]
dx

+ C‖(ϕx,Φ,Φx)‖2 +
(
αK0

2
− C1

)
‖ϕt‖2 +

μK0

a

∫
R+

ρ̄Φ2
tdx

� − d
dt

∫
R+

K0

(∫ ρ̄+ϕx

ρ̄

p(s)dy − p(ρ̄)ϕx − 1
2
p′(ρ̄)ϕ2

x

)
dx + CK0(δ + ε)‖(ϕx,Φx,Φt)‖2,

(4.33)

where C1 is as in (4.26). From (4.11), it holds that

μK0

a

∫
R+

ρ̄Φ2
tdx � CK0‖Φt‖2

for some constant C > 0 which depends on ρ+, μ, and a. Taking K0 large enough such that
αK0

2 > C1 and

α

2
ϕ2 + ϕϕt +

K0

2
ϕ2
t � C

(
ϕ2 + ϕ2

t

)
for some constant C > 0, then for suitably small δ and ε, we have from (4.33) that

1
2

d
dt

∫
R+

[
αϕ2 + 2ϕϕt + K0ϕ

2
t + K0

(
bμ

a
ρ̄Φ2 − 2μρ̄Φϕx + p′(ρ̄)ϕ2

x +
μ

a
ρ̄Φ2

x

)]
dx

+
d
dt

∫
R+

(∫ ρ̄+ϕx

ρ̄

p(s)dy − p(ρ̄)ϕx − 1
2
p′(ρ̄)ϕ2

x

)
dx + C

(‖Φ‖2
1 + ‖(ϕx, ϕt,Φt)‖2

)
� 0,

(4.34)
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where

αϕ2 + 2ϕϕt + K0

(
ϕ2
t +

bμ

a
ρ̄Φ2 − 2μρ̄Φϕx + p′(ρ̄)ϕ2

x +
μ

a
ρ̄Φ2

x

)
∼ ϕ2 + ϕ2

x + ϕ2
t + Φ2 + Φ2

x.

Applying the Taylor expansion to the function h(s) :=
∫ s

ρ̄(x)
p(s)ds along with (4.10) leads to∣∣∣∣

∫ ρ̄+ϕx

ρ̄

p(s)dy − p(ρ̄)ϕx − 1
2
p′(ρ̄)ϕ2

x

∣∣∣∣ =
1
6

∣∣p′′(ρ̄ + ϑ2ϕx)ϕ3
x

∣∣ � Cεϕ2
x (4.35)

for some constant ϑ2 ∈ (0, 1). With (4.35), integrating (4.34) with respect to t, by taking δ and
ε suitably small, we get (4.15) and hence complete the proof. �

Lemma 4.3. Let the assumptions in Proposition 4.2 hold. If ε and δ are sufficiently small,
then for any t ∈ (0, T ), the solution (ϕ,Φ) of (4.3a)–(4.3d) satisfies

‖(ϕx,Φx)‖2
1 + ‖ϕxt‖2 +

∫ t

0

‖(ϕxx,Φx,Φxx, ϕxτ ,Φxτ )‖2dτ

� C(‖(ϕ0x,Φ0x)‖2
1 + ‖ψ0x‖2) + C

∫ t

0

(‖ϕx‖2 + ‖ϕx‖‖Φxxτ‖
)
dτ. (4.36)

Proof. Differentiating (4.3a)–(4.3b) with respect to x, we get{
ϕxtt + αϕxt − (p′(ρ̄)ϕx)xx = Fx + Hx, (4.37a)

Φxt = Φxxx + aϕxx − bΦx. (4.37b)

Multiplying (4.37a) by ϕx, and integrating it over R+, we get, due to (4.13), that

d
dt

∫
R+

(α
2
ϕ2
x + ϕxϕxt

)
dx +

∫
R+

p′(ρ̄)ϕ2
xxdx−

∫
R+

ϕ2
xtdx

= −
∫
R+

p′′(ρ̄)ρ̄xϕxϕxxdx−
∫
R+

F1ϕxxdx−
∫
R+

F2ϕxxdx +
∫
R+

Hxϕxdx. (4.38)

Recalling the definitions of F1 and F2 in (4.5), using (1.3), (4.11), (4.10), the fact |(ρ̄x, φ̄x)| �
Cδe−λx from (2.4), and Cauchy–Schwarz inequality, we have

−
∫
R+

p′′(ρ̄)ρ̄xϕxϕxxdx−
∫
R+

F2ϕxxdx

= −
∫
R+

(
p′′(ρ̄)ρ̄x − μφ̄x

)
ϕxϕxxdx + μ

∫
R+

ϕxΦxϕxxdx + μ

∫
R+

ρ̄Φxϕxxdx

� Cδ‖ϕx‖‖ϕxx‖ + C‖ϕx‖‖Φx‖L∞‖ϕxx‖ + μ

∫
R+

ρ̄Φxϕxxdx

� C(δ + ε)‖(ϕx, ϕxx)‖2 + μ

∫
R+

ρ̄Φxϕxxdx (4.39)

and ∫
R+

F1ϕxxdx = −
∫
R+

∫ 1

0

∫ s

0

p′′′(ρ̄ + τϕx)dτdsϕ2
xρ̄xϕxxdx

−
∫
R+

∫ 1

0

p′′(ρ̄ + sϕx)dsϕxϕ
2
xxdx
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� C‖ϕx‖L∞‖ϕx‖‖ϕxx‖ + C‖ϕx‖L∞‖ϕxx‖2

� Cε‖(ϕx, ϕxx)‖2,

where we have used the following identity

F1 = [p′(ϕx + ρ̄) − p′(ρ̄) − p′′(ρ̄)ϕx]ρ̄x + [p′(ϕx + ρ̄) − p′(ρ̄)]ϕxx

=
∫ 1

0

∫ s

0

p′′′(ρ̄ + τϕx)dτdsϕ2
xρ̄x +

∫ 1

0

p′′(ρ̄ + sϕx)dsϕxϕxx (4.40)

due to the Taylor expansion. For the last term on the right hand of (4.38), due to (2.4), (4.4),
(4.10), (4.12), Cauchy–Schwarz inequality, and the Hardy inequality (4.14), it holds for suitably
small ε and δ that∫

R+

Hxϕxdx = −
∫
R+

(
ϕ2
t

ϕx + ρ̄

)
x

ϕxxdx

=
∫
R+

(
2ϕtϕtx

ϕx + ρ̄
− ϕ2

t (ϕxx + ρ̄x)
(ϕx + ρ̄)2

)
ϕxxdx

� C

∫
R+

|ϕt||ϕtx||ϕxx|dx + C

∫
R+

ϕ2
t (|ϕxx| + |ρ̄x|)|ϕxx|dx

� C‖ϕt‖L∞‖ϕtx‖‖ϕxx‖ + C‖ϕt‖2
L∞‖ϕxx‖2 + Cδ‖ϕt‖L∞‖e−λxϕt‖‖ϕxx‖

� Cε‖ϕtx‖‖ϕxx‖ + Cε2‖ϕxx‖2 + Cεδ‖ϕtx‖‖ϕxx‖
� C(ε + δ)‖(ϕtx, ϕxx)‖2. (4.41)

We thus conclude from (4.38)–(4.41) that

d
dt

∫
R+

(α
2
ϕ2
x + ϕxϕxt

)
dx +

∫
R+

p′(ρ̄)ϕ2
xxdx

� C(δ + ε)‖(ϕx, ϕxt, ϕxx)‖2 + μ

∫
R+

ρ̄Φxϕxxdx + ‖ϕxt‖2
. (4.42)

Multiplying (4.37b) by μ
a ρ̄Φx, and integrating it to get

μ

2a
d
dt

∫
R+

ρ̄Φ2
xdx +

μ

a

∫
R+

ρ̄Φ2
xxdx +

bμ

a

∫
R+

ρ̄Φ2
xdx

= − μ

a
ρ̄(0)ΦxxΦx

∣∣∣
x=0

−
∫
R+

ρ̄xΦxxΦxdx + μ

∫
R+

ρ̄ϕxxΦxdx

� Cδ‖(Φx,Φxx)‖2 − μ

a
ρ−ΦxxΦx

∣∣∣
x=0

+ μ

∫
R+

ρ̄Φxϕxxdx, (4.43)

where (2.4), (4.11), and Cauchy–Schwarz inequality have been used. Since Φ = 0 at x = 0 and
hence Φt = 0 at x = 0, recalling (4.3b), we have

Φxx = −aϕx at x = 0. (4.44)

This along with the Sobolev inequality ‖f‖L∞ � C‖f‖ 1
2 ‖fx‖ 1

2 and Young’s inequality implies

− μ

a
ρ̄(0)ΦxxΦx

∣∣∣
x=0

= μρ̄(0)ϕxΦx|x=0 � C‖ϕx‖L∞‖Φx‖L∞

� C‖ϕx‖ 1
2 ‖ϕxx‖ 1

2 ‖Φx‖ 1
2 ‖Φxx‖ 1

2
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� C‖ϕx‖ 1
2 ‖ϕxx‖ 1

2 (‖Φx‖ + ‖Φxx‖)
� η‖(Φx,Φxx, ϕxx)‖2 + Cη‖ϕx‖2 (4.45)

for any η > 0. Substituting (4.45) into (4.43), we get

μ

2a
d
dt

∫
R+

ρ̄Φ2
xdx +

μ

a

∫
R+

ρ̄Φ2
xxdx +

bμ

a

∫
R+

ρ̄Φ2
xdx

� C(η + δ)‖(Φx,Φxx)‖2 + η‖ϕxx‖2 + Cη‖ϕx‖2 + μ

∫
R+

ρ̄ϕxxΦxdx. (4.46)

Combining (4.46) with (4.42), we get after taking δ, ε, and η suitably small that

d
dt

∫
R+

(α
2
ϕ2
x + ϕxϕxt +

μ

2a
ρ̄Φ2

x

)
dx + C‖(ϕxx,Φx,Φxx)‖2

� [1 + C(δ + ε)]‖ϕxt‖2 + C‖ϕx‖2, (4.47)

where we have used (4.11) and the following inequality

p′(ρ̄)ϕ2
xx − 2μρ̄ϕxxΦx +

bμ

a
ρ̄Φ2

x � C
(
ϕ2
xx + Φ2

x

)
(4.48)

due to (1.3). Next, we integrate (4.37a) multiplied by ϕxt over R+ to get

1
2

d
dt

∫
R+

(ϕ2
xt + p′(ρ̄)ϕ2

xx)dx + α‖ϕxt‖2

= −
∫
R+

p′′(ρ̄)ρ̄xϕxϕxxtdx−
∫
R+

F1ϕxxtdx−
∫
R+

F2ϕxxtdx +
∫
R+

Hxϕxtdx. (4.49)

A direct computation along with (2.4) and Cauchy–Schwarz inequality gives

−
∫
R+

p′′(ρ̄)ρ̄xϕxϕxxtdx = − d
dt

∫
R+

p′′(ρ̄)ρ̄xϕxϕxxdx +
∫
R+

p′′(ρ̄)ρ̄xϕxtϕxxdx

� − d
dt

∫
R+

p′′(ρ̄)ρ̄xϕxϕxxdx + Cδ‖(ϕxt, ϕxx)‖2. (4.50)

Recalling (4.40), we arrive at

−
∫
R+

F1ϕxxtdx = −1
2

d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]ϕ2
xxdx +

1
2

∫
R+

p′′(ϕx + ρ̄)ϕxtϕ
2
xxdx

− d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄) − p′′(ρ̄)ϕx]ρ̄xϕxxdx

+
∫
R+

[p′′(ϕx + ρ̄) − p′′(ρ̄)]ϕxtϕxxρ̄xdx. (4.51)

From (1.3), (2.4), (4.10), and (4.12), it holds that

1
2

∫
R+

p′′(ϕx + ρ̄)ϕxtϕ
2
xxdx +

∫
R+

[p′′(ϕx + ρ̄) − p′′(ρ̄)]ϕxtϕxxρ̄xdx

� C‖ϕxx‖L∞‖ϕtx‖‖ϕxx‖ + C‖ρ̄x‖L∞‖ϕxt‖‖ϕxx‖
� C(δ + ε)‖(ϕxx, ϕxt)‖2.
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Therefore, we have

−
∫
R+

F1ϕxxtdx � C(δ + ε)‖(ϕxx, ϕxt)‖2 − 1
2

d
dt

∫
R+

[p′(ϕx + ρ̄) − xp′(ρ̄)]ϕ2
xxdx

− d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄) − p′′(ρ̄)ϕx]ρ̄xϕxxdx. (4.52)

Similar to (4.51)–(4.52), the third term on the right-hand side of (4.49) can be estimated as
follows:

−
∫
R+

F2ϕxxtdx =
d
dt

∫
R+

μ(ϕxΦx + ϕxφ̄x + ρ̄Φx)ϕxxdx− μ

∫
R+

ρ̄Φxtϕxxdx

− μ

∫
R+

(
ϕxtΦx + ϕxΦxt + ϕxtφ̄x

)
ϕxxdx

� d
dt

∫
R+

μ(ϕxΦx + ϕxφ̄x + ρ̄Φx)ϕxxdx− μ

∫
R+

ρ̄Φxtϕxxdx

+ C‖Φx‖L∞‖ϕxt‖‖ϕxx‖ + C‖ϕx‖L∞‖Φxt‖‖ϕxx‖ + C‖φ̄x‖L∞‖ϕxt‖‖ϕxx‖

� d
dt

∫
R+

μ(ϕxΦx + ϕxφ̄x + ρ̄Φx)ϕxxdx− μ

∫
R+

ρ̄Φxtϕxxdx

+ C(ε + δ)‖(ϕxx, ϕxt,Φxt)‖2. (4.53)

Noticing

H =
(

ϕ2
t

ϕx + ρ̄

)
x

=
2ϕtϕtx

ϕx + ρ̄
− ϕ2

t (ϕxx + ρ̄x)
(ϕx + ρ̄)2

,

we get, due to integration by parts and the boundary condition ϕt = 0 at x = 0, that∫
R+

Hxϕxtdx = −
∫
R+

ϕxt

(
ϕ2
t (ϕxx + ρ̄x)
(ϕx + ρ̄)2

)
x

dx + 2
∫
R+

ϕxt

(
ϕtϕtx

ϕx + ρ̄

)
x

dx

=
∫
R+

[(
ϕ2
xx

2

)
t

+ ρ̄xϕxxt

]
ϕ2
t

(ϕx + ρ̄)2
dx +

∫
R+

ϕ2
xt

(
ϕt

ϕx + ρ̄

)
x

dx

=
d
dt

∫
R+

ϕ2
t

(ϕx + ρ̄)2

(
1
2
ϕ2
xx + ρ̄xϕxx

)
dx +

∫
R+

ϕ2
xt

(
ϕt

ϕx + ρ̄

)
x

dx

−
∫
R+

(
1
2
ϕ2
xx + ρ̄xϕxx

)(
ϕ2
t

(ϕx + ρ̄)2

)
t

dx

=
d
dt

∫
R+

ϕ2
t

(ϕx + ρ̄)2

(
1
2
ϕ2
xx + ρ̄xϕxx

)
dx + D1 + D2. (4.54)

Next, we estimate D1 and D2. First, we utilize (2.4), (4.10), and (4.12) to get

D1 =
∫
R+

ϕ2
xt

(
ϕxt

ϕx + ρ̄
− ϕt(ϕxx + ρ̄x)

(ϕx + ρ̄)2

)
dx

� C‖ϕxt‖L∞‖ϕxt‖2 + C‖ϕt‖L∞(‖ϕxx‖L∞ + ‖ρ̄x‖L∞)‖ϕxt‖2

� C(ε + δ)‖ϕxt‖2, (4.55)
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provided ε and δ are suitably small. For D2, by using (2.4), (4.10), (4.12), Cauchy–Schwarz
inequality, and the Hardy inequality (4.14), we obtain

D2 = −
∫
R+

(
1
2
ϕ2
xx + ρ̄xϕxx

)(
2ϕtϕtt

(ϕx + ρ̄)2
− 2

ϕ2
tϕxt

(ϕx + ρ̄)3

)
dx

� C‖ϕxx‖2
(‖ϕt‖L∞‖ϕtt‖L∞ + ‖ϕt‖2

L∞‖ϕxt‖L∞
)

+ Cδ‖ϕxx‖‖e−λxϕt‖L2‖ϕtt‖L∞ + C‖ρ̄‖L∞‖ϕt‖2
L∞‖ϕxt‖

� C(δ + ε)‖(ϕxt, ϕxx)‖2, (4.56)

where we have used the following inequality

‖ϕtt‖L∞ � C‖(p′(ρ̄)ϕx)x‖L∞ + C‖ϕt‖L∞ + ‖F1‖L∞ + ‖F2‖L∞ + C‖H‖L∞ � Cε, (4.57)

due to (2.4), (4.3a), (4.4), (4.5), (4.10), and (4.12). With (4.55) and (4.56), we update (4.54)
as ∫

R+

Hxϕxtdx � d
dt

∫
R+

ϕ2
t

(ϕx + ρ̄)2

(
1
2
ϕ2
xx + ρ̄xϕxx

)
dx + C(δ + ε)‖(ϕxt, ϕxx)‖2. (4.58)

Substituting (4.50), (4.52), (4.53), and (4.58) into (4.49), we get

1
2

d
dt

∫
R+

(ϕ2
xt + p′(ρ̄)ϕ2

xx − 2μρ̄Φxϕxx)dx + α‖ϕxt‖2

� −1
2

d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]ϕ2
xxdx− d

dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄) − p′′(ρ̄)ϕx]ρ̄xϕxxdx

+
d
dt

∫
R+

μ(ϕxΦx + ϕxφ̄x)ϕxxdx +
d
dt

∫
R+

ϕ2
t

(ϕx + ρ̄)2

(
1
2
ϕ2
xx + ρ̄xϕxx

)
dx

+ C(δ + ε)‖(ϕxt, ϕxx,Φxt)‖2 − μ

∫
R+

ρ̄Φxtϕxxdx. (4.59)

Multiplying (4.37b) by μ
a ρ̄Φxt, and integrating it to get

μb

2a
d
dt

∫
R+

ρ̄Φ2
xdx +

μ

2a
d
dt

∫
R+

ρ̄Φ2
xxdx +

μ

a

∫
R+

ρ̄Φ2
xtdx

= − μ

a
ρ̄ΦxxΦxt

∣∣∣
x=0

+ μ

∫
R+

ρ̄ϕxxΦxtdx−
∫
R+

ΦxxΦxtρ̄xdx, (4.60)

where, in view of (2.4), (4.44), the Sobolev inequality ‖f‖L∞ � C‖f‖ 1
2 ‖fx‖ 1

2 , and Cauchy–
Schwarz inequality, the following inequalities hold:

−
∫
R+

ΦxxΦxtρ̄xdx � C‖ρ̄x‖L∞‖Φxx‖‖Φxt‖ � Cδ‖(Φxt,Φxx)‖2,

− μ

a
ρ̄ΦxxΦxt

∣∣∣
x=0

� C‖ϕx‖L∞‖Φxt‖L∞

� C‖ϕx‖ 1
2 ‖ϕxx‖ 1

2 ‖Φxt‖ 1
2 ‖Φxxt‖ 1

2

� C‖ϕx‖ 1
2 ‖Φxxt‖ 1

2 (‖Φxt‖ + ‖ϕxx‖)
� η‖(Φxt, ϕxx)‖2 + Cη‖ϕx‖‖Φxxt‖
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for any η > 0. Then, combining (4.60) with (4.59) gives

1
2

d
dt

∫
R+

(
ϕ2
xt + p′(ρ̄)ϕ2

xx − 2μρ̄Φxϕxx +
μb

a
ρ̄Φ2

x +
μ

a
ρ̄Φ2

xx

)
dx + C‖Φxt‖2 + α‖ϕxt‖2

� −1
2

d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]ϕ2
xxdx +

d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄) − p′′(ρ̄)ϕx]ρ̄xϕxxdx

+
d
dt

∫
R+

μ(ϕxΦx + ϕxφ̄x)ϕxxdx +
d
dt

∫
R+

ϕ2
t

(ϕx + ρ̄)2

(
1
2
ϕ2
xx + ρ̄xϕxx

)
dx

+ C(δ + ε)‖(ϕxt, ϕxx,Φxt)‖2 + η‖(Φxt, ϕxx)‖2 + Cη‖ϕx‖‖Φxxt‖ (4.61)

for any η > 0, provided ε and δ are suitably small, where we have used (4.11).
Finally, similar to the proof of Lemma 4.2, adding (4.47) with (4.61) multiplied by a constant

K1 > 2
α , it follows that

d
dt

G1(t) + C‖(ϕxx,Φx,Φxx,Φxt)‖2 + (K1α− 1)‖ϕxt‖2

� C(δ + ε)‖(ϕxt, ϕxx,Φxt)‖2 + η‖(Φxt, ϕxx)‖2 + Cη‖ϕx‖‖Φxxt‖ + Cη‖ϕx‖2, (4.62)

where K1α− 1 > 1, G1(t) is given by

G1(t) : =
∫
R+

{
K1

2
ϕ2
xt +

α

2
ϕ2
x + ϕxϕxt +

μρ̄

2a
Φ2

x

+
K1

2

[
p′(ρ̄)ϕ2

xx − 2μρ̄Φxϕxx +
μρ̄

a
(bΦ2

x + Φ2
xx)

]}
dx

+
K1

2

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]ϕ2
xxdx−

∫
R+

K1[p′(ϕx + ρ̄) − p′(ρ̄) − p′′(ρ̄)ϕx]ρ̄xϕxxdx

−
∫
R+

μK1(ϕxΦx + ϕxφ̄x)ϕxxdx + K1

∫
R+

ϕ2
t

(ϕx + ρ̄)2

(
1
2
ϕ2
xx + ρ̄xϕxx

)
dx

= G1,0 + G1,1 + G1,2 + G1,3 + G1,4. (4.63)

Taking K1 large enough such that
K1

2
ϕ2
xt +

α

2
ϕ2
x + ϕxϕxt � C

(
ϕ2
xt + ϕ2

x

)
for some constant C > 0 independent of t, recalling (4.48), we have

G1,0 ∼ ‖(ϕx, ϕxx, ϕxt,Φx,Φxx)‖2.

By (1.3), (2.4), (4.10), (4.12), Cauchy–Schwarz inequality, and the Taylor expansion, we have

G1,1 � C‖ρ̄x‖L∞‖ϕx‖‖ϕxx‖ � Cδ‖(ϕx, ϕxx)‖2,

G1,2 � C‖ϕxx‖‖ρ̄x‖L∞‖ϕx‖2 � Cδ‖(ϕx, ϕxx)‖2,

G1,3 � C‖ϕxx‖
(‖ϕx‖‖Φx‖L∞ + ‖φ̄x‖L∞‖ϕx‖

)
� C(ε + δ)‖(ϕx, ϕxx)‖2,

G1,4 � C‖ϕxx‖
(‖ϕx‖‖Φx‖L∞ + ‖φ̄x‖L∞‖ϕx‖

)
� C(ε + δ)‖(ϕx, ϕxx)‖2.

Therefore, for sufficiently small ε and δ, we have from (4.63) that

G1 ∼ ‖(ϕx, ϕxx, ϕxt,Φx,Φxx)‖2. (4.64)
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With (4.64), after integrating (4.62) over (0, t) and taking ε, δ, η sufficiently small, we get
(4.36) and thus finish the proof of Lemma 4.3. �

To close the a priori assumption (4.9), some higher order estimates of solutions are needed.
Let us begin with the estimates on (ϕxxx, ϕxxt).

Lemma 4.4. Let the assumptions in Proposition 4.2 hold. If ε and δ are sufficiently small,
then the solution (ϕ,Φ) of (4.3a)–(4.3d) satisfies

‖(ϕxxx, ϕxxt)‖2 +
∫ t

0

‖ϕxxτ‖2dτ

� C(δ + ε)
∫ t

0

‖(Φxxτ , ϕxxx)‖2dτ + C

∫ t

0

(‖(ϕx, ϕτ )‖2
1 + ‖(Φxτ ,Φxx)‖2 + ‖Φxττ‖2

)
dτ

+ C
(‖(ϕ0x, ψ0)‖2

2 + ‖Φ0xx‖2
)

+ C
(‖(ϕx, ϕτ )‖2

1 + ‖(Φxx,Φxτ )‖2
)

(4.65)

for any t ∈ (0, T ), where the constant C > 0 is independent of T .

Proof. Multiplying (4.37a) by −((p′(ρ̄)ϕx)xx + Fx)t followed by an integration over R+, we
obtain

1
2

d
dt

∫
R+

p′(ρ̄)ϕ2
xxtdx + α

∫
R+

p′(ρ̄)ϕ2
xxtdx

= − d
dt

∫
R+

(ϕxxt + αϕxx)Ftdx− 1
2

d
dt

∫
R+

[(p′(ρ̄)ϕx)xx + Fx]2dx

− d
dt

∫
R+

ϕxxtp
′(ρ̄)ρ̄xϕxtdx +

∫
R+

ϕxxtp
′(ρ̄)ρ̄x(ϕxtt − ϕxt)dx︸ ︷︷ ︸

I1

+
∫
R+

(ϕxxt + αϕxx)Fttdx︸ ︷︷ ︸
I2

−
∫
R+

Hx((p′(ρ̄)ϕx)xx + Fx)tdx︸ ︷︷ ︸
I3

. (4.66)

Denote

G2(t) : =
1
2

∫
R+

p′(ρ̄)ϕ2
xxtdx +

∫
R+

(ϕxxt + αϕxx)Ftdx

+
1
2

∫
R+

[(p′(ρ̄)ϕx)xx + Fx]2dx +
∫
R+

ϕxxtp
′(ρ̄)ρ̄xϕxtdx,

then (4.66) can be rewritten as

d
dt

G2(t) + α

∫
R+

p′(ρ̄)ϕ2
xxtdx = I1 + I2 + I3. (4.67)

Noting that

Ft = [p′(ϕx + ρ̄) − p′(ρ̄)]ϕxxt + [p′′(ϕx + ρ̄) − p′′(ρ̄)]ϕxtρ̄x + p′′(ϕx + ρ̄)ϕxtϕxx

− μ
(
ϕxtΦx + ϕxΦxt + ϕxtφ̄x + ρ̄Φxt

)
,

we utilize (1.3), (2.4), (4.10), (4.11), and the mean value theorem to get

|Ft| � Cε|ϕxxt| + C(ε + δ)(|ϕxt| + |Φxt|) + C|Φxt| � Cε|ϕxxt| + C(|ϕxt| + |Φxt|).
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Then by (2.4) and Cauchy–Schwarz inequality, we have∣∣∣∣∣
∫
R+

ϕxxtp
′(ρ̄)ρ̄xϕxtdx

∣∣∣∣∣ +

∣∣∣∣∣
∫
R+

(ϕxxt + αϕxx)Ftdx

∣∣∣∣∣
� C(ε + δ)‖ϕxxt‖2 + C‖(ϕxx, ϕxt,Φxt)‖2. (4.68)

A direct computation leads to

Fx = [p′(ϕx + ρ̄) − p′(ρ̄) − p′′(ρ̄)ϕx]ρ̄xx + [p′(ϕx + ρ̄) − p′(ρ̄)]ϕxxx

+ [p′′(ϕx + ρ̄) − p′′(ρ̄) − p′′′(ρ̄)ϕx]ρ̄2
x + 2[p′′(ϕx + ρ̄) − p′′(ρ̄)]ϕxxρ̄x

+ p′′(ϕx + ρ̄)ϕ2
xx + ϕxxΦx + ϕxΦxx + ϕxxφ̄x + ρ̄Φxx, (4.69)

(p′(ρ̄)ϕx)xx = p′(ρ̄)ϕxxx + 2p′′(ρ̄)ρ̄xϕxx + p′′(ρ̄)ρ̄xxϕx + p′′′(ρ̄)ρ̄2
xϕx. (4.70)

Combining the above identities with (1.3), (2.4), (4.10)–(4.12), and the Taylor expansion
yields

|Fx| � Cε|ϕxxx| + C(ε + δ)(|ϕxx| + |ϕx|) + C|Φxx|, (4.71)

|(p′(ρ̄)ϕx)xx − p′(ρ̄)ϕxxx| � Cδ(|ϕx| + |ϕxx|). (4.72)

We thus deduce that∫
R+

[(p′(ρ̄)ϕx)xx + Fx]2dx =
∫
R+

|p′(ρ̄)ϕxxx + (p′(ρ̄)ϕx)xx − p′(ρ̄)ϕxxx + Fx|2dx

�
∫
R+

|p′(ρ̄)ϕxxx|2dx− 2
∫
R+

|p′(ρ̄)ϕxxx|(|Fx| + |(p′(ρ̄)ϕx)x − p′(ρ̄)ϕxxx|)dx

� 1
2

∫
R+

|p′(ρ̄)ϕxxx|2dx− C‖(ϕx, ϕxx,Φxx)‖2 (4.73)

for suitably small ε and δ, and that∫
R+

[(p′(ρ̄)ϕx)xx + Fx]2dx � C
(‖ϕx‖2

2 + ‖Φxx‖2
)
. (4.74)

Here (1.3), (4.11), and Cauchy–Schwarz inequality have been used. Due to (4.68), (4.73), and
(4.74), it follows that⎧⎨

⎩G2(t) � C
(‖ϕxt‖2

1 + ‖ϕx‖2
2 + ‖(Φxx,Φxt)‖2

)
,

G2(t) � C‖(ϕxxt, ϕxxx)‖2 − C
(‖ϕx‖2

1 + ‖(Φxx,Φxt, ϕxt)‖2
)
,

(4.75)

where we have used (1.3) and the bounds of ρ̄. Now let us turn to the estimates of Ii. From
(4.3a), we get

ϕxtt = (p′(ρ̄)ϕx)xx − αϕxt + Fx + Hx. (4.76)

A direct computation leads to

Hx =
2ϕ2

tx + 2ϕtϕtxx

ϕx + ρ̄
− 4ϕtϕtx(ϕxx + ρ̄x)

(ϕx + ρ̄)2
− ϕ2

t (ϕxxx + ρ̄xx)
(ϕx + ρ̄)2

+
2ϕ2

t (ϕxx + ρ̄x)2

(ϕx + ρ̄)3
. (4.77)
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This along with (1.3), (2.4), (4.10), and (4.12) implies

|Hx| � Cε(|ϕxxx| + |ϕxxt|) + C(|ϕxt| + |ϕt|) (4.78)

for sufficiently small ε and δ. Therefore, it holds that

‖ϕxtt‖ � C‖(p′(ρ̄)ϕx)xx‖ + ‖αϕxt‖ + ‖Fx‖ + ‖Hx‖ � C(‖(ϕx, ϕt)‖2 + ‖Φxx‖), (4.79)

where we have used (1.3), (2.4), (4.11), (4.71), and (4.78). Resorting to (2.4), (4.79), and
Cauchy–Schwarz inequality, we get

I1 � Cδ‖ϕxxt‖‖(ϕxtt, ϕxt)‖ � Cδ‖(ϕxxx, ϕxxt)‖2 + C
(
‖(ϕx, ϕt)‖2

1 + ‖Φxx‖2
)
.

For I2, a direct computation gives

Ftt = [p′(ϕx + ρ̄) − p′(ρ̄)]ϕxxtt + 2p′′(ϕx + ρ̄)ϕxtϕxxt + [p′′(ϕx + ρ̄) − p′′(ρ̄)]ϕxttρ̄x

+ p′′′(ϕx + ρ̄)ϕ2
xtρ̄x + p′′′(ϕx + ρ̄)ϕ2

xtϕxx + p′′(ϕx + ρ̄)ϕxttϕxx

− μ
(
ϕxttΦx + 2ϕxtΦxt + ϕxΦxtt + ϕxttφ̄x + ρ̄Φxtt

)
= [p′(ϕx + ρ̄) − p′(ρ̄)]ϕxxtt + J ,

where, due to (1.3), (2.4), and (4.10), J can be estimated as follows

|J | � C(ε + δ)(|ϕxtt| + |ϕxt| + |Φxt|) + Cε|ϕxxt| + C|Φxtt|.
Then, owing to (1.3), (4.10)–(4.12), (4.79), Cauchy–Schwarz inequality, and the mean value
theorem, we have

I2 =
∫
R+

(ϕxxt + αϕxx)([p′(ϕx + ρ̄) − p′(ρ̄)]ϕxxtt + J )dx

=
d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]
(

1
2
ϕ2
xxt + ϕxxϕxxt

)
dx− α

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]ϕ2
xxtdx

−
∫
R+

p′′(ϕx + ρ̄)ϕxt

(
1
2
ϕ2
xxt + ϕxxϕxxt

)
dx +

∫
R+

(ϕxxt + αϕxx)J dx

� d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]
(

1
2
ϕ2
xxt + ϕxxϕxxt

)
dx + C‖ϕx‖L∞‖ϕxxt‖2

+ C‖ϕxt‖L∞

(
‖ϕxxt‖2 + ‖ϕxx‖‖ϕxxt‖

)
+ C‖(ϕxxt, ϕxx)‖‖J ‖

� d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]
(

1
2
ϕ2
xxt + ϕxxϕxxt

)
dx + C(ε + δ)‖(ϕxxt, ϕxxx)‖2

+ C
(‖(ϕx, ϕt)‖2

1 + ‖(Φxt,Φxx)‖2
)

+ η‖ϕxxt‖2 + Cη‖Φxtt‖2

for any η > 0. To deal with I3, we rearrange Hx in (4.77) as follows:

Hx =
2ϕtϕtxx

ϕx + ρ̄
− ϕ2

t (ϕxxx + ρ̄xx)
(ϕx + ρ̄)2

+
[

2ϕ2
tx

ϕx + ρ̄
− 4ϕtϕtx(ϕxx + ρ̄x)

(ϕx + ρ̄)2
+

2ϕ2
t (ϕxx + ρ̄x)2

(ϕx + ρ̄)3

]

=
2ϕtϕtxx

ϕx + ρ̄
− ϕ2

t (ϕxxx + ρ̄xx)
(ϕx + ρ̄)2

+ L1, (4.80)

with

|∂xL1| � C(ε + δ)|ϕxxt| + Cε|ϕxxx| + C(ε + δ)(|ϕt| + |ϕxt|) (4.81)
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for suitably small ε and δ, due to (2.4), (4.10) and (4.12). Based on (4.80), we split I3 into
three parts:

I3 =
∫
R+

2ϕtϕtxx

ϕx + ρ̄
((p′(ρ̄)ϕx)xx + Fx)tdx−

∫
R+

ϕ2
t (ϕxxx + ρ̄xx)
(ϕx + ρ̄)2

((p′(ρ̄)ϕx)xx + Fx)tdx

+
∫
R+

((p′(ρ̄)ϕx)xx + Fx)tL1dx = I3,1 + I3,2 + I3,3.

Next, we estimate I3,i. Recalling (4.69) and (4.70), we have

((p′(ρ̄)ϕx)xx + Fx)t = p′(ϕx + ρ̄)ϕxxxt + [((p′(ρ̄)ϕx)xx + Fx)t − p′(ϕx + ρ̄)ϕxxxt]

= p′(ϕx + ρ̄)ϕxxxt + L2,

where, in view of (1.3), (2.4), (4.10), and (4.11), the following inequality holds

|L2| � C(ε + δ)(|ϕxxt| + |ϕxxx|) + C|Φxxt| + C(|ϕxt| + |Φxt|).
We thus have

I3,1 =
∫
R+

2ϕtϕtxx

ϕx + ρ̄
(p′(ϕx + ρ̄)ϕxxxt + L2)dx

� −
∫
R+

ϕ2
xxt

(
p′(ϕx + ρ̄)ϕt

ϕx + ρ̄

)
x

dx + C‖ϕt‖L∞‖ϕxxt‖‖L2‖

�
∫
R+

ϕ2
xxt(|ϕxt| + |ϕt(ϕxx + ρ̄x)|)dx + Cε‖ϕxxt‖‖L2‖

� C(δ + ε)‖(ϕxxt, ϕxxx, ϕtx)‖2 + Cε‖Φxt‖2
1

and

I3,2 = −
∫
R+

ϕ2
t (ϕxxx + ρ̄xx)
(ϕx + ρ̄)2

(p′(ϕx + ρ̄)ϕxxxt + L2)dx

= −1
2

d
dt

∫
R+

p′(ϕx + ρ̄)ϕ2
t (ϕxxx + ρ̄xx)2

(ϕx + ρ̄)2
dx + C(ε + δ)(‖ϕxxx‖ + ‖ϕt‖)‖L2‖

+
1
2

∫
R+

(ϕxxx + ρ̄xx)2
(
p′′(ϕx + ρ̄)ϕxtϕ

2
t

(ϕx + ρ̄)2
+

2p′(ϕx + ρ̄)ϕtϕtt

(ϕx + ρ̄)2
− 2

p′(ϕx + ρ̄)ϕxtϕ
2
t

(ϕx + ρ̄)3

)
dx

= −1
2

d
dt

∫
R+

p′(ϕx + ρ̄)ϕ2
t (ϕxxx + ρ̄xx)2

(ϕx + ρ̄)2
dx + C(ε + δ)

(‖ϕt‖2
1 + ‖Φxt‖2

1 + ‖ϕxxx‖2
)
,

where we have used (1.3), (2.4), (4.10), (4.12), (4.57), Cauchy–Schwarz inequality, and the
integration by parts. For I3,3, the integration by parts leads to

I3,3 = −
∫
R+

((p′(ρ̄)ϕx)x + F)t∂xL1dx,

which combined with (4.4), (4.5), (4.10), (4.81), and Cauchy–Schwarz inequality implies

I3,3 � C

∫
R+

(|ϕxt| + |Φxt|)[C(ε + δ)(|ϕxxt| + |ϕt| + |ϕxt|) + Cε|ϕxxx|]dx

� C(ε + δ)‖(ϕxxx, ϕxxt)‖2 + C
(‖ϕt‖2

1 + ‖Φxt‖2
)
.
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Hence, we have

I3 � −1
2

d
dt

∫
R+

p′(ϕx + ρ̄)ϕ2
t (ϕxxx + ρ̄xx)2

(ϕx + ρ̄)2
dx

+ C(ε + δ)‖(ϕxxx, ϕxxt,Φxxt)‖2 + C
(‖ϕt‖2

1 + ‖Φxt‖2
)
.

Plugging Ii (i = 1, 2, 3) into (4.67), we now reach

d
dt

G2(t) + α

∫
R+

p′(ρ̄)ϕ2
xxtdx +

1
2

d
dt

∫
R+

p′(ϕx + ρ̄)ϕ2
t (ϕxxx + ρ̄xx)2

(ϕx + ρ̄)2
dx

=
d
dt

∫
R+

[p′(ϕx + ρ̄) − p′(ρ̄)]
(

1
2
ϕ2
xxt + ϕxxϕxxt

)
dx + C(δ + ε)‖(ϕxxx, ϕxxt,Φxxt)‖2

+ η‖ϕxxt‖2 + Cη‖Φxtt‖2 + C‖(ϕx, ϕt)‖2
1 + C‖(Φxx,Φxt)‖2 (4.82)

for any η > 0. Consequently, due to (1.3), (4.10)–(4.12), (4.75), and the mean value theorem,
we obtain (4.65) after integrating (4.82) over (0, t) and taking δ, ε, and η small enough. The
proof of Lemma 4.4 is complete. �

In the next lemma, we shall estimate the higher order terms on the right-hand side of (4.65).

Lemma 4.5. Let the assumptions in Proposition 4.2 hold. If ε and δ are sufficiently small,
then the solution (ϕ,Φ) of (4.3a)–(4.3d) satisfies

‖(Φxt,Φtt,Φxxx)‖2 +
∫ t

0

‖Φxxτ‖2dτ +
∫ t

0

‖(Φττ ,Φxτ ,Φxττ ,Φxxτ )‖2dτ

� C(‖Φ0‖2
4 + ‖ϕ0x‖2

2 + ‖ψ0x‖2) + C‖(ϕxx,Φx)‖2 + C

∫ t

0

(‖(ϕτ , ϕx)‖2
1 + ‖Φxx‖2)dτ

+ C

∫ t

0

(
ε‖(ϕxxτ , ϕxxx)‖2 + ‖ϕxxτ‖‖Φxτ‖

)
dτ, (4.83)

and that∫ t

0

∫
R+

ϕ2
xxxdxdτ � C‖(ϕx, ϕxt,Φx)‖2

1 + C
(‖ϕ0x‖2

2 + ‖ψ0x‖2
)

+ C(δ + ε)
∫ t

0

‖Φxxτ‖2dτ + C

∫ t

0

(
‖ϕτ‖2

2 + ‖(Φxτ ,Φxx)‖2 + ‖ϕx‖2
1

)
dτ.

(4.84)

Proof. We divide the proof into two steps.
Step 1: Estimates on (Φxt,Φxxt,Φxtt). Differentiating (4.37b) with respect to t, we have

Φxtt = Φxxxt + aϕxxt − bΦxt. (4.85)

Multiplying (4.85) by Φxt and integrating the resulting equation over R+, we get by the Hölder’s
inequality that

1
2

d
dt

∫
R+

Φ2
xtdx + b

∫
R+

Φ2
xtdx +

∫
R+

Φ2
xxtdx

= −ΦxxtΦxt|x=0 + a

∫
R+

ϕxxtΦxtdx

� −ΦxxtΦxt|x=0 + C‖Φxt‖‖ϕxxt‖. (4.86)
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In view of (4.44), for smooth solution (ϕ,Φ), we have Φxxt = aϕxt at x = 0. Then it holds
that

−ΦxxtΦxt|x=0 � ‖ϕxt‖L∞‖Φxt‖L∞

� C‖ϕxt‖ 1
2 ‖ϕxxt‖ 1

2 ‖Φxt‖ 1
2 ‖Φxxt‖ 1

2

� C‖ϕxxt‖ 1
2 ‖Φxt‖ 1

2 (‖ϕxt‖ + ‖Φxxt‖)

� η‖Φxxt‖2 + Cη‖Φxt‖‖ϕxxt‖ + C‖ϕxt‖2 (4.87)

for any η > 0, where the Sobolev inequality ‖f‖L∞ � C‖f‖ 1
2 ‖fx‖ 1

2 and Cauchy–Schwarz
inequality have been used. Plugging (4.87) into (4.86), we get after taking η suitably small
that

‖Φxt‖2 +
∫ t

0

‖(Φxxτ ,Φxτ )‖2dτ

� C

∫ t

0

(‖ϕxxτ‖‖Φxτ‖ + ‖ϕxτ‖2
)
dτ + C(‖Φ0‖2

3 + ‖ϕ0xx‖2), (4.88)

where we have used (2.6). By (4.37b) and (4.88), we have

‖Φxxx‖2 � C‖Φxt‖2 + C‖(ϕxx,Φx)‖2

� C

∫ t

0

(‖ϕxxτ‖‖Φxτ‖ + ‖ϕxτ‖2
)
dτ + C‖(ϕxx,Φx)‖2 + C(‖Φ0‖2

3 + ‖ϕ0xx‖2). (4.89)

Differentiating in (4.3b) with respect to t twice gives

Φttt = Φxxtt + aϕxtt − bΦtt. (4.90)

Multiplying (4.90) by Φtt, we have

1
2

d
dt

∫
R+

Φ2
ttdx + b

∫
R+

Φ2
ttdx +

∫
R+

Φ2
xttdx = a

∫
R+

ϕxttΦttdx. (4.91)

Due to (1.3), (2.4), (4.11), (4.71), (4.72), (4.76), (4.78), Cauchy–Schwarz inequality, and
integration by parts, one has

a

∫
R+

ϕxttΦttdx

= a

∫
R+

p′(ρ̄)ϕxxxΦttdx + a

∫
R+

[((p′(ρ̄)ϕx)xx − p′(ρ̄)ϕxxx) − ϕxt + Fx + Hx]Φttdx

� −a

∫
R+

p′(ρ̄)ϕxxΦxttdx− a

∫
R+

p′′(ρ̄)ρ̄xϕxxΦttdx + C‖ϕxt‖‖Φtt‖

+ C‖(Fx,Hx)‖‖Φtt‖ + C‖(p′(ρ̄)ϕx)xx − p′(ρ̄)ϕxxx‖‖Φtt‖

� C(η + ε + δ)‖Φtt‖2 + η‖Φxtt‖2 + Cε‖(ϕxxt, ϕxxx)‖2 + Cη(‖(ϕt, ϕx)‖2
1 + ‖Φxx‖2) (4.92)
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for any η > 0. Substituting (4.92) into (4.91), we get after taking η, ε, δ small enough that

‖Φtt‖2 +
∫ t

0

‖(Φττ ,Φxττ )‖2dτ

� C(‖Φ0‖2
4 + ‖ϕ0x‖2

2 + ‖ψ0x‖2) + Cε

∫ t

0

‖(ϕxxτ , ϕxxx)‖2dτ

+ C

∫ t

0

(‖(ϕτ , ϕx)‖2
1 + ‖Φxx‖2)dτ, (4.93)

where we have used (2.7). Combining (4.93) with (4.88) and (4.89), then we get (4.83).
Step 2: Estimates on ϕxxx. Multiplying (4.37a) by −(ϕxxx − μρ−

p′(ρ−)Φxx) with ρ− as in (3.3),
and integrating the resulting equation over R+ × (0, t) for any t ∈ (0, T ), we get∫ t

0

∫
R+

p′(ρ̄)ϕ2
xxxdxdτ

= −
∫ t

0

∫
R+

((p′(ρ̄)ϕx)xx − p′(ρ̄)ϕxxx)ϕxxxdxdτ +
∫ t

0

∫
R+

(p′(ρ̄)ϕx)xx
μρ−
p′(ρ−)

Φxxdxdτ

−
∫
R+

(ϕxt + ϕx)
(
ϕxxx − μρ−Φxx

p′(ρ−)

)
(x, 0)dx +

∫
R+

(ϕxt + ϕx)
(
ϕxxx − μρ−Φxx

p′(ρ−)

)
(x, t)dx

−
∫ t

0

∫
R+

(ϕxt + αϕx)
(
ϕxxx − μρ−Φxx

p′(ρ−)

)
τ

dxdτ

−
∫ t

0

∫
R+

(Hx + Fx)
(
ϕxxx − μρ−Φxx

p′(ρ−)

)
dxdτ

=
6∑

i=1

Pi. (4.94)

Due to (1.3) and (4.11), one can find a constant C > 0 such that

C

∫ t

0

∫
R+

ϕ2
xxxdxdτ �

∫ t

0

∫
R+

p′(ρ̄)ϕ2
xxxdxdτ.

Now let us estimate Pi (1 � i � 6) term by term. Recalling (4.72), it holds that

P1 � Cδ

∫ t

0

∫
R+

(|ϕx| + |ϕxx|)|ϕxxx|dxdτ � Cδ

∫ t

0

‖ϕx‖2
2dτ,

and that

P2 =
∫ t

0

∫
R+

[(p′(ρ̄)ϕx)xx − p′(ρ̄)ϕxxx + p′(ρ̄)ϕxxx]
μρ−
p′(ρ−)

Φxxdxdτ

�
∫ t

0

∫
R+

(δ(|ϕx| + |ϕxx|) + |ϕxxx|)|Φxx|dxdτ

�
∫ t

0

‖ϕxxx‖‖Φxx‖dτ + Cδ

∫ t

0

‖(ϕx, ϕxx,Φxx)‖2dτ

� η

∫ t

0

‖ϕxxx‖2dτ + Cη

∫ t

0

‖Φxx‖2dτ + Cδ

∫ t

0

‖(ϕx, ϕxx)‖2dτ
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for any η > 0, where the Cauchy–Schwarz has been used. Again, by Cauchy–Schwarz inequality,
it holds that

P3 � C

∫
R+

(|ψ0x| + |ϕ0x|)(|ϕ0xxx| + |Φ0xx|)dx

� C
(‖ϕ0x‖2

2 + ‖(ψ0x,Φ0xx)‖2
)
.

From the boundary conditions in (4.13), we get(
ϕxx − μρ−

p′(ρ−)
Φx

)∣∣∣∣
x=0

=
{
μρ̄

(
1

p′(ϕx + ρ̄)
− 1

p′(ρ̄)
+

ϕx

p′(ϕx + ρ̄)

)
Φx

− 1
p′(ϕx + ρ̄)

(p′(ϕx + ρ̄) − p′(ρ̄))ρ̄x +
ϕxφ̄x

p′(ϕx + ρ̄)

}∣∣∣∣
x=0

,

(
ϕxx − μρ−

p′(ρ−)
Φx

)
t

∣∣∣∣
x=0

=
{
μρ̄

(
1

p′(ϕx + ρ̄)
− 1

p′(ρ̄)
+

ϕx

p′(ϕx + ρ̄)

)
Φx

− 1
p′(ϕx + ρ̄)

(p′(ϕx + ρ̄) − p′(ρ̄))ρ̄x +
ϕxφ̄x

p′(ϕx + ρ̄)

}
t

∣∣∣∣
x=0

.

Due to (1.3), (2.4), and (4.10)–(4.12), we further have that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣
(
ϕxx − μρ−

p′(ρ−)
Φx

)∣∣∣∣
x=0

∣∣∣∣ � C(ε + δ)(‖Φx‖L∞ + ‖ϕx‖L∞),

∣∣∣∣
(
ϕxx − μρ−

p′(ρ−)
Φx

)
t

∣∣∣∣
x=0

∣∣∣∣ � C(ε + δ)(‖Φxt‖L∞ + ‖ϕxt‖L∞).

(4.95)

By (4.95), Cauchy–Schwarz inequality, the Sobolev inequality ‖f‖L∞ � C‖f‖1, and the
integration by parts, we have

P4 =
∫
R+

(ϕxt + ϕx)(ϕxxx − μρ−
p′(ρ−)

Φxx)dx

= −
∫
R+

(ϕxxt + ϕxx)(ϕxx − μρ−
p′(ρ−)

Φx)dx− (ϕxt + ϕx)
(
ϕxx − μρ−

p′(ρ−)
Φx

)∣∣∣∣
x=0

� C‖ϕxxt‖‖(ϕxx,Φx)‖ + C‖(ϕxx,Φx)‖2 + C(ε + δ)‖ϕxt‖L∞(‖Φx‖L∞ + ‖ϕx‖L∞)

+ C(ε + δ)‖ϕx‖L∞(‖Φx‖L∞ + ‖ϕx‖L∞)

� C‖(ϕx, ϕxt,Φx)‖2
1

and

P5 =
∫ t

0

∫
R+

(ϕxxτ + αϕxx)
(
ϕxx − μρ−Φx

p′(ρ−)

)
τ

dxdτ −
∫ t

0

(ϕxτ + ϕx)
(
ϕxx − μρ−Φx

p′(ρ−)

)
τ

∣∣∣∣
x=0

dτ

� C

∫ t

0

‖(ϕxxτ , ϕxx,Φxτ )‖2dτ + C(ε + δ)
∫ t

0

(‖ϕxτ‖L∞ + ‖ϕx‖L∞)(‖Φxτ‖L∞ + ‖ϕxτ‖L∞)dτ

� C(ε + δ)
∫ t

0

‖Φxxτ‖2dτ + C

∫ t

0

(‖(ϕx, ϕxτ )‖2
1 + ‖Φxτ‖2

)
dτ.



PHASE TRANSITION STEADY STATE TO A HYPERBOLIC-PARABOLIC SYSTEM 1511

For P6, we utilize (4.71), (4.78), and Cauchy–Schwarz inequality to get

P6 � C

∫ t

0

‖(Hx,Fx)‖‖(ϕxxx,Φxx)‖dτ

� C(ε + δ)
∫ t

0

‖(ϕxxx, ϕxxτ )‖2dτ + C

∫ t

0

(‖(ϕτ , ϕx)‖2
1 + ‖Φxx‖2

)
dτ.

Inserting the estimates for Pi (i = 1, . . . , 6) into (4.94), we get∫ t

0

∫
R+

ϕ2
xxxdxdτ � C‖(ϕx, ϕxt,Φx)‖2

1 + C
(‖ϕ0x‖2

2 + ‖ψ0x‖2
)

+ C(δ + ε)
∫ t

0

‖Φxxτ‖2dτ + C

∫ t

0

(‖ϕτ‖2
2 + ‖(Φxτ ,Φxx)‖2 + ‖ϕx‖2

1

)
dτ,

provided ε and δ are suitably small. The proof of Lemma 4.5 is complete. �

From Lemmas 4.4 and 4.5, we have the following higher order estimates.

Lemma 4.6. Under the conditions of Proposition 4.2, for any t ∈ (0, T ), we have

‖(ϕxxx, ϕxxt,Φxt,Φtt,Φxxx)‖2 +
∫ t

0

(‖(ϕxxτ , ϕxxx)‖2 + ‖(ϕxτ ,Φττ )‖2
1

)
dτ

� C
(‖Φ0‖2

4 + ‖(ϕ0x, ψ0)‖2
2

)
+ C‖(ϕx, ϕt,Φx)‖2

1 + C

∫ t

0

(‖(ϕτ , ϕx)‖2
1 + ‖(Φxτ ,Φxx)‖2

)
dτ,

(4.96)

provided ε and δ are sufficiently small.

Proof. First, to control the terms related to (Φxt,Φxxt,Φxtt) on the right-hand side of (4.65),
we add (4.65) with (4.83) multiplied by a large positive constant to get

‖(ϕxxx, ϕxxt,Φxt,Φtt,Φxxx)‖2 +
∫ t

0

‖(Φxτ ,Φτ ,Φxττ ,Φxxτ , ϕxxτ )‖2dτ

� C(‖Φ0‖2
4 + ‖(ϕ0x, ψ0)‖2

2) + C
(‖(ϕx, ϕt)‖2

1 + ‖Φxx‖2
)

+ C(δ + ε)
∫ t

0

‖ϕxxx‖2dτ + C

∫ t

0

(‖(ϕτ , ϕx)‖2
1 + ‖(Φxτ ,Φxx)‖2)dτ, (4.97)

provided ε and δ are suitably small, where the Cauchy–Schwarz inequality has been used.
Combining (4.97) with (4.84), for sufficiently small ε and δ, we have

‖(ϕxxx, ϕxxt,Φxt,Φtt,Φxxx)‖2 +
∫ t

0

‖(Φxτ ,Φττ ,Φxττ ,Φxxτ , ϕxxτ , ϕxxx)‖2dτ

� C(‖Φ0‖2
4 + ‖(ϕ0x, ψ0)‖2

2) + C‖(ϕx, ϕt,Φx)‖2
1 + C

∫ t

0

(‖(ϕτ , ϕx)‖2
1 + ‖(Φxτ ,Φxx)‖2)dτ.

This gives rise to (4.96) and thus finishes the proof of Lemma 4.6. �

4.4. Proof of Proposition 4.2

By the local existence result in Proposition 4.1 and the standard extension criterion, it suffices
to show the estimates (4.7) and (4.8) to prove Proposition 4.2. We first close the a priori
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assumption (4.9). To this end, we add (4.96) to (4.36) multiplied by a suitable positive constant
and get

‖(ϕx,Φx)‖2
2 + ‖ϕxt‖2

1 + ‖(Φxt,Φtt)‖2 +
∫ t

0

‖(ϕxx, ϕxτ ,Φx,Φxτ ,Φττ )‖2
1dτ

� C
(‖Φ0‖2

4 + ‖(ϕ0x, ψ0)‖2
2

)
+ C‖ϕt‖2 + C

∫ t

0

‖(ϕx, ϕτ )‖2dτ + C

∫ t

0

‖ϕx‖‖Φxxτ‖dτ,

where the smallness of ε and δ has been used. This along with the Cauchy–Schwarz inequality
gives

‖(ϕx,Φx)‖2
2 + ‖ϕxt‖2

1 + ‖(Φxt,Φtt)‖2 +
∫ t

0

‖(ϕxx, ϕxτ ,Φx,Φxτ ,Φττ )‖2
1dτ

� C
(‖Φ0‖2

4 + ‖(ϕ0x, ψ0)‖2
2

)
+ C‖ϕt‖2 + C

∫ t

0

‖(ϕx, ϕτ )‖2dτ. (4.98)

Furthermore, multiplying (4.15) by a suitable positive constant, and adding the resulting
inequality to (4.98), we obtain

‖(ϕ,Φ)‖2
3 + ‖ϕt‖2

2 + ‖(Φxt,Φtt)‖2 +
∫ t

0

(‖ϕx‖2
2 + ‖(ϕτ ,Φτ ,Φ)‖2

2 + ‖Φττ‖2
1

)
dτ

� C
(‖ϕ0‖2

3 + ‖ψ0‖2
2 + ‖Φ0‖2

4

)
. (4.99)

Then by setting

ε2 = 2C
(‖ϕ0‖2

3 + ‖ψ0‖2
2 + ‖Φ0‖2

4

)
and taking ‖ϕ0‖3 + ‖ψ0‖2 + ‖Φ0‖4 suitably small, we have

sup
0�t<T

{
‖(ϕ,Φ)(·, t)‖2

3 + ‖ψ(·, t)‖2
2

}
< ε2

which hence closes the a priori assumption (4.9). To complete the proof of (4.7) and (4.8), now
it remains to show the following

‖Φxxxx‖2 +
∫ t

0

(‖Φxxx‖2 + ‖(ϕττ , ϕττx)‖2
)
dτ � C

(‖ϕ0‖2
3 + ‖ψ0‖2

2 + ‖Φ0‖2
4

)
.

Collecting (4.37b), (4.57), (4.79), and (4.99), one immediately has∫ t

0

(‖Φxxx‖2 + ‖(ϕττ , ϕττx)‖2
)
dτ � C

(‖ϕ0‖2
3 + ‖ψ0‖2

2 + ‖Φ0‖2
4

)
.

To derive the estimate for Φxxxx, we first deduce from (4.3b) and (4.99) that

‖Φt‖2 � C‖(Φxx, ϕx,Φ)‖2 � C
(‖ϕ0‖2

3 + ‖ψ0‖2
2 + ‖Φ0‖2

4

)
. (4.100)

Next, differentiating (4.3b) with respect to t leads to

Φtt = Φxxt + aϕxt + bΦt.

This along with (4.100) and (4.99) yields

‖Φxxt‖2 � C‖(Φtt,Φt, ϕxt)‖2 � C
(‖ϕ0‖2

3 + ‖ψ0‖2
2 + ‖Φ0‖2

4

)
.

Finally, differentiating (4.37b) with respect to x, we have

Φxxxx = Φxxt − aϕxxx + bΦxx,
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and thus

‖Φxxxx‖2 � C‖(Φxx,Φxxt, ϕxxx)‖2 � C
(‖ϕ0‖2

3 + ‖ψ0‖2
2 + ‖Φ0‖2

4

)
.

The proof of Proposition 4.2 is complete. �

4.5. Proof of Theorem 2.2

In view of Proposition 4.2, the problem (1.2a)–(1.2c), (1.4)–(1.5) admits a unique classical
solution (ρ,m, φ) in R+ × (0,∞). Moreover, due to (4.2), (4.7), and (4.8), it holds that

‖(ρ− ρ̄,m)‖2
2 + ‖φ− φ̄‖2

4 � C
(‖ϕ0‖2

3 + ‖ψ0‖2
2 + ‖Φ0‖2

4

)
,

and that∫ t

0

(‖(ρ− ρ̄,m)‖2
2 + ‖φ− φ̄‖2

3 + ‖(ρτ ,mτ , φτ )‖2
1

)
dτ � C

(‖ϕ0‖2
3 + ‖ψ0‖2

2 + ‖Φ0‖2
4

)
(4.101)

for any t > 0. In the following, we shall prove the large time behavior of (ρ,m, φ) as in (2.5).
For this, recalling the Sobolev inequality ‖f‖L∞ � C‖f‖ 1

2 ‖fx‖ 1
2 , it suffices to show that

lim
t→∞ ‖(ρ− ρ̄,m, φ− φ̄)(·, t)‖2 → 0. (4.102)

In fact, with the help of (4.101) and Cauchy–Schwarz inequality, we get∫ +∞

0

∣∣∣∣ d
dt

‖(ρ− ρ̄,m, φ− φ̄)(·, t)‖2

∣∣∣∣dt
� C

∫ +∞

0

(‖(ρ− ρ̄,m, φ− φ̄)‖2 + ‖(ρt,mt, φt)‖2
)
dt < ∞. (4.103)

The estimate (4.101) in combination with (4.103) gives (4.102). Then (2.5) is proved and we
complete the proof of Theorem 2.2. �
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