
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 148, Number 11, November 2020, Pages 4855–4873
https://doi.org/10.1090/proc/15124

Article electronically published on July 29, 2020

CRITICAL MASS ON THE KELLER-SEGEL SYSTEM

WITH SIGNAL-DEPENDENT MOTILITY

HAI-YANG JIN AND ZHI-AN WANG

(Communicated by Ryan Hynd)

Abstract. This paper is concerned with the global boundedness and blow-

up of solutions to the Keller-Segel system with density-dependent motility in
a two-dimensional bounded smooth domain with Neumman boundary con-
ditions. We show that if the motility function decays exponentially, then a
critical mass phenomenon similar to the minimal Keller-Segel model will arise.
That is, there is a number m∗ > 0, such that the solution will globally exist
with uniform-in-time bound if the initial cell mass (i.e., L1-norm of the initial
value of cell density) is less than m∗, while the solution may blow up if the
initial cell mass is greater than m∗.

1. Introduction

To show how individual cell paths can result in an average cell flux propor-
tional to the macroscopic chemical gradient, Keller and Segel derived the following
chemotaxis system based on a Brownian motion framework in their seminal work
[26]:

(1.1)

{
ut = ∇ · (γ(v)∇u− uφ(v)∇v),

vt = Δv + u− v,

where u denotes the cell density and v stands for the concentration of the chemical
signal emitted by cells. γ(v) > 0 is the diffusion coefficient and χ(v) is called the
chemotactic coefficient; both of them depend on the chemical signal concentration
and satisfy the following proportionality relation:

(1.2) φ(v) = (α− 1)γ′(v),

where α denotes the ratio of effective body length (i.e., maximal distance between
receptors) to the cell step size. We refer the detailed derivation of (1.1)-(1.2) to
[26]. The prominent feature of the Keller-Segel system (1.1) is that two motility
coefficients γ(v) and φ(v) depend on the chemical signal concentration and have
a prescribed relationship to each other. Recently this proportionality relation
with α = 0 and γ′(v) < 0 has been advocated as “density-suppressed motility
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mechanism” to interpret the stripe pattern formation of engineered Escherichia
Coli in [11, 29], which will be elaborated later. Such a signal-dependent motility
mechanism has also been used in preytaxis to describe the spatially inhomogeneous
distribution of coexistence in the predator-prey system (see [24,25]). There are some
other chemotaxis models where the diffusive and chemotactic coefficients depend
on the chemical concentration gradient (cf. [10]) or cell density (cf. [43]), which
clearly have different modeling views from the system (1.1)-(1.2).

The study of the Keller-Segel system (1.1) was started with simplified cases. If
γ(v) = 1 and φ(v) = χ > 0 (χ is a constant), the system (1.1) is simplified to the
so-called minimal Keller-Segel (abbreviated as KS) model:

(1.3)

{
ut = Δu− χ∇ · (u∇v), x ∈ Ω, t > 0,

vt = Δv + u− v, x ∈ Ω, t > 0,

where Ω is a bounded domain in R
n with smooth boundary. Under homogeneous

Neumann boundary conditions, the dynamics of (1.3) such as boundedness, blow-
up, and pattern formation have been extensively studied; see the review papers
[7, 16–18] for more details. The most prominent phenomenon is the existence of
critical mass depending on the space dimensions. Precisely, the global bounded
solutions exist in one dimension [31]. In a space of two dimensions (n = 2), there
exists a critical mass m∗ = 4π

χ such that the solution is bounded and asymptotically

converges to its unique constant equilibrium if
∫
Ω
u0dx < m∗ [30,38] and blows up

if
∫
Ω
u0dx > m∗ [19], where

∫
Ω
u0dx denotes the initial cell mass. In the higher

dimensions (n ≥ 3), for any
∫
Ω
u0dx > 0, the solution may blow up in finite time

[42]. The mathematical analysis for the KS model (1.3) on the boundedness vs.
blow-up was essentially based on the following Lyapunov functional:

F (u, v) =

∫
Ω

u lnudx+
χ

2

∫
Ω

(v2 + |∇v|2)dx− χ

∫
Ω

uvdx.(1.4)

If γ(v) = 1 and φ(v) = χ
v , the system (1.1) becomes the so-called singular Keller-

Segel system:

(1.5)

{
ut = Δu− χ∇ · (uv∇v), x ∈ Ω, t > 0,

vt = Δv + u− v, x ∈ Ω, t > 0,

and there are various results in the literature indicating the nonexistence of blow-up
of solutions. With homogeneous Neumann boundary conditions, the existence of
globally bounded solutions of (1.5) was established if n = 2 and χ < χ0 for some

χ0 > 1 in [28] or n ≥ 3 and χ <
√

2
n in [12,40]. Moreover, when χ <

√
2
n and n ≥ 2,

the asymptotic stability of constant steady states was obtained in [41]. More results
on the radially symmetric case or weak solutions can be found in [8,13–15,32] and
we refer to [7] for more details.

Turning to the full KS system (1.1) where γ(v) and φ(v) are nonconstant func-
tions satisfying (1.2), to our knowledge, the known results are only limited to the
special case φ(v) = −γ′(v) (i.e., α = 0 in (1.2)) which simplifies the KS system
(1.1) into

(1.6)

{
ut = Δ(γ(v)u), x ∈ Ω, t > 0,

vt = Δv + u− v, x ∈ Ω, t > 0.
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Here the parameter α = 0 in (1.2) means that “the distance between receptors is
zero and the chemotaxis occurs because of an undirected effect on activity due to
the presence of a chemical sensed by a single receptor” as stated in [26, p. 228].
Recently, to describe the stripe pattern formation observed in the experiment of
[29], a so-called density-suppressed motility model was proposed in [11] as follows:

(1.7)

{
ut = Δ(γ(v)u) + σu(1− u), x ∈ Ω, t > 0,

vt = Δv + u− v, x ∈ Ω, t > 0

with γ′(v) < 0 and σ ≥ 0 denotes the intrinsic cell growth rate. Clearly the density-
suppressed motility model (1.7) with σ = 0 coincides with the simplified KS model
(1.6).

When the homogeneous Neumann boundary conditions are imposed, there are
some results available to (1.6) and (1.7). First for the system (1.6), it was shown
[35] that globally bounded solutions exist in two-dimensional spaces by assuming
that the motility function γ(v) ∈ C3([0,∞)∩W 1,∞(0,∞)) has both positive lower
and upper bounds. It turns out that the uniformly positive assumption on γ(v) (i.e.,
γ(v) has a positive lower bound) is not necessary to ensure the global boundedness
of solutions. For example, if γ(v) = χ

vk (i.e., γ(v) decays algebraically), it has been
proved that global bounded solutions exist in all dimensions provided χ > 0 is
small enough [44] or in two-dimensional spaces for parabolic-elliptic simplification
of the system (1.6) (see [3]). For the system (1.7) with γ′(v) < 0, it was shown that
global bounded solutions exist in two dimensions for any σ > 0 [22] and in higher
dimensions (n ≥ 3) for large σ > 0 [36]. The results of [22] essentially rely on the
assumption σ > 0. Therefore a natural question is whether the solution of (1.7)
with σ = 0 (i.e., KS system (1.6) with γ′(v) < 0) is globally bounded. This question
has been partially confirmed in [3,44] for algebraically decreasing function γ(v) with
various conditions as mentioned above. The purpose of this paper is to investigate
the same question for exponentially decreasing motility function γ(v) = e−χv with
χ > 0. That is we consider the following problem:

(1.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = Δ(e−χvu), x ∈ Ω, t > 0,

vt = Δv + u− v, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω ⊂ R
n is a bounded domain with smooth boundary and ν stands for the

outward unit normal vector on ∂Ω. Surprisingly, we find that uniform-in-time
boundedness of solutions of (1.8) is no longer true and the solution may blow up in
two dimensions, which is quite different from the results of [3, 44] for algebraically
decreasing function γ(v). Our result indicates that the solution behavior of the
system (1.6) may essentially depend on the decay rate of the motility function
γ(v). The main results of this paper are the following.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Assume

that 0 ≤ (u0, v0) ∈ [W 1,∞(Ω)]2. Then the following results hold true:
(i) If

∫
Ω
u0dx < 4π

χ , then the system (1.8) admits a unique classical solution

(u, v) ∈ [C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞))]2 satisfying

‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞ ≤ C,

where C is a constant independent of t.
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(ii) For any M > 4π
χ and M 
∈ { 4πm

χ : m ∈ N
+} where N

+ denotes the set of

positive integers, there exist initial data (u0, v0) satisfying
∫
Ω
u0dx = M such that

the corresponding solution blows up in finite/infinite time.

We remark that the blow-up result in Theorem 1.1(ii) does not assert the finite-
ness or infiniteness of blow-up time, which leaves out an interesting question for
future study. Moreover, as we know the nonlinear diffusion may play an impor-
tant role in blow-up dynamics such as blow-up rate (see [9, 21] and the references
therein). Hence it would be of interest to study qualitative properties of blow-up
solutions to the system (1.8) in the future.

The new contribution of this paper lies in the finding of the critical mass phe-
nomenon for the system (1.6) with exponentially decreasing motility function γ(v).
This new finding along with the existing results in [3,44] for (1.6) with algebraically
decreasing function γ(v) shows that the dynamics of (1.6) is very rich and complex
where the decay rate of the motility function γ(v) will play a key role. This provides
us a heuristic direction to further explore the dynamics of the full Keller-Segel sys-
tem (1.1) whose dynamics have been only partially understood so far for the special
case α = 0 in (1.2), namely for (1.6). Technically to overcome the possible degen-
eracy, we develop the weighted energy estimates by treating the degenerate term
as a weight function to achieve the results in Theorem 1.1. This technique may
become a common (if not necessary) tool to study chemotaxis systems with the
signal-dependent degenerate diffusion.

One can check that the system (1.8) has the same Lyapunov functional (1.4) as
for the minimal KS model (1.3), which can be used to construct some initial data
with large negative energy such that the solution of (1.8) blows up for supercritical
mass (i.e.,

∫
Ω
u0dx > 4π

χ ). Moreover, under the subcritical mass (i.e.
∫
Ω
u0dx < 4π

χ ),

using the same Lyapunov functional and Trudinger-Moser inequality, we can find
a constant c1 > 0 such that

(1.9) ‖u lnu‖L1 + ‖∇v‖L2 +

∫ t

0

‖vt‖2L2ds ≤ c1

which has been a key to proving the boundedness of solutions of the minimal KS
system (1.3). However, there are some significant differences between systems (1.3)
and (1.8). For the minimal KS model (1.3), the estimate (1.9) is enough to establish
the existence of global classical solutions (see [30]). However for the system (1.8),
the motility coefficient e−χv may touch down to zero (degenerate) as v → ∞, and
hence the method for the constant diffusion as in [30] no longer works and new ideas
are demanded. In this paper, we shall develop the weighted energy estimates by
taking e−χv as the weight function based on the Lyapunov functional to establish
our results.

2. Local existence and basic inequalities

Using Amann’s theorem [5, 6] (cf. also [37, Lemma 2.6]) or the well-established
fixed point argument together with the parabolic regularity theory [22,34], we can
show the existence and uniqueness of local solutions of (1.8). We omit the details
of the proof for brevity.

Lemma 2.1. Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Assume

that 0 ≤ (u0, v0) ∈ [W 1,∞(Ω)]2. Then there exists Tmax ∈ (0,∞] such that the
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problem (1.8) has a unique classical solution (u, v) ∈ [C(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄×
(0, Tmax))]

2. Moreover, u, v > 0 in Ω× (0, Tmax) and

if Tmax < ∞, then ‖u(·, t)‖L∞ + ‖v(·, t)‖W 1,∞ → ∞ as t ↗ Tmax.

Lemma 2.2. If (u, v) is a solution of (1.8) in Ω× (0, T ) for some T > 0, then

(2.1) ‖u(·, t)‖L1 = ‖u0‖L1 :≡ M0 for all t ∈ (0, T )

and

(2.2) ‖v(·, t)‖L1 ≤ ‖u0‖L1 + ‖v0‖L1 for all t ∈ (0, T ).

Proof. Integrating the first equation of (1.8) and using the Neumann boundary
conditions, we obtain (2.1) directly. On the other hand, integrating the second
equation of (1.8) with respect to x over Ω, one has

d

dt

∫
Ω

vdx+

∫
Ω

vdx =

∫
Ω

udx =

∫
Ω

u0dx,

which immediately gives (2.2). �

Lemma 2.3. Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Assume A is

a self-adjoint realization of −Δ defined on D(A) := {ψ ∈ W 2,2(Ω)∩L2(Ω)|
∫
Ω
ψ =

0 and ∂ψ
∂ν = 0 on ∂Ω}. Then for any L > 0 and a nonnegative function f satisfying

(2.3)

∫
Ω

f ln fdx ≤ L,

it holds that

(2.4)

∫
Ω

|A− 1
2 (f − f̄)|2dx ≤ C(L),

where f̄ = 1
|Ω|

∫
Ω
fdx.

Proof. Using (2.3) and noting the fact z ln z ≥ − 1
e for all z > 0, we have

‖f‖L1 =

∫
f≥e

fdx+

∫
f<e

fdx

≤
∫
f≥e

f ln fdx+

∫
f<e

fdx =

∫
Ω

f ln f −
∫
f<e

f ln fdx+

∫
f<e

fdx

≤ L+
|Ω|
e

+ e|Ω|,

and hence

(2.5) ‖f − f̄‖L1 ≤ 2‖f‖L1 ≤ 2L+
2|Ω|
e

+ 2e|Ω|.

Next, we consider the following system:

(2.6)

{
−Δφ = f − f̄ , x ∈ Ω,
∂φ
∂ν = 0, x ∈ ∂Ω.

Let G denote the Green’s function of −Δ in Ω with the homogeneous Neumann
boundary condition. From (2.6), one has

(2.7) φ(x) =

∫
Ω

G(x− y)(f(y)− f̄)dy.
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Then using the similar argument as in [33, Lemma A.3] along with (2.5), from (2.7)
one can find a constant κ > 0 such that

(2.8)

∫
Ω

eκ|φ|dx ≤ c1.

Recall a result (see [33, Lemma A.2]): for κ > 0, it holds

XY ≤ 1

κ
X lnX +

1

κe
eκY for all X > 0 and Y > 0.

Then multiplying the first equation of (2.6) by φ, and integrating it by parts, we
end up with

∫
Ω

|∇φ|2dx =

∫
Ω

fφ− f̄

∫
Ω

φdx ≤
∫
Ω

f |φ|+
∫
Ω

f̄ |φ|dx

≤ 1

κ

∫
Ω

f ln fdx+
2

κe

∫
Ω

eκ|φ|dx+
|Ω|
κ

f̄ ln f̄ .

(2.9)

Substituting (2.3) and (2.8) into (2.9), and using the boundedness of f̄ ln f̄ , one has

(2.10)

∫
Ω

|∇φ|2dx ≤ c2

where c2 depends on L. The definition of A defines the self-adjoint fractional powers
A−δ for any δ > 0. Then from (2.6) we have φ = A−1(f − f̄) and hence∫
Ω

|A− 1
2 (f− f̄)|2dx =

∫
Ω

A−1(f− f̄)(f− f̄)dx =

∫
Ω

φ(−Δφ)dx =

∫
Ω

|∇φ|2dx ≤ c2,

which gives (2.4). �

Lemma 2.4. Let (u, v) be a solution of the system (1.8). Then there exists a
constant C > 0 independent of t such that

(2.11) ‖Δv‖L2 ≤ C(‖u‖L2 + ‖vt‖L2).

Proof. Note that v satisfies the following system:

(2.12)

{
−Δv + v = u− vt, x ∈ Ω, t > 0,
∂v
∂ν = 0, x ∈ Ω, t > 0.

Then applying the Agmon-Douglis-Nirenberg Lp estimates (see [1,2]) to the system
(2.12), we can find a constant c1 > 0 such that

‖v‖W 2,2 ≤ c1‖(u− vt)‖L2 ≤ 2c1(‖u‖L2 + ‖vt‖L2),

which gives (2.11). �

3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1, which includes the global existence
of classical solutions for subcritical mass and blow-up of solutions for supercritical
mass.
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Lemma 3.1. Let F (u, v) be defined in (1.4). Then the solutions of (1.8) satisfy

(3.1)
d

dt
F (u, v) + E(u, v) = 0,

where

E(u, v) = χ

∫
Ω

v2t dx+

∫
Ω

e−χvu|∇(lnu− χv)|2dx.

Proof. We multiply the first equation of (1.8) by (lnu−χv) and integrate the result
with respect to x over Ω to have∫

Ω

ut(lnu− χv)dx =

∫
Ω

∇ · (e−χv∇u− χe−χvu∇v)(lnu− χv)dx

= −
∫
Ω

e−χvu|∇(lnu− χv)|2dx.
(3.2)

On the other hand, using the fact that
∫
Ω
utdx = 0, we have∫

Ω

ut(lnu− χv)dx =
d

dt

∫
Ω

u lnudx− χ
d

dt

∫
Ω

uvdx+ χ

∫
Ω

uvtdx.(3.3)

From the second equation of (1.8), one has u = vt −Δv + v, which gives

(3.4)

∫
Ω

uvtdx =

∫
Ω

v2t dx+
1

2

d

dt

∫
Ω

|∇v|2dx+
1

2

d

dt

∫
Ω

v2dx.

Then the combination of (3.2), (3.3), and (3.4) gives (3.1). �

3.1. Global existence with subcritical mass. In this subsection, we first prove
the existence of global classical solutions if

∫
Ω
u0dx < 4π

χ .

Lemma 3.2. If
∫
Ω
u0dx < 4π

χ , then there exists a constant C > 0 independent of

t such that

(3.5)

∫
Ω

u lnudx ≤ C

and

(3.6) ‖∇v(·, t)‖2L2 +

∫ t

0

‖vt(·, s)‖2L2ds ≤ C.

Proof. From (1.4), we have that

F (u, v) =

∫
Ω

u lnudx− (χ+ η)

∫
Ω

uvdx+
χ

2

∫
Ω

(v2 + |∇v|2)dx+ η

∫
Ω

uvdx

= −
∫
Ω

u ln
e(χ+η)v

u
dx+

χ

2

∫
Ω

(v2 + |∇v|2)dx+ η

∫
Ω

uvdx.

(3.7)

Noting that − ln z is a convex function for all z ≥ 0 and
∫
Ω

u
M0

dx = 1, which allows
us to use the Jensen’s inequality to obtain

− ln

(
1

M0

∫
Ω

e(χ+η)vdx

)
= − ln

(∫
Ω

e(χ+η)v

u

u

M0
dx

)
≤

∫
Ω

(
− ln

e(χ+η)v

u

)
u

M0
dx = − 1

M0

∫
Ω

u ln
e(χ+η)v

u
dx.

(3.8)
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Then the combination of (3.7) and (3.8) gives

F (u, v) ≥ −M0 ln

(
1

M0

∫
Ω

e(χ+η)vdx

)
+

χ

2

∫
Ω

(v2 + |∇v|2)dx+ η

∫
Ω

uvdx.(3.9)

Noting the fact ‖v‖L1 ≤ c1, and using the Trudinger-Moser inequality in two-
dimensional spaces [30], one has∫

Ω

e(χ+η)vdx ≤ c2e
( 1

8π+ε)(χ+η)2‖∇v‖2
L2 ,(3.10)

which substituted into (3.9) gives

F (u, v) ≥
[
χ

2
−
(

1

8π
+ ε

)
(χ+ η)

2
M0

] ∫
Ω

|∇v|2dx+
χ

2

∫
Ω

v2dx+ η

∫
Ω

uvdx− c3,

(3.11)

where c3 := M0 ln
c2
M0

. Since M0 =
∫
Ω
u0dx < 4π

χ , it holds that

(3.12)
χ

2
−
(

1

8π
+ ε

)
(χ+ η)

2
M0 > 0,

by choosing ε > 0 and η > 0 small enough. Substituting (3.12) into (3.11), one has

F (u, v) ≥χ

2

∫
Ω

v2dx+ η

∫
Ω

uvdx− c3,

which gives F (u, v) ≥ −c3 and
∫
Ω
uvdx ≤ F (u0,v0)+c3

η by the fact F (u, v) ≤
F (u0, v0). Then using the definition of F (u, v) in (1.4) and the fact F (u, v) ≤
F (u0, v0) again, we obtain∫

Ω

u lnudx ≤ F (u, v) + χ

∫
Ω

uvdx ≤
(
1 +

χ

η

)
F (u0, v0) +

χc3
η

,

which gives (3.5). Moreover, we have the following estimate:

χ

2

∫
Ω

|∇v|2dx ≤ F (u, v) + χ

∫
Ω

uvdx−
∫
Ω

u lnudx

≤ F (u, v) + χ

∫
Ω

uvdx+
|Ω|
e

≤
(
1 +

χ

η

)
F (u0, v0) +

χc3
η

+
|Ω|
e
.

(3.13)

Integrating (3.1) and using the fact F (u, v) ≥ −c3, it follows that

χ

∫ t

0

∫
Ω

v2t dxdt+

∫ t

0

∫
Ω

e−χvu|∇(lnu−χv)|2dxdt≤F (u0, v0)−F (u, v)≤F (u0, v0)+c3,

which yields

(3.14)

∫ t

0

∫
Ω

v2t dxdt ≤
F (u0, v0) + c3

χ
.

Thus the combination of (3.13)-(3.14) gives (3.6) and completes the proof. �

Lemma 3.3. Let (u, v) be a solution of (1.8). If
∫
Ω
u0(x)dx < 4π

χ , then there exists

a constant C > 0 independent of t such that the following inequality holds:

(3.15)

∫ t+τ

t

∫
Ω

e−χvu2dxds ≤ C for all t ∈ (0, T̃max),
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where

(3.16) τ := min{1, 1
2
Tmax} and T̃max =

{
Tmax − τ if Tmax < ∞,

∞ if Tmax = ∞.

Proof. Using the definition of A in Lemma 2.3, we can rewrite the system (1.8) as
follows:

(3.17)

{
(u− ū)t = −A(e−χvu− e−χvu), x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t > 0.

Then multiplying (3.17) by A−1(u− ū) and integrating the result by parts, we have

1

2

d

dt

∫
Ω

|A− 1
2 (u− ū)|2dx = −

∫
Ω

A−1 (u− ū) · A
(
e−χvu− e−χvu

)
dx

= −
∫
Ω

(u− ū) ·
(
e−χvu− e−χvu

)
dx.

(3.18)

On the other hand, with some direct calculations and noting that ū = 1
|Ω|

∫
Ω
udx =

M0

|Ω| , it holds

−
∫
Ω

(u− ū) ·
(
e−χvu− e−χvu

)
dx(3.19)

= −
∫
Ω

(u− ū)
(
e−χv(u− ū) + e−χvū− e−χvu

)
dx

= −
∫
Ω

e−χv(u− ū)2dx+ ū

∫
Ω

(ū− u)e−χvdx

≤ −
∫
Ω

e−χv(u− ū)2dx+
M2

0

|Ω| .

Then we substitute (3.19) into (3.18) to get

(3.20)
d

dt

∫
Ω

|A− 1
2 (u− ū)|2dx+ 2

∫
Ω

e−χv(u− ū)2dx ≤ 2M2
0

|Ω| .

Since
∫
Ω
u0dx < 4π

χ , then from Lemmas 3.2 and 2.3, we can find a constant c1 > 0

such that

(3.21)

∫
Ω

|A− 1
2 (u− ū)|2dx ≤ c1.

Then integrating (3.20) over (t, t+ τ ) and using (3.21), one has∫ t+τ

t

∫
Ω

e−χv(u− ū)2dxds ≤ M2
0

|Ω| τ ≤ M2
0

|Ω| ,

which gives∫ t+τ

t

∫
Ω

e−χvu2dxds =

∫ t+τ

t

∫
Ω

e−χv(u− ū+ ū)2dxds

≤ 2

∫ t+τ

t

∫
Ω

e−χv(u− ū)2dxds+ 2

∫ t+τ

t

∫
Ω

ū2dxds ≤ 4M2
0

|Ω| ,

and hence (3.15) follows. Then we complete the proof. �
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Lemma 3.4. Suppose the conditions in Lemma 3.3 hold. Then there exists a
constant C > 0 independent of t such that

(3.22)

∫ t+τ

t

‖v(·, s)‖L∞ds ≤ C for all t ∈ (0, T̃max),

where τ is defined by (3.16).

Proof. Using the Sobolev embedding theorem and applying the Agmon-Douglis-
Nirenberg Lp estimates(see [1, 2]) to the system (2.12), we have

‖v‖L∞ ≤ c1‖v‖
W 2, 3

2
≤ c2‖(u− vt)‖

L
3
2

≤ 2c2(‖u‖
L

3
2
+ ‖vt‖

L
3
2
)

≤ 2c2

(∫
Ω

u2e−χvdx

) 1
2

·
(∫

Ω

e3χvdx

) 1
6

+2c2

(∫
Ω

v2t dx

) 1
2

|Ω| 16

≤ c22

∫
Ω

u2e−χvdx+

(∫
Ω

e3χvdx

) 1
3

+ c22‖vt‖2L2 + |Ω| 13 .

(3.23)

On the other hand, using the fact ‖v‖L1 + ‖∇v‖L2 ≤ c3 (see Lemmas 3.2 and 2.3)
and applying the Trudinger-Moser inequality in two-dimensional spaces [30], one
has

∫
Ω
e3χvdx ≤ c4, which, substituted into (3.23) and combined with (3.15) and

(3.6), gives∫ t+τ

t

‖v(·, s)‖L∞ds ≤ c22

∫ t+τ

t

∫
Ω

u2e−χvdx+ c22

∫ t+τ

t

‖vt(·, s)‖2L2ds+ c4 ≤ c5,

which yields (3.22). �

With the above results in hand, we shall show that there exists a constant C > 0
such that ‖u(·, t)‖L2 ≤ C for any t ∈ (0, Tmax), which will be used to rule out the
possibility of degeneracy. Precisely, we have the following results.

Lemma 3.5. Let Ω ⊂ R
2 be a bounded domain with smooth boundary and

∫
Ω
u0dx

< 4π
χ . If (u, v) is a solution of system (1.8) in Ω × (0, Tmax), then there exists a

positive constant C independent of t such that

(3.24) ‖u(·, t)‖L2 ≤ C for all t ∈ (0, Tmax).

Proof. We multiply the first equation of (1.8) by u and integrate the result by
parts with respect to x. Then using the Hölder inequality and Young’s inequality,
we have

1

2

d

dt

∫
Ω

u2dx+

∫
Ω

e−χv|∇u|2dx = χ

∫
Ω

e−χvu∇u · ∇vdx

≤ χ

(∫
Ω

e−χv|∇u|2dx
) 1

2
(∫

Ω

e−χvu2|∇v|2dx
) 1

2

≤ 1

2

∫
Ω

e−χv|∇u|2dx+
χ2

2

∫
Ω

e−χvu2|∇v|2dx,

which yields

(3.25)
d

dt

∫
Ω

u2dx+

∫
Ω

e−χv|∇u|2dx ≤ χ2

∫
Ω

e−χvu2|∇v|2dx.
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On the other hand, using the fact |X+Y |2 ≥ 1
2X

2−Y 2 and e−
χ
2 v∇u = ∇(e−

χ
2 vu)+

χ
2 e

−χ
2 vu∇v, we have

e−χv|∇u|2 ≥ 1

2
|∇(e−

χ
2 vu)|2 − χ2

4
e−χvu2|∇v|2,

which substituted into (3.25) gives
(3.26)
d

dt

∫
Ω

u2dx+
1

2

∫
Ω

|∇(e−
χ
2 vu)|2dx≤5χ2

4

∫
Ω

e−χvu2|∇v|2dx≤5χ2

4
‖∇v‖2L4‖e−

χ
2 vu‖2L4 .

Moreover, the Gagliardo-Nirenberg inequality along with the facts ‖∇v‖L2 ≤ c1

and ‖∇v‖L4 ≤ c2(‖Δv‖
1
2

L2‖∇v‖
1
2

L2 + ‖∇v‖L2) (see [22, Lemma 2.5]) entails that

5χ2

4
‖∇v‖2L4‖e−

χ
2 vu‖2L4

≤ c3(‖Δv‖L2‖∇v‖L2 + ‖∇v‖2L2)(‖∇(e−
χ
2 vu)‖L2‖e−

χ
2 vu‖L2 + ‖e−

χ
2 vu‖2L2)

≤ c1c3‖Δv‖L2‖∇(e−
χ
2 vu)‖L2‖e−

χ
2 vu‖L2 + c1c3‖Δv‖L2‖e−

χ
2 vu‖2L2

+ c21c3‖∇(e−
χ
2 vu)‖L2‖e−

χ
2 vu‖L2 + c21c3‖e−

χ
2 vu‖2L2

≤ 1

2
‖∇(e−

χ
2 vu)‖2L2 + 2c21c

2
3‖Δv‖2L2‖e−

χ
2 vu‖2L2 +

1 + 4c41c
2
3

4
‖e−

χ
2 vu‖2L2

≤ 1

2
‖∇(e−

χ
2 vu)‖2L2 + c4(‖Δv‖2L2 + 1)‖e−

χ
2 vu‖2L2 ,

which, combined with (2.11) and the fact e−χv ≤ 1, gives

5χ2

4
‖∇v‖2L4‖e−

χ
2 vu‖2L4 ≤ 1

2
‖∇(e−

χ
2 vu)‖2L2 + c5

(
‖u‖2L2 + ‖vt‖2L2 + 1

)
‖e−

χ
2 vu‖2L2

≤ 1

2
‖∇(e−

χ
2 vu)‖2L2 + c5

(
‖e−

χ
2 vu‖2L2 + ‖vt‖2L2 + 1

)
‖u‖2L2 .

(3.27)

Substituting (3.27) into (3.26), one has

(3.28)
d

dt
‖u‖2L2 ≤ c5

(
‖e−

χ
2 vu‖2L2 + ‖vt‖2L2 + 1

)
‖u‖2L2 .

For any t ∈ (0, Tmax) and in the case of either t ∈ (0, τ ) or t ≥ τ with τ =

min
{
1, 12Tmax

}
, from (3.15) we can find a t0 = t0(t) ∈ ((t−τ )+, t) such that t0 ≥ 0

and
∫
Ω
e−χv(x,t0)u2(x, t0)dx ≤ c6, which, along with (3.22), implies that

(3.29)

∫
Ω

u2(x, t0)dx ≤ c7.

Integrating (3.28) over (t0, t) and noting the fact t ≤ t0 + τ ≤ t0 + 1, then we can
use (3.6), (3.15), and (3.29) to obtain

‖u(·, t)‖2L2 ≤ ‖u(·, t0)‖2L2e
c5

∫ t
t0

‖e−
χ
2
vu‖2

L2ds+c5
∫ t
t0

‖vt‖2
L2ds+c5τ ≤ c8‖u0‖2L2 ,

which gives (3.24). �
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Lemma 3.6. Let the conditions in Lemma 3.5 hold. Suppose (u, v) is a solution
of (1.8) in Ω× (0, Tmax); then one has

(3.30) ‖u(·, t)‖L∞ ≤ C for all t ∈ (0, Tmax),

where C > 0 is a constant independent of t.

Proof. Noting (3.24) and applying the parabolic regularity estimates to the second
equation of (1.8), one can find a positive constant c1 such that

(3.31) ‖v‖L∞ + ‖∇v‖L4 ≤ c1,

which gives

(3.32) e−χv ≥ e−χc1 := d1 > 0.

Then multiplying the first equation of (1.8) by up−1 with p ≥ 3 and integrating the
result by parts, we end up with

1

p

d

dt

∫
Ω

updx+ (p− 1)

∫
Ω

e−χvup−2|∇u|2dx

= −(p− 1)χ

∫
Ω

e−χvup−1∇u · ∇vdx

≤ p− 1

2

∫
Ω

e−χvup−2|∇u|2dx+
(p− 1)χ2

2

∫
Ω

e−χvup|∇v|2dx,

which, combined with (3.32) and the fact e−χv ≤ 1, gives

(3.33)
d

dt

∫
Ω

updx+
2(p− 1)d1

p

∫
Ω

|∇u
p
2 |2dx ≤ p(p− 1)χ2

2

∫
Ω

up|∇v|2dx.

Then with (3.24) and (3.31), we can use the Hölder’s inequality and Gagliardo-
Nirenberg inequality to get

p(p− 1)χ2

2

∫
Ω

up|∇v|2dx ≤ p(p− 1)χ2

2

(∫
Ω

u2pdx

) 1
2

·
(∫

Ω

|∇v|4dx
) 1

2

≤ p(p− 1)χ2

2
‖u

p
2 ‖2L4‖∇v‖2L4

≤ p(p− 1)χ2

2
c2(‖∇u

p
2 ‖2(1−

1
p )

L2 ‖u
p
2 ‖

2
p

L
4
p
+ ‖u

p
2 ‖2

L
4
p
)

≤ (p− 1)d1
p

‖∇u
p
2 ‖2L2 + c3.

(3.34)

On the other hand, using the Gagliardo-Nirenberg inequality and (3.24) again, one
has ∫

Ω

updx = ‖u
p
2 ‖2L2 ≤ c4(‖∇u

p
2 ‖2(1−

2
p )

L2 ‖u
p
2 ‖

4
p

L
4
p
+ ‖u

p
2 ‖2

L
4
p
)

≤ (p− 1)d1
p

‖∇u
p
2 ‖2L2 + c5.

(3.35)

Then substituting (3.34) and (3.35) into (3.33), and integrating the result with
respect to t, we have for all t ∈ (0, Tmax) that

(3.36) ‖u(·, t)‖pLp ≤ ‖u0‖pLp + c6,
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where c6 > 0 is constant depending on p but independent of t. Applying the
parabolic regularity theory to the second equation of (1.8), and choosing p = 4 in
(3.36), one can find a positive constant d2 independent of p such that ‖∇v(·, t)‖L∞ ≤
d2. Then by the well-known Moser iteration [4](or see [22]), we can show (3.30). �

Lemma 3.7. Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Assume

that 0 ≤ (u0, v0) ∈ [W 1,∞(Ω)]2 and then if
∫
Ω
u0dx < 4π

χ , the system (1.8) admits a

unique classical solution (u, v) ∈ [C0(Ω̄× [0,∞))∩C2,1(Ω̄× (0,∞))]2 with uniform-
in-time bound.

Proof. Using Lemma 3.6, we have ‖u(·, t)‖L∞ ≤ C1. Then applying the parabolic
regularity to the second equation of (1.8), one has ‖v(·, t)‖W 1,∞ ≤ C2. Hence
Lemma 3.7 follows directly by using Lemma 2.1. �

3.2. Blow-up for supercritical mass. In this subsection, we shall construct some
initial data with supercritical mass (i.e.,

∫
Ω
u0dx > 4π

χ ) such that the corresponding

solution of (1.8) blows up based on some ideas in [19, 23]. Noting M0 =
∫
Ω
u0dx,

then the stationary solution of system (1.8) satisfies the following problem:

(3.37)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−Δv + v = M0e

χv
∫
Ω
eχvdx

, x ∈ Ω,

u = M0e
χv

∫
Ω
eχvdx

, x ∈ Ω,

∂v
∂ν = 0, x ∈ ∂Ω,∫
Ω
vdx =

∫
Ω
udx = M0.

For convenience, we introduce the following change of variable: V = v− 1
|Ω|

∫
Ω
vdx =

v − M0

|Ω| . Then the system (3.37) can be rewritten as

(3.38)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ΔV + V = M0e

χV
∫
Ω
eχV dx

− M0

|Ω| , x ∈ Ω,

U = M0e
χV

∫
Ω
eχV dx

, x ∈ Ω,

∂V
∂ν = 0, x ∈ ∂Ω,∫
Ω
V dx = 0,

∫
Ω
Udx = M0.

We point out that the steady state problem (3.38) and the Lyapunov function (1.4)
for (1.8) are the same as those for the minimal Keller-Segel system (1.3) whose
blow-up of solutions has been studied in [19,20]. Hence we use the same arguments
as in [19, Lemma 3.5] to establish the lower bound for the steady-state energy when∫
Ω
u0dx 
= 4πm

χ for any m ∈ N
+. For convenience, we present the results without

proof.

Lemma 3.8. Suppose M0 
= 4πm
χ for all m ∈ N

+. Then there exists a constant

K > 0 such that

(3.39) F (U, V ) ≥ −K

holds for any solution (U, V ) of the system (3.38).

Next, we show that there exist some initial data with supercritical mass (i.e.,
M0 > 4π

χ ) such that the energy is below any prescribed bound. To this end,

we first prove that there is a sequence (Uε, Vε)ε>0 satisfying
∫
Ω
Vε(x)dx = 0 and
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Ω
Uε(x)dx = M0 such that limε→0 F (Uε, Vε) = −∞ if M0 > 4π

χ . Let (Uε, Vε) be

defined as follows:

Vε(x) =
1

χ

[
ln

(
ε2

(ε2 + π|x− x0|2)2

)
− 1

|Ω|

∫
Ω

ln

(
ε2

(ε2 + π|x− x0|2)2

)
dx

]
(3.40)

and

(3.41) Uε(x) =
M0e

χVε(x)∫
Ω
eχVε(x)dx

,

where x0 is an arbitrary point on ∂Ω. One can easily check that
∫
Ω
Vε(x)dx = 0 and∫

Ω
Uε(x)dx = M0. Next, we shall show that limε→0 F (Uε, Vε) = −∞ if M0 > 4π

χ .

Lemma 3.9. Let (Uε, Vε)ε>0 be defined by (3.40)−(3.41) and x0 ∈ ∂Ω. If M0 > 4π
χ ,

then it holds that

(3.42) F (Uε, Vε) → −∞ as ε → 0.

Proof. Since x0 is an arbitrary point on ∂Ω, we assume x0 = 0 without loss of
generality. With the definition of F (u, v) and (3.41), one has

F (Uε, Vε) =

∫
Ω

Uε lnUεdx− χ

∫
Ω

UεVεdx+
χ

2

∫
Ω

|∇Vε|2 dx+
χ

2

∫
Ω

V 2
ε dx

= M0 lnM0 −M0 ln

(∫
Ω

eχVεdx

)
+

χ

2

∫
Ω

|∇Vε|2 dx+
χ

2

∫
Ω

V 2
ε dx,

(3.43)

where we have used the fact∫
Ω

Uε lnUεdx− χ

∫
Ω

UεVεdx

=
M0∫

Ω
eχVεdx

∫
Ω

eχVε

[
lnM0 + χVε−ln

(∫
Ω

eχVεdx

)]
dx− χM0∫

Ω
eχVεdx

∫
Ω

eχVεVεdx

= M0 lnM0 −M0 ln

(∫
Ω

eχVεdx

)
.

On the other hand, we use (3.40) and the polar coordinates around origin 0 ∈ ∂Ω,
with R denoting the maximum distance between the pole and boundary of Ω, to
derive that

χ

2

∫
Ω

|∇Vε|2 dx ≤ 8π2

χ

∫ π

0

∫ R
ε

0

r3

(1 + πr2)2
drdθ

≤ 4π

χ

(
ln

1

ε2
+ ln(ε2 + πR2)− 1 +

ε2

ε2 + πR2

)
≤ 8π

χ
ln

1

ε
+O1(1),

(3.44)

where |O1(1)| ≤ C as ε → 0. Moreover, direct calculations give

χ

2

∫
Ω

V 2
ε dx=

1

2χ

∫
Ω

(ln(ε2 + π|x|2)2)2dx− 1

2χ|Ω|

(∫
Ω

ln(ε2 + π|x|2)2dx
)2

=O2(1),

(3.45)
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where |O2(1)| ≤ C as ε → 0. Furthermore, it has that

ln

(∫
Ω

eχVεdx

)
= ln

(
|Ω|

∫
Ω

ε2

(ε2 + π|x|2)2 dx
)
− 1

|Ω|

∫
Ω

ln

(
ε2

(ε2 + π|x|2)2

)
dx

(3.46)

and

1− ε2

πR2
1 + ε2

≤
∫
Ω

ε2

(ε2 + π|x|2)2 dx ≤ 1− ε2

πR2
2 + ε2

,

where R1 and R2 denote the maximum and minimum distance between the pole
and the boundary of Ω. Then from (3.46), one can show that

−M0 ln

(∫
Ω

eχVεdx

)
= −M0

[
ln

(
|Ω|

∫
Ω

ε2

(ε2 + π|x|2)2 dx
)
− 1

|Ω|

∫
Ω

ln

(
ε2

(ε2 + π|x|2)2

)
dx

]
=

M0

|Ω|

∫
Ω

ln ε2dx+
M0

|Ω|

∫
Ω

ln(ε2 + π|x|2)2dx−M0 ln

(
|Ω|

∫
Ω

ε2

(ε2 + π|x|2)2 dx
)

= 2M0 ln ε+O3(1)

(3.47)

with |O3(1)| ≤ C as ε → 0. Finally substituting (3.44), (3.45), and (3.47) into
(3.43) gives

(3.48) F (Uε, Vε) ≤ 2

(
4π

χ
−M0

)
ln

1

ε
+O(1),

where O(1) = O1(1) + O2(1) + O3(1) and |O(1)| ≤ C as ε → 0. Since M0 > 4π
χ ,

(3.42) follows directly from (3.48). �

Next, we shall establish the connection between the energy of steady states and
the initial data. More precisely, we have the following results.

Lemma 3.10. Let (u, v) be a global-in-time bounded solution of (1.8). Then there
exist a sequence of times tk → ∞ and nonnegative function (U∞, V∞) ∈ [C2(Ω̄)]2

such that (u(·, tk), v(·, tk)) → (U∞, V∞) in [C2(Ω̄)]2. Furthermore, (U∞, V∞) is a
solution of (3.38) satisfying

(3.49) F (U∞, V∞) ≤ F (u0, v0).

Proof. Since (u, v) is the global classical solution with uniform-in-time bound of the
system (1.8), then we can use the standard bootstrap arguments involving interior
parabolic regularity theory [27] to find a constant c1 > 0 independent of t such that

(3.50) ‖u(·, t)‖
C2+σ,1+σ

2 (Ω̄×[1,∞))
+ ‖v(·, t)‖

C2+σ,1+σ
2 (Ω̄×[1,∞))

≤ c1,

where σ ∈ (0, 1). From (3.50), we know that (u(·, t), v(·, t))t>1 is relatively compact
in [C2(Ω̄)]2 and F (u, v) is bounded for t > 1. Hence there exists a suitable time
sequence tk → ∞ such that(u(·, tk), v(·, tk)) → (U∞, V∞) in [C2(Ω̄)]2 for some
nonnegative U∞, V∞ ∈ C2(Ω̄). Then we have

F (u(·, tk), v(·, tk)) → F (U∞, V∞), as tk → ∞,
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which gives (3.49) by the fact F (u, v) ≤ F (u0, v0) from (3.1). On the other hand,
using the facts 0 < c2 ≤ e−χv and F (u, v) is bounded for t > 1, from Lemma 3.1,
one has

(3.51)

∫ ∞

1

∫
Ω

v2t dxds+

∫ ∞

1

∫
Ω

u|∇(lnu− χv)|2dxds ≤ c3.

Then the combination of (3.50) and (3.51) allows us to extract a subsequence of
(tk)k≥1 (with the same notation if necessary) such that

(3.52)

∫
Ω

v2t (x, tk)dx → 0 as tk → ∞

and

(3.53)

∫
Ω

u(x, tk)|∇(lnu(·, tk)− χv(·, tk))|2dx → 0 as tk → ∞.

Based on (3.52) and (3.53), then using the same argument as in [39, Lemma 3.1],
we can show that (U∞, V∞) is a solution of (3.38). In fact, noting (3.52), we
evaluate the second equation of (1.8) at t = tk and let k → ∞ to have

(3.54) −ΔV∞ + V∞ = U∞ − ū.

Using (3.53) and taking k → ∞, we obtain U∞|∇(lnU∞ − χV∞)|2 = 0 in Ω̄. By
using the same argument as in [39, Lemma 3.1], one can show that U∞ > 0 for all
x ∈ Ω̄ and hence ∇(lnU∞ − χV∞) = 0 in Ω̄ which gives

(3.55) U∞ =
M0e

χV∞∫
Ω
eχV∞dx

.

Then combining (3.54) and (3.55), and using the fact ū = M0

|Ω| , we know that

(U∞, V∞) is a solution of (3.38). Then, the proof of Lemma 3.10 is completed. �
With Lemmas 3.8, 3.9, and 3.10 in hand, we now show the blow-up of solutions

for the supercritical mass by the argument of contradiction.

Lemma 3.11. For any M > 4π
χ and M 
∈ { 4πm

χ : m ∈ N
+}, there exist initial

value (u0, v0) satisfying
∫
0
u0dx = M such that the corresponding solution of (1.8)

blows up.

Proof. Since M 
∈ { 4πm
χ : m ∈ N

+}, then by Lemma 3.8, we can find a constant

K > 0 such that

(3.56) F (U∞, V∞) ≥ −K,

where (U∞, V∞) is a solution of the system (3.38). For this constant K > 0 chosen
in (3.56), we can use Lemma 3.9 to show that there exists a small ε0 > 0 such that
F (Uε0 , Vε0) < −K, provided M > 4π

χ , where

Vε0(x) =
1

χ

[
ln

(
ε20

(ε20 + π|x− x0|2)2

)
− 1

|Ω|

∫
Ω

ln

(
ε20

(ε20 + π|x− x0|2)2

)
dx

]
,

and

Uε0(x) =
MeχVε0

(x)∫
Ω
eχVε0

(x)dx
.

Moreover, we can check that (Uε0 , Vε0) ∈ [W 1,∞(Ω)]2 and
∫
Ω
Uε0(x)dx = M . Then

the solution of the system (1.8) with initial data (u0, v0) = (Uε0 , Vε0) must blow
up. In fact, suppose the solution (u, v) of (1.8) with the above (u0, v0) is uniformly
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bounded in time, then from Lemma 3.10, we have F (U∞, V∞) ≤ F (u0, v0) < −K,
which combined with (3.56) raises the following contradiction:

−K ≤ F (U∞, V∞) ≤ F (u0, v0) < −K.

Then the Lemma 3.11 is proved. �

3.2.1. Proof of Theorem 1.1. Theorem 1.1 is a direct consequence of Lemmas 3.7
and 3.11.
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