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Abstract. The paper is concerned with the following chemotaxis system with

nonlinear motility functions
ut = ∇ · (γ(v)∇u− uχ(v)∇v) + µu(1− u), x ∈ Ω, t > 0,

0 = ∆v + u− v, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(∗)

subject to homogeneous Neumann boundary conditions in a bounded domain
Ω ⊂ R2 with smooth boundary, where the motility functions γ(v) and χ(v)

satisfy the following conditions

• (γ, χ) ∈ [C2[0,∞)]2 with γ(v) > 0 and
|χ(v)|2
γ(v)

is bounded for all v ≥ 0.

By employing the method of energy estimates, we establish the existence of
globally bounded solutions of (∗) with µ > 0 for any u0 ∈ W 1,∞(Ω) with

u0 ≥ (6≡)0. Then based on a Lyapunov function, we show that all solutions

(u, v) of (∗) will exponentially converge to the unique constant steady state

(1, 1) provided µ > K0
16

with K0 = max
0≤v≤∞

|χ(v)|2
γ(v)

.

1. Introduction and main results. In this paper, we consider the following
chemotaxis model with density-dependent motilities

ut = ∇ · (γ(v)∇u− uχ(v)∇v) + µu(1− u), x ∈ Ω, t > 0,

τvt = ∆v + u− v, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω,

(1)
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where Ω ⊂ Rn(n ≥ 2) is a bounded domain with smooth boundary, u(x, t) denotes
the cell density and v(x, t) is the chemical concentration, µ ≥ 0 and τ = {0, 1}. The
prominent feature of (1) compared to the classical chemotaxis model is that both the
undirected motility (diffusion) and directed motility (chemotaxis) of cells depend
on the chemical concentration. The system (1) has several important applications.
When µ = 0, the system (1) has been firstly derived by Keller and Segel in [11] to
describe the aggregation phase of amoeba cells in response to the chemical signal
cAMP emitted by themselves, where the motility functions γ(v) > 0 and χ(v) are
correlated by the following proportionality relation

χ(v) = (α− 1)γ′(v), (2)

with α denoting the ratio of effective body length to step size, and γ′(v) < 0 (resp. >
0) if the diffusive motility decreases (resp. increases) with respect to the chemical
concentration. As mentioned in [11], although the motility coefficient γ(v) is posi-
tive, the chemotactic motility coefficient χ(v) may be positive or negative depending
on the signs of (α− 1) and γ′(v).

When both γ(v) and χ(v) are constant, (1) is called the minimal chemotaxis
system which has been extensively studied in the literature from various aspects
including boundedness, blow-up, large-time behavior and pattern formation of so-
lutions (cf. [35, 20, 31, 29, 14, 33, 4, 21, 16, 29, 12, 13] and reference therein).
When γ(v) is constant and χ(v) = 1/v, the system (1) with µ = 0 has been studied
recently in a number of interesting works (see [8, 32] and references therein). How-
ever, if γ(v) is non-constant, the results of (1) are very limited. The few existing
results are mainly focused on the special case χ(v) = −γ′(v), (i.e. α = 0), which
reduces the system (1) to

ut = ∆(γ(v)u) + µu(1− u), x ∈ Ω, t > 0,

τvt = ∆v + u− v, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω.

(3)

Essentially (3) with µ > 0 has been used in [5] to justify that the bacterial motion
with density-suppressed motility (i.e., γ′(v) < 0) can produce the stripe pattern
formation observed in the experiment of [15]. Several results on the reduced system
(3) are then available as will be recalled below.

When µ = 0 (no cell growth), it was proved in [36] that the system (3) with τ = 1
and γ(v) = c0/v

k(k > 0) admits global classical solutions in any dimensions for
small constant c0 > 0. Recently, the smallness assumptions of c0 was removed in [3]
for the parabolic-elliptic case of (3) (i.e., τ = 0) for 0 < k < 2

n−2 . Moreover, based
on the phase plane analysis and bifurcation analysis, the existence and analytical
approximation of non-constant stationary were established in one dimension [34].
By assuming that γ(v) has positive lower and upper bounds (i.e. δ1 ≤ γ(v) ≤ δ2
for some positive constants δ1, δ2), the global classical solution in two dimensions
and global weak solution in three dimensions of (3) with µ = 0 were obtained in
[28]. Recently, it is proved in [10, 6] that if γ(v) = e−χv there exists a critical mass
m∗ = 4π

χ such that the solution of (3) with µ = 0 exists globally with uniform-in-

time bound if
∫

Ω
u0dx < m∗ and blows up if

∫
Ω
u0dx > m∗. Turning to the case

µ > 0, there are several results below. When γ(v) is a decreasing step-wise constant
function, the dynamics of discontinuity interface of solutions was studied in [24] in
one dimension. In two dimensional spaces, the global boundedness of solutions of
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(3) with τ = 1 was established in [9] under the following hypotheses on the motility
function γ(v):

(H0) γ(v) ∈ C3([0,∞)), γ(v) > 0 and γ′(v) < 0 on [0,∞), lim
v→∞

γ(v) = 0,

lim
v→∞

γ′(v)
γ(v) exists.

It was further shown in [9] that the constant steady state (1, 1) is globally asymp-

totically stable provided µ > K0

16 with K0 = max
0≤v≤∞

|γ′(v)|2
γ(v) . Similar results have

been extended to higher dimensions (n ≥ 3) in [30] for large µ > 0. The exis-
tence/nonexistence of nonconstant steady states of (3) was recently studied in [17].
Moveover, the global existence of solutions of (3) with τ = 0 was obtained in [7]

without the condition “ lim
v→∞

γ′(v)
γ(v) exists” in (H0).

In summary, for the chemotaxis system (1)-(2) with density-dependent motility,
the results are available only for the special case α = 0 with various hypotheses
on the motility function γ(v) as recalled above for (3). Therefore there are var-
ious interesting questions remaining open. The following questions comprise the
motivation of this paper.

(Q1) So far no results of (1)-(2) are available for α 6= 0 in the prescribed propor-
tionality relation (2). Furthermore as remarked in [11], the prescribed pro-
portionality (2) between the motility functions γ(v) and χ(v) is derived based
on assumption that the cell step size is constant and the total step frequency
is solely determined by the mean concentration of the chemical. However,
χ(v) would no longer be simply proportional to γ′(v) if both step size and
total step frequency were permitted to vary with the chemical concentration.
Hence, it would be meaningful and interesting to study the system (1) with
more general γ(v) and χ(v) beyond the proportionality (2).

(Q2) The existing results recalled above are mostly restricted to the case γ′(v) < 0
or some special form of χ(v) (cf. [3, 9, 30, 10]). However, as discussed in
[11, Section 3], the cell motion may be more vigorous at high concentrations
than at low concentrations, which motives us to study the case γ′(v) > 0 or
even non-monotone γ(v) so that the analytical results can cover more possible
applications.

Inspired by the above mentioned questions, in this paper we shall develop some
first-hand results on the global boundedness and large time behavior of solutions
to the system (1) with general motility functions γ(v) and χ(v). Specifically we
consider (1) with τ = 0

ut = ∇ · (γ(v)∇u− uχ(v)∇v) + µu(1− u), x ∈ Ω, t > 0,

0 = ∆v + u− v, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω,

(4)

under the following assumptions on γ(v) and χ(v):

(H1) (γ, χ) ∈ [C2[0,∞)]2 with γ(v) > 0 and |χ(v)|2
γ(v) is bounded for all v ≥ 0.

The main results of this paper are the following.

Theorem 1.1. Let Ω be a bounded domain in R2 with smooth boundary and the
hypotheses (H1) hold. Suppose that u0 ∈W 1,∞(Ω) with u0 ≥ 0(6≡ 0). Then the prob-
lem (4) has a unique global classical solution (u, v) ∈ [C([0,∞)× Ω̄)∩C2,1((0,∞)×
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Ω̄)]× C2,1((0,∞)× Ω̄) satisfying u, v > 0 for all t > 0 and

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) ≤ C1 for all t > 0,

where C1 > 0 is a constant independent of t. Furthermore, if µ > K0

16 with K0 =

max
0≤v≤∞

|χ(v)|2
γ(v) , then there exist two positive constants C2 and δ such that

‖u(·, t)− 1‖L∞(Ω) + ‖v(·, t)− 1‖L∞(Ω) ≤ C2e
−δt.

The results in Theorem 1.1 not only address the questions raised in (Q1) and
(Q2), but also improve the existing results on the specialized system (3) where
χ(v) = −γ′(v). Indeed with α = 0 in (2) with γ′(v) < 0, one can check that

“ lim
v→∞

γ′(v)
γ(v) exists” in (H0) is a stronger condition than “ |χ(v)|2

γ(v) is bounded for all

v ≥ 0” in (H1). For example, if γ(v) = e−e
v

, then lim
v→∞

γ′(v)
γ(v) = −∞ but |χ(v)|2

γ(v) =

|γ′(v)|2
γ(v) = e(2v−ev) ≤ e2(ln 2−1) for any v ≥ 0. We remark the same results of (3) with

τ = 0 as in [9] for τ = 1 are obtained in [7] without the condition “ lim
v→∞

γ′(v)
γ(v) exists”

in (H0), where the methods developed therein essentially rely on the monotonicity
of γ(v) and the proportionality relation χ(v) = −γ′(v) and hence are inapplicable
to our present problem where we consider more general γ(v) and χ(v) without such
restrictions.

2. Local existence and preliminaries. In what follows, without confusion, we
shall abbreviate

∫
Ω
fdx as

∫
Ω
f and ‖f‖L2(Ω) as ‖f‖L2 for simplicity. Moreover,

we shall use ci(i = 1, 2, 3, · · · ) to denote a generic constant which may vary in the
context. The existence of local solutions of (4) can be proved by Schauder fixed
point theorem as illustrated in [9, Lemma 2.1] for the system (3) with τ = 1, we
omit the details for brevity.

Lemma 2.1 (Local existence). Let Ω be a bounded domain in R2 with smooth
boundary and the hypothesis (H) hold. Assume u0 ∈ W 1,∞(Ω) with u0 ≥ 0(6≡ 0).
Then there exists Tmax ∈ (0,∞] such that the problem (4) has a unique classical
solution (u, v) ∈ [C([0,∞) × Ω̄) ∩ C2,1((0,∞) × Ω̄)] × C2,1((0,∞) × Ω̄) satisfying
u, v > 0 for all t > 0. Moreover, we have

Either Tmax =∞, or lim sup
t↗Tmax

(‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞) =∞.

Lemma 2.2. Let (u, v) be the solution of system (4). Then it holds that∫
Ω

u ≤ m∗ := max{‖u0‖L1 , |Ω|}, for all t ∈ (0, Tmax). (5)

Proof. We integrate the first equation of (4) over Ω to have

d

dt

∫
Ω

u+ µ

∫
Ω

u2 = µ

∫
Ω

u, for all t ∈ (0, Tmax),

which, together with
∫

Ω
u2 ≥ 1

|Ω|
(∫

Ω
u
)2

, gives

d

dt

∫
Ω

u ≤ µ
∫

Ω

u− µ

|Ω|

(∫
Ω

u

)2

, for all t ∈ (0, Tmax)

and hence (5) follows.
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3. Proof of Theorem 1.1. In this section, we shall prove Theorem 1.1. First, we
show the global existence of uniformly-in-time bounded solutions.

3.1. Boundedness of solutions.

Lemma 3.1. Suppose the conditions in Theorem 1.1 hold. Then there exists a
constant C > 0 independent of t such that

‖u lnu‖L1 ≤ C for all t ∈ (0, Tmax) (6)

and

‖∇v‖L2 ≤ C for all t ∈ (0, Tmax). (7)

Proof. Multiplying the first equation of (4) by lnu, and integrating the result by
part, one has

d

dt

(∫
Ω

u lnu−
∫

Ω

u

)
+

∫
Ω

γ(v)
|∇u|2

u
=

∫
Ω

χ(v)∇v · ∇u+ µ

∫
Ω

u lnu

− µ
∫

Ω

u2 lnu.

(8)

From the assumptions in (H1), we can find a constant K > 0 such that

|χ(v)|2

γ(v)
≤ K for all v ≥ 0. (9)

Using the Cauchy-Schwarz inequality and (9), we have∫
Ω

χ(v)∇v · ∇u ≤ 1

2

∫
Ω

γ(v)
|∇u|2

u
+

1

2

∫
Ω

|χ(v)|2

γ(v)
|∇v|2u

≤ 1

2

∫
Ω

γ(v)
|∇u|2

u
+
K

2
‖∇v‖2L4‖u‖L2 ,

which, substituted into (8), gives

d

dt

(∫
Ω

u lnu−
∫

Ω

u

)
+

1

2

∫
Ω

γ(v)
|∇u|2

u

≤ K

2
‖∇v‖2L4‖u‖L2 + µ

∫
Ω

u lnu− µ
∫

Ω

u2 lnu.

(10)

Applying the Agmon-Douglis-Nirenberg Lp estimates (cf. [1, 2]) to the second
equation of (4) with homogeneous Neumann boundary conditions, we know that
for all p > 1, there exists a constant c1 > 0 such that

‖v(·, t)‖W 2,p ≤ c1‖u(·, t)‖Lp . (11)

The Sobolev embedding theorem yields ‖∇v‖L4 ≤ c2‖v‖
W 2, 4

3
in two dimensions

(i.e. n = 2), which together with (11) implies

‖∇v‖2L4 ≤ c22‖v‖2
W 2, 4

3
≤ c3‖u‖2

L
4
3
. (12)

On the other hand, using the Lp-interpolation inequality and the fact ‖u(·, t)‖L1 ≤
m∗ (see Lemma 2.2), we have

‖u‖2
L

4
3
≤ ‖u‖L2‖u‖L1 ≤ m∗‖u‖L2 . (13)



3028 HAI-YANG JIN AND ZHI-AN WANG

We substitute (12) and (13) into (10) to obtain

d

dt

(∫
Ω

u lnu−
∫

Ω

u

)
+

1

2

∫
Ω

γ(v)
|∇u|2

u
+

(∫
Ω

u lnu−
∫

Ω

u

)
≤ Kc3m∗

2
‖u‖2L2 + (µ+ 1)

∫
Ω

u lnu− µ
∫

Ω

u2 lnu−
∫

Ω

u

≤ Kc3m∗
2
‖u‖2L2 + (µ+ 1)

∫
Ω

u lnu− µ
∫

Ω

u2 lnu

≤ c4,

(14)

where we have used the facts (see [25, Lemma 3.1]): Let µ > 0 and A ≥ 0, then
there exists a constant L := L(µ,A) > 0 such that

(1 + µ)z ln z +Az2 − µz2 ln z ≤ L, for all z > 0.

Hence from (14), we obtain

d

dt

(∫
Ω

u lnu−
∫

Ω

u

)
+

∫
Ω

u lnu−
∫

Ω

u ≤ c5,

which gives
∫

Ω
u lnu−

∫
Ω
u ≤ c6 and then∫

Ω

u lnu ≤ c6 +

∫
Ω

u ≤ c7. (15)

Since u lnu ≥ − 1
e , from (15) we derive∫

Ω

|u lnu| ≤
∫

Ω

u lnu+
2|Ω|
e
≤ c8,

which yields (6). Finally (7) is a consequence of [25, Lemma A.4]) applied to the
second equation of (4).

Next, we will show that there exists some p > 1 close to 1 such that
∫

Ω
up is

uniformly bounded in time.

Lemma 3.2. Suppose the conditions in Theorem 1.1 hold. Then there exists p > 1
close to 1 such that

‖u(·, t)‖Lp ≤ C, for all t ∈ (0, Tmax), (16)

where C > 0 is a constant independent of t.

Proof. We multiply the first equation of (4) by up−1 to obtain

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

γ(v)up−2|∇u|2

= (p− 1)

∫
Ω

χ(v)up−1∇u · ∇v + µ

∫
Ω

up − µ
∫

Ω

up+1.

(17)

The Cauchy-Schwarz inequality and (9) allow us to have

(p− 1)

∫
Ω

χ(v)up−1∇u · ∇v

≤ p− 1

2

∫
Ω

γ(v)up−2|∇u|2 +
p− 1

2

∫
Ω

|χ(v)|2

γ(v)
up|∇v|2

≤ p− 1

2

∫
Ω

γ(v)up−2|∇u|2 +
(p− 1)K

2

∫
Ω

up|∇v|2.

(18)
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Using Gagliardo-Nirenberg inequality, (7) and (11), one has∫
Ω

up|∇v|2 ≤ ‖u‖pLp+1‖∇v‖2L2(p+1) ≤ c1‖u‖pLp+1‖v‖W 2,p+1‖∇v‖L2

≤ c2‖u‖pLp+1‖v‖W 2,p+1 ≤ c3‖u‖p+1
Lp+1 .

(19)

Then we can substitute (18) and (19) into (17) to obtain

1

p

d

dt

∫
Ω

up +
(p− 1)

2

∫
Ω

γ(v)up−2|∇u|2

≤ (p− 1)Kc3
2

∫
Ω

up+1 + µ

∫
Ω

up − µ
∫

Ω

up+1.

(20)

Using the Hölder inequality and Cauchy-Schwarz inequality, one can show that

(1 + µ)

∫
Ω

up ≤ (1 + µ)|Ω|
1
p+1

(∫
Ω

up+1

) p
p+1

≤ µ

2

∫
Ω

up+1 + c4. (21)

Moreover, we can choose p = 1 + ε > 1 satisfying εKc3
2 < µ

2 to derive that

(p− 1)Kc3
2

∫
Ω

up+1 ≤ µ

2

∫
Ω

up+1. (22)

Then the combination of (21), (22) and (20) gives

1

p

d

dt

∫
Ω

up +

∫
Ω

up ≤ c4. (23)

Applying Gronwall’s inequality to (23), we have (16) for some p > 1 close to 1.

Next, we will show ‖v(·, t)‖L∞ is uniformly bounded in time, which rules out the
possibility of degeneracy.

Lemma 3.3. Suppose the conditions in Theorem 1.1 hold. Then there exists a
constant K1 > 0 such that

‖v(·, t)‖L∞ ≤ K1, for all t ∈ (0, Tmax) (24)

and

0 < γ1 ≤ γ(v) ≤ γ2. (25)

Proof. From Lemma 3.2, we can find a constant c1 > 0 such that ‖u(·, t)‖Lp ≤ c1 for
some p > 1. Then applying the elliptic regularity estimate to the second equation
of (4), one has ‖v(·, t)‖W 2,p ≤ c2‖u(·, t)‖Lp ≤ c1c2, which along with the Sobolev
inequality give (24). Then since 0 < γ(v) ∈ C2([0,∞)), we can find two positive
constants γ1 and γ2 such that (25) holds.

Lemma 3.4. Suppose the conditions in Theorem 1.1 hold. Then there exists a
constant C > 0 such that

‖u(·, t)‖L2 ≤ C, for all t ∈ (0, Tmax). (26)
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Proof. Multiplying the first equation of (4) by u and integrating the result by parts,
using Cauchy-Schwarz inequality and (9), we end up with

1

2

d

dt

∫
Ω

u2 +

∫
Ω

γ(v)|∇u|2 + µ

∫
Ω

u3

=

∫
Ω

χ(v)u∇u · ∇v + µ

∫
Ω

u2

=
1

2

∫
Ω

γ(v)|∇u|2 +
1

2

∫
Ω

|χ(v)|2

γ(v)
u2|∇v|2 + µ

∫
Ω

u2

≤ 1

2

∫
Ω

γ(v)|∇u|2 +
K

2

∫
Ω

u2|∇v|2 + µ

∫
Ω

u2,

which, combined with (25), gives

d

dt

∫
Ω

u2 + γ1

∫
Ω

|∇u|2 + 2µ

∫
Ω

u3 ≤ K
∫

Ω

u2|∇v|2 + 2µ

∫
Ω

u2. (27)

We differentiate the second equation of system (4) and multiply the result by 2∇v
to obtain

0 = 2∇v · ∇∆v + 2∇v · ∇u− 2|∇v|2

= ∆|∇v|2 − 2|D2v|2 + 2∇v · ∇u− 2|∇v|2,
(28)

where we have used the identity ∆|∇v|2 = 2∇v · ∇∆v+ 2|D2v|2. Then multiplying
(28) by |∇v|2 and integrating the results, we have∫

Ω

|∇|∇v|2|2 + 2

∫
Ω

|∇v|2|D2v|2 + 2

∫
Ω

|∇v|4

=

∫
∂Ω

|∇v|2 ∂|∇v|
2

∂ν
dS + 2

∫
Ω

|∇v|2∇v · ∇u

=

∫
∂Ω

|∇v|2 ∂|∇v|
2

∂ν
dS − 2

∫
Ω

u∆v|∇v|2 − 2

∫
Ω

u∇(|∇v|2) · ∇v

≤
∫
∂Ω

|∇v|2 ∂|∇v|
2

∂ν
dS + 2

∫
Ω

u
(
|∆v||∇v|2 + |∇|∇v|2||∇v|

)
.

(29)

With the inequality ∂|∇v|2
∂ν ≤ 2λ|∇v|2 on ∂Ω (see [18, Lemma 4.2]) and the following

trace inequality [23, Remark 52.9] for any ε > 0:

‖ϕ‖L2(∂Ω) ≤ ε‖∇ϕ‖L2(Ω) + Cε‖ϕ‖L2(Ω),

we have∫
∂Ω

|∇v|2 ∂|∇v|
2

∂ν
dS ≤ 2λ‖|∇v|2‖2L2(∂Ω) ≤

1

4

∫
Ω

|∇|∇v|2|2 + c1‖|∇v|2‖2L2 . (30)

By the Gagliardo-Nirenberg inequality and the fact ‖|∇v|2‖L1 = ‖∇v‖2L2 ≤ c2(see
Lemma 3.1), we have

c1‖|∇v|2‖2L2 ≤ c3‖∇|∇v|2‖L2‖|∇v|2‖L1 + c3‖|∇v|2‖2L1

≤ 1

4

∫
Ω

|∇|∇v|2|2 + c4.
(31)

Then the combination of (31) and (30) gives∫
∂Ω

|∇v|2 ∂|∇v|
2

∂ν
dS ≤ 1

2

∫
Ω

|∇|∇v|2|2 + c4. (32)
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Next, we will estimate the last term on the right of (29). To this end, we use the

Young’s inequality and the facts |∆v| ≤
√

2|D2v| and ∇|∇v|2 = 2D2v ·∇v to derive

2

∫
Ω

u
(
|∆v||∇v|2 +

∣∣∣∇|∇v|2∣∣∣|∇v|)
≤ 2
√

2

∫
Ω

u|∇v|2|D2v|+ 4

∫
Ω

u|∇v|2|D2v|

≤ 2(
√

2 + 2)

∫
Ω

u|∇v|2|D2v|

≤ 2

∫
Ω

|∇v|2|D2v|2 +
(2 +

√
2)2

2

∫
Ω

u2|∇v|2.

(33)

Substituting (32) and (33) into (29), one has∫
Ω

|∇|∇v|2|2 + 4

∫
Ω

|∇v|4 ≤ (2 +
√

2)2

∫
Ω

u2|∇v|2 + 2c4. (34)

Combining (27) and (34) and using the Young’s inequality, we can find some ζ > 0
such that

d

dt

∫
Ω

u2 + γ1

∫
Ω

|∇u|2 + 2µ

∫
Ω

u3 +

∫
Ω

|∇|∇v|2|2 + 4

∫
Ω

|∇v|4

≤ [K + (2 +
√

2)2]

∫
Ω

u2|∇v|2 + 2µ

∫
Ω

u2 + 2c4

≤ [K + (2 +
√

2)2]‖u‖2L3‖∇v‖2L6 + 2µ|Ω| 13 ‖u‖2L3 + 2c4

≤ c5‖u‖3L3 + ζ‖∇v‖6L6 + µ‖u‖3L3 + c6.

(35)

With the boundedness of ‖u‖L1 and ‖u lnu‖L1 and the inequality in [19, Lemma
3.5], we can choose ε small enough to obtain

‖u‖3L3 ≤ ε‖∇u‖2L2‖u lnu‖L1 + Cε(‖u lnu‖3L1 + ‖u‖L1) ≤ γ1

c5
‖∇u‖2L2 + c7. (36)

On the other hand, using the Gagliardo-Nirenberg inequality, we can derive that

‖∇v‖6L6 = ‖|∇v|2‖3L3 ≤ c8(‖∇|∇v|2‖2L2‖|∇v|2‖L1 + ‖|∇v|2‖3L1)

≤ c8c2‖∇|∇v|2‖2L2 + c8c
3
2.

(37)

Substituting (36) and (37) into (35), and choosing ζ = 1
c2c8

, we end up with
d
dt

∫
Ω
u2+µ

∫
Ω
u3 ≤ c11 which along with the Young inequality:

∫
Ω
u2 ≤ µ

∫
Ω
u3+c12

yields

d

dt

∫
Ω

u2 +

∫
Ω

u2 ≤ c11 + c12.

This gives (26) with the help of Gronwall’s inequality.

Next, we shall show the boundedness of ‖u(·, t)‖L∞ . To this end, we first improve
the regularity of v. More precisely, we have the following results.

Lemma 3.5. Suppose the conditions in Theorem 1.1 hold. Then we have

‖∇v(·, t)‖L∞ ≤ C, for all t ∈ (0, Tmax), (38)

where C > 0 is a constant independent of t.
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Proof. Using (11) and the fact ‖u(·, t)‖L2 ≤ c1, we can derive that ‖v(·, t)‖W 2,2 ≤
c2‖u(·, t)‖L2 ≤ c1c2, which by the Sobolev embedding theorem (n = 2) gives

‖∇v‖L4 ≤ c3. (39)

Then multiplying the first equation of (4) by u2 and integrating it over Ω by parts,
one obtains

1

3

d

dt

∫
Ω

u3 + 2

∫
Ω

γ(v)u|∇u|2 + µ

∫
Ω

u4

= 2

∫
Ω

u2χ(v)∇u · ∇v + µ

∫
Ω

u3

≤
∫

Ω

γ(v)u|∇u|2 +

∫
Ω

|χ(v)|2

γ(v)
u3|∇v|2 +

µ

2

∫
Ω

u4 + c4,

which subject to the facts (9) and (39) gives rise to

1

3

d

dt

∫
Ω

u3 +
4γ1

9

∫
Ω

|∇u 3
2 |2 +

µ

2

∫
Ω

u4 ≤ K
∫

Ω

u3|∇v|2 + c4

≤ K‖u‖3L6‖∇v‖2L4 + c4

≤ c23K‖u‖3L6 + c4.

(40)

Using the Gagliardo-Nirenberg inequality with the fact ‖u 3
2 ‖
L

4
3

= ‖u‖
3
2

L2 ≤ c5, we

can show that

c23K‖u‖3L6 = c23K‖u
3
2 ‖2L4 ≤ c6

(
‖∇u 3

2 ‖
4
3

L2‖u
3
2 ‖

2
3

L
4
3

+ ‖u 3
2 ‖2
L

4
3

)
≤ c7‖∇u

3
2 ‖

4
3

L2 + c7

≤ 4γ1

9

∫
Ω

|∇u 3
2 |2 + c8.

(41)

On the other hand, using the Hölder inequality and Young inequality, one has∫
Ω

u3 ≤ |Ω| 14
(∫

Ω

u4

) 3
4

≤ µ

2

∫
Ω

u4 + c9. (42)

Substituting (41) and (42) into (40) gives

1

3

d

dt

∫
Ω

u3 +

∫
Ω

u3 ≤ c10,

which along with the Gronwall’s inequality gives

‖u(·, t)‖L3 ≤ c11. (43)

Using the elliptic regularity (11) and Sobolev embedding theorem again, from (43)
we derive

‖∇v‖L∞ ≤ c12‖v‖W 2,3 ≤ c13‖u‖L3 ≤ c11c13.

This finishes the proof.

Lemma 3.6. Suppose the conditions in Theorem 1.1 hold. Then the solution of
(4) satisfies

‖u(·, t)‖L∞ ≤ C, for all t ∈ (0, Tmax), (44)

where the constant C > 0 independent of t.
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Proof. Multiplying the first equation of (4) by up−1(p ≥ 2) and integrating it by
parts over Ω, and using (38) and Young’s inequality, we can find a constant c1 > 0
independent of p such that

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

γ(v)up−2|∇u|2 + µ

∫
Ω

up+1

= (p− 1)

∫
Ω

χ(v)up−1∇u · ∇v + µ

∫
Ω

up

≤ c1(p− 1)

∫
Ω

|χ(v)|up−1|∇u|+ µ(p− 1)

∫
Ω

up

≤ p− 1

2

∫
Ω

γ(v)up−2|∇u|2 +

(
c21K

2
+ µ

)
(p− 1)

∫
Ω

up,

(45)

which, together with the fact γ(v) ≥ γ1 > 0 in (25), gives a positive constant

c2 =
c21K

2 + µ+ 1 such that

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up +
2(p− 1)γ1

p

∫
Ω

|∇u
p
2 |2

≤ c2p(p− 1)

∫
Ω

up

≤ 2(p− 1)γ1

p

∫
Ω

|∇u
p
2 |2 + c3p(p− 1)(1 + p2)

(∫
Ω

u
p
2

)2

,

(46)

where the last inequality is obtained based on the following inequality (see [26])

‖f‖2L2 ≤ ε‖∇f‖2L2 + c4(1 + ε−1)‖f‖2L1 , for any ε > 0.

The inequality (46) can be rewritten as

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up ≤ c3p(p− 1)(1 + p2)

(∫
Ω

u
p
2

)2

,

which, combined with the fact (1 + p2) ≤ (1 + p)2, gives

d

dt

(
ep(p−1)t

∫
Ω

up
)
≤ c3ep(p−1)tp(p− 1)(1 + p)2

(∫
Ω

u
p
2

)2

. (47)

We integrate (47) over [0, t] for 0 < t < Tmax to obtain∫
Ω

up ≤
∫

Ω

up0 + c3(1 + p)2 sup
0≤t≤Tmax

(∫
Ω

u
p
2

)2

. (48)

Define

N(p) := max
{
‖u0‖L∞ , sup

0≤t≤Tmax

(∫
Ω

up
) 1
p }

. (49)

Then, we can derive from (48) and (49) that

N(p) ≤ [c4(1 + p)2]
1
pN(

p

2
) for p ≥ 2.
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Taking p = 2j , j = 1, 2, · · · , one obtains

N(2j) ≤ c2
−j

4 (1 + 2j)2−j+1

N(2j−1)

...

≤ c2
−j+···+2−1

4 (1 + 2j)2−j+1

· · · (1 + 2)N(1)

≤ c4[2j2
−j+1

(2−j + 1)2−j+1

] · · · [2(2−1 + 1)]N(1)

≤ c422[j2−j+(j−1)2−(j−1)+···+2−1] · 22[2−j+2−(j−1)+···+2−1]N(1)

≤ c426N(1).

If ‖u(·, t)‖L∞ ≤ ‖u0‖L∞ , the proof is then finished. Otherwise sending j →∞ and
using the boundedness of ‖u‖L1 , we have

‖u(·, t)‖L∞ ≤ c426N(1) ≤ c426 max{‖u0‖L∞ , ‖u0‖L1} ≤ c5,

which gives (44).

Lemma 3.7. Let Ω be a bounded domain in R2 with smooth boundary and the
hypothesis (H1) hold. Suppose that u0 ∈ W 1,∞(Ω) with u0 ≥ 0( 6≡ 0). Then the
problem (4) has a unique solution (u, v) ∈ [C0([0,∞) × Ω̄) ∩ C2,1((0,∞) × Ω̄)] ×
C2,1((0,∞)× Ω̄), which satisfies

‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞ ≤ C.

Proof. From Lemma 3.6, we can find a constant c1 > 0 such that ‖u(·, t)‖L∞ ≤ c1.
Then using the elliptic regularity, from the second equation of (4) one obtains
‖v(·, t)‖W 1,∞ ≤ c2. By Lemma 2.1, the existence of global classical solutions follows
immediately.

3.2. Large time behavior. In this section, we will study the large time behavior
of solution for the system (4). Let

K0 = max
0≤v≤∞

|χ(v)|2

γ(v)
(50)

and

E(t) :=

∫
Ω

(u− 1− lnu) . (51)

Then based on some ideas in [9, 27], we shall show that the constant steady state
(1, 1) is globally asymptotically stable by showing E(t) is a Lyapunov functional
under the conditions µ > K0

16 . More precisely, we have the following result.

Lemma 3.8. Suppose (u, v) is the solution of (4) obtained in Lemma 3.7. Let
K0 and E(t) be defined by (50) and (51), respectively. Then we have the following
results:

(1) E(t) ≥ 0 for any t > 0;
(2) If µ > K0

16 , then there exists a positive constant β such that for all t > 0

E ′(t) ≤ −F(t), (52)

where

F(t) := β ·
{∫

Ω

(u− 1)2 +

∫
Ω

(v − 1)2
}
.
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Proof. First, we will show the non-negativity of E(t). In fact, letting φ(u) :=
u − 1 − lnu, u > 0 and noting that φ(1) = φ′(1) = 0, and applying the Taylor’s
formula to φ(u) at u = 1 gives

φ(u) =
1

2
φ′′(ũ)(u− 1)2 =

1

2ũ2
(u− 1)2 ≥ 0, (53)

where ũ is between 1 and u, which implies E(t) ≥ 0.
Next, we show (52) hold. In fact, using the first equation of (4), we have

E ′(t) =
d

dt

∫
Ω

(u− 1− lnu)

= −
∫

Ω

∇
(
u− 1

u

)
· [γ(v)∇u− χ(v)u∇v]− µ

∫
Ω

(u− 1)2

= −
∫

Ω

γ(v)
|∇u|2

u2
+

∫
Ω

χ(v)
∇u · ∇v

u
− µ

∫
Ω

(u− 1)2.

(54)

On the other hand, we multiply the second equation of system (4) by v − 1 and
integrate it by parts to obtain

0 = −
∫

Ω

|∇v|2 −
∫

Ω

(v − 1)2 +

∫
Ω

(u− 1)(v − 1). (55)

Multiplying (55) by a constant δ > 0 and adding the result to (54), we obtain

d

dt

∫
Ω

(u− 1− lnu) = −
∫

Ω

γ(v)
|∇u|2

u2
− δ

∫
Ω

|∇v|2 +

∫
Ω

χ(v)
∇u · ∇v

u︸ ︷︷ ︸
I1

−µ
∫

Ω

(u− 1)2 − δ
∫

Ω

(v − 1)2 + δ

∫
Ω

(u− 1)(v − 1)︸ ︷︷ ︸
I2

.

(56)

For I1, we can rewrite it as

I1 = −ΘT
1 A1Θ1, Θ1 =

(
∇u
∇v

)
, A1 =

(
γ(v)
u2 −χ(v)

2u

−χ(v)
2u δ

)
where ΘT

1 denotes the transpose of Θ1. One can check that A1 is non-negative
definite if and only if

δ ≥ max
0≤v≤∞

|χ(v)|2

4γ(v)
=
K0

4
. (57)

Similarly, we can also rewrite I2 as

I2 = −ΘT
2 A2Θ2, Θ2 =

(
u− 1

v − 1

)
, A2 =

(
µ δ

2
δ
2 δ

)
.

A2 is positive definite if and only if

µ >
δ

4
. (58)

Hence, we can always find a positive constant δ such that (57) and(58) hold provided
µ > K0

16 . Since A1 is non-negative definite and A2 is positive definite, then from
(56), we can find a constant β > 0 such that (52) holds.

Next, we will use (52) to show the convergence of solution (u, v, w) in L∞-norm.
Before that, we first improve the regularity of solutions (u, v).



3036 HAI-YANG JIN AND ZHI-AN WANG

Lemma 3.9. There exist σ ∈ (0, 1) and C > 0 such that

‖u‖
Cσ,

σ
2 (Ω̄×[t,t+1])

≤ C, for all t ≥ 0. (59)

Proof. From Lemma 3.7, we can find three positive constants c1, c2, c3 such that

0 < u(x, t) ≤ c1, 0 < v(x, t) ≤ c2 and |∇v(x, t)| ≤ c3 for all x ∈ Ω and t ∈ (0, Tmax).

The first equation of (4) can be rewritten as

ut = ∇ ·A(x, t,∇u) +B(x, t) for all x ∈ Ω and t ∈ (0, Tmax), (60)

where

A(x, t, ξ) := γ(v) · ξ − χ(v)u∇v
and

B(x, t) := µu(·, t)(1− u(·, t)).
Noting the assumptions in (H1) and using the Young’s inequality, we can obtain
that

A(x, t,∇u) · ∇u = γ(v)|∇u|2 − χ(v)u∇v · ∇u
≥ γ(v)|∇u|2 − |χ(v)|u|∇v||∇u|

≥ γ(v)

2
|∇u|2 − |χ(v)|2

2γ(v)
u2|∇v|2

(61)

and

|A(x, t,∇u)| ≤ γ2|∇u|+ c4 for all x ∈ Ω and t ∈ (0, Tmax)

as well as

|B(x, t)| ≤ µc1(1 + c1) for all x ∈ Ω and t ∈ (0, Tmax). (62)

Then (61)-(62) allow us to apply the Hölder regularity for quasilinear parabolic
equations [22, Theorem 1.3 and Remark 1.4] to conclude that u satisfies (59).

Lemma 3.10. Suppose that µ > K0

16 and let (u, v) be the global classical solution of
the system (4). Then it follows that

‖u(·, t)− 1‖L∞ → 0, as t→∞ (63)

and

‖v(·, t)− 1‖L∞ → 0, as t→∞. (64)

Proof. From Lemma 3.8, we know E(t) ≥ 0 for all t > 0. Then integrating (52) over
[1, t], we have ∫ t

1

F(s)ds ≤ E(1)− E(t) ≤ E(1), for all t > 1.

Using the definition of F(t), one can derive∫ t

1

∫
Ω

[
(u− 1)2 + (v − 1)

2
]
<∞. (65)

Then combining (65) and Lemma 3.9, and using a similar argument as in [9, Lemma
4.2], we obtain (63). On the other hand, from the second equation of (4), we infer
that ψ(x, t) := v(x, t)− 1 satisfies{

−∆ψ + ψ = u− 1, x ∈ Ω, t > 0,
∂ψ
∂ν = 0, x ∈ Ω, t > 0.

(66)
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Then using the elliptic maximum principle, we obtain from (66) that

‖v(·, t)− 1‖L∞ = ‖ψ(·, t)‖L∞ ≤ ‖u(·, t)− 1‖L∞ , (67)

which together with (63) gives (64).

3.3. Exponential decay. Next, we shall show the convergence rate is exponential.

Lemma 3.11. Assume that µ > K0

16 , and suppose (u, v) is the global classical
solution of the system (4). Then there exists two positive constants C, δ∗ such that
for all t > 0

‖u(·, t)− 1‖L2 ≤ Ce−
δ∗
2 t. (68)

Proof. From (63), we can get a t0 > 0 such that for all t > t0

‖u(·, t)− 1‖L∞ <
1

2
,

which immediately gives

u(x, t) ∈
(

1

2
,

3

2

)
for all x ∈ Ω and t > t0. (69)

Then using (53) and (69), we can get two positive constants c1 and c2 such that

c1(u− 1)2 ≤ u− 1− lnu ≤ c2(u− 1)2 for all u ∈
(

1

2
,

3

2

)
. (70)

Hence, using (51) and (70), and choosing δ∗ = β
c2

, we have for all t > t0 that

E(t) ≤ c2
∫

Ω

(u− 1)2 ≤ 1

δ∗
F(t),

which yields
F(t) ≥ δ∗E(t) for all t > t0. (71)

Then the combination of (52) and (71) gives for all t > t0

E ′(t) ≤ −F(t) ≤ −δ∗E(t),

and hence
E(t) ≤ E(t0)e−δ∗(t−t0), for all t > t0,

which together with the fact E(t) ≥ c1
∫

Ω
(u − 1)2 gives (68). Then we finish the

proof of Lemma 3.11.

Next, we shall show the boundedness of ‖∇u‖L4 to obtain the convergence rate
with L∞-norm. More precisely, we have the following results.

Lemma 3.12. There exists a constant C > 0 independent of t such that the solution
(u, v) of (4) satisfies

‖∇u(·, t)‖L4 ≤ C for all t ∈ (0, Tmax). (72)

Proof. Using the first equation of (4), we obtain

1

4

d

dt

∫
Ω

|∇u|4 =

∫
Ω

|∇u|2∇u · ∇ut

=

∫
Ω

|∇u|2∇u · ∇(∇ · (γ(v)∇u))

−
∫

Ω

|∇u|2∇u · ∇(∇ · (χ(v)u∇v)) + µ

∫
Ω

(1− 2u)|∇u|4

= : J1 + J2 + J3.

(73)
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We can estimate the term J1 as follows:

J1 = −
∫

Ω

|∇u|2∆u∇ · (γ(v)∇u)−
∫

Ω

∇|∇u|2 · ∇u∇ · (γ(v)∇u)

=

∫
Ω

γ(v)|∇u|2∇∆u · ∇u−
∫

Ω

γ′(v)∇|∇u|2 · ∇u∇u · ∇v

=
1

2

∫
Ω

γ(v)|∇u|2∆|∇u|2 −
∫

Ω

γ(v)|∇u|2|D2u|2

−
∫

Ω

γ′(v)∇|∇u|2 · ∇u∇u · ∇v

≤ 1

2

∫
∂Ω

γ(v)|∇u|2 ∂|∇u|
2

∂ν
dS − 1

2

∫
Ω

γ(v)|∇|∇u|2|2 −
∫

Ω

γ(v)|∇u|2|D2u|2

+
3

2

∫
Ω

|γ′(v)||∇|∇u|2||∇u|2|∇v|.

(74)

Using the boundedness of ‖u‖L∞ and ‖v‖W 1,∞ obtained in Lemma 3.7 and the
assumptions in (H1) as well as the fact ∆v = v − u, we have

∇ · (χ(v)u∇v) = χ′(v)u|∇v|2 + χ(v)∇u · ∇v + χ(v)u∆v

= γ′′(v)u|∇v|2 + χ(v)∇u∇v + χ(v)uv − χ(v)u2

≤ c1(1 + |∇u|),

which substituted into J2 gives

J2 =

∫
Ω

∇|∇u|2 · ∇u∇ · (χ(v)u∇v) +

∫
Ω

|∇u|2∆u∇ · (χ(v)u∇v)

≤ c1
∫

Ω

|∇u||∇|∇u|2|(1 + |∇u|) + c1

∫
Ω

|∇u|2|∆u|(1 + |∇u|).
(75)

Moreover, the boundedness of ‖u‖L∞ directly gives

J3 ≤ c2
∫

Ω

|∇u|4. (76)

Substituting (74)-(76) into (73), and noting the facts γ(v) ≥ γ1 > 0 and |∆u| ≤√
2|D2u|, we have

1

4

d

dt

∫
Ω

|∇u|4 +
γ1

2

∫
Ω

|∇|∇u|2|2 + γ1

∫
Ω

|∇u|2|D2u|2

≤ 1

2

∫
∂Ω

γ(v)|∇u|2 ∂|∇u|
2

∂ν
dS +

3

2

∫
Ω

|γ′(v)||∇|∇u|2||∇u|2|∇v|

+ c1

∫
Ω

|∇u||∇|∇u|2|(1 + |∇u|) + c1

∫
Ω

|∇u|2|∆u|(1 + |∇u|) + c2

∫
Ω

|∇u|4

≤ γ1

4

∫
Ω

|∇|∇u|2|2 +
γ1

2

∫
Ω

|∇u|2|D2u|2 + c3

∫
Ω

|∇u|4 + c4,

which leads to

d

dt

∫
Ω

|∇u|4 + γ1

∫
Ω

|∇|∇u|2|2 + 2γ1

∫
Ω

|∇u|2|D2u|2 ≤ 4c3

∫
Ω

|∇u|4 + 4c4. (77)
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On the other hand, using the boundedness of ‖u‖L∞ and the fact |∆u| ≤
√

2|D2u|
again, we have(

3

2
+ 4c3

)∫
Ω

|∇u|4 =

(
3

2
+ 4c3

)∫
Ω

|∇u|2∇u · ∇u

= −
(

3

2
+ 4c3

)∫
Ω

u∇|∇u|2 · ∇u−
(

3

2
+ 4c3

)∫
Ω

u|∇u|2∆u

≤ γ1

∫
Ω

|∇|∇u|2|2 + 2γ1

∫
Ω

|∇u|2|D2u|2 + c5

∫
Ω

|∇u|2

≤ γ1

∫
Ω

|∇|∇u|2|2 + 2γ1

∫
Ω

|∇u|2|D2u|2 +
1

2

∫
Ω

|∇u|4 + c6,

which substituted into (77) gives

d

dt

∫
Ω

|∇u|4 +

∫
Ω

|∇u|4 ≤ c7. (78)

Then applying the Gronwall’s inequality to (78) yields (72) and the proof is com-
pleted.

Lemma 3.13. Suppose µ > K0

16 , and let (u, v) be the global classical solution of the
system (4). Then there exists a constants C > 0 such that for all t > 0

‖u(·, t)− 1‖L∞ ≤ Ce−
δ∗
6 t, (79)

and
‖v(·, t)− 1‖L∞ ≤ Ce−

δ∗
6 t. (80)

Proof. Using the Gagliardo-Nirenberg inequality, (68) and (72), we have

‖u− 1‖L∞ ≤ c1‖∇u‖
2
3

L4‖u− 1‖
1
3

L2 + c1‖u− 1‖L2

≤ c2e−
δ∗
6 t + c2e

− δ∗2 t

≤ 2c2e
− δ∗6 t,

which gives (79). (80) follows from (79) due to (67). This competes the proof of
Lemma 3.13.

Proof of Theorem 1.1. Theorem 1.1 is an immediate consequence of Lemma 3.7 and
Lemma 3.13.

Acknowledgments. We are grateful to the referee for several helpful comments
improving our results.
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