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ABSTRACT
This paper is concerned with the uniqueness of solutions to the fol-
lowing nonlocal semi-linear elliptic equation

Du�buþ k
euÐ
Xe

u
¼ 0 in X; ð�Þ

where X is a bounded domain in R
2 and b; k are positive param-

eters. The above equation arises as the stationary problem of the
well-known classical Keller–Segel model describing chemotaxis.
For Eq. (�) with Neumann boundary condition, we establish an
integral inequality and prove that the solution of Eq. (�) is
unique if 0< k � 8p and u satisfies some symmetric properties.
While for Eq. (�) with Dirichlet boundary condition, the same
uniqueness result is obtained without symmetric condition by a
different approach inspired by some recent works (Gui and
Moradifam, 2018, Invent. Math. 214(3):1169–1204; Gui and
Moradifam, Proc. Am. Math. Soc. 146(3):1231–1124). As an appli-
cation of the uniqueness results, we prove that the radially sym-
metric solution of the classical Keller–Segel system with
subcritical mass subject to Neumann boundary conditions will
converge to the unique constant equilibrium as time tends to
infinity if X is a disc in two dimensions. As far as we know, this is
the first result that asserts the exact asymptotic behavior of solu-
tions to the classical Keller–Segel system with subcritical mass in
two dimensions.
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1. Introduction

This paper is concerned with a system of partial differential equations modeling chemo-
taxis which refers to the active motion of biological species toward higher concentra-
tions of chemical substances that they emit themselves. The classical chemotaxis model
is well-known as the Keller–Segel (KS) system [1, 2], reading as
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vt ¼ r � rv�vruð Þ in X;
ut ¼ Du�buþ v in X;
@�v ¼ @�u ¼ 0 on @X;
v x; 0ð Þ ¼ v0 xð Þ; u x; 0ð Þ ¼ u0 xð Þ in X;

8>><
>>: (1.1)

where X is smooth bounded domain in R
NðN � 2Þ; v(x, t) and u(x, t) denote the cell

density and chemical concentration, respectively; b is a positive constant accounting for
the chemical death rate, v is the unit outward normal vector at the boundary @X:
The underlying equations in system (1.1) were proposed by Keller and Segel in 1970

[1, 2] to describe the aggregation phase of cellular slime molds Dictyostelium discoideum
in response to the chemical substance cyclic adenosine monophosphate (cAMP) that
they secreted. An immediate result derived from Eq. (1.1) is the mass conservation for
v(x, t) by integrating the first equation

k ¼:

ð
X
v x; tð Þdx ¼

ð
X
v0 xð Þdx:

Among other things, the most striking feature of the KS system (1.1) lies in the exist-
ence of critical space dimension and critical mass. Roughly speaking, in one-dimen-
sional space (N¼ 1), the KS system (1.1) admits globally bounded classical solutions [3,
4]. In the two-dimensional radially symmetric domain (disc), global bounded classical
solutions exist (cf. [5]) if k< 8p (subcritical mass), whereas solutions may blow up in
finite or infinite time (cf. [6, 7]) if k> 8p (super-critical mass), where the critical mass
8p becomes 4p if X is a general domain without symmetry. In three dimensions, the
solution may blow up in finite time for any mass k> 0 (cf. [8]). Therefore N¼ 2 is a
borderline space dimension where a critical mass exists, and as such the KS model (1.1)
and its variants (extensions) have attracted extensive attentions and a vast number of
fruitful results have been obtained (cf. review papers [9–11] and book [12]). However,
as far as we know, the long-time behavior of solutions to the KS system (1.1) with sub-
critical mass in two dimensions still remains unknown. It is the purpose of this paper
to explore this open question. Precisely we shall show that the radial solution of (1.1) in
a disc with subcritical mass will converge to the unique constant equilibrium as time
tends to infinity. Since it has been shown in [13] that the globally bounded solution (if
it exists) of (1.1) converges to the steady states in L1-norm, our question boils down to
prove the uniqueness of constant equilibrium for the stationary problem of (1.1) in
X � R

2

r � rv�vruð Þ ¼ 0 in X;
Du�buþ v ¼ 0 in X;
@�v ¼ @�u ¼ 0 on @X;

8<
: (1.2)

in the case of subcritical mass
Ð
XvðxÞdx< 8p: To study the stationary system (1.2), we

note that the first equation can be written as

r � vr log v�uð Þð Þ ¼ 0:

Testing the above equation against log v�u; then an integration by parts shows that
any solution of (1.2) verifies the equation
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ð
X
vjr log v�uð Þj2dx ¼ 0;

so that v ¼ Ceu for some positive constant C. Hence, all the solutions (v, u) of (1.2)
would satisfy the relation v ¼ Ceu: Denoting

k ¼
ð
X
v xð Þdx;

we have C ¼ kÐ
X
eudx

: Therefore, the stationary problem (1.2) is equivalent to the follow-

ing nonlocal semi-linear Neumman problem

Du�buþ k
euÐ

Xe
udx

¼ 0 in X;

@�u ¼ 0 on @X;

8<
: (1.3)

and v ¼ euÐ
X
eudx

: Integrating the first equation of (1.3), one immediately obtains that

ð
X
u xð Þdx ¼ k

b
:

Then by a (new) shifted variable

U xð Þ ¼ u xð Þ��u; �u ¼ 1
jXj
ð
X
u xð Þdx ¼ k

bjXj ; (1.4)

the problem (1.3) can be transformed as the following

DU�bU þ k
eUÐ

Xe
Udx

� 1
jXj

 !
¼ 0 in X;

@�U ¼ 0 on @X:

8><
>: (1.5)

From (1.4) we know that the mean of U is zero, namelyð
X
U xð Þdx ¼ 0: (1.6)

When b ¼ 0, the nonlinear differential equation in (1.5) is closely related to the
Gaussian curvature problem on a surface (see [14]). In Onsager’s vortex theory, the
asymptotic limit of the Gibbs measure yields to similar problems (see [15–17]).
Moreover the first equation of (1.5) on a torus arises in the Chern–Simons gauge theory
[18] and has been investigated among others by Struwe and Tarantello [19]. Chen and
Lin [20] and Machioldi [21] have independently derived the Leray–Schauder
Topological degree for (1.5) on the Riemann surface without boundary. By assuming
b> k

jXj �k1 and k> 4p; where k1 is referred to the first eigenvalue of the Neumann
eigenvalue problem, Wang and Wei [22] and Horstmann [23] have independently
shown the existence of non-constant solutions for (1.5). Very recently, Battaglia obtains
the existence of non-constant solutions to (1.5) with ðk; bÞ in a wider range, see [24,
Theorem 1.1] for the details.
Since the Neumann problem (1.5)–(1.6) admits a trivial solution U¼ 0, it is natural

to ask whether there is any other solution. When b¼ 0, a simple application of the
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maximum principle will show that U � 0 is the unique solution to problem (1.5)–(1.6)
provided that k � 0 though it is not of interest in applications. For k> 0; the first equa-
tion of (1.5) (without Neumann boundary condition) on a standard sphere admits only
the constant solution whenever k< 8p (cf. [16, 25, 26]), while the uniqueness result also
holds for some flat torus provided k � 8p (cf. [27]). When X is the unit disc,
Horstmann and Lucia [28] proved that U � 0 is the unique solution for Neumann
problem (1.5)–(1.6) if k � 32

p : The uniqueness result also holds when the solution is
constant on the boundary (i.e. osc@XðuÞ � 0) and k � 8p: As a consequence of their
results, we may expect to conclude that U � 0 is the unique radially symmetric solution
to the Neumann problem (1.5)–(1.6) if k � 8p and X is the unit disc.
We remark that the above results for the Neumann problem (1.5) with b¼ 0 cannot

be converted to the Neumann problem (1.2) since the transformation (1.4) no longer
works for b¼ 0. Indeed, if b¼ 0, the integration of the second equation of (1.2) along
with the Neumman boundary condition yields that

Ð
Xvdx ¼ 0; which along with the

fact v � 0 indicates that (1.2) with b¼ 0 has no solution if k> 0 or u � 0 if k¼ 0.
Hence the solution for the case b¼ 0 is clear but not of interest. To the best of our
knowledge, there are very few results available for the case b> 0 for which the shifted
problem (1.5) is equivalent to (1.3) under the shifting (1.4). In this paper, we shall
investigate the uniqueness of solutions to (1.3) with b> 0 which is equivalent to (1.2)
with v ¼ euÐ

X
eudx

: Hereafter, we shall assume b> 0 unless otherwise stated. When X is the

unit disc, Senba and Suzuki [29, Theorem 4] have obtained the existence of nontrivial
radial solutions of (1.3) for k> 8p: In this paper, we shall prove that the constant equi-
librium u ¼ k

bp is the only radially symmetric solution to the Neumann problem (1.3) if

X is the unit disc and k � 8p: Using the maximum principle, one can get u> 0 in X
and we leave the proof in the Appendix (see Lemma 6.1). Therefore our study will be
focused on the positive solutions of (1.3).
Our first result concerning the Neumann problem (1.3) is the following:

Theorem 1.1. Let X be a non-empty bounded open set in R
2: Then for k � 8p the con-

stant u ¼ k
bjXj is the unique solution to the problem (1.3) with osc@XðuÞ � 0:

Remark 1.1. When X is the unit disc, we can obtain from Theorem 1.1 that u ¼ k
bp is

the only radially symmetric solution to the problem (1.3) provided k � 8p:
Inspired by the result of Theorem 1.1, one may ask what happens if the condition

osc@Xu � 0 is replaced by some symmetric condition, i.e., the solutions which are
invariant under the group of isometries of a unit disc. To state the results, letting G be
an isometry group of the unit disc B, we introduce the following classes of functions:

HG :¼ w 2 H1 Bð Þ : w ¼ w 	 g; 8g 2 G
� �

:

and

H	 G :¼ w 2 HG :

ð
X
w ¼ 0

� �
;

where B denotes the unit disc. For any h 2 ð0; 2pÞ and C 6¼ 0 we use the notations

Rh :¼ rotation of angle h;

DC :¼ reflection with respect to ~OC O stands for the orgin pointð Þ;
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and hgi stands for the subgroup generated by an isometry g. We list the following
examples which are used usually:

(a) When G ¼ SOð2Þ ¼ cos h sin h
sin h cos h

� �
; h 2 ½0; 2pÞ

� �
; the space HG consists of the

radial H1ðBÞ-functions.
(b) HhRpi consists of the H1ðBÞ-functions satisfying wðxÞ ¼ wð�xÞ:
(c) HhR2p=mi consists of the H1ðBÞ-functions satisfying wðxÞ ¼ wðR2p=m 	 xÞ; where

R2p=m 	 x ¼ x1 x2
� 	 � cos 2p=mð Þ sin 2p=mð Þ

sin 2p=mð Þ cos 2p=mð Þ
� �

for any x ¼ ðx1; x2Þ 2 B:
(d) Let Dm : hR2p=m;DCi be a group generated by the rotation R2p=m and a reflection DC.

The group with 2m elements is called the mth dihedral group. For m � 3; it is the sym-
metry group of regular m-polygon.

For solutions of (1.3) which are invariant under rotations, we have:

Theorem 1.2. Let G ¼ hR2p=mi; m 2 N with m � 2: If a non-constant function u 2 HG

solves the problem (1.3) in B, then

k>Km ¼
64
p
; if m ¼ 2;

8p; if m � 3:

8<
: (1.7)

To prove Theorems 1.1 and 1.2, we first consider a more general problem

Du�g uð Þ þ f uð Þ ¼ 0 in X;
u> 0 in X;
@�u ¼ 0 on @X;

8<
: (1.8)

where f, g satisfy the following conditions:

f ; g 2 C2
Rð Þ; f tð Þ; f 0 tð Þ> 0; g tð Þ; g 0 tð Þ � 0 for t � 0: (1.9)

For Eq. (1.8) with f, g satisfying (1.9), we derive an integral inequality

Ag

2

ð1
�1

f 0 tð Þl tð Þ jXj�l tð Þ� 	
dt �

ð1
�1

f tð ÞI2X l tð Þð Þdt; (1.10)

where

Ag ¼ 1
jXj
ð
X
g uð Þdx; l tð Þ ¼ j x 2 X : u xð Þ> t

� �j
and IXðsÞ is referred to the “isoperimetric profile” of X with volume s, the detailed def-
inition of the “isoperimetric profile” will be given in Section 2. In [28, 30], the authors
study the problem (1.8) with g(u) replaced by a constant A ¼ 1

jXj
Ð
Xf ðuÞdx: In their

approach, a similar inequality of (1.10) is obtained with Ag replaced by A. Different
from their problem, we assume that g(u) is a non-constant function with some increas-
ing property. To derive the inequality (1.10), we have to estimate the integration of g(u)
with respect to the level set of u. With a simple manipulation, see Lemma 2.2, we man-
age to estimate the integration of g(u) in terms of the mean value Ag. This is the key
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point which helps us to generalize all the results to g(u) – a nontrivial function.
Another new ingredient in our proof is that we find to study the augmented functions
W and ~W (see the definition of W and ~W in (3.2)) together to show that the jump of
each discontinuous point is positive, see (3.3). It is different from the simpler case of
constant function g(u), where W and ~W can be studied separately (cf. [28, 30]).
We shall apply our uniqueness results to exploit the asymptotic behavior of solutions

to the KS system (1.1). Specifically we show that if k<Km any rotationally invariant
solution to (1.1) is uniformly bounded, exists globally and converges to the unique con-
stant equilibrium.

Theorem 1.3. Consider the problem (1.1) in the unit disc B � R
2: Let (v, u) be a C2-

solution to (1.1) belonging to HG 
 H
	
G with G ¼ hR2p=mi ðm � 2Þ: If k<Km with Km

defined in (1.7), then the solution of (1.1) is globally defined and

lim
t!1 v; uð Þ �; tð Þ ¼ k

p
;
k
bp

� �
in C1 �Bð Þ: (1.11)

In particular, if k< 8p; any radial solution (v, u) of (1.1) will satisfy (1.11).
We remark that the convergence of solutions (1.1) to the constant equilibrium as

time tends to infinity in the critical case k ¼ 8p remains unknown. Indeed the asymp-
totic behavior of solutions to the classical KS system in the case of critical mass is a
rather complicated issue and the answer was only partially given in the whole space R

2

for the case b ¼ 0 (cf. [31, 32]). Although the asymptotics of solutions for critical mass
in a bounded domain still remains unknown in this paper, our results in Theorem 1.1
and Theorem 1.2 will shed lights on this problem for further pursues in the future.
The last problem to be considered in this paper is the uniqueness of solutions for the

following Dirichlet problem:

Du�buþ k
euÐ

Xe
udx

¼ 0 in X;

u ¼ 0 on @X:

8<
: (1.12)

The above problem is the steady state problem of the KS system with mixed zero-flux
and Dirichelt boundary conditions

vt ¼ r � rv�vruð Þ in X;
ut ¼ Du�buþ v in X;
@�v�v@�u ¼ u ¼ 0 on @X;
u x; 0ð Þ ¼ u0 xð Þ; v x; 0ð Þ ¼ v0 xð Þ in X:

8>><
>>:

When b¼ 0, Suzuki [33] proved that if X is simply-connected, then the problem
(1.12) has a unique solution for 0< k< 8p: The uniqueness result for k ¼ 8p is
obtained by Chang et al. [34]. Later Bartolucci and Lin [35] extended the result to mul-
tiple-connected domains. Recently, based on the Bol’s inequalities and equi-measurable
symmetric rearrangement, Gui and Moradifam [36] developed a new tool named
“Sphere Covering Inequality”. This inequality and its generalizations are applied to
establish the best constant in a Moser–Trudinger type inequalities, some symmetry and
uniqueness results for the mean field equations and Onsager vortex (cf. [36–40] for
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details). Based on their results in [36, 39], we shall derive the uniqueness of (1.12) in
the subcritical mass cases.

Theorem 1.4. Let X be an open bounded and simply-connected set in R
2: If 0 � k< 8p;

then there exists a unique solution of the problem (1.12) with b> 0: While if k ¼ 8p; Eq.
(1.12) has at most one solution.

Remark 1.2. We remark that the the Dirichlet problem (1.12) no longer has a constant
solution provided that k> 0: In other words, the unique solution of the problem (1.12)
for 0 � k< 8p must be non-trivial, which differs from the Neumann problem (1.3).
Furthermore, we can show that the degree of Eq. (1.12) is 0 for k 2 ð8p; 16pÞ; see
Theorem 5.2. As a consequence, the Dirichlet problem (1.12) has no solution or at least
two solutions if k 2 ð8p; 16pÞ: On the other hand, we note that the existence of solu-
tions to (1.12) with k ¼ 8p is still unknown and it may depend on the topology of X
(cf. [35] for b¼ 0). In this sense, k ¼ 8p is a threshold for the uniqueness of solutions
for the Dirichlet problem (1.12).
The paper is organized as follows. In Section 2, we derive a differential inequality

which involves the distribution of u, the function
Ð
fu> tgf ðuÞdx; the average of function

g(u) and the isoperimetric profile of the domain. Based on this result, in Section 3 we
derive an integral inequality which is the key to the proof of Theorems 1.1 and 1.2.
Section 4 is devoted to the proof of our results on the Neumann problem (1.3). While
in Section 5 we study the uniqueness of solutions to the Dirichlet problem. In the
Appendix, we give a proof for the positivity of solutions to (1.3) in X:

2. A differential inequality

In the present section, we shall establish a differential inequality, which plays an import-
ant role in our discussion. Given two functions f, g which satisfy (1.9). We set

C f ; gð Þ ¼ tjf tð Þ ¼ g tð Þ; t � 0
� �

; (2.1)

and consider the following nonlinear problem:

Du�g uð Þ þ f uð Þ ¼ 0 in X;
u> 0 in X;
@�u ¼ 0 on @X:

8<
: (2.2)

To proceed with our argument, we make the following preparation. Denote by Hs

the s-dimensional Hausdorff measure in X. Given x � X; its perimeter relative to X is
defined as

P x;Xð Þ :¼ H1 @x \ Xð Þ;
and its area H2ðxÞ will be denoted by jxj: (See Figure 1 for an illustration of @x \ X:)

Definition 2.1. Let OX be the class of open subsets x � X satisfying

x ¼ x0 \ X; x0 �R
2 of class C1:
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The “isoperimetric profile” of X is the function IX : ½0; jXj� ! ð0;1Þ defined as

IX sð Þ :¼ inf H1 @x \ Xð Þ : x 2 OX;H2 xð Þ ¼ s
� �

; 8s 2 0; jXjð �;
and we set IX 0ð Þ ¼ 0:

Remark 2.1. For each x 2 OX the boundary of x in X is a 1-submanifold of class C1.
We remark that only @x \ X is taken into consideration in the definition of the isoperi-
metric profile. We mention two properties of the isoperimetric profile that will be used
in the following:

IX sð Þ ¼ IX jXj�sð Þ; 8s 2 0; jXj½ �; (2.3)

IX sð Þ ¼ 0 () s ¼ 0 or s ¼ jXj: (2.4)

The symmetric property (2.3) readily follows from the definition of isoperimetric pro-
file, while for (2.4) we refer to [41].
We will need the following lemma.

Lemma 2.1. Assume that (1.9) holds. Then for any non-constant solution u of problem
(2.1), it holds that

H2 x 2 Xju xð Þ ¼ t
� �� 	 ¼ 0

whenever t 2 R n Cðf ; gÞ:

Proof. Given a fixed t 2 R n Cðf ; gÞ; we denote

E tð Þ :¼ x 2 Xju xð Þ ¼ t
� �

and divide EðtÞ ¼ E1ðtÞ [ E2ðtÞ with
E1 tð Þ :¼ x 2 Xju xð Þ ¼ t;ru 6¼ 0

� �
;

and

E2 tð Þ :¼ x 2 Xju xð Þ ¼ t;ru xð Þ ¼ 0
� �

:

Using the implicit function theorem, we get the set E1ðtÞ is locally a one-dimensional
manifold. Then we can deduce that E1ðtÞ is at most countable union of sets of measure
zero. Hence H2ðE1ðtÞÞ ¼ 0 for all t 2 R:

Figure 1. For the figure on the left, the part on the left of the dashed curve is x and the dashed
curve represents @x \ X; for the figure on the right, the part enclosed by the dashed closed curve is
x and the dashed closed curve represents @x \ X:
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For the set E2ðtÞ; using the Eq. (2.2) we have

Du 6¼ 0; whenever u xð Þ 62 C f ; gð Þ:
Therefore if t 62 Cðf ; gÞ; then we have

E2 tð Þ � x 2 X : ru xð Þ ¼ 0; u xð Þ 62 C f ; gð Þ� �
� [2

i¼1
x 2 X : @iu xð Þ ¼ 0;r @iuð Þ xð Þ 6¼ 0
� �

:

Thus, for t 62 Cðf ; gÞ; the set E2ðtÞ is contained in a finite union of 1-submanifolds.
So we conclude that H2ðE2ðtÞÞ ¼ 0 for all t 2 R n Cðf ; gÞ:
From the above discussion we get H2ðEðtÞÞ ¼ 0 for all t 2 R n Cðf ; gÞ; which finishes

the proof. w

For any solution u of (2.1), we introduce the following notations:

F tð Þ :¼
ð

u> tf g
f uð Þdx; G tð Þ :¼

ð
u> tf g

g uð Þdx; l tð Þ :¼ j u> tf gj ¼ H2 u> tf gð Þ;

and

~F tð Þ :¼
ð

u< tf g
f uð Þdx; ~G tð Þ :¼

ð
u< tf g

g uð Þdx; ~l tð Þ :¼ j u< tf gj ¼ H2 u< tf gð Þ:

By Lemma 2.1, the functions F; ~F ;G; ~G; l; and ~l are continuous on R n Cðf ; gÞ:
Furthermore, if the set Cðf ; gÞ is finite, then the above functions are monotone and
therefore differentiable a.e. t 2 R:

We set

Ag ¼ 1
jXj
ð
X
g uð Þdx:

Before stating the main result of this section, we give the following lemma.

Lemma 2.2. Suppose that h is a non-decreasing function. For any solution u of (2.2), it
holds that

Ahj u> tf gj �
ð

u> tf g
h uð Þdx and Ahj u< tf gj �

ð
u< tf g

h uð Þdx; 8t 2 min
X

u;max
X

u
h i

:

Proof. We only give the proof of the first inequality, the other one can be proved simi-
larly. Using h as non-decreasing, we immediately getÐ

u> tf gh uð Þdx
j u > tf gj �

Ð
u�tf gh uð Þdx
j u � tf gj :

As a consequenceÐ
u> tf gh uð Þdx
j u > tf gj �

Ð
u> tf gh uð Þdx þ Ð u�tf gh uð Þdx
j u > tf gj þ j u � tf gj ¼ Ah;
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which implies

Ahj u> tf gj �
ð

u> tf g
h uð Þdx:

It proves the result. w

Now we establish the main result in this section.

Proposition 2.3. Let f, g be a function satisfying (1.9). Assume Cðf ; gÞ is finite. Then any
non-constant solution u of (2.2) satisfies the following inequalities:

d
dt

Agfl
2 � F2


 �
� Agf

0 tð Þl2 tð Þ þ 2f tð ÞI2X l tð Þð Þ; 8t 2 R n D; (2.5)

d
dt

Agf ~l
2 � ~F

2

 �

� Agf
0 tð Þ~l2 tð Þ þ 2f tð ÞI2X ~l tð Þð Þ; 8t 2 R n D; (2.6)

where D :¼ fuðxÞ : x 2 X;ruðxÞ ¼ 0g and IX stands for the isoperimetric profile of X:

Proof. At first, we notice that Sard’s Theorem ensures that the set of critical value D
associate to u has Lebesgue measure zero in R:

Let us prove (2.5) first. By Lemma 2.1, the functions F, G and l are continuous on
R n Cðf ; gÞ: Therefore, by using the co-area formula, we obtain

l0 tð Þ ¼ �
ð

u¼tf g

1
jruj dH

1; 8t 2 R n D; (2.7)

F0 tð Þ ¼ �
ð

u¼tf g

f uð Þ
jruj dH

1 ¼ f tð Þl0 tð Þ; 8t 2 R n D; (2.8)

G0 tð Þ ¼ �
ð

u¼tf g

g uð Þ
jruj dH

1 ¼ g tð Þl0 tð Þ; 8t 2 R n D: (2.9)

Second, by integrating Eq. (2.2) on the set fu> tg and using the Stoke’s Theorem, we
obtain ð

@ u> tf g
jrujdH1 ¼ F tð Þ�G tð Þ; 8t 2 R n D: (2.10)

Since

@ u> tf g ¼ @ u> tf g \ Xð Þ [ @ u> tf g \ @Xð Þ
¼ u ¼ tf g \ Xð Þ [ @ u> tf g \ @Xð Þ;

and furthermore u satisfies the Neumann boundary condition on @fu> tg \ @X;
the left hand side of (2.10) equals to

Ð
fu¼tg\XjrujdH1: Based on this observation, we

have

F tð Þ ¼ G tð Þ þ
ð

u¼tf g\X
jrujdH1; 8t 2 R n D: (2.11)

554 J. WANG ET AL.



Using (2.11) and the assumption f � 0 we derive:

�F0 tð ÞF tð Þ ¼ G tð Þ þ
ð

u¼tf g\X
jrujdH1

 !ð
u¼tf g

f tð Þ
jruj dH

1

¼ f tð Þ
ð

u¼tf g\X
jrujdH1

ð
u¼tf g

1
jruj dH

1 þ
ð

u¼tf g

f tð Þ
jruj dH

1

 !ð
u> tf g

g uð Þdx

� f tð Þ
ð

u¼tf g\X
dH1

 !2

�f tð ÞAgl tð Þl0 tð Þ

¼ f tð Þ H1 u ¼ tf g \ Xð Þ� 2�f tð ÞAgl tð Þl0 tð Þ;
(2.12)

where we have used the Schwarz inequality and Lemma 2.2. Recall the definition of iso-
perimetric profile of X, we haveð

u¼tf g\X
dH1 ¼ P u> tf g;Xð Þ � IX l tð Þð Þ: (2.13)

Hence, (2.12) and (2.13) yield

1
2

Agfl
2 � F2


 �0
tð Þ � f tð ÞI2X l tð Þð Þ þ Ag

2
f 0 tð Þl2 tð Þ;

where we have used

fll0 ¼ f
l2
� 	0
2

¼ 1
2

fl2
� 	0 � f 0l2

 �

:

Following almost the same argument, we can derive (2.6) by replacing (2.7)–(2.9) and
(2.11) with

~l0 tð Þ ¼
ð

u¼tf g

1
jruj dH

1; ~F
0
tð Þ ¼ f tð Þ~l0 tð Þ; ~G

0
tð Þ ¼ g tð Þ~l0 tð Þ;

and

~F tð Þ ¼ ~G tð Þ�
ð

u¼tf g
jrujdH1:

w

3. An integral inequality

In this section, we shall derive an important integral inequality, which plays a key role
in the proof of our uniqueness result.

Proposition 3.1. Assume (1.9) holds and the set Cðf ; gÞ is finite. The any solution u of
(2.2) satisfies

Ag

2

ð1
�1

f 0 tð Þl tð Þ jXj�l tð Þ� 	
dt �

ð1
�1

f tð ÞI2X l tð Þð Þdt: (3.1)
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Proof. For any solution u of (2.2), we set

t0 :¼ min
X

u; t1 :¼ max
X

u; FX ¼
ð
X
f uð Þdx:

The result of Proposition 3.1 will follow by integrating the differential inequalities
(2.5)–(2.6) on the interval (t0, t1) as shown below.
Let us consider the functions

W :¼ Agfl
2�F2 and ~W :¼ Agf ~l

2�~F
2
: (3.2)

By Lemma 2.1, the functions W and ~W are continuous on any interval ½a; b� �
R n Cðf ; gÞ: At the point t 2 Cðf ; gÞ; these functions may be discontinuous, and hence
we have to treat it separately.
For each a 2 Cðf ; gÞ; we set Ca :¼ fu ¼ ag; and claim

W aþð Þ þ ~W aþð Þ�W a�ð Þ� ~W a�ð Þ
¼ 2f að ÞjCaj F að Þ � l að ÞAg

� 	þ ~l að ÞAg � ~F að Þ

 �h i

� 0;

(3.3)

where Wða6Þ :¼ lime!0 Wða6eÞ; ~Wða6Þ :¼ lime!0
~Wða6eÞ:

Indeed, according to the definition of W and ~W; we have

W aþð Þ�W a�ð Þ ¼ Agf að Þ l að Þ2� l að Þ þ jCaj
� 	2h i

þ F að Þ þ f að ÞjCaj
� 	2�F að Þ2;

(3.4)

and

~W aþð Þ� ~W a�ð Þ ¼ Agf að Þ ~l að Þ þ jCaj
� 	2�~l að Þ2
h i

þ ~F að Þ2� ~F að Þ þ f að ÞjCaj
� 	2

:
(3.5)

Adding (3.4) and (3.5) together, we have

W aþð Þ þ ~W aþð Þ�W a�ð Þ� ~W a�ð Þ
¼ 2f að ÞjCaj F að Þ � l að ÞAg

� 	þ ~l að ÞAg � ~F að Þ

 �h i

:
(3.6)

It is easy to see that Ag ¼ Af from the Eq. (2.2) and the Neumann boundary condi-
tion. Using Lemma 2.2, we get

F að Þ
l að Þ �

Ð
Xf uð Þdx
jXj ¼ Af ¼ Ag and

~F að Þ
~l að Þ �

Ð
Xf uð Þdx
jXj ¼ Af ¼ Ag ;

which imply FðaÞ�lðaÞAg � 0 and ~lðaÞAg�~FðaÞ � 0: As a consequence, the right
hand side of (3.6) is non-negative. Thus the claim (3.3) is proved.
By (2.5) and (2.6), we have both W and ~W are monotone increasing on the intervals

½t0; t1� n [a2Cðf ;gÞða� e; aþ eÞ for e> 0: Then we getðt1
t0

W0dt �
X

a2C f ;gð Þ
W a�ð Þ �W aþð Þ� 	

þ F2X�Agf t0ð ÞjXj2: (3.7)
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Similarly, we derive thatðt1
t0

~W
0
dt �

X
a2C f ;gð Þ

~W a�ð Þ � ~W aþð Þ� 	
þ Agf t1ð ÞjXj2�F2

X: (3.8)

By Proposition 2.3, (3.7)–(3.8) and (3.3), we get

Ag jXj2 f t1ð Þ�f t0ð Þ� 	 � ðt1
t0

Agf
0 tð Þl2 tð Þ þ 2f tð ÞI2X l tð Þð Þ


 �
dt

þ
ðt1
t0

Agf
0 tð Þ~l2 tð Þ þ 2f tð ÞI2X ~l tð Þð Þ


 �
dt

¼
ðt1
t0

Agf
0 tð Þ l tð Þ2 þ jXj�l tð Þ� 	2
 �

dt

þ 4
ðt1
t0

f tð ÞI2X l tð Þð Þdt

¼ Ag jXj2
ðt1
t0

f 0 tð Þdt þ 4
ðt1
t0

f tð ÞI2X l tð Þð Þdt

þ 2Ag

ðt1
t0

f 0 tð Þl tð Þ l tð Þ�jXj� 	
dt

(3.9)

where we used ~l ¼ jXj�l and IXðlÞ ¼ IXðjXj�lÞ: Since f is differentiable, inequality
(3.9) yields:

0 � Ag

ðt1
t0

f 0 tð Þl tð Þ l tð Þ�jXj� 	
dt þ 2

ðt1
t0

f tð ÞI2X l tð Þð Þdt;

or equivalently

Ag

ðt1
t0

f 0 tð Þl tð Þ jXj�l tð Þ� 	
dt � 2

ðt1
t0

f tð ÞI2X l tð Þð Þdt;

which proves (3.1). w

Remark 3.1. Instead of using the inequality H1ðfu ¼ tg \ XÞ � IXðlðtÞÞ from (2.13),
we can keep the term H1ðfu ¼ tgÞ and repeat the arguments of deriving (3.1) to get

Ag

2

ð1
�1

f 0 tð Þl tð Þ jXj�l tð Þ� 	
dt �

ð1
�1

f tð Þ H1 u ¼ tf g \ Xð Þ� 2
dt: (3.10)

In Section 4, we will get the uniqueness result asserted in Theorem 1.1 from the
above inequality (3.10).

Remark 3.2. When X is replaced by the mainfold M, we can also derive a counterpart
result of Proposition 3.1. Then a similar result of [30, Theorem 1.1] and some related con-
clusions can be obtained by the same arguments (see [30, section 3] for more details).

4. The uniqueness of the Neumann problem (1.3)

In this section, we shall apply the inequalities established in the preceding section to
prove the main results of the Neumann problem (1.3).
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With

f uð Þ ¼ k
euÐ

Xe
udx

and g uð Þ ¼ bu; (4.1)

the problem (2.2) turns to be

Du�buþ k
euÐ

Xe
udx

¼ 0 in X;

u> 0 in X;
@�u ¼ 0 on X:

8>><
>>: (4.2)

It is easy to check that f, g verify the condition (1.9). In the next result we shall prove

jC f ; gð Þj ¼ C k
euÐ

Xe
udx

; bu

 !�����
�����< þ1:

Lemma 4.1. Let f, g be defined in (4.1). Then

1 � jC f ; gð Þj � 2:

Proof. We divide our proof into two steps.
Step 1. jCðf ; gÞj � 1: Using the boundary condition, we haveð

X
f uð Þdx ¼ b

ð
X
udx: (4.3)

Then we claim that f ðuðxÞÞ ¼ buðxÞ must happen for some x 2 X: Otherwise, we have
either f ðuðxÞÞ> buðxÞ or f ðuðxÞÞ<buðxÞ for all x 2 X; which leads to

Ð
Xf ðuÞdx>

b
Ð
Xudx or

Ð
Xf ðuÞdx< b

Ð
Xudx; it contradicts to (4.3). Thus fujf ðuÞ ¼ bug 6¼ ;:

Step 2. jCðf ; gÞj � 2: Considering the function hðxÞ ¼ f ðxÞ�bx; which is convex by
noticing that f is a convex function. As a consequence, the function h possesses at most
two roots. Hence, we finish the proof. w

Next we prove the following theorem, which is equivalent to Theorem 1.1.

Theorem 4.2. Let u be a non-constant solution of problem (4.2) with osc@XðuÞ ¼ 0: Then
the following inequality holds:

b
ð
X
udx> 8p:

Proof. To prove Theorem 4.2, we need the following inequality (see Remark 3.1)

Ag

2

ð1
�1

f 0 tð Þl tð Þ jXj�l tð Þ� 	
dt �

ð1
�1

f tð Þ H1 u ¼ tf g \ Xð Þ� 2
dt: (4.4)

By the setting of g, we have Ag ¼ b�u: Setting u0 :¼ uj@X; we consider the regular
values of u:

Reg uð Þ :¼ t 2 R : ru xð Þ 6¼ 0; 8x 2 u�1 tð Þ� �
:
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From Sard’s theorem we have R n RegðuÞ has zero Lebesgue measure, which along
with the implicit function theorem implies that

u ¼ tf g � X; u ¼ tf g is a 1�submanifold of class C1 for t 2 Reg uð Þ n u0f g:
Next we claim that fu< tg or fu> tg must be contained in a domain enclosed by

some connected branch of the set fu ¼ tg: Indeed, for any t 6¼ u0; without loss of gen-
erality we may assume t< u0: Then it is evident to see that fu< tg \ @X ¼ ; and the
claim holds. As a consequence

H1 u ¼ tf g \ Xð Þ ¼ H1 u ¼ tf gð Þ:
Next, by using the isoperimetric inequality we have

H1 u ¼ tf gð Þ� 2 � 4p min l tð Þ; jX�l tð Þj� �
; 8t 2 Reg uð Þ n u0f g: (4.5)

From (4.5) we get

f tð Þ H1 u ¼ tf gð Þ� 2
f 0 tð Þl tð Þ jXj � l tð Þ� 	 � 4p

max l tð Þ; jXj � l tð Þ� � >
4p
jXj ; t 2 t0; t1ð Þ: (4.6)

Combining with the fact R n RegðuÞ has zero Lebesgue measure, (4.4) and (4.6), we
have

b�u>
8p
jXj ;

which yields the result. w

Before proving Theorem 1.2, we shall give the following result on the general solu-
tions of (1.3) on the unit disc.

Proposition 4.3. Let X be the unit disc. If u is a non-constant solution solving the prob-
lem (1.3), then

k>
32
p
:

Proof of Proposition 4.3. When X is a disc, it is proved in [42, 18.1.3] that

I2X sð Þ
s jXj � sð Þ >

16
pjXj ; 8s 2 0;

jXj
2

� �
:

Using the condition f � f 0> 0; we have

I2X sð Þf sð Þ
s jXj � sð Þf 0 sð Þ >

16
pjXj ;

which along with Proposition 3.1 implies

b�u>
32
pjXj :

On the other hand, we have k ¼ b
Ð
Xu: Thus, we get k> 32

p and it proves the conclu-
sion. w
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In the following, we shall consider the case that u is invariant under a rotation Rh:

To study the class of functions which are invariant by a rotation R2p
m
; we recall a defin-

ition in [28, 30]:

Definition 4.1. (isoperimetric profile) Given a group G of isometries of X, we consider
the class of open subsets:

OG
X :¼ x � OX : g xð Þ ¼ x; 8g 2 G

� �
:

The “G-isoperimetric profile” of X is defined as

IGX sð Þ :¼ inf H1 @x \ Xð Þ : x 2 OG
X;H2 xð Þ ¼ s

� �
; 8s 2 0; jXjð �:

We set IGXð0Þ ¼ 0:
In the setting of “G-isoperimetric profile”, we can generalize the Proposition 3.1 to

the following result:

Proposition 4.4. Let X�R
2 be a piecewise C1-domain. If G is a group of isometry of X

and u 2 C2ð�XÞ \HG is a non-constant solution of (4.2), then

b�u
2

ð1
�1

f 0 tð Þl tð Þ jXj�l tð Þ� 	
dt �

ð1
�1

f tð Þ IGX l tð Þð Þ� 2
dt:

Proof. We can follow the proof of Proposition 3.1 step by step to prove Proposition 4.4, just
by noticing that for almost every t 2 R the level sets fu> tg and fu< tg belong to OG

X: w

To continue our discussion, we need the following two lemmas. For the proof we
refer the readers to [28, Lemma 4.6–4.7].

Lemma 4.5. Let B be a disc of R2 and set G ¼ hR2p=mi; m � 2:

(a) If x 2 OG
B is such that

ið Þ H1 �x \ @Bð Þ ¼ 0 or iið Þ H1 B n x \ @B

 �

¼ 0;

then H1ð@x \ BÞ � minfð4pxÞ12; ð4p½jBj�jxj�Þ12g:
(b) If x ¼ [m�1

i¼0 Ri
2p
m
ðx0Þ (disjoint union) with w0 satisfying

x0 2 OB; H1 x0 \ @Bð Þ> 0 and H1 B n x0 \ @B

 �

> 0; (4.7)

then

H1 @x \ Bð Þ � nIB
jxj
m

� �
: (4.8)

If B n x ¼ [m�1
i¼0 Ri

2p
m
ðx0Þ with x0 satisfying (4.7), then (4.8) still holds

Lemma 4.6. For a disc B � R
2 and G ¼ hR2p=mi it holds
IGB sð Þ
� 2
s jBj � sð Þ >min

4p
jBj ;

16m
pjBj

� �
:

With the above two lemmas, we can prove Theorem 1.2.
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Proof of Theorem 1.2. For the solution u 2 HG with G ¼ hR2p=mi; each of the level set
Xt :¼ fu> tg is invariant under the action of the group. Then we deduce from
Proposition 4.4 that

b
Ð
Xudx

2jXj
ð1
�1

f 0 tð Þl tð Þ jXj�l tð Þ� 	
dt �

ð1
�1

f tð Þ IGX l tð Þð Þ� 2
dt;

with f ðuÞ ¼ k euÐ
X
eudx

and X ¼ B: Using Lemma 4.6, we get

k
2jXj >

32
pjXj ; if m ¼ 2;

4p
jXj ; if m � 3:

8>><
>>:

Then

k>
64
p
; if m ¼ 2;

8p; if m � 3;

8<
:

which finishes the whole proof. w

Next we shall apply Theorem 1.2 to derive the optimal inequalities for the functional
JkðuÞ :

Jk uð Þ ¼ 1
2

ð
X
jruj2dxþ b

2

ð
X
juj2dx�k log

ð
X
eudx

� �
:

Proposition 4.7. Let Jmk ð�Þ be the restriction of Jkð�Þ to the space HG with G ¼
hR2p=mi; m � 2: Then the following holds:

a. The functional Jmk ð�Þ is bounded from below whenever k � 8p:
b. If m � 3 and k � 8p, the functional Jmk ð�Þ admits a unique global minimizer given

by u � k
bjXj :

c. For m ¼ 2, the functional Jmk ð�Þ admits a global minimizer for each k � 8p. Furthermore,
the global minimizer is unique and given by k

bjXj whenever k � 64
jXj :

Proof. Let us first prove that when k � 8p we may find a constant C> 0 depending
only on k and jXj such that

Jk uð Þ � �C; 8u 2 HhR2p=mi:

We need the following inequality. For a bounded domain X of R2 whose boundary is
C2-piecewise with finite number of vertexes, denote by hX the minimum interior angle
among all the vertexes. Then we have the following Moser–Trudinger inequality (cf.
[43, 44]): ð

X
e2hX

u��u
jjrujj2ð Þ2dx � C0; 8u 2 H1 Xð Þ:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 561



As a consequence, we have

log
ð
X
eudx ¼ 1

jXj
ð
X
udx þ log

ð
X
eu��udx

� 1
jXj
ð
X
udx þ log

ð
X
e

1
8hX

jjrujj22þ2hX
u��uð Þ2
jjrujj2

2 dx

� b
8hX

ð
X
juj2dx þ 1

8hX

ð
X
jruj2dxþ 2hX

bjXj þ logC0;

and it implies that

1
2

ð
X
jruj2dxþ b

2

ð
X
juj2dx�4hX log

ð
X
eudx

� �
� �C1; u 2 H1 Xð Þ: (4.9)

Now fixing P 6¼ 0; we consider a fundamental domain

P P; hð Þ :¼ x 2 B n 0f g : 0 < arccos
x � OP

jjxjj jjOPjj
� �

<
h
2

� �
;

and split PðP; hÞ as follows:
Pþ P; hð Þ :¼ x 2 R : x � Rp

2
OPð Þ > 0

n o
;

P� P; hð Þ :¼ x 2 R : x � Rp
2
OPð Þ < 0

n o
:

In P, for any u 2 HhR2p=mi; we have

Jk uð Þ :¼ 1
2

ð
B
jruj2dx þ b

2

ð
B
juj2dx�k log

ð
B
eudx

� �

¼ m
1
2

ð
P
jruj2dx þ b

2

ð
P
juj2dx� k

m
log

ð
P
eudx

� �� �
:

(4.10)

For the domain P, we apply the inequality (4.9) with hP given by

hP ¼
p
2
; if m ¼ 2; 3;

2p
m

; if m � 4:

8>><
>>:

Then we see that (4.10) is uniformly bounded from below if

k
m

� 4hP ¼
2p; if m ¼ 2; 3;
8p
m

; if m � 4;

8<
:

which is equivalent to

k � 2mp; if m ¼ 2; 3;
8p; if m � 4:

�

This proves that (4.10) is uniformly bounded from below provided k � 8p
and m � 4:
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For m¼ 2, 3, using the Steiner symmetrization, we can assume that the function u is
radial. As a consequence, the fundamental domain P is replaced by Pþ and

Jk uð Þ :¼ 1
2

ð
B
jruj2dx þ b

2

ð
B
juj2dx�k log

ð
B
eudx

� �

¼ 2m
1
2

ð
Pþ

jruj2dxþ b
2

ð
Pþ

juj2dx � k
2m

log
ð
P
eudx

� � !
:

(4.11)

Notice that in Pþ; the constant hPþ ¼ p
m : Using (4.9), we see (4.11) is bounded from

below if

k
2m

� 4
p
m
;

which implies k � 8p: Thus we have deduced that the functional JkðuÞ restricted to the
space HG is bounded from below when k � 8p: From the standard variational argument
we can find umin 2 HhR2p=mi such that

Jk uð Þ � Jk uminð Þ; 8u 2 HhR2p=mi:

Then the remaining assertion of Proposition 4.7 is a direct consequence of
Theorem 1.2. w

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Applying Proposition 4.7 and the arguments in [5, Theorem 1.1],
we can conclude that any solution ðv; uÞ 2 HG 
H	 G of (1.1) is globally defined when-
ever k<Km and show that

lim
t!1 sup jjv x; tð ÞjjL1 Xð Þ þ jju x; tð ÞjjL1 Xð Þ

� 	
<1:

From the result [13, Theorem 1.1], we get that the classical solutions converge in
C1ð�BÞ as t ! 1 to a stationary solution. Particularly, this convergence holds true for a
subsequence ðtkÞk2N in the sense that

v tkð Þ ! eu1Ð
Xe

u1dx
in L2 Bð Þ as tk ! 1;

and

u tkð Þ ! u1 in H1 Bð Þ as tk ! 1;

where u1 is a solution of (1.3). It is known by Theorem 1.2 that u ¼ k
bp is the only

solution to the problem (1.3) provided k<Km: Thus, a solution ðv; uÞ 2 HG 
H
	
G of

system (1.1) must converge to the constant solution ðkp ; k
bpÞ as t ! 1 when k<Km:

Finally, if k< 8p; the convergence to the constant equilibrium of any radial solution of
(1.1) results from Remark 1.1. w

5. Uniqueness of the Dirichlet problem (1.12)

In this section, we shall provide a complete proof of Theorem 1.4. Indeed, we may con-
sider a more general problem:
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Du�g uð Þ þ k
euÐ

Xe
udx

¼ 0 in X;

u> 0 in X;
u ¼ 0 on @X;

8>><
>>: (5.1)

where g satisfies that gðxÞ; g0ðxÞ> 0 for x> 0:
Concerning the problem (5.1), we obtain the following conclusion,

Theorem 5.1. Let X be an open bounded and simply connected set. Assuming that ui 2
C2ðXÞ \ Cð�XÞði ¼ 1; 2Þ solve the Eq. (5.1) and u1 6� u2; then k> 8p:
We prove the above result by following the same spirit as treated for the Neumann

problem (1.3). Precisely, we focus on the difference between the integration of gðu2Þ
and gðu1Þ with respect to the level set of u2�u1; instead of the pointwise comparison
between gðu2Þ and gðu1Þ: To begin with the argument, let us recall the classical Bol’s
isoperimetric inequality, see [42, 45–47] for a detailed history of the Bol’s inequality.

Theorem 5.A. Let X � R
2 be a simply-connected and assume w 2 C2ðXÞ \ Cð�XÞ satis-

fies

Dwþ ew � 0;
ð
X
ewdx � 8p:

Then for every x�X of class C1 the following inequality holdsð
@x
e
w
2dx

� �2

� 1
2

ð
x
ewdx

� �
8p�

ð
x
ewdx

� �
:

Moreover, the above inequality is strict if Dwþ ew > 0 somewhere in x or x is not
simply connected.
For h> 0; the function defined by

Uh xð Þ ¼ �2 log 1þ h2jxj2
8

� �
þ 2 log h (5.2)

satisfies the following property

DUh þ eUh ¼ 0; and
ð
@Br

e
Uh
2 dx

� �2

¼ 1
2

ð
Br

eUhdx
� �

8p�
ð
Br

eUhdx
� �

;

for all r> 0 and h> 0; where Br denotes the ball of radius r centered at the origin
in R

2:

Next, we shall recall some facts about the rearrangement with the measures. Such dis-
cussions have been detailed in [33, 34, 36, 45–47], we shall sketch the process here only.
For any function / 2 C2ð�XÞ which is constant on @X can be equimeasurably rearranged
with respect to the measures eudx and eUhdx; where u is a function satisfying that Duþ
eu � 0 and Uh is defined in (5.2). For any t>minx2�X/; we define X�

t be a ball centered
at the origin such that ð

X�
t

eUhdx ¼
ð

/> tf g
eudx:
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Then we define /� : X� ! R by

/� xð Þ :¼ sup t 2 R : x 2 X�
t

� �
;

which gives an equimeasurable rearrangement of / with respect to the measures eudx
and eUhdx : ð

/� > tf g
eUhdx ¼

ð
/> tf g

eudx; 8t> min
x2�X

/:

For functions / and /�; by using Proposition 5.A, the following conclusions hold.

Proposition 5.B. [36] Let u 2 C0;1ð�XÞ satisfy
Duþ eu � 0 in X;

and let Uh be given in (5.2). Suppose / 2 C2ð�XÞ and / � C on @X. Let /� be the equi-
measurable symmetric rearrangement of / with respect to the measures eudx and eUhdx,
then it holds for all t>minx2�X/ðxÞ thatð

/�¼tf g
jr/�jdr �

ð
/¼tf g

jr/jdr:

The following two lemmas are the consequences of the Bols’s inequality and reversed
Bol’s inequality in the radial setting respectively.

Lemma 5.C. [36] Assume that w 2 C0;1ðBRÞ is a strictly decreasing, radial, Lipschitz
function and satisfies ð

@Br

jrwjdr �
ð
Br

ewdx (5.3)

a.e. r 2 ð0;RÞ and w ¼ Uh1 ¼ Uh2 for some h2> h1 on @BR. Then there holds

either
ð
BR

ewdx �
ð
BR

eUh1dx or
ð
BR

ewdx �
ð
BR

eUh2dx: (5.4)

Moreover if the inequality in (5.3) is strict in a set with positive measure in ð0;RÞ,
then the inequalities in (5.4) are also strict.

Lemma 5.D. [39] Assume that w 2 C0;1ðR2 n BRÞ is a strictly decreasing, radial, Lipschitz
function, and satisfies ð

@Br

jrwjdr � 8p�
ð
R

2nBr

ewdx (5.5)

a.e. r 2 ðR;þ1Þ and w ¼ Uh1 ¼ Uh2 for some h2 > h1 on @BR. Then there holdsð
R

2nBR

eUh2dx �
ð
R

2nBR

ewdx �
ð
R

2nBR

eUh1dx: (5.6)

Moreover if the inequality in (5.5) is strict in a set with positive measure in ðR;þ1Þ,
then the inequalities in (5.6) are also strict.
We shall also need the following lemma.
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Lemma 5.E. [39] Assume that w 2 C0;1ðBRÞ is a strictly decreasing and radial function
satisfying (5.3) for a.e. r 2 ð0;RÞ. Ifð

BR

ewdx ¼
ð
BR

eUhdx< 8p;

then UhðRÞ � wðRÞ:
Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we may assume
Ð
Xgðu2Þdx �Ð

Xgðu1Þdx: Let

vi ¼ ui þ log k� log
ð
X
euidx; i ¼ 1; 2:

Then vi (i¼ 1, 2) satisfy the following equation

Dvi þ evi ¼ g uið Þ; i ¼ 1; 2; (5.7)

where
Ð
Xe

v1 ¼ ÐXev2 ¼ k: It is not difficult to see that v1 6¼ v2: Indeed, if v1 � v2; then
we get gðu1Þ ¼ gðu2Þ by (5.7). Combined with the fact g(u) is strictly increasing, we get
u1 ¼ u2 and contradiction arises. Thus, v1 6¼ v2:
Set

ti ¼ inf
X

v2�v1ð Þ and ts ¼ sup
X

v2�v1ð Þ:

Then we claim that ð
v2�v1 > tf g

g u2ð Þ�g u1ð Þð Þdx � 0; 8t 2 ti; ts½ �: (5.8)

We notice thatð
v2�v1 > tf g

g u2ð Þ�g u1ð Þð Þdx ¼
ð

u2�u1 > t�f g
g u2ð Þ�g u1ð Þð Þdx;

where

t� ¼ t þ log
ð
X
eu2dx� log

ð
X
eu1dx:

If t� � 0; then there is nothing to prove, while if t�< 0; we haveð
u2�u1 > t�f g

g u2ð Þ�g u1ð Þð Þdx ¼
ð
X
g u2ð Þ�g u1ð Þð Þdx�

ð
u2�u1�t�f g

g u2ð Þ�g u1ð Þð Þdx � 0:

Thus we have proved the claim.
Next we divide our arguments into two steps.

Step 1. We prove that k � 8p: Suppose k< 8p; we choose h> 0 and R 2 ð0;1Þ such
that ð

X
ev1dx ¼

ð
BR

eUhdx;
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and let / be the symmetrization of v2�v1 with respect to the measure ev1dx and eUhdx:
Then it follows from Proposition 5.B and Fubini’s theorem thatð

/¼tf g
jr/jdr �

ð
v2�v1¼tf g

jr v2�v1ð Þjdr ¼ �
ð

v2�v1 > tf g
D v2�v1ð Þdx

¼
ð

v2�v1 > tf g
ev2 � ev1ð Þdx�

ð
v2�v1 > tf g

g u2ð Þ�g u1ð Þð Þdx

�
ð

v2�v1 > tf g
ev2 � ev1ð Þdx ¼

ð
/> tf g

eUhþ/dx�
ð

/> tf g
eUhdx

¼
ð

/> tf g
eUhþ/dx�

ð
/¼tf g

jrUhjdr;

for t 2 ðtb; ts�; where tb ¼ ðv2�v1Þj@X and we used (5.8). If t< tb; we find that

@ v2�v1 > tf g ¼ v2�v1 ¼ tf g [ @X:

On the other hand, we notice that v2�v1 � t for t< tb implies that u2�u1 � 0; so
gðu2Þ�gðu1Þ � 0 in fv2�v1 � tg for t< tb: Thenð

/¼tf g
jr/jdr �

ð
v2�v1¼tf g

jr v2�v1ð Þjdr

¼ �
ð

v2�v1 > tf g
D v2�v1ð Þdx þ

ð
@X
@� v2�v1ð Þdr

¼
ð

v2�v1 > tf g
ev2 � ev1ð Þdx þ

ð
v2�v1�tf g

g u2ð Þ�g u1ð Þð Þdx

�
ð

v2�v1 > tf g
ev2 � ev1ð Þdx ¼

ð
/> tf g

eUhþ/dx�
ð

/> tf g
eUhdx

¼
ð

/> tf g
eUhþ/dx�

ð
/¼tf g

jrUhjdr;

for t 2 ½ti; tbÞ; where we usedð
@X
@� v2�v1ð Þdr ¼

ð
X
D v2�v1ð Þdx ¼

ð
X
g u2ð Þ�g u1ð Þð Þdx�

ð
X
ev2 � ev1ð Þdx

¼
ð
X
g u2ð Þ�g u1ð Þð Þdx:

Hence ð
/¼tf g

jr Uh þ /ð Þjdr �
ð

/> tf g
eUhþ/dx

for all a.e. t> ti: Since / is decreasing in r, w :¼ Uh þ / is strictly decreasing function,
and ð

@Br

jrwjdr �
ð
Br

ewdx; a:e: r 2 0;Rð Þ:

Since v1 6¼ v2 and
Ð
Xe

v1dx ¼ ÐXev2dx; then v2 < v1 on a subset of X with positive
measure. Hence /ðRÞ< 0; therefore
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w Rð Þ ¼ Uh Rð Þ þ / Rð Þ<Uh Rð Þ:
It is a contradiction by Lemma 5.E., and therefore k � 8p:
Step 2. We prove k 6¼ 8p: Suppose k ¼ 8p and let h1 > 0: From the above arguments

we can find there exists w ¼ Uh1 þ / 2 C0;1ðR2Þ such thatð
X
ev1dx ¼

ð
R

2
eUh1dx ¼ 8p ¼

ð
X
ev2dx ¼

ð
R

2
ewdx;

and ð
@Br

jrwjdr �
ð
Br

ewdx for a:e: r 2 0;1ð Þ:

Since
Ð
R

2ewdx ¼ Ð
R

2eUh1dx; there exists r0 2 ð0;1Þ such that wðr0Þ ¼ Uh1ðr0Þ: Let h2 ¼
8

r20h1
; then it is easy to see that

Uh2 r0ð Þ ¼ Uh1 r0ð Þ ¼ w r0ð Þ
by the expression of Uh in (5.2). We notice that w>Uh1 in Br0 ; it follows from Lemma
5.C that h1 < h2 and ð

Br0

ewdx �
ð
Br0

eUh2dx:

While in R
2 n Br0 ; we have w<Uh1 and it follows from Lemma 5.D thatð

R
2nBr0

ewdx �
ð
R

2nBr0

eUh2dx:

Hence

8p ¼ k ¼
ð
R

2
ewdx �

ð
R

2
eUh2dx ¼ 8p: (5.9)

Since the solution u of (5.1) is positive, we have Dvi þ evi > 0; i ¼ 1; 2; as a conse-
quence, the inequality in (5.9) is strict by Lemma 5.C and Lemma 5.D. Thus k 6¼ 8p
and it finishes the proof. w

Before proving Theorem 1.4, we shall derive the degree counting formula for (1.12)
in H1

0ðXÞ1.
For any solution of (1.12) in H1

0ðXÞ; an inequality of Brezis and Strauss [48] asserts
that (also see [49, Lemma 2.3])

jjujjW1;q Xð Þ � C for 1< q< 2 with a constant C ¼ Cq> 0:

We decompose u ¼ wþ v; where w, v satisfy

Dw�bu ¼ 0 in X; w ¼ 0 on @X;

and

Dvþ k
hevÐ

Xhe
vdx

¼ 0 in X; v ¼ 0 on @X; (5.10)

1H1
0ðXÞ ¼ fu 2 H1ðXÞ : u ¼ 0 on @Xg
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respectively, where h ¼ ew: Using the standard elliptic estimate and the fact u 2
W1;qðXÞ; we get w 2 W3;qðXÞ and jjwjjC1ðXÞ � C: We denote H ¼ k hÐ

X
hevdx

and it is easy

to see that jjHjjC1ðXÞ � C: If there is a sequence of solutions fung of (1.12) with k ¼ kn
such that maxXun ! þ1 as n ! þ1; then for Eq. (5.10) with k replaced by kn, we
get maxXvn ! þ1 as n ! þ1: By [50, Theorem 1], we have kn ! 8mp for some m 2
N: As a consequence, if k 6¼ 8mp; then any solution v of (5.10) is uniformly bounded,
and we can find a constant C> 0 such that jjujjL1ðXÞ � C for any solution of (1.12). Set
TðkÞ to be

T kð Þ ¼ D�1 k
euÐ

Xe
udx

� bu

 !
;

which acts in H1
0ðXÞ: Then the Leray–Schauder degree

dk :¼ deg I þ T kð Þ;BR; 0
� 	

is well-defined for k 6¼ 8mp and

BR ¼ u 2 H1
0 Xð Þ : jjujjH1 � R

� �
with R sufficiently large:

Next, we introduce a homotopy deformation for (1.12)

Du�tbuþ k
euÐ

Xe
udx

¼ 0 in X;

u ¼ 0 on @X:

8<
: (5.11)

When t¼ 1, Eq. (5.11) is (1.12), while if t¼ 0, Eq. (5.11) is the mean field equation
on bounded domain. It is not difficult to see that as t changes from 1 to 0, we can
argue as above to get that the solution ut of (5.11) is uniformly bounded provided k 6¼
8mp: Therefore the Leray–Schauder degree of the above equation is the same for t¼ 1
and t¼ 0. Together with the degree formula for the mean field equation on bounded
domain (see [20, Theorem 1.3]), we get

Theorem 5.2. Let X be a non-empty bounded open set and 8mp< k< 8ðmþ 1Þp for

some positive integer m. Then the Leray–Schauder degree of (1.12) dk ¼ mþ g�1
m

� �
;

where g denotes the number of holes in X: While if 0 � k< 8p; dk ¼ 1:
Next we prove Theorem 1.4 by Theorems 5.1 and 5.2.

Proof of Theorem 1.4. First we claim that all the solutions to the Eq. (1.12) are positive.
Indeed, if u is not positive in X, letting p be the point in X where u obtains its minimal
value, then we have uðpÞ � 0 and DuðpÞ � 0: Therefore

Du�buþ k
euÐ

Xe
udx

> 0 at p;

which gives a contradiction. Hence, the claim is true. Next, it is easy to see that g(u) ¼
u satisfies the condition gðxÞ; g0ðxÞ> 0 for x> 0: Then Theorem 1.4 follows by
Theorems 5.1 and 5.2. Thus we finish the proof. w
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Appendix

Lemma 6.1. Let u be a solution to the boundary value problem (1.3) with b> 0: Then

u> 0 in X:

Proof. Let

a ¼ min
x2�X

u xð Þ:

We shall prove a � 0 by contradiction. Suppose a< 0, we first prove the value a cannot be
obtained by u in X, indeed if uðx0Þ ¼ a with x0 2 X; we get

Du x0ð Þ�bu x0ð Þ þ k
eu x0ð ÞÐ
Xe

udx
> 0;

contradiction arises. Hence, a can only be obtained by u on @X; say at x0 2 @X: By the continu-
ity of u, we can always find X0 � X with x0 2 �X

0 \ �X and uðxÞ � 0 in X0: As a consequence, we
can see that

Du ¼ bu�k
euÐ

Xe
udx

� 0 in X0:

By the Hopf boundary lemma, we get @u
@� ðx0Þ< 0; which contradicts to the Neumann boundary

condition. Thus, the assumption is not true and a � 0: On the other hand, by the above argu-
ments we can also show that u(x) cannot reach the value a in X if a¼ 0. Therefore u(x) > 0 in
X and the lemma is proved. w
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