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Abstract. This paper is concerned with a semi-linear elliptic problem with

Robin boundary condition:{
ε∆w − λw1+χ = 0, in Ω

∇w · ~n+ γw = 0, on ∂Ω
(∗)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary, ~n denotes

the unit outward normal vector of ∂Ω and γ ∈ R/{0}. ε and λ are positive
constants. The problem (∗) is derived from the well-known singular Keller-

Segel system. When γ > 0, we show there is only trivial solution w = 0. When

γ < 0 and Ω = BR(0) is a ball, we show that problem (∗) has a non-constant
solution which converges to zero uniformly as ε tends to zero. The main idea

of this paper is to transform the Robin problem (∗) to a nonlocal Dirichelt

problem by a Cole-Hopf type transformation and then use the shooting method
to obtain the existence of the transformed nonlocal Dirichlet problem. With

the results for (∗), we get the existence of non-constant stationary solutions to
the original singular Keller-Segel system.

1. Introduction. To describe the propagation of traveling bands of chemotactic
bacteria observed in the celebrated experiment of Adler [1], Keller and Segel pro-
posed the following singular chemotaxis system in the seminal work [14] ut = ∆u− χ∇ · (u∇ lnw), in Ω

wt = ε∆w − uwm, in Ω
(1.1)

where u(x, t) denotes the bacterial density and w(x, t) the oxygen/nutrient concen-
tration at position x ∈ RN and at time t > 0, respectively. ε ≥ 0 is the chemical
diffusion coefficient, χ > 0 denotes the chemotactic coefficient and m ≥ 0 the oxygen
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consumption rate. The system (1.1) has been well-known as the singular Keller-
Segel model/system nowadays as a cornerstone for the modeling of chemotactic
movement of bacteria attracted by nutrient/oxygen.

The prominent feature of the Keller-Segel system (1.1) is the use of a logarith-
mic sensitivity function lnw, which was experimentally verified later in [12]. This
logarithm results in a mathematically unfavorable singularity which, however, has
been proved to be necessary to generate traveling wave solutions (cf. [22]) that were
the first type analytical results developed for the Keller-Segel system (1.1). When
0 ≤ m < 1, Keller and Segel [14] have shown that the model (1.1) with ε = 0 can
generate traveling bands qualitatively in agreement with the experiment findings of
[1], and later the existence results of traveling wave solutions were extended to any
ε ≥ 0 and 0 ≤ m ≤ 1 (cf. [22, 24, 13, 28]), where the wave profile of (u,w) is of
(pulse, front) for 0 ≤ m < 1 and of (front, front) for m = 1. When m > 1, it was
proved that the system (1.1) did not admit any type of traveling wave solutions (e.g.,
see [28, 29]). Though the Keller-Segel model (1.1) with m = 1 can not reproduce
the pulsating wave profile to interpret the experiment of [1], it was later employed
to describe the boundary movement of bacterial chemotaxis [25] and migration of
endothelial cells toward the signaling molecule vascular endothelial growth factor
(VEGF) during the initiation of angiogenesis (cf. [15]).

Aside from the existence of traveling wave solutions, the logarithmic singular-
ity become a source of difficulty in studying the Keller-Segel system (1.1), such
as stability of traveling waves, global well-posedness and so on. When m = 1, a
Cole-Hopf type transformation was cleverly used to remove the singularity, which
consequently led to a lot of interesting analytical works, for instance the stability of
traveling waves (cf. [5, 11, 20, 21, 18, 3, 2]), global well-posedness and/or asymp-
totic behavior of solutions (see [4, 16, 23, 19, 17] in one dimensional bounded or
unbounded space and [7, 6, 26, 27, 30, 19] in multidimensional spaces) and boundary
layer solutions [10, 8, 9]. Even for the case m = 1, the model in multi-dimensional
space still remains poorly understand and in particular no results on the large-data
solutions have even been obtained. The paper will continue to consider the Keller-
Segel system with m = 1 in a bounded smooth domain Ω ⊂ RN with the following
boundary conditions {

(∇u− χu∇ lnw) · ~n = 0, on ∂Ω

α∇w · ~n+ γw = 0, on ∂Ω
(1.2)

where ~n denotes the unit outward normal vector to ∂Ω, γ ∈ R/{0} and α > 0. The
zero-flux boundary condition for u means that no cells can crosses the boundary
of the habitat, and w is prescribed by Robin boundary condition which become
Neumann boundary condition if γ = 0 and Dirichlet boundary condition if α = 0.
When γ = 0, namely the Neumann boundary condition prescribed for w, there are
some well-posedness results available (cf. [27, 17, 31]). However as γ 6= 0, as we
know, no results have been developed for the problem (1.1)-(1.2). In general, Robin
boundary condition is harder than the Neumann or Dirichlet boundary condition
due to the loss of Maximum principle and the integrability. In this paper, we shall
consider the stationary problem of (1.1)-(1.2) which reads

0 = ∆u− χ∇ · (u∇ lnw), in Ω
0 = ε∆w − uw, in Ω
(∇u− χu∇ lnw) · ~n = 0, on ∂Ω
∇w · ~n+ γw = 0, on ∂Ω,

(1.3)
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where we have assumed α = 1 without loss of generality. With the zero-flux bound-
ary condition on u, we can solve from the first equation of (1.3) that

u = λwχ (1.4)

where λ > 0 is a constant of integration. Then substituting (1.4) into the second
equation of (1.3), we reduce the stationary problem to a scalar semi-linear elliptic
equation with Robin boundary condition:{

ε∆w − λw1+χ = 0, in Ω

∇w · ~n+ γw = 0, on ∂Ω.
(1.5)

The reduction from a system to a scalar equation in the above procedure is a key
step to attack the stationary problem. Clearly w = 0 is naturally a solution of (1.5).
What we are concerned with is whether the semi-linear Robin problem (1.5) admits
non-constant solutions. This is a nontrivial problem in general due to homogeneous
Robin boundary conditions for which the available methods are very limited. First,
we show that the problem (1.5) has only trivial solution w = 0 if γ > 0 by the
maximum principle directly. The conclusion for the case γ < 0 becomes elusive
due to the loss of maximum principle. In this case, we shall consider the radially
symmetric solution in a ball Ω = BR(0) with radius R > 0. The key finding of this
paper is that with radially symmetric case, a Cole-Hopf type transformation can be
used to relegate the homogeneous Robin boundary condition to a non-homogeneous
Dirichlet boundary condition and also reduce the second-order equation into a first-
order one for which shooting method becomes available for analysis. We shall
demonstrate this idea in details later and state our main results of this paper as
follows.

Theorem 1.1. Let ε > 0 and 0 6= γ ∈ R. Then the following results hold.

(i) If γ > 0, the system (1.3) has only a trivial solution w = 0.
(ii) If γ > 0 and Ω = BR(0) = {x ∈ RN | r = |x| < R} with R > 0, then (1.3)

admits an analytic radial solution (u(r), w(r)) with u(r) = λw(r), which is
unique up to the constant λ > 0 through (1.4). Moreover, the solution w(r)
converges uniformly to 0 as ε→ 0 with the following convergence rate

‖u(r)‖C[0,R] ≤ Cε, ‖w(r)‖C[0,R] ≤ Cε
1
χ (1.6)

where C > 0 is a constant independent of ε.

Sketch of main ideas. Assume the solution of (1.5) is analytic and radially
symmetric:

w(x) = w(|x|) = w(r), r ∈ (0, R). (1.7)

Substituting the ansatz (1.7) into (1.5), we get the following boundary value problem εwrr + εN−1r wr = λw1+χ, r ∈ (0, R)
w(0) = w0, wr(0) = 0,
wr + γw = 0, r = R

(1.8)

where we have imposed the boundary condition w(0) = w0 which will be determined
afterwards, and the condition wr(0) = 0 follows from the analyticity of w(r) at
r = 0. In order to treat the Robin boundary condition, we introduce the following
Cole-Hopf type transformation

v =
wr
w

(1.9)
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and transform (1.8) into a boundary value problem of a first-order ODE:
εvr + εN−1r v + εv2 = wχ, r ∈ (0, R)

v(0) = 0,

v = −γ, r = R.

(1.10)

From (1.9), one can solve w in terms of v as

w(r) = w0e
∫ r
0
v(s)ds

which turns (1.10) into a boundary value problem for a nonlocal ODE
εvr + εN−1r v + εv2 = u0e

χ
∫ r
0
v(s)ds, r ∈ (0, R)

v(0) = 0,

v = −γ, r = R.

(1.11)

where

u0 = λwχ0 . (1.12)

Hence by the Cole-Hopf transformation (1.9), we not only relegate the Robin prob-
lem to a Dirichlet problem but also reduce the order of the equation. However this
is not gotten for free. The price that we paid is the generation of a nonlocal term
with an exponential nonlinearity, which brings new obstacles to analysis. However
we find that the classical shooting method (phase-plane analysis) may be applica-
ble to the first-order ODE problem (1.11) though additional efforts are needed to
handle the nonlocal term and exponential nonlinearity.

To employ the shooting method, we treat (1.11) as an initial value problem
starting from r = 0. Since the solution v(r) of (1.11) is analytic at a neighbourhood
of r = 0, we insert its Taylor expansion v(r) =

∑∞
k=0 akr

k into (1.11) and deduce
that the coefficients a2k = 0 and that a2k+1 with k ∈ N are determined by u0

εN . In
particular, a0 = 0, a1 = u0

εN and thus

v(r) =
u0
εN

r +O(r2), vr(r) =
u0
εN

+O(r), (1.13)

for r sufficiently close to 0. Hence the initial value problem relevant to (1.11) reads:{
εvr + εN−1r v = −εv2 + u0e

χ
∫ r
0
v(s) ds, r ∈ (0,∞),

v(0) = 0, vr(0) = u0

εN .
(1.14)

Now for given u0, we shall show that the solution of (1.14) will blow up at a finite
r = R∗. Then we trace back to find the condition for u0 such that the solution of
(1.11) exists for given R > 0. With the existence for v(r), we get the solution of
(1.8) and hence the radial solution of (1.5).

The rest of this paper is organized as follows. In section 2, we shall focus on
the auxiliary problem (1.14) and prove the existence and uniqueness of (1.14). In
section 3, we shall use the Cole-Hopf transformation (1.9) to prove Theorem 1.1.

2. Blowup solutions of (1.14). In this section, we shall exploit the nonlocal
problem (1.14) and prove the following results.

Theorem 2.1. Suppose u0 > 0 and ε > 0. Let ṽ(r) be the solution of (1.14) with

ε = 1 and u0 = 1. Then ṽ(r) blows up at a finite number R̃ > 0 and there exists
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R∗ = R̃
√

ε
u0
> 0 such that (1.14) admits an unique solution v(r) in (0, R∗) which

is analytic at r = 0 and can be explicitly expressed as

v(r) =

√
u0
ε
ṽ

(√
u0
ε
r

)
, r ∈ (0, R∗). (2.1)

Moreover vr(r) > 0 on [0, R∗) and blows up at R∗ <∞.

Remark 2.1. The upper and lower bounds of R̃ are given in Proposition 2.1.

Before proceeding, we introduce the main difficulties encountered and ideas em-
ployed to overcome them in the proof of Theorem 2.1. Indeed, with u0 > 0 the term
u0e

χ
∫ r
0
v(s) ds on the right-hand side of (1.14) will enhance the blow-up process as

v increases, while −εv2 is a damping term preventing the blow-up. Hence which
of them will dominate the dynamics as v is large is crucial to determine whether
the blow-up radius R∗ is finite or not. At first glance, one may think that the
exponential function u0e

χ
∫ r
0
v(s) ds will dominate the quadratic function −εv2. This

is indeed not necessarily true since the exponent of the exponential function here
is an integral, see examples given in Appendix. To elucidate this, we first heuris-
tically employ a formal expansion (see Remark 2.2) to investigate the asymptotic

behavior of the term u0e
χ
∫ r
0
v(s) ds as v →∞ to see whether it grows fast enough to

dominates or cancel out the damping effect of −εv2. Then by a delicate analysis,
we find that u0e

χ
∫ r
0
v(s) ds = χ

2 v
2 + εv2 + o(v2) (for large v), which substituted

into (1.14) indeed cancels out −εv2 and gives an additional growth term χ
2 v

2, i.e.

vr ∼ χ
2 v

2. Then the blow-up radius R∗ < ∞ immediately follows. This procedure
will be elaborated in Remark 2.2. Motivated by this formal analysis, we first justify
our speculation for a special case ε = 1 and u0 = 1 in Proposition 2.1. Then with
a scaling-invariant property of (1.14), we prove the similar results for the general
case ε > 0 and u0 > 0. We start by presenting some preliminary results on (1.14).

2.1. Some preliminary results.

Lemma 2.1. Suppose u0 > 0 and ε > 0. Then (1.14) admits a unique solution
v(r), which can be extended to a maximal interval [0, R∗) such that either R∗ =∞
or |v(r)| → ∞ as r → R∗.

The proof of Lemma 2.1 follows from the classical ordinary differential equation
theory. We thus omit its proof.

Lemma 2.2. Assume u0 > 0 and ε > 0. If v(r) is the unique solution of (1.14)
in the maximal interval [0, R∗), then vr(r) > 0 for r ∈ [0, R∗) and v(r) > 0 for
r ∈ (0, R∗).

Proof. We first prove that vr(r) > 0 for all r ∈ [0, R∗). Indeed, it follows from
(1.14) that vr(r) > 0 for r small enough by continuity of vr. We claim that

vr(r) > 0 for r ∈ [0, R∗). (2.2)

If this is false, we denote by r1 the smallest value of r > 0 such that vr(r) = 0.
Then one derives

vr(r) > 0, for r ∈ (0, r1); vr(r1) = 0, vrr(r1) ≤ 0. (2.3)
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However, differentiating (1.14) with respect to r leads to

εvrr(r1) =− εN − 1

r1
vr(r1) + ε

N − 1

r21
v(r1)− 2εv(r1)vr(r1) + χu0v(r1)eχ

∫ r1
0 v(s) ds

=ε
N − 1

r21
v(r1) + χu0v(r1)eχ

∫ r1
0 v(s) ds > 0.

The above result contradicts with the last inequality in (2.3). Hence (2.2) holds
true. v(r) > 0 for r ∈ (0, R∗) follows directly from (2.2) and the initial condition
v(0) = 0 in (1.14). The proof is finished.

Another property of (1.14) is its invariance under some appropriate scalings.
Precisely, suppose that v(r) is a solution of (1.14) with data u0 > 0 and ε > 0.
Then it is easy to verify for any β > 0 that g(r) :=

√
βv(
√
βr) is still a solution

of (1.14) by replacing u0 with βu0. This property is crucial to prove Theorem
2.1. Indeed, we shall first study the solution ṽ(r) of (1.14) with fixed data ε = 1
and u0 = 1 (see Proposition 2.1), of which the results on blow-up property and
blow-up radius will be converted to the solutions v(r) with general data u0 > 0 and
ε > 0, which equals to

√
u0

ε ṽ(
√

u0

ε r) thanks to the above scaling-invariant property.
Details are given in the proof of Theorem 2.1.

2.2. Blowup solutions of (1.14) with ε = 1 and u0 = 1. To prove Theorem 2.1,
we first study the solution (denoted by ṽ(r) ) of (1.14) corresponding to data ε = 1
and u0 = 1, which reads:{

ṽr + N−1
r ṽ = −ṽ2 + eχ

∫ r
0
ṽ(s) ds, r ∈ R+,

ṽ(0) = 0, ṽr(0) = 1
N .

(2.4)

Before establishing the result on (2.4), we write out some variants of (2.4) for later
use. Differentiating (2.4) with respect to r, one derives

χeχ
∫ r
0
ṽ(s) dsṽ = ṽrr +

N − 1

r
ṽr −

N − 1

r2
ṽ + 2ṽṽr,

which, along with (2.4) leads to

ṽrr +
N − 1

r
ṽr −

N − 1

r2
ṽ = (χ− 2)ṽṽr + χṽ3 +

χ(N − 1)

r
ṽ2. (2.5)

Denoting ũ(r) = eχ
∫ r
0
ṽ(s) ds, then we get another variant of (2.4) as follows ṽr + N−1

r ṽ + ṽ2 = ũ, r ∈ R+,
ũr = χũṽ,
ũ(0) = 1, ṽ(0) = 0, ṽr(0) = 1

N .
(2.6)

For (2.4) we have the following result.

Proposition 2.1. The unique solution ṽ(r) of (2.4) blows up at a finite R̃ < ∞,
that is lim

r→R̃
ṽ(r) = ∞. The solution ṽ(r) is strictly positive and vr(r) > 0 for any

r ∈ (0, R̃). Moreover, the blow-up radius R̃ satisfies

R̃ ≥
√

2

χ
. (2.7)

If we further assume that χ ≥ 2, then R̃ also satisfies:

R̃ ≤ π

√
2N

χ
. (2.8)
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Remark 2.2. Before giving the proof for Proposition 2.1, we briefly discuss the
main ideas motivated in the proof of Proposition 2.1. Let [0, R̃) with R̃ ≤ ∞
be the maximal interval of existence for ṽ(r). Then from Lemma 2.1, we have

R̃ = ∞ or limr→R̃ ṽ(r) = ∞, Hence to prove Proposition 2.1, we just need to rule

out the case R̃ = ∞ and prove the blowup radius R̃ is finite, which is the main
difficulty encountered. Indeed, the two terms −ṽ2 and eχ

∫ r
0
ṽ(s) ds on the right-

hand side of (2.4) have opposite effects on the blow-up process of ṽ. Thus the

asymptotic behavior of the term eχ
∫ r
0
ṽ(s) ds as ṽ → ∞ would be very helpful to

determine whether the blow-up radius R̃ is finite or not. If eχ
∫ r
0
ṽ(s) ds dominates

over −ṽ2 then R̃ <∞, otherwise R̃ =∞. Hence in the following we shall study the
asymptotic behavior of eχ

∫ r
0
ṽ(s) ds by applying a formal analysis to the equations

in (2.6) to gain some insights into the proof of Proposition 2.1 and shall formally
derive

ṽr(r) =
χ

2
ṽ2(r) + o(ṽ2), r ∈ (R1, R̃) (2.9)

for some large R1. Once (2.9) is justified, the conclusion R̃ <∞ immediately follows
thanks to this χ

2 ṽ
2-growth rate of ṽ (see the proof of Proposition 2.1). Actually,

instead of (2.9), we shall strictly prove in the proof of Proposition 2.1 the following
sharper result

ṽr(r) >
χ

2
ṽ2(r), r ∈ [0, R̃). (2.10)

We next briefly introduce the formal analysis to derive the key estimate (2.9).
Indeed, by Lemma 2.2 we know the solutions ṽ(r) and ũ(r) of (2.6) are strictly
increasing in r > 0. Hence we can define the inverse function of ṽ(r) as r = f(ṽ).
We further denote g(ṽ) := ũ(r) = ũ(f(ṽ)). Then from (2.6) one deduces that
(f, g)(ṽ) satisfies: {

f + (N − 1)fṽ ṽ = −ṽ2ffṽ + gffṽ,

gṽ = χfṽgṽ,
(2.11)

where fṽ := df
dṽ , gṽ := dg

dṽ . We assume that the blow-up radius R̃ of ṽ(r) is finite.

Then lim
r→R̃

ṽ(r) = ∞ and lim
ṽ→∞

f(ṽ) = R̃ < ∞. Hence f(ṽ) has the following

asymptotic expansion when ṽ is large:

f(ṽ) = R̃+
b1
ṽ

+ o
(1

ṽ

)
, fṽ(ṽ) =

(−b1)

ṽ2
+ o
( 1

ṽ2

)
, (2.12)

where b1 is a constant to be determined. Substituting (2.12) into the first equation
of (2.11) gives

0 = gR̃ · (−b1)

ṽ2︸ ︷︷ ︸
S1

+ · · ·+ R̃b1︸︷︷︸
S2

+ · · ·+ (N − 1) · b1
ṽ︸ ︷︷ ︸

S3

+ · · · − R̃︸︷︷︸
S4

+ · · · ,
(2.13)

where S1, S2, S3 and S4 are respectively the lowest order terms with respect to 1
ṽ

among the expansions corresponding to each part of the first equation in (2.11) and
we have omitted the higher order terms converging to 0 faster than the terms S1,
S2, S3 and S4 as ṽ →∞. We proceed to derive the value of constant b1 by finding
a valid balance among terms S1, S2, S3 and S4 to make (2.13) hold as 1

ṽ → 0 with

fixed 0 < R̃ < ∞. Noting that S3 is of order O( 1
ṽ ) and that S2, S4 are of order

O(1) with respect to 1
ṽ , we only need to find a balance among terms S1, S2 and S4

since S3 is a higher order term comparing with S2 and S4. Hence as 1
ṽ → 0 there

are the following two possible balancing to make (2.13) hold :
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(i) S2 ∼ S4 and S1 is higher-order term. Then we get b1 = 1, which substituted
into (2.12) indicates that fṽ < 0 when ṽ is large. On the other hand, from
Lemma 2.2 and fṽ = 1

ṽr
we deduce that fṽ > 0 for all ṽ ∈ [0,∞). Combining

the above arguments, we arrive at a contradiction and thus this balancing is
impossible.

(ii) S1 ∼ S2 ∼ S4. In this case, one deduces g · (−b1)ṽ2 + b1 − 1 = 0.

Hence only the balancing in (ii) is possible, which leads to

g(ṽ) = ṽ2
(

1− 1

b1

)
+ o(ṽ2). (2.14)

Then inserting (2.14) and (2.12) into the second equation of (2.11) we deduce that

gṽ(ṽ) = χ(1− b1)ṽ + o(ṽ), (2.15)

which, along with (2.14) and the L’Höpital’s rule leads to

1− 1

b1
= lim
ṽ→∞

g(ṽ)

ṽ2
= lim
ṽ→∞

gṽ(ṽ)

2ṽ
=
χ(1− b1)

2
.

Then we solve from the above equality and get b1 = − 2
χ or b1 = 1. Since b1 = 1

contradicts the fact fṽ > 0, we conclude that b1 = − 2
χ . Hence

ũ = g(ṽ) = ṽ2
(

1 +
χ

2

)
,

which substituted into the first equation of (2.6) entails that

ṽr(r) =
χ

2
ṽ2 + o(ṽ2), for ṽ large enough.

Hence we derive (2.9) from the above equality.

With the formal analysis of Remark 2.2 in hand, we next rigorously justify (2.10)
and thus prove Proposition 2.1.

Proof of Proposition 2.1. The proof is divided into three steps.

Step 1. (blowup) Let [0, R̃) with R̃ ≤ ∞ be the maximal interval of existence for
ṽ(r). From Lemma 2.2 we know that ṽ(r) is monotonically increasing in r. Hence
if we let

l = lim
r→R̃

ṽ(r),

it follows from the fact ṽ(r) > 0 (see Lemma 2.2) that l ≥ 0. Now we prove that

l =∞. (2.16)

Indeed if (2.16) is false and then < ∞, it follows from Lemma 2.1 that R̃ = ∞.
Thus

l = lim
r→∞

ṽ(r) <∞. (2.17)

By (2.17), we claim that one can choose a number sequence {rk}k∈N such that

rk+1 ≥ rk + 1, ṽr(rk) <
1

k
. (2.18)

Indeed if (2.18) is false, then there exists some k0 ∈ N such that

ṽr(r) ≥
1

k0
for all r ≥ rk0 .
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This indicates that

lim
r→∞

ṽ(r) ≥ lim
r→∞

[
ṽ(rk0) +

1

k0
· (r − rk0)

]
=∞,

which contradicts (2.17). Hence (2.18) holds true under (2.17). Then from (2.18)
we deduce that

lim
k→∞

rk =∞, lim
k→∞

ṽr(rk) = 0,

which, along with (2.4) and (2.17), raises the following contradiction:

0 = lim
k→∞

(
ṽr +

N − 1

r
ṽ

)
(rk) = lim

k→∞
(−ṽ2 + eχ

∫ rk
0 ṽ(s) ds)(rk) =∞.

Hence our assumption (2.17) is false and we have proved (2.16) which gives

lim
r→R̃

ṽ(r) =∞. (2.19)

Step 2 (finiteness of blowup radius R̃). Let R̃ be the blow-up radius of ṽ(r)
as in (2.19). Define the function

F (r) = ṽr(r)−
χ

2
ṽ2(r), r ∈ [0, R̃).

Then it follows from the data ṽr(0) = 1
N , ṽ(0) = 0 and the continuity of F (r) that

F (r) > 0 for r close to 0 enough. We claim that

F (r) > 0, for r ∈ [0, R̃), (2.20)

which will be proved by the argument of contradiction. Indeed, assume that (2.20)
is false and denote r1 the smallest value of r satisfying F (r) = 0. Then we have

F (r) > 0, for r ∈ (0, r1); F (r1) = [ṽr −
χ

2
ṽ2](r1) = 0, Fr(r1) ≤ 0. (2.21)

Thus it follows from (2.5) and (2.21) that

Fr(r1) =ṽrr(r1)− χṽṽr(r1)

=− N − 1

r1
ṽr +

N − 1

r21
ṽ + (χ− 2)ṽṽr + χṽ3 +

χ(N − 1)

r1
ṽ2

=− χ(N − 1)

r1

ṽ2

2
+
N − 1

r21
ṽ + (χ− 2)ṽ

χṽ2

2
+ χṽ3 +

χ(N − 1)

r1
ṽ2

=
χ(N − 1)

2r1
ṽ2 +

N − 1

r21
ṽ +

χ2

2
ṽ3

>0,

(2.22)

which contradicts the last inequality of (2.21). Hence (2.20) holds true. That is

ṽr(r) >
χ

2
ṽ2(r), r ∈ [0, R̃). (2.23)

Let R2 ∈ (0, R̃). Then solving (2.23) immediately yields that

ṽ(r) >
1

1
ṽ(R2)

− χ(r−R2)
2

, r > R2.
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Noting that the function on the right-hand side of the above inequality blows up at
2

χṽ(R2)
+R2, we conclude that

R̃ ≤ 2

χṽ(R2)
+R2 <∞.

Step 3 (bounds of blowup radius). We first prove (2.7). Define h(r) =∫ r
0
ṽ(s) ds. Then it follows from (2.4) that

hrr < eχh,

which multiplied with hr and then upon integration over (0, r) gives rise to

h2r(r)

2
− 1

χ
eχh(r) < − 1

χ
< 0, (2.24)

where hr(0) = ṽ(0) = 0 has been used. Noting that hr(r) = ṽ(r) > 0, from (2.24)

we deduce that hr(r) <
√

2
χ e

χ
2 h and thus

h(r) <
2

χ
ln
(

1−
√
χ

2
r
)−1

.

From this one concludes that R̃ ≥
√

2
χ and derives (2.7). We proceed to prove (2.8).

Since χ ≥ 2, it follows from (2.5) that(
ṽr +

N − 1

r
ṽ
)
r

= ṽrr +
N − 1

r
ṽr −

N − 1

r2
ṽ > 0, (2.25)

which upon integration over (0, r), along with (1.13) leads to

(rN−1ṽ)r
rN−1

= ṽr +
N − 1

r
ṽ > 1.

Then integrating the above inequality over (0, r), we have ṽ(r) > 1
N r. This along

with (2.25) yields

(rN−1ṽr)r
rN−1

= ṽrr +
N − 1

r
ṽr >

N − 1

r2
ṽ >

(N − 1)

Nr
.

Integrating this inequality over (0, r) one has

ṽr(r) >
1

N
. (2.26)

Combining (2.26) and (2.23), we have that

ṽr(r) >
χ

4
ṽ2(r) +

1

2N
,

which gives rise to

ṽ(r) >

√
2

Nχ
tan

(√ χ

8N
r
)
, r > 0. (2.27)

where the function on the right-hand side of (2.27) is strictly increasing in r and

blows up at π
√

2N
χ . Noting that ṽ(r) is also monotonically increasing in r (see

Lemma 2.2), thus from (2.27) we conclude that ṽ(r) blows up at some finite R̃ and

the blow-up radius R̃ satisfies

R̃ ≤ π

√
2N

χ
.
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The proof of Proposition 2.1 is completed.

2.3. Proof of Theorem 2.1. We are now in a position to prove Theorem 2.1 by
the results of Proposition 2.1. Let ṽ(r) be the solution of (1.14) with ε = u0 = 1.

Then from Proposition 2.1, we know that ṽ(r) blows up at R̃ < ∞. Define g(r) =√
u0

ε ṽ(
√

u0

ε r). Then it follows from (2.4) that
εgr(r) + ε

N − 1

r
g(r) = −εg2(r) + u0e

χ
∫ r
0
g(s) ds, r ∈

(
0, R̃

√
ε

u0

)
,

g(0) = 0, gr(0) =
u0
εN

.

(2.28)

It is easy to check that systems (1.14) and (2.28) are the same, and hence by the
uniqueness of solutions it follows that v(r) = g(r) =

√
u0

ε ṽ(
√

u0

ε r) and the blow-up

radius of v(r) is R∗ = R̃
√

ε
u0
. The proof is completed. �

3. Proof of Theorem 1.1. We first prove the following results.

Proposition 3.1. Assume R > 0 and ε > 0. Let ṽ(r) be the solution of (1.14)
with ε = u0 = 1. Then for any γ < 0, there exists a u0 uniquely determined by γ
and ε through the identity √

u0
ε
ṽ

(√
u0
ε
R

)
= −γ (3.1)

such that the problem (1.11) admits a unique solution v(r) given in (2.1).

Proof. From Theorem 2.1 we know that the solutions v(r) of (1.14) is strictly posi-
tive when r > 0 and in particular v(R) > 0. Hence for γ > 0, (1.11) does not admit
a solution. We next consider the case of γ < 0. With the fixed R > 0 in (1.11), we
define

f(z) = zṽ(zR) for z > 0,

where ṽ(r) is defined in Theorem 2.1. Then from Proposition 2.1 we deduce that
f(z) is monotonically increasing in z, that is

fz(z) = ṽ(zR) +Rṽr(zR) > 0. (3.2)

By Proposition 2.1 and the continuity of ṽ(r), we further get

lim
z→0

f(z) = lim
z→0

[zṽ(zR)] = 0, lim
z→∞

f(z) = lim
z→∞

[zṽ(zR)] =∞,

which, along with (3.2) and the continuity of ṽ(r) implies that there exists a unique
zγ depending on γ < 0, such that

f(zγ) = zγ ṽ(zγR) = −γ. (3.3)

For fixed γ < 0 and ε > 0, we take u0 such that√
u0
ε

= zγ , (3.4)

Then (3.1) follows from (3.3) and (3.4). By Theorem 2.1, (3.3) and (3.4) we further
deduce that the solution v(r) =

√
u0

ε ṽ
(√

u0

ε r
)

solved from (1.14) with u0 defined
in (3.4) is the unique solution of (1.11). The proof is completed.



412 QIANQIAN HOU, TAI-CHIA LIN AND ZHI-AN WANG

Proof of Theorem 1.1. If γ > 0, by the maximum principle, it can be easily verified
that the problem (1.5) only admits the trivial solution u = w = 0. Next we
consider the case γ < 0. By Proposition 3.1 and transformation (1.9), it follows
that the boundary problem (1.3) admits a unique radial solution (u,w)(r) explicitly
expressed as

w(r) = w0e
∫ r
0

√
u0
ε ṽ
(√

u0
ε s
)
ds

=
(u0
λ

) 1
χ

e
∫√u0

ε
r

0 ṽ(τ)dτ ,

u(r) = λwχ(r) = u0e
χ
∫√u0

ε
r

0 ṽ(τ)dτ ,

(3.5)

where (1.12) and the change of variable τ =
√

u0

ε s have been used and u0 is the
value of u(r) at r = 0. We proceed to prove (1.6). In fact, it follows from (3.4) and
(3.5) that

w(r) = ε
1
χλ−

1
χ z

2
χ
γ e
∫ zγr
0 ṽ(τ)dτ ,

u(r) = εz2γe
χ
∫ zγr
0 ṽ(τ)dτ .

(3.6)

Note that the function ṽ(r) (defined in Theorem 2.1) in (3.6) is continuous in r and
independent of ε. One can find a constant C > 0 independent of ε, such that

‖w(r)‖C[0,R] ≤ Cε
1
χ , ‖u(r)‖C[0,R] ≤ Cε,

where the constant C depends on χ, λ, γ and R. Hence

lim
ε→0
‖w(r)‖C[0,R] = lim

ε→0
‖u(r)‖C[0,R] = 0.

This completes the proof of Theorem 1.1.

Appendix. We present examples for v(r) to illustrate that each of the two terms

I1 = εv2(r) and I2 = u0e
χ
∫ r
0
v(s) ds in (1.14) can be possibly dominant as v →∞ in

general.

Example 1 (I1 dominates I2). Let v(r) = c
(

1√
R−r −

1√
R

)
with c = 2u0R

3
2

εN

and 0 < R <∞ satisfying the initial conditions v(0) = 0, vr(0) = u0

εN in (1.14) and

lim
r→R

v(r) =∞. We have
∫ r
0
v(s)ds = c(−2

√
R− r− r√

R
+2
√
R) and lim

f→∞

∫ r
0
v(s)ds =

lim
r→R

∫ r
0
v(s)ds = c

√
R and thus

lim
f→∞

u0e
χ
∫ r
0
v(s)ds = u0e

χc
√
R <∞, lim

f→∞
[εv2(r)] =∞.

Obviously, in this case I1 dominates I2 when v is large.

Example 2 (I2 dominates I1). Let v(r) = d
[

1
(R−r)2 −

1
R2

]
with d = u0R

3

2εN

and 0 < R < ∞. The initial conditions v(0) = 0 and vr(0) = u0

εN are satisfied and

lim
r→R

v(r) =∞. We further have
∫ r
0
v(s)ds = d

[
1

R−r −
(
r
R2 + 1

R

)]
=
√
dv(r) + d2

R2−
d
(
r
R2 + 1

R

)
. Then

lim
v→∞

{
u0e

χ
∫ r
0
v(s)ds − εv2(r)

}
= lim
v→∞

{
u0e

χ

[√
dv(r)+ d2

R2−d( r
R2 + 1

R )
]
− εv2(r)

}
=∞.

Thus I2 dominates I1 as v is large in this case.
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