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Abstract
This paper is concernedwith travelingwave solutions for a chemotaxismodelwith degenerate
diffusion of porous medium type. We establish the existence of semi-finite traveling waves,
including the sharp type and C1 type semi-finite waves. Our results indicate that chemotaxis
slows down the wave speed of semi-finite traveling wave, that is, the traveling wave speed for
chemotaxis with porous medium (degenerate) diffusion is smaller than that for the porous
medium equation without chemotaxis. As we know, this is a new result not shown in the
existing literature. The result appears to be a little surprising since chemotaxis is a convective
force. We prove our results by the Schauder’s fixed point theorem and estimate the wave
speed by a variational approach.

Mathematics Subject Classification 35K65 · 35K57 · 92C17

1 Introduction

Chemotaxis, the movement of an organism in response to a chemical signal, has been an
importantmechanism accounting for various biological phenomena/processes, such as aggre-
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gation of bacteria, slime mould formation, fish pigmentation, tumor angiogenesis, blood
vessel formation, wound healing and so on. A general form of chemotaxis models can be
encapsulated in the following system{

ut = ∇ · (D(u)∇u − χu∇φ(v)) + f (u, v),

τvt = Δv + h(u, v),
(1)

where u(x, t) and v(x, t) denote the cell density and chemical (signal) concentration at
position x and time t , respectively. The function D(u) denotes the cell diffusion rate and
φ(v) is called the chemotactic sensitivity function describing the signal responsemechanism;
f (u, v) and h(u, v) denote the birth-death dynamics of the cell and the chemical, respectively.
The constant τ ≥ 0 is linked to the diffusion rate of the chemical, and χ > 0 is referred to
as the chemotactic coefficient measuring the strength of the chemotactic response.

Depending on the specific forms of D(u), φ(v), f (u, v) and h(u, v), the model (1) has
generic applications among which the mostly studied case in the literature is that D(u) is
constant. There are twomajor classes of chemotactic response function: logarithmic response
φ(v) = ln v and linear response φ(v) = v. In the case of logarithmic response, the model
(1) with D(u) = 1, f (u, v) = 0, h(u, v) = −uvm(m ≥ 0) was originally proposed in
[25] to model the wave propagation of bacterial chemotaxis describing the movement of
bacteria towards the higher concentration of nutrient consumed by bacteria. The mostly
prominent feature of this type model is the use of logarithmic sensitivity function φ(v) =
ln v, which results in a mathematically unfavorable singularity but is necessary to generate
traveling wave solutions (cf. [32]). This model has inspired a large number of mathematical
works on the study of chemotactic traveling waves (cf. [8,9,11,28–30,47]) as well as global
well-posedness (cf. [20,31,33] and references therein). In the case of linear response, the
prototypical form of (1) was D(u) = 1, f (u, v) = 0, h(u, v) = u−v originally proposed in
[23,24], called theminimal chemotaxismodel, tomodel the self-aggregation ofDictyostelium
discoideum in response to cyclic adenosine monophosphate (cAMP) secreted by themselves.
The prominent feature of theminimal chemotaxismodel is the blowup of solutions depending
on the space dimensions (cf. [19,49] and references therein). Collapsing steady states (cf.
[15]) and large mass boundary condensation patterns (cf. [13]) are established for the steady
minimal chemotaxis model. Moreover a number of modifications of the minimal chemotaxis
model have been proposed so that the modified models allow pattern formation without
blow-up (see a survey paper [18]).

In the above-mentioned works, the diffusion rate D(u) is assumed to be constant which
neglects the volume exclusion effect of packed cells in chemotactic process. By taking this
effect into account, several types of density-dependent diffusion have been introduced to
chemotaxis models, among which is the following chemotaxis model with porous medium
type diffusion (cf. [18,27]){

ut = Δum − χ∇ · (u∇v) + u(a − bu),

τvt = Δv − v + u.
(2)

which, compared to the minimal chemotaxis system, introduces the effect of population pres-
sure (m > 1) and cellular growth u(a − bu) (if a, b > 0). The use of degenerate diffusion
is very important in mathematical modeling of biological processes. Typically, invasion of
migrating populations is characterized by a well-defined boundary. This feature can not be
reproduced by linear diffusion which gives rise to the smooth fronts being positive every-
where. However, the degenerate diffusion raises the possibility of sharp-front waves relevant
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to the advancing distinct edge of an expanding cell population, such as a growing tumour
or moving bacterial colonies. Numerous results have been developed for the chemotaxis
system (2) in bounded domains with Neumann boundary conditions. When m = 1, it was
first shown in [44] that the globally bounded solutions of (2) exist in two dimension or
higher dimensions if b > 0 is sufficiently large. Many refined results for m = 1 have been
developed afterwards (e.g. see [48,50] and references therein). Without logistic growth (i.e.
a = b = 0), the globally bounded weak solutions of (2) with m > 1 have been obtained
in two or higher dimensions (cf. [5,22,43] and references therein) and degenerate stationary
solutions have been extensively studied in [6,7,26]. In this paper, we are concerned with the
wave propagation dynamics of (2).

Without cell growth, it has been shown in [32] that the chemotactic sensitivity function
φ(v) in (1) must have a singularity like the logarithmic sensitivity used in [25] to generate
traveling wave solutions. However, with cell growth (i.e. proliferative cell population), trav-
eling wave solutions are possible without singular chemotactic sensitivity. In recent works,
Salako and Shen [37,38] studied the existence of traveling waves of parabolic-elliptic chemo-
taxis system (2) (i.e. τ = 0) with linear diffusion m = 1 in R. Then, they extended their
results to parabolic-parabolic cases (i.e. τ = 1) [39]. We also refer the readers to Hamel and
Henderson [17] for the explicit upper and lower bounds on propagation speed of a gener-
alized Keller-Segel system. We noted that the results of [37–39] showed that the minimal
wave speed is 2

√
a, which is the same as the one for the well-known Fisher-KPP equation

(namely the first equation of (2) with χ = 0 and m = 1). This indicates that for the linear
diffusion (m = 1), the chemotaxis does not affect the traveling wave speed. In this paper, we
shall show that once m > 1, the chemotaxis will reduce the minimal wave speed. This is a
new finding not observed in the literature as far as we know.

In the absence of chemotaxis (i.e. χ = 0), the first equation of (2) becomes the following
(degenerate) Fisher-KPP equation

ut = Δum + u(a − bu), x ∈ R
N . (3)

Without growth term (a = b = 0), the equation (3) is well-known as the porous medium
equation ifm > 1, which has significant applications in physics and been extensively studied
over many years. For instance, M. del Pino et al. studied the solvability, extinction profiles,
optimal decay rates [10,12,14] for the fast diffusion case (m < 1) and Vázquez analyzed
the exact behaviors of solutions for the porous medium case (m > 1) in [45,46], such as
asymptotics, propagation properties, and stability. With growth term (a, b > 0), (3) is called
the classical Fisher-KPP equation if m = 1 and degenerate Fisher-KPP equation if m > 1.
It is widely known that the classical Fisher-KPP equation has a unique (up to a translation)
positive travelingwave solutionwith aminimumwave speed, while in contrast the degenerate
Fisher-KPP equation allows for a compactly supported traveling wave with a sharp edge. The
feature of this sharp type semi-finite traveling wave is that its profile has distinct boundaries
and decays to zero at a finite point in space rather than decaying to zero at far field as for
the case of linear diffusion (m = 1). The degenerate Fisher-KPP equation (m > 1) has
important applications in describing biological processes, such as the spreading of MG63
cells [41], cell migration during epidermal wound healing [42], “population pressure” in
adaptive bacterial colonies [3], and so on. It was Aronson [1] who first discovered this
sharp type semi-finite traveling waves for the degenerate Fisher-KPP equation and found an
interesting phenomenon: the traveling wave with the critical wave speed c∗(m, 0) is the only
one with semi-finite type. The similar behavior has been found for the reaction diffusion
equation with degenerate diffusion and convection (cf. [16]) and degenerate diffusion model
for bacterial pattern formation (cf. [40]). Further results are obtained in Audrito and Vázquez
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[2] for a doubly nonlinear diffusion equation and in [21] with a variational characterization
of critical wave speed for other type reaction terms. Except important applications in physics
and biology as mentioned above, the porous medium diffusion has also been used to describe
some dynamics in ecology and animal dispersal (cf. [34,35]).

In this paper, we shall consider the chemotaxis system (2)with generate diffusion (m > 1),
which can also be regarded as the degenerate Fisher-KPP model with chemotactic advection
(χ > 0). Though there are many results on various chemotaxis systems with density-
dependent diffusion (cf. [5–7,22,26,36,43,51,53,55]), there are no results on the traveling
wave solutions. The aim of this paper is to examine the existence of traveling wave solu-
tions of (2) with m > 1 and in particular we shall investigate how the chemotaxis will
affect the wave propagating properties compared to the degenerate Fisher-KPP equation
(3) and how the degeneracy of diffusion will make difference compared to the results
obtained in [37–39] for (2) with linear diffusion m = 1. Roughly speaking, we prove that
(2) admits a monotonically increasing semi-finite type traveling wave solution in R with
speed c∗(m, χ) ∈ [2c∗(m, 0)/3, c∗(m, 0)) where c∗(m, 0) is the wave speed of the unique
semi-finite traveling wave for degenerate Fisher-KPP equation (3) as in [1], see Theorem 3.
Clearly the wave speed c∗(m, χ) is smaller than that for the degenerate Fisher-KPP equation
(3). This essentially shows that chemotaxis is a factor slowing down the propagating wave
speed, which is a new result not discovered in the literature. Compared to the results obtained
in [37–39] for (2) with linear diffusionm = 1, our results imply that the degenerate diffusion
will substantially change the traveling wave profile and wave speed. Moreover we show that
the semi-finite traveling wave solutions obtained in Theorem 3 is of sharp type if m ≥ 2 and
C1 type if 1 < m < 2 (see Theorem 4). This shows the effect of degeneracy of diffusion
on the regularity of semi-finite traveling wave solutions. To prove our results, we develop
a new framework by using Schauder’s fixed point theorem to prove the existence of semi-
finite traveling waves of the degenerate chemotaxis model (2) in R for which the maximum
principle is inapplicable. Due to the complexity of the model structure, it is very difficult
to determine the explicit speed of travelling waves. In this paper, we propose a variational
characterization to the degenerate chemotaxis model to estimate the wave speed at the first
time.

The organization of this paper is as follows. In Sect. 2, we state our main results. In Sect.
3, we shall prove the existence of semi-finite traveling waves solutions to the system (2) and
show the estimation of the wave speed.

2 Statement of main results

We consider the existence of semi-finite type traveling waves of the chemotaxis model with
degenerate diffusion (2) on the real line R. In the sequel, the space is always fixed with R

without emphasis any more. Let ξ = x + ct with speed c > 0 be the moving coordinate.
Then the traveling wave solution (u, v)(x, t) = (φ, η)(ξ) with ξ = x + ct of (2) satisfies⎧⎪⎨

⎪⎩
−(φm)ξξ + cφξ + χ(ηξφ)ξ = φ(a − bφ), ξ ∈ R,

−ηξξ + τcηξ + η = φ, ξ ∈ R,

φ(−∞) = η(−∞) = 0, φ(+∞) = η(+∞) = a/b.

(4)
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The second equation in (4) is a linear diffusion equation and can be solved by the following
Bessel potential

η(ξ ;φ) =
∫ ∞

0

∫
R

e−s

√
4πs

e− |ξ−z|2
4s φ(z − τcs)dzds =: B[φ](ξ). (5)

Therefore, the profile function φ(ξ) satisfies

− (φm)ξξ + cφξ + χ((B[φ])ξφ)ξ = φ(a − bφ), (6)

or equivalently,

−(φm)ξξ + (c + χ(B[φ])ξ )φξ = φ(a − χ(B[φ] + τc(B[φ])ξ ) − (b − χ)φ),

which can be regarded as a second order degenerate differential equation with nonlocal
convection caused by the chemotaxis.

One of the important features of the degenerate diffusion equation is that it generates
compactly supported solutions for compactly supported initial values. To reveal this peculiar
phenomenon, we are looking for traveling waves of semi-finite type and for the sake of
convenience we present the following definition of semi-finite and positive traveling waves.

Definition 1 A profile function φ(ξ) is said to be a traveling wave solution (abbreviated as
TWS hereafter) of (6) (and also of (4) together with η = B[φ]) if φ ∈ Cb

unif(R), 0 ≤ φ(ξ) ≤
a/b, φ(−∞) = 0, φ(+∞) = a/b, φm ∈ W 1,2

loc (R) and φ(ξ) satisfies (6) in the sense of
distributions. The TWS φ(ξ) is said to be of semi-finite type if the support of φ(ξ) is semi-
finite, i.e., suppφ = [ξ0,+∞) for some ξ0 ∈ R, φ(ξ) > 0 for ξ > ξ0. On the contrary, the
TWS φ(ξ) is said to be of positive type if φ(ξ) > 0 for all ξ ∈ R.

Furthermore, for the semi-finite TWS φ(ξ), if φ′′ /∈ L1
loc(R), we say that φ(ξ) is a sharp

type semi-finite TWS; otherwise, if φ′′ ∈ L1
loc(R), we say that φ(ξ) is a C1 type semi-finite

TWS.

To show our main results on the chemotaxis model with degenerate diffusion in this paper,
we need to recall the following two relevant results concerning the degenerate diffusion
Fisher-KPP equation without chemotaxis (i.e. m > 1 and χ = 0) and chemotaxis model
with linear diffusion (i.e. m = 1 and χ > 0).

Theorem 1 (TWS for Degenerate Fisher-KPP equation [1]) For the degenerate Fisher-KPP
equation (3) with m > 1, there exists a critical wave speed c∗ = c∗(m, 0) > 0 depending
only on m, a, b, such that: there are no admissible TWS for 0 < c < c∗(m, 0), while there
exists exactly one admissible TWS for all c ≥ c∗(m, 0). Moreover the TWS corresponding to
c∗(m, 0) is semi-finite, while for c > c∗(m, 0) the TWS is positive.

It was known that Aronson [1] first proved the above Theorem 1 about the admissible
traveling wave speeds. The results in Theorem 1 indicate an interesting phenomenon of
degenerate diffusion equations: the TWS corresponding to the critical wave speed is the only
one that is of semi-finite type. Further results are obtained in Audrito and Vázquez [2] for a
doubly nonlinear diffusion equation and in [21]with a variational characterization of c∗(m, 0)
for Nicholson’s blowflies model. We can verify that the same variational characterization in
[21] holds true for the Fisher-KPP equation (3). Therefore, the critical wave speed c∗(m, 0)
for Fisher-KPP equation (3) with m > 1 is determined by

c∗(m, 0) = sup
g∈D

{
2

∫ a/b

0

√
−msm−1g(s)g′(s)(as − bs2)ds

}
=: sup

g∈D
J (g), (7)
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where D = {g ∈ C1([0, a/b]); g(a/b) = 0,
∫ a/b
0 g(s)ds = 1, g′(s) < 0,∀s ∈ (0, a/b)}.

The functional J (g) attains its maximum on D at some g̃(·) ∈ D (see Lemma 7) and the
function g̃ is only dependent on m and a, b. We denote

σ := g̃(0) > 0, (8)

which is a positive constant depending only on m and a, b as proved in Lemma 7.

Theorem 2 (Chemotaxis model with linear diffusion [39]) For the chemotaxis model (2)
with linear diffusion (i.e. m = 1), if 0 < χ < b/2 and τ ≥ (1 − 1/a)+/2, then there exists
a TWS for every c ≥ 2

√
a; while there is no admissible TWS for every c < 2

√
a.

We note that for the classical Fisher-KPP equation (3) with m = 1, it is well-known that
the minimal wave speed is 2

√
a. Therefore, Theorem 2 shows that for the chemotaxis model

(2) with linear diffusion, the chemotaxis has no effect on the minimal wave speed under the
conditions therein.

The main purpose of this paper is to show the existence of semi-finite type TWS for
the chemotaxis model (6) with degenerate diffusion (i.e. m > 1 and χ > 0), and more
importantly, the chemotaxis does slow down the wave speed. That is, the speed of semi-finite
TWS is smaller than that without chemotaxis (which is c∗(m, 0) according to Theorem 1).

Our first main result is stated as follows:

Theorem 3 For the chemotaxis model (2)with degenerate diffusion (m > 1), we assume that

0 < χ ≤ min

{
2b2c∗(m, 0)

3a2σ
,
2bc∗(m, 0)

3a
,

b

τc∗(m, 0) + 2

}
,

where c∗(m, 0) is the critical wave speed of the degenerate Fisher-KPP equation given
in Theorem 1 and σ is a positive constant defined in (8). Then there exists a wave speed
c∗(m, χ) ∈ [2c∗(m, 0)/3, c∗(m, 0)) such that (6) admits a monotonically increasing semi-
finite type TWS φ(ξ) with speed c∗(m, χ).

Remark 1 The known results from Aronson [1], Audrito and Vázquez [2] and references
therein for the degenerate diffusion equation without chemotaxis (i.e. (2) with χ = 0) show
that the semi-finite TWS is unique (up to translation and reflection) and hence the semi-finite
wave speed c∗(m, 0) is unique, which is also the minimal admissible wave speed. Here, we
show that the semi-finite wave speed c∗(m, χ) for the degenerate diffusion equation with
chemotaxis is smaller than c∗(m, 0). That is, the chemotaxis slows down the speed of the
semi-finite type TWS.We conjecture that the semi-finite TWS is unique (up to translation and
reflection) and c∗(m, χ) is the critical wave speed for the chemotaxis model with degenerate
diffusion.

Remark 2 Since φ(ξ) satisfies (6), which is non-degenerate within suppφ, it should be noted
that the possible singularity of φ′′ only occurs at {ξ0}, i.e., there may be a Radon measure
supported in {ξ0}. Therefore, for the sharp type semi-finiteTWSφ(ξ),wehaveφ(ξ) /∈ C1(R);
while for the C1 type semi-finite TWS, we have φ(ξ) ∈ C1(R).

The semi-finite traveling wave solutions are classified into sharp type andC1 type accord-
ing to the degeneracy index m, as stated in the following theorem.

Theorem 4 Assume that the conditions in Theorem 3 hold. If m ≥ 2, then the semi-finite
TWS obtained in Theorem 3 is of sharp type; while if 1 < m < 2, then the semi-finite TWS
is of C1 type.

123



Reducing mechanism on wave speed Page 7 of 19   178 

Remark 3 There is no semi-finite TWS for the linear diffusion casem = 1 and hence roughly
speaking the degeneracy is enforced by m > 1. The regularity of the case m ≥ 2 is weaker
than that of 1 < m < 2 and sharp type TWS arises for m ≥ 2 while there is no sharp type
TWS for 1 < m < 2. For the case 1 < m < 2, the semi-finite TWS remains C1 regularity
and even higher regularity if 1 < m < 1+ ε with small ε > 0, but none of them are analytic.

For the sake of convenience, we shift ξ0 to 0 as the traveling wave equation (4) is
autonomous, and we may also write the variable ξ as t in following sections.

3 Proof of main results

The existence of semi-finite type traveling wave solutions of (6) is proved by the Schauder’s
fixed point theorem on an appropriate profile setΦ constructed with upper and lower profiles
φ and φ to be specified later. That is,

Φ = {φ ∈ Cb
unif(R);φ(t) = 0, t ≤ 0, φ(t) > 0, t > 0, φ(+∞) = a/b,

φ(t) ≤ φ(t) ≤ φ(t), φ(t) is monotonically increasing on R}. (9)

For any φ̂ ∈ Φ, let as in (5)
η̂(t) = B[φ̂](t) (10)

be the bounded solution of the second equation in (4) corresponding to φ̂(t), and we solve
the following degenerate equation{

−(φm)′′ + cφ′ + χ(η̂′φ)′ + bφ2 = aφ, t ∈ R,

φ(t) = 0, t ≤ 0, φ(t) > 0, t > 0, φ(+∞) = a/b.
(11)

The above problem will be first solved on the half real line [0,+∞) and then we extend the
solution to (−∞, 0) as φ(t) = 0 for t < 0. We note that the extended function φ(t) satisfies
the degenerate diffusion equation (11) on the whole line in the sense of distributions provided
that (φm)′′ ∈ L1

loc(R).
Since η̂(t) in (10) solves the linear differential equation (4)2 corresponding to φ̂(t), we

can rewrite (11) as

−(φm)′′ + (c + χη̂′)φ′ + bφ2 = (a − χη̂′′)φ.

Now, for a general case, we consider the solvability of the following auxiliary degenerate
differential problem{

−(φm)′′ + λ(t)φ′ + bφ2 = μ(t)φ, t ∈ R,

φ(t) = 0, t ≤ 0, φ(t) > 0, t > 0, φ(+∞) = a/b,
(12)

with λ(t) ∈ C1(R), μ(t) ∈ C(R) and μ(+∞) = a.
It should be noted that the differential problem (12) (or (11)) with singularity at {0} is

not always solvable. We just mention that for the case χ = 0, or equivalently λ(t) ≡ c and
μ(t) ≡ a, the only solvable situation is that c = c∗(m, 0) and φ(t) is the semi-finite TW as
in Theorem 1. Therefore, we solve (12) locally and modify (12) as follows{

−(φm)′′ + λ(t)φ′ + bφ2 = μ(t)φ, t ∈ (−∞, t∗),
φ(t) = 0, t ≤ 0, φ(t) > 0 and φ(t) is strictly increasing on (0, t∗),

(13)
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where t∗ ∈ (0,+∞] and (−∞, t∗) is the maximal solvable interval.
Here are some simple but useful estimates on the Bessel potential η̂(t).

Lemma 1 For 0 ≤ φ̂(t) ≤ a/b, and φ̂(t) �≡ 0, �≡ a/b, φ̂(+∞) = a/b, the Bessel potential
η̂(t) = B[φ̂](t) in (10) satisfies

0 < η̂(t) <
a

b
, |η̂′(t)| ≤ a

2b
, |η̂′′(t)| ≤

(τc

2
+ 1

) a

b
,

and η̂(+∞) = a/b, η̂′(+∞) = η̂′′(+∞) = 0. If further we assume that φ̂(t) is monotoni-
cally increasing, then η̂′(t) > 0 and η̂′′(t) ≥ −a/b.

Proof The first conclusions can be proved with the fundamental calculus, see for example
[38]. We note that

|η̂′′(t)| = |τcη̂′ + η̂ − φ̂| ≤ τc|η̂′| + |η̂ − φ̂| ≤
(τc

2
+ 1

) a

b
,

and η̂′′(t) = τcη̂′ + η̂ − φ̂ > −φ̂ ≥ − a/b. This completes the proof. 
�
Now, we solve the degenerate differential problem (13) locally step by step.

Lemma 2 Assume that 0 < λ(t) ∈ C1(R), μ(t) ∈ C(R), μ(+∞) = a. Then (13) admits a
local semi-finite type solution φ(t) such that

φ(t) = K1t
1

m−1+ + K2t
m

m−1+ + o(t
m

m−1+ ), t → 0,

where t+ = max{t, 0}, and

K1 =
(m − 1

m
λ(0)

) 1
m−1

, K2 = −μ(0) − 1
m−1λ

′(0)
2mλ(0)

K1.

For the case λ(t) = c + χη̂′(t) > 0 and μ(t) = a − χη̂′′(t), we have

K1 =
(m − 1

m
(c + χη̂′(0))

) 1
m−1

, K2 = −a − m
m−1χη̂′′(0)

2m(c + χη̂′(0))
K1.

Proof We first show the existence of the local solution to the singular differential problem
(13). Since φ(t) ≡ 0 for t ≤ 0, the solution φ(t)must satisfy φ(0+) = 0 and (φm)′(0+) = 0.
Otherwise, −(φm)′′ is the summation of a Radon measure and a locally integrable func-
tion, (13) can not hold in the sense of distributions. On the other hand, if φ(0+) = 0 and
(φm)′(0+) = 0, then −(φm)′′ is locally integrable and φ(t) only need to satisfy (13) locally
on the interval (0, t∗). Now, let ζ(t) = φm(t) and we rewrite (13) into{

−ζ ′′(t) + λ(t)(ζ
1
m )′(t) = μ(t)ζ

1
m (t) − bζ

2
m (t), t ∈ (0, t∗),

ζ(0) = 0, ζ ′(0) = 0, ζ(t) > 0, t ∈ (0, t∗), ζ(t) is strictly increasing on (0, t∗).
(14)

Integrating (14) over (0, t) implies⎧⎨
⎩−ζ ′(t) + λ(t)ζ

1
m (t) =

∫ t

0

(
μ(s)ζ

1
m (s) − bζ

2
m (s) + λ′(s)ζ

1
m (s)

)
ds, t ∈ (0, t∗),

ζ(0) = 0, ζ(t) > 0, ζ ′(t) ≥ 0, t ∈ (0, t∗).
(15)

Since ζ
1
m is not Lipschitz continuous with respect to ζ , the unique solvability of the equation

ζ ′(t) = λ(t)ζ
1
m (t) with the initial condition ζ(0) = 0 is not true in general. In fact, if
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the condition “ζ(t) > 0” is removed, then (15) admits infinitely many solutions such that:
ζ0(t) ≡ 0 is the smallest one, and there exists a unique maximal solution ζ1(t) such that
ζ1(t) > 0 for t ∈ (0, t∗) (ζ1 is the one that we are looking for). Noticing that the integral

I (t; ζ ) :=
∫ t

0

(
μ(s)ζ

1
m (s) − bζ

2
m (s) + λ′(s)ζ

1
m (s)

)
ds = o(ζ

1
m (t)), t → 0+,

and then

J (t; ζ ) := ζ− 1
m (t)I (t; ζ ) = o(1), t → 0+,

we rewrite (15) as {
m

m−1 (ζ
m−1
m )′(t) = λ(t) − J (t; ζ ),

ζ(0) = 0, ζ(t) > 0, ζ ′(t) ≥ 0, t ∈ (0, t∗).
(16)

The solution ζ1(t) is approximated by (m−1
m

∫ t
0 λ(s)ds)

m
m−1 . Moreover, ζ1 is the limiting

function of the approximating problem of (15) with “ζ(0) = 0” being replaced by “ζ(0) = ε”
for ε > 0 and tending to zero.

Using a formal expansion ofφ(t) near 0,we can derive the values of the coefficients K1 and

K2. For the leading term φ0(t) := K1t
1

m−1+ , we note that φ0 /∈ C1(I0) for some neighborhood

I0 of 0 and m ≥ 2. However, φ′
0(t) = 1

m−1K1t
2−m
m−1+ , and [φm

0 (t)]′′ = Km
1

m
(m−1)2

t
2−m
m−1+ in the

sense of distributions. The formal computations of φ(t) for t > 0 and t → 0+ are listed as
follows

φm(t) =Km
1 t

m
m−1 + mKm−1

1 K2t
m

m−1+1 + o
(
t

m
m−1+1

)
,

(φm(t))′′ = m

m − 1

1

m − 1
Km
1 t

1
m−1−1 + m

2m − 1

m

m

m − 1
Km−1
1 K2t

1
m−1 + o

(
t

1
m−1

)
,

λ(t)φ′(t) =(λ(0) + λ′(0)t + o(t)) ·
(

1

m − 1
K1t

1
m−1−1 + m

m − 1
K2t

1
m−1 + o

(
t

1
m−1

))
,

μ(t)φ(t) =μ(0)K1t
1

m−1 + o
(
t

1
m−1

)
, t → 0+.

The values of K1 and K2 are determined according to the equation

−(φm)′′ + λ(t)φ′ + bφ2 = μ(t)φ, t ∈ (0, t∗).

This type of φ(t) is similar to the Barenblatt solution of the porous medium equation. 
�
Lemma 3 Suppose that the conditions in Lemma 2 hold and 1

3c∗(m, 0) ≤ λ(t) ≤ 4
3c∗(m, 0),

where c∗(m, 0) is the minimal wave speed in Theorem 1. Let (−∞, t∗) be the maximal
solvable interval of (13). Then there exist constants C1,C2 > 0 depending on ‖λ‖C1 and
‖μ‖C , such that

K1t
1

m−1+ − C1t
m

m−1+ ≤ φ(t) ≤ K1t
1

m−1+ + C2t
m

m−1+ , t < t1,

where t1 = t∗ if φ(t∗) ≤ a/b and t1 = φ−1(a/b) if φ(t∗) > a/b.

Proof The leading term φ0(t) := K1t
1

m−1+ comes from Lemma 2 and the tail term fol-
lows from the continuous dependence of the coefficients since λ(t) is uniformly bounded in
[ 13c∗(m, 0), 4

3c∗(m, 0)] and φ(t) is strictly increasing on (0, t∗). 
�
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Lemma 4 Suppose that the conditions in Lemma 2 are valid and that 1
3c∗(m, 0) ≤ λ(t) ≤

4
3c∗(m, 0), where c∗(m, 0) is the minimal wave speed in Theorem 1. Let (−∞, t∗) be the
maximal solvable interval of (13) and

ψ(t) := (φm(t))′ = mφm−1(t)φ′(t), t ∈ (−∞, t∗).

We change the variable t ∈ (0, t∗) as an inverse function of φ = φ(t) since φ(t) is strictly
increasing on (0, t∗) and set ψ̃(φ) = ψ(t). Then there exist constants C3,C4 > 0 depending
on ‖λ‖C1 and ‖μ‖C , such that

λ(0)φ − C3φ
2 ≤ ψ̃(φ) ≤ λ(0)φ + C4φ

2, φ ∈ (0, φ1),

where φ1 = a
2b if φ(t∗) ≥ a

2b and φ1 = φ(t∗) if φ(t∗) < a
2b .

Proof In the interval (0, t∗), according to the relation φ = φ(t), we write t = t̃(φ) and
λ̃(φ) = λ(t̃(φ)), μ̃ = μ(t̃(φ)). The second order degenerate differential equation (13) is
converted to the following non-autonomous system⎧⎪⎨

⎪⎩
dφ

dt
= ψ(t)

mφm−1(t)
,

dψ

dt
= λ(t)

ψ(t)

mφm−1(t)
+ bφ2(t) − μ(t)φ(t).

(17)

Then using φ as the variable, we have

dψ̃

dφ
= λ̃(φ) + mφm−1(bφ2 − μ̃(φ)φ)

ψ̃
, (18)

which is regarded as a generalized phase plane, see [21,52] for example. For the constant
case such that λ(t) ≡ c and μ(t) ≡ a, the singular differential system (17) admit an unique
local semi-finite type solution such that φ(t) = 0 for t ≤ 0 and φ(t) > 0 for t ∈ (0, t∗)
and infinitely many local positive type solutions (such that φ(t) > 0 for t ∈ (−∞, t∗)).
Furthermore, the semi-finite type solution corresponds to a trajectory ψ̃(φ) in the phase
plane (18) such that ψ̃(φ) ∼ cφ as φ → 0+; while the positive type solutions corresponds
to infinitely many trajectories ψ̃(φ) in the phase plane (18) such that ψ̃(φ) ∼ am

c φm as
φ → 0+. Detailed analysis can be found in Audrito and Vázquez [2] and in Huang et al.
[21] for generalized phase plane analysis. The trajectory ψ̃(φ) corresponding to a semi-finite
type solution that we are looking for is the maximal solution of (18) with the initial condition
ψ̃(0) = 0, which can be obtained by solving (18) with ψ̃ε(0) = ε for ε > 0 and then sending
ε → 0+. Similar process is applicable for a general case of (18) with λ(t) ∈ C1 and λ(t)
being uniformly bounded above and below. Therefore,

ψ̃(φ) ∼ λ(0)φ, φ → 0+.

The uniform estimates on the approximate solutions ψ̃ε(φ) for (18) with the initial condition
ψ̃ε(0) = ε completes the proof. 
�

We need to formulate a range of the wave speed c∗(m, χ) corresponding to the semi-
finite type TWS of (6). Since our framework is based on the fixed point theorem, for any
given φ̂ ∈Φ, we must determine the range of the minimal speed c∗(m, χ, φ̂) such that the
local semi-finite type solution of (13) grows up to a/b as we want. In the following, we first
present an abstract definition of the speed c∗(m, χ, φ̂) and then give upper and lower bound
estimates by using a variational characterization inspired by [4] for linear diffusion and [21]
for degenerate diffusion.
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For any 0 ≤ φ̂(t) ≤ a/b and φ̂(t) monotonically increasing, let η̂(t) = B[φ̂](t) as in
(10), λ(t) = c + χη̂′(t), μ(t) = a − χη̂′′(t) and φc(t) be the local semi-finite type solution
of (13) solved in Lemma 2. Define

c∗(m, χ, φ̂) = inf{c > 0; the local semi-finite solution φc(t
∗) ≥ a/b}. (19)

Lemma 5 There exists a constant c > 0 depending on the upper bound of χa/b (in appli-
cation to the proof of Theorem 3, we would let χ ≤ b/2 and then χa/b ≤ a/2), such that
φc(t) strictly increases up to a/b in finite time for c ≥ c. Therefore, the definition (19) is
well-defined and c∗(m, χ, φ̂) ∈ [0, c].
Proof According to Lemma 1, we see that |χη̂′(t)| ≤ χa

2b , |χη̂′′(t)| ≤ χ(τc/2+1)a
b , and

χη̂′′(t) ≥ −χa/b. Therefore, λ(t) ≥ c − χa
2b and μ(t) ≤ a + χa/b. We make change of

variables as in the proof of Lemma 4 and according to (18) we have

dψ̃

dφ
≥ c − χa

2b
+ mφm−1(bφ2 − (a + χ a

b )φ)

ψ̃
. (20)

Let ψ̃0(φ) be the maximal solution of the differential problem of (20) with “≥” replaced by
“=” and the initial condition ψ̃0(0) = 0. And the semi-finite type solution corresponding to
ψ̃0(φ) is denoted by φ0

c (t). Similar to the phase plane analysis in Audrito and Vázquez [2]
and in Huang et al. [21], we can show that φ0

c (t) grows up to a/b for all c ≥ c with some
c > 0 depending on the upper bound of χa/b. The comparison between ψ̃(φ) and ψ̃0(φ)

yields that φc(t) ≥ φ0
c (t) and c

∗(m, χ, φ̂) ≤ c is well-defined. The proof is completed. 
�
Lemma 5 is insufficient to provide a lower bound of c∗(m, χ, φ̂). Here we recall the

following variational characterization of the minimal wave speed in [4] for linear diffusion
and [21] for degenerate diffusion.

Lemma 6 (Variational Characterization of Wave Speed, [4,21]) For the diffusion equation
ut = (um)xx + f (u) with f ∈ C1([0, u+]), f (0) = f (u+) = 0, f ′(0) > 0, and f (u) > 0
for u ∈ (0, u+), where u+ > 0 is a positive equilibrium. Then (i) for the linear diffusion
case m = 1, the minimal admissible wave speed

c∗(1, 0) = max

{
2
√

f ′(0), sup
g∈D

{
2

∫ u+
0

√− f (u)g(u)g′(u)du∫ u+
0 g(u)du

}}
;

(ii) for the degenerate diffusion case m > 1, the minimal admissible wave speed

c∗(m, 0) = sup
g∈D

{
2

∫ u+
0

√−mum−1 f (u)g(u)g′(u)du∫ u+
0 g(u)du

}
,

where D = {g ∈ C1([0, u+]); g(u+) = 0, g′(u) < 0, u ∈ (0, u+)}.
Lemma 7 The functional

J (g) := 2
∫ a/b

0

√
−mum−1(au − bu2)g(u)g′(u)du

on D := {g ∈ C1([0, a/b]); g(a/b) = 0, g′(u) < 0, u ∈ (0, a/b),
∫ a/b
0 g(u)du = 1}

attains its maximum at some function g̃ ∈ D . Moreover, g̃(·) is only dependent on m, a, b
and then σ := g̃(0) is a positive constant only depending on m, a, b.
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Proof The proof of this lemma could be borrowed from [4,21], but we propose an alternative
proof that provides an estimates on the dependence of g̃(·) on m. Let g ∈ D be an extreme
function of

I (g) :=
{
2

∫ a/b
0

√−msm−1g(s)g′(s)(as − bs2)ds∫ a/b
0 g(s)ds

}
,

on the function set D := {g ∈ C1([0, a/b]); g(a/b) = 0, g′(s) < 0, s ∈ (0, a/b)}. The
variational characterization Lemma 6 shows that

c∗(m, 0) = sup
g∈D

I (g) = sup
g∈D

J (g).

For any h ∈ C1
0 ((0, a/b)), there exists ε0 > 0 such that g + εh ∈ D for all ε ∈ (0, ε0). We

may assume that a = b = 1 without loss of generality, otherwise we can make change of
variables and similar result holds. Then

lim
ε→0

I (g + εh) − I (g)

ε
= 0.

That is, ∫ 1

0

−msm(1 − s)(g′(s)h(s) + g(s)h′(s))√−msm(1 − s)g′(s)g(s)
ds ·

∫ 1

0
g(s)ds

= 2
∫ 1

0

√−msm(1 − s)g′(s)g(s)ds ·
∫ 1

0
h(s)ds.

Define f (s) = msm(1 − s) and

θ(s) := −g′(s)
g(s)

> 0, s ∈ (0, 1).

Then integrating by part as h ∈ C1
0((0, 1)) implies that∫ 1

0

((√
f√
θ

)′
h(s) + √

f
√

θh(s)

)
ds = I (g)

∫ 1

0
h(s)ds.

Noticing that h ∈ C1
0 ((0, 1)) is arbitrary, we see that(√

f√
θ

)′ + √
f
√

θ = I (g)

and then ( f

θ

)′ = 2
(√

f√
θ

)(√
f√
θ

)′ = 2I (g)

√
f√
θ

− 2 f (s), s ∈ (0, 1).

We further define

ρ(s) := f (s)

θ(s)
> 0, s ∈ (0, 1).

Then ρ(s) is a solution of the following singular ODE

ρ′(s) = 2I (g)ρ
1
2 (s) − 2 f (s), s ∈ (0, 1). (21)

If ρ(1) > 0, then θ(1−) = f (1−)
ρ(1) = 0 and |g′(s)| ≤ g(s) for s ∈ (1 − δ, 1) with some

δ ∈ (0, 1). It follows that g(s) ≡ 0 since g(1) = 0, which contradicts g ∈ D. The singular
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ODE (21) with ρ(1) = 0 admits a unique solution such that ρ(s) > 0 for s ∈ (0, 1). In fact,
let s̃ = 1 − s and ρ̃(s̃) = ρ(1 − s), then (21) is converted into

ρ̃′(s̃) = 2ms̃(1 − s̃)m − 2I (g)ρ̃
1
2 (s̃), s̃ ∈ (0, 1), (22)

with ρ̃(0) = 0. Asymptotic analysis shows that ρ̃(s̃) = As̃2 + o(s̃2) as s̃ → 0+, where
A = (

√
(I (g))2+4m−I (g)

2 )2 < m and then

−g′

g
= m

A(1 − s) + o(|1 − s|2) , s → 1−,

which means that g(s) = C(1− s)
m
A + o(|1− s|mA ) for some constant C > 0. Furthermore,

we have ρ̃(s̃) > 0 for s̃ ∈ (0, 1) and ρ̃(s̃) ≥ (ms̃(1 − s̃)m/I (g))2 for s̃ ∈ (s̃0, 1) with
some s̃0 ∈ (0, 1) such that ρ̃ attains its maximum at s̃0 since according to (22), ρ̃′(s̃) > 0 if

I (g)ρ̃
1
2 (s̃) < ms̃(1 − s̃)m , and ρ̃′(s̃) < 0 if I (g)ρ̃

1
2 (s̃) > ms̃(1 − s̃)m .

On the other hand, the solution of the singular ODE (21) with ρ(0) = 0 is not unique
and we denote the maximal solution by ρ0(s) similar to the proof in Lemma 2. Asymptotic
analysis near s = 0 shows that ρ0(s) = (I (g))2s2 + o(s2) as s → 0+ and there exists a
s0 ∈ (0, 1) depending on m such that ρ0(s) ≥ (I (g))2s2/2 for s ∈ (0, s0). The comparison
principle shows that ρ(s) ≥ ρ0(s) for s ∈ (0, 1) and then

−g′(s)
g(s)

= θ(s) = f (s)

ρ(s)
≤ 2msm(1 − s)

(I (g))2s2
, s ∈ (0, s0),

which implies that (noticing that g(·) is strictly decreasing on (0, 1))

0 < ln
g(0)

g(s)
≤ 2m

(I (g))2

∫ s

0
tm−2(1 − t)dt ≤ 2m

(I (g))2(m − 1)
sm−1, s ∈ (0, s0),

since m > 1. Now we conclude that g(s) ≥ g(0)e−Bsm−1
for s ∈ (0, s0) with the positive

constant B := 2m/((I (g))2(m−1)) and then we normalize g(s) as g̃(s) := g(s)/
∫ 1
0 g(s)ds

such that

1 =
∫ 1

0
g̃(s)ds ≥

∫ s0

0
g̃(0)e−Bsm−1

ds ≥ e−B g̃(0)s0.

Therefore, g̃(0) ≤ eB/s0, which is a constant depending on m. 
�

Inspired by the above variational characterization in [4] for the linear diffusion and [21]
for degenerate diffusion. We formulate the following variational characterization formula for
the degenerate diffusion equation with chemotaxis.

Lemma 8 For any 0 ≤ φ̂(t) ≤ a/b and φ̂(t) monotonically increasing, let η̂(t) = B[φ̂](t)
as in (10), c = c∗(m, χ, φ̂) as in Lemma 5, λ(t) = c+χη̂′(t), μ(t) = a −χη̂′′(t) and φc(t)

be the local semi-finite type solution of (13) solved in Lemma 2. If χσ a2

2b2
≤ 1

3c∗(m, 0), then
t∗ = +∞ and

c∗(m, χ, φ̂) ∈ [2
3
c∗(m, 0), c∗(m, 0)

)
,

where σ = g̃(0) is the constant in Lemma 7.
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Proof For c = c∗(m, χ, φ̂), the locally continuously dependence of φc(t) on the parameter
c implies that (i) t∗ = +∞, φc(t) is increasing on (0,+∞) and φc(+∞) = a/b; or (ii)
t∗ < +∞, φc(t) is increasing on (0, t∗) and φc(t∗) = a/b, φ′

c(t
∗) = 0; or (iii) t∗ < +∞,

φc(t) is increasing on (0, t∗) andφc(t∗) > a/b, there exists a t0 ∈ (0, t∗) such thatφ′
c(t0) = 0

and φc(t0) < a/b. The choice of t0 in case (iii) may not be unique, we choose t0 to be the
smallest one if necessary, since φc(t) is strictly increasing on (0, t∗) those points are isolated.
In cases (i) and (ii), φc(t∗) = a/b and φ′

c(t
∗) = 0.

Similar to the proof of Lemma 4, wemake change of variables such that for t ∈ (0, t∗) and
φ ∈ (0, a/b), where they are related by t = t̃(φ) by φ = φc(t). The second order degenerate
differential equation (13) is converted to the following non-autonomous system

⎧⎪⎨
⎪⎩
dφ

dt
= ψ(t)

mφm−1(t)
,

dψ

dt
= c

ψ(t)

mφm−1(t)
+ χ(η̂′

t (t)φ(t))′t + bφ2(t) − aφ(t),
(23)

where ψ(t) := (φm(t))′ = mφm−1(t)φ′(t) > 0 except for some possible isolated points t̂
such that φ′

c(t̂) = 0 and then ψ(t̂) = 0. Using φ as a variable, we write ψ̃(φ) = ψ(t̃(φ))

and we have ⎧⎪⎨
⎪⎩
dψ̃

dφ
= c + χ(η̂′

t (t̃(φ))φ)′φ + mφm−1(bφ2 − aφ)

ψ̃
,

ψ̃(0) = 0, ψ̃(φ) ≥ 0, φ ∈ (0, a
b ).

(24)

In case (ii), we have ψ̃( ab ) = 0 and ψ̃(φ) > 0 for some left neighborhood (φ1, a/b) of a/b.
Since (23) is non-degenerate away from φ = 0, the local asymptotic analysis show that there
exists a κ > 0 such that ψ̃(φ) ∼ κ( ab − φ), as φ → (a/b)−. Therefore,

t∗ − t1 =
∫ a/b

φ1

mφm−1

ψ̃(φ)
dφ ∼

∫ a/b

φ1

mφm−1

κ( ab − φ)
dφ = +∞,

where t1 = φ−1
c (φ1). This contradicts the case (ii). In case (iii), we have ψ̃(φc(t0)) = 0

and then ψ̃ ′
φ(φc(t0)) = 0 since ψ̃(φ) ≥ 0. There exists a constant ω > 0 such that ψ̃(φ) ≤

ω(φc(t0) − φ) for φ ∈ (0, φc(t0)) and

t0 − 0 =
∫ φc(t0)

0

mφm−1

ψ̃(φ)
dφ ≥

∫ φc(t0)

φc(t0)/2

mφm−1

ψ̃(φ)
dφ �

∫ φc(t0)

φc(t0)/2

mφm−1

ω(φc(t0) − φ)
dφ = +∞,

which contradicts the case (iii). Therefore, only case (i) can happen and there is no isolated
points t̂ such that ψ̃(φc(t̂)) = 0. That is, t∗ = +∞, ψ̃(φ) > 0 for all φ ∈ (0, a/b) and
ψ̃(a/b) = 0.

Let g(φ) ∈ C1([0, a/b]) be a nonnegative function such that g′(φ) < 0 and g(a/b) = 0.
The admissible set of functions g is denoted by D for convenience. Multiplying (24) by g(φ)
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and integrating the resulting equation over (0, a/b), we obtain

c
∫ a/b

0
g(φ)dφ =

∫ a/b

0
g(φ)

dψ̃

dφ
dφ +

∫ a/b

0
g(φ)

mφm−1(aφ − bφ2)

ψ̃(φ)
dφ

− χ

∫ a/b

0
g(φ)(η̂′

t (t̃(φ))φ)′φdφ

=
∫ a/b

0

(
− g′(φ)ψ̃(φ) + g(φ)

mφm−1(aφ − bφ2)

ψ̃(φ)

)
dφ

− χ

∫ a/b

0
−g′(φ)η̂′

t (t̃(φ))φdφ,

since [
g(φ)ψ̃(φ)

]a/b
0 = 0, −[

χg(φ)η̂′
t (t̃(φ))φ

]a/b
0 = 0.

Therefore,

c
∫ a/b

0
g(φ)dφ =

∫ a/b

0

(
− g′(φ)ψ̃(φ) + g(φ)

mφm−1(aφ − bφ2)

ψ̃(φ)

)
dφ

− χ

∫ a/b

0
−g′(φ)η̂′

t (t̃(φ))φdφ (25)

≥2
∫ a/b

0

√
−g′(φ)g(φ)mφm−1(aφ − bφ2)dφ

− χ

∫ a/b

0
−g′(φ)η̂′

t (t̃(φ))φdφ, ∀g ∈ D. (26)

The above equality of (26) is attained for g = ĝ such that

− ĝ′(φ)ψ̃(φ) = ĝ(φ)
mφm−1(aφ − bφ2)

ψ̃(φ)
. (27)

Here we note that ψ̃(φ) ∼ κ( ab −φ), and (27) is solvable with ĝ(a/b) = 0 and the asymptotic
behavior near zero. Lemma 4 entails that ĝ(0) < +∞ and ĝ ∈ D. Hence (25) implies that

c = 2
∫ a/b
0

√−ĝ′(φ)ĝ(φ)mφm−1(aφ − bφ2)dφ∫ a/b
0 ĝ(φ)dφ

− χ

∫ a/b
0 −ĝ′(φ)η̂′

t (t̃(φ))φdφ∫ a/b
0 ĝ(φ)dφ

.

Now we conclude that

c < sup
g∈D

2
∫ a/b
0

√−g′(φ)g(φ)mφm−1(aφ − bφ2)dφ∫ a/b
0 g(φ)dφ

= c∗(m, 0), (28)

and according to (26)

c ≥ c∗(m, 0) − χ

∫ a/b
0 −g̃′(φ)η̂′

t (t̃(φ))φdφ∫ a/b
0 g̃(φ)dφ

, (29)

where the last equality of (28) follows from Lemma 6 and g̃ ∈ D is the function such that the
functional in (28) attains c∗(m, 0), whose existence is shown in Huang et al. [21]. In fact, for
the case without chemotaxis (i.e. χ = 0), one can show that ĝ = g̃ is the extreme function.
We note that g̃ only depends on a, b, and m, and g̃(0) is a fixed constant if we normalize
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g̃(φ) such that
∫ a/b
0 g̃(φ)dφ = 1. Now, (29) tells us (noticing that g̃′(s) < 0 for s ∈ (0, a/b)

and g̃(a/b) = 0)

c ≥c∗(m, 0) − χ

∫ a/b

0
−g̃′(φ)η̂′

t (t̃(φ))φdφ

≥c∗(m, 0) − χ

∫ a/b

0
| − g̃′(φ)| · |η̂′

t (t̃(φ))|φdφ

≥c∗(m, 0) − χ

∫ a/b

0
−g̃′(φ)

a

2b

a

b
dφ

=c∗(m, 0) − χ(g̃(0) − g̃(a/b))
a2

2b2
≥ 2

3
c∗(m, 0),

provided that χ g̃(0) a2

2b2
≤ 1

3c∗(m, 0). 
�
Proof of Theorem 3 We construct a mapping for finding the semi-finite TW of (6) by solving

(13) as following. Define φ(t) = min{K1t
1

m−1+ + C2t
m

m−1+ , a
b }, and φ(t) = max{K1t

1
m−1+ −

C1t
m

m−1+ , 0} with C1 and C2 being the constants in Lemma 3. For any φ̂(t) ∈ Φ with Φ

being defined by (9), let η̂(t) = B[φ̂](t) as in (10), c = c∗(m, χ, φ̂) as in Lemma 5,
λ(t) = c + χη̂′(t), μ(t) = a − χη̂′′(t) and φc(t) be the local semi-finite type solution of
(13) solved in Lemma 2.

Under the assumptions of Theorem 3, we see that

c∗(m, χ, φ̂) ∈ [2
3
c∗(m, 0), c∗(m, 0)

)
and t∗ = +∞ according to Lemma 8, and 1

3c∗(m, 0) ≤ λ(t) ≤ 4
3c∗(m, 0), |μ(t)| ≤ a

2 . It

follows that (13) is solved onR for this special c∗(m, χ, φ̂), and that (12) and (11) are solved
for c = c∗(m, χ, φ̂) with the solution being exactly φc(t). Denote

T (φ̂) = φc, for any φ̂ ∈ Φ,

then T is well-defined and φc = T (φ̂) ∈ Φ according to Lemma 3. Note that Φ is a bounded
convex subset of the linear space E = Cb

unif(R) endowed with the norm

‖φ‖∗ =
∞∑
n=1

1

2n
‖φ‖L∞([−n,n]).

According to Lemma 2, the solutions are uniformly bounded in C1/(m−1)([0, t0]) for some
t0 > 0. For any compact interval [a, b] ⊂ [a − t0/2, b + 1] ⊂ (0,+∞), we regard (12) as
an elliptic problem with boundary condition φ(a − t0/2) and φ(b + 1). The energy method
by testing (12) with β(t)φm(t) on [a − t0/2, b + 1], where β(t) is a cut-off function (see
[52,54] for example), shows that the solutions are locally uniformly bounded inCγ /m([a, b])
with some γ ∈ (0, 1

2 ). It follows that T (Φ) is compact in E . Now we show the continuity

of the operator T . For φ̂i (t) ∈ Φ, i = 1, 2, and η̂i (t) = B[φ̂i ](t), since the Bessel potential
B[φ](ξ) is linear, the estimates Lemma 1 implies that ‖η̂1 − η̂2‖C2 ≤ C‖φ̂1 − φ̂2‖L∞ for
some constant C > 0. Therefore, λ(t), λ′(t), and μ(t), are continuously dependent on φ̂.
The local expansion in Lemma 2 shows the locally continuous dependence of φ on c and
φ̂ near zero. On any compact interval [a, b] with b > a > 0, the continuous dependence
follows from the classical ordinary differential equation theory since the equation is regular.

123



Reducing mechanism on wave speed Page 17 of 19   178 

Applying Schauder’s Fixed Point Theorem onΦ, we find that there exists a fixed point φ ∈ Φ

such that φ = T (φ). Therefore, φ(t) is a monotonically increasing semi-finite type TW of
(6) and its speed c = c∗(m, χ) := c∗(m, χ, φ) ∈ [ 2

3c∗(m, 0), c∗(m, 0)
)
as proved in Lemma

8. 
�
Proof of Theorem 4 Let φ(t) be a semi-finite TW of (6) and η(t) = B[φ](t). According to
Lemma 2, we have

φ(t) = K1t
1

m−1+ + K2t
m

m−1+ + o

(
t

m
m−1+

)
, t → 0,

where t+ = max{t, 0}, and

K1 =
(m − 1

m
(c + χη′(0))

) 1
m−1

, K2 = −a − m
m−1χη′′(0)

2m(c + χη′(0))
K1.

It follows that φ ∈ C1(R) for 1 < m < 2 and φ′′ /∈ L1
loc(R) for m ≥ 2. The proof is

completed. 
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