Available online at www.sciencedirect.com

Journal of

CrossMark SClenceDl reCt Differential
& 3 Equations
ELSEVIER J. Differential Equations 260 (2016) 2225-2258 —_—

www.elsevier.com/locate/jde

Asymptotic dynamics on a singular chemotaxis system
modeling onset of tumor angiogenesis

Zhi-An Wang *, Zhaoyin Xiang "*, Pei Yu"

& Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
b School of Mathematical Sciences, University of Electronic Science and Technology of China, 611731, Chengdu,
PR China

Received 24 March 2015; revised 9 September 2015
Available online 20 October 2015

Abstract

The asymptotic behavior of solutions to a singular chemotaxis system modeling the onset of tumor an-
giogenesis in two and three dimensional whole spaces is investigated in the paper. By a Cole—Hopf type
transformation, the singular chemotaxis is converted into a non-singular hyperbolic system. Then we study
the transformed system and establish the global existence, asymptotic decay rates and diffusion conver-
gence rate of solutions by the method of energy estimates. The main novelty of our results is the finding of
a hidden interactive dissipation structure in the system by which the energy dissipation is established.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

It is widely recognized that tumor angiogenesis plays a central role in spreading cancer cells
to other tissues in cancer metastasis, and hence making cancer a potentially life-threatening dis-
ease. Therefore it is of great importance and interest to understand the underlying mechanism of
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tumor angiogenesis which starts with cancerous tumor cells releasing signaling molecules vascu-
lar endothelial growth factor (VEGF) to surrounding normal host tissue and activate the motion
of vascular endothelial cells. To capture the main interaction between VEGF and vascular en-
dothelial cells, the following PDE model was proposed in [12]

{u,:V-(DVu—XuVIHC), (.0
¢ =&Ac — puc

where u(x,t) and c(x, t) denote the density of vascular endothelial cells and concentration of
VEGEF, respectively. The parameter D > 0 is the diffusivity of endothelial cells, x > 0 is referred
to as the chemotactic coefficient measuring the intensity of chemotaxis and ¢ denotes the degra-
dation rate of the chemical (VEGF) c. The parameter ¢ > 0 denotes the chemical diffusion rate
and could be small or negligible since the chemical diffusion is far less important than its inter-
action with endothelial cells as treated in [12]. For more information on the cancer modeling, we
refer to a review paper [4] and the references therein. Except the afore-mentioned applications,
the model (1.1) was also previously considered in [22] to examine the boundary movement of
bacterial population chemotaxis, and a specialized case investigated in [21,27] for traveling wave
solutions.

The striking feature of model (1.1) is that the first equation contains a logarithmic sensitiv-
ity function Inc which is singular at ¢ = 0. This singular logarithmic sensitivity was first used
by Keller and Segel in their seminal paper [10] to describe the propagation of traveling wave
band formed by bacterial chemotaxis observed in the experiment of Adler [1]. Its mathematical
derivation was later given in [23] and biological basis was provided in [9] by both experimental
measurements and model simulations. Therefore the logarithmic sensitivity is meaningful both
mathematically and biologically though it causes great difficulties in its mathematical analysis
and numerical computations. Among other things, the foremost mathematical question is there-
fore how to resolve the singularity. Toward this end, a Cole—Hopf type transformation as follows
was used in [11,31]

Ve
v=—-—Vinc=—— (1.2)
c

which, together with scalings 7 = 451, ¥ = —‘ﬁ”x, V= /ﬁv, transforms the system (1.1) into a

hyperbolic system:

u; — Au=V - (uv), xe,t>0,
Vi —eAv=V(—¢|v|® +u), xeQ, t>0, (1.3)
(u, v)(x,0) = (uo, vo) (x), x e,

where tildes have been dropped for convenience and 2 is either the whole space or a bounded
domain with smooth boundary. Compared to the original model (1.1), the transformed system
(1.3) is much more manipulable mathematically since the singularity vanishes. There was an
amount of interesting works carried out for the transformed system (1.3) and hence for the origi-
nal model (1.1) by reverting the Cole—Hopf transformation (1.2). We briefly review these results
below by the nature of domain. First in the one dimensional bounded domain 2 C R, the global
existence of solutions of (1.3) with ¢ = 0 subject to Neumann—Dirichlet boundary condition was
first established in [32] for small data, and later in [29] for large data with any & > 0. Recently the
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initial-boundary value problem (1.3) with Dirichlet boundary condition in one dimension was
extensively studied in [20]. In the multidimensional bounded domain Q2 C R4 (d =2,3), the
global existence and exponential decay rates of solutions under Neumann boundary conditions
were obtained in [15] for € = 0 for small initial data. In the one dimensional whole space Q2 =R,
the traveling wave solution of (1.3) was explicitly solved in [31] and its nonlinear stability with
large wave amplitude was established for ¢ > 0 in [8,17,18] and for ¢ = 0 in [19,16] by the first
author with his collaborators. The stability of composite waves was proved in [14] with ¢ = 0.
Furthermore the one-dimensional Cauchy problem of (1.3) with & = 0 was established in [5] for
large data under the condition that vg has a positive lower bound. For the multidimensional un-
bounded domain 2 = R? (d > 2), when the initial data is close to the constant ground state (u, 0)
with u > 0, there are a few studies on the system (1.3). Firstin [13], Li, Li and Zhao obtained the
global well-posedness, regularity criterion and large time behavior of classical solutions of the
Cauchy problem (1.3) with ¢ =0 if (ug, vo) € HS(R?) for s > % + 1 and ||[(ug — u, vo) || gs is
small. Later Hao [7] established the global existence of mild solutions in the critical Besov space
1

_1 s
B, | x (B, f)d with minimal regularity in the Chemin—Lerner space framework. The global

well-posedness of strong solutions of (1.3) in R3 was recently established in [2] via the Fourier
analysis if ||(uo — u, Vo)l 251 1s small. If the initial data has a higher regularity such that
| (o — i, Vo)l g2 g1 1s small, the algebraic decay of solutions in R3 was further derived in [2].

The afore-mentioned results on the whole space R? are obtained only for the case & = 0.
A similar problem (i.e., replacing V(—¢|v|?) by V(e|v|?) in (1.3)) modeling repulsive chemo-
taxis was studied in [24], where the global existence of solutions in R3 was established if
(o — i1, vo) € H3(R3) x H3(R3) and [(uo — u, V())||L2(R3) is small. As far as we known, the
result for the model (1.3) with & > 0 in multi-dimensions remains entirely open. The purpose
of this paper is to establish the asymptotic behavior (global existence and time decay rates) of
solutions of (1.3) for any & > 0 in R for d = 2, 3 and e-convergence of solutions by the method
of energy estimates. Precisely we first establish the global existence of solutions of (1.3) with
initial data near a constant ground state (i, 0) with u > 0 and furthermore derive the explicit
time decay rates of solutions. Then we study the solution behavior as ¢ — 0. Finally we transfer
the results back to the angiogenesis chemotaxis model (1.1). We should stress that the mathe-
matical study of system (1.3) with ¢ > 0 is not a simple extension of the case ¢ = 0. Indeed it
is much harder and involved since the parameter ¢ in the transformed system (1.3) plays a dual
role: coefficient of diffusion and convection. The former is a smoothing factor and the later is
opposite in general. For example, in the case ¢ = 0, the system (1.3) has a Lyapunov functional
F(p,v)= f]Rd ulnu + %dx, which is invalid for € > 0 due to the nonlinear convection term
—¢|v|%. Moreover in the study of stability of traveling waves of (1.3) for & > 0, it was found if
¢ > 0 is large, the diffusion cannot compensate the convection effect and hence the stability was
established only for ¢ > 0 small. Hence in our analysis, on one hand we need to perform delicate
coupling estimates to balance the dissipation and convection for & > 0. On the other hand we
cannot use the dissipation provided by ¢ Av since otherwise our results are invalid for ¢ = 0.
Thus we need to develop new dissipation mechanisms hidden in the system (1.3), which is the
key in our energy estimates (see Section 2.3).

The theorem on global existence of solutions is as follows.

Theorem 1.1 (Global well-posedness). Let (ug — it, vo) € H*(R?) x H*(R?) (d = 2,3) with
some integer k > 2 for some constant background state u > 0. Then for any constant My > 0
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with V2012, g, + 1V2Vol

such that if

iz(Rd) < Mg, there exists a positive constant 1 depending on My

=12 2 2
||M() - u”Hl(Rd) + ”VO”HI(Rd) = n,

the system (1.3) with ¢ > 0 admits a unique global solution (u, V) € C([O, +00), Hk(]Rd)) satis-

fying:

() = @50 ety + VOt oy
t

+ f (VO gty + 1YY @ s gy + IV VD2 g )T
0

< C(lluo — tllgpe ay + 1V0ll3x ) (1.4)
forallt > 0, where C is a positive constant independent of n and t.

Remark 1.1. In Theorem 1.1, the minimal regularity of initial data for the existence of global
solutions is required to be in the class of H 2(]Rd ), which improves the results of [13,24] where
the initial data is in H3(R9) and & = 0.

Our second result concerns the asymptotic decay rates of solutions. As mentioned before,
for system (1.3) with ¢ = 0, the algebraic decay of solutions in R3 was derived in [2] via the
Fourier analysis under the assumption that the initial perturbation is small. Here, we shall further
investigate the decay rates of solutions for the system (1.3) with any & > 0 in both R? and R? by
using the energy analysis. To this end, we introduce the homogeneous negative index Sobolev
space H™' (RY):

H®RY) :={f e PR : |17 F &) j2pay < o0}
endowed with the norm || f | z-s ®Rd) = “ E]7F f &) || L2(Rd)- Notice that the classical Littlewood—
Payley decomposition implies that f € H~*(R) for any s € (0, 2) if f € L'(RY) N L2(RY).
Thanks for the mass conservation, we see that H —*(R9) is a natural function space for system
(1.3). Moreover, compared to the usual decay rate derived in H¥ space (e.g. see [2]), our result

demonstrates that the H— norm of initial data enhances the decay rate of the solution by 5
Precisely, we have the following decay rate estimates.

Theorem 1.2 (Decay rates). Let the assumptions in Theorem 1.1 hold. If we further assume that
(uo — it, vo) € H5(RY) x H*(R?) for some s € (0, %), then for any t > 0, the solution (u, V)
of (1.3) obtained in Theorem 1.1 with suitably small n has the following decay rates:

s+L

IV — )l 2 ey + IV 2 gay < C(141)7 7, =0,1,---,k—1)

s+k—1

IV @ = D)l 2 gy + IV 2y < C(141) T2 (1.5)

where C is a constant independent of t.
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Remark 1.2. We note that the decay rate of solutions obtained in Theorem 1.2 is optimal in the
sense that it attains the decay rate of solutions to the linearized system (see Section 2.2). Indeed,
the decay rate of solutions in Theorem 1.2 has the same decay rates as the solutions of heat
equations (e.g., see [0, Theorem 1.1]).

Remark 1.3. Taking k = 2 in Theorem 1.2, we can use Sobolev embedding and the interpolation
inequality to deduce that ||u — it||poo — O and ||v||z> — 0 as t — 400, which implies that (u, v)
will converges to the constant ground state (it, 0) as t — +00.

Next we present the convergence of solutions from (1.3) with ¢ > 0 to (2.2) with ¢ =0 for
any given positive time. We remark that in Theorem 1.1 and Theorem 1.2, the constant C can be
independent of ¢ if we restrict ¢ € [0, K] for any given K > 0. This result allows us to prove the
following convergence rate estimates with respect to €.

Theorem 1.3 (Diffusion convergence rate). Let (u®,v®) denote the solution of system (1.3) for
& > 0 given by Theorem 1.1. Then it holds that

l® (1) = u® O gy + 1V = VOO ppo ey < €% for any 1 €0, ),
where C is a positive constant independent of € and t.

Remark 1.4. The diffusion convergence rate independent of time ¢t as ¢ — 0 was derived in
[24] where the convergence rate is O(/¢). Here we improve the convergence rate to O(g) but
with a price that the convergence rate depends on time ¢. Currently we are unable to remove the
time-dependence condition for such scenario.

Finally, we transfer the results back to the original system (1.1) via the Cole-Hopf transfor-
mation (1.2) and obtain the following results for the original system (1.1).

Theorem 1.4. Let (1o, Vncg) € HY(RY) x H* (Rd)for some integer k > 2, where (ug, co)(x) =
(u, ¢)(x, 0) satisfying the compatibility condition vo = —V Incqg. Then for any constant My > 0
with ||V2u0||iz(Rd) + V3 lnco||i2(Rd) < My, there exists a positive constant n depending on My
such that if

o = @l 31 gay + 1V InColl1 oy <,
for some constant u > 0, then system (1.1) admits a unique global classical solution.

Furthermore, if (ug, Vincg) € H5(R?Y) x H*(RY) fors € (0, %), then there exists a positive
constant C independent of t such that the solution has the following decay rates in time:

_ _lgs
||M—M||L00(Rd)§C(l+t) 2 .
lell oo ay < Ce™™.

Moreover, let (U, c®) denote the unique solution of (1.1) with ¢ > 0. Then for any fixed time
t > 0, the following convergence rate with respect to € holds:
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||u8(t) —u (t)”Hk—Z(Rd) + ”Cg(t) —C (t)”Hk—Z(Rd) =< C(I)S 5
where C(t) is an increasing function of t.

The rest of this paper is organized as follows. In Section 2, we study the global well-posedness
of solutions to the nonlinear system (2.2), and give the proof of Theorem 1.1. In Section 3, we are
devoted to deriving the decay estimates and proving Theorem 1.2. In Section 3, we investigate
the convergence rate of solutions with respect to ¢ and prove Theorem 1.3. Finally, we convert
the results of the transformed system back to the original system (1.1) and prove Theorem 1.4.

Notations: Throughout this paper, V¢ with an integer £ > 0 stands for the usual spatial deriva-
tives of order ¢. The letters ¢ and C denote generic positive constants which may vary in the
context.

2. Global well-posedness

In this section, we investigate the global well-posedness of solutions to the nonlinear sys-
tem (2.2). We will use the following two basic facts:

Av=V(V-v) and VY] g 2 VOV 2@y (2.1

for any nonnegative integer £, where “~" means the two norms are equivalent. The former fol-
lows from the fact that v is a gradient field v= —V Inc and hence V x v = 0, while the latter can
be obtained by the L? boundedness of Riesz transform.

2.1. Reformulation of the problem

For simplicity, we shall take u = 1 in the sequel. Then by setting p =u — 1 and pg = ug — 1,
we can rewrite (1.3) as

hp—Ap—V.v=V_.(pv), xeRY >0,
9v—eAvV—Vp=—eV|v|]?, xeRy >0, (2.2)
(P, V) (x,0) = (po, vo) (x), xeR?,

where d =2, 3. Then we turn to consider the problem (2.2)
We first give the local well-posedness of the Cauchy problem (2.2).

Lemma 2.1 (Local well-posedness). Assume that (po, Vo) satisfies (po, Vo) € H*(R?) x HS (R?)
for some s > % Then there exist a time T = T(||po||H5(Rd), ||V0||H5(Rd)) > 0 such that the system

(2.2) has a unique solution (p,v) € C([O, T), H® (Rd)).

Proof. By a standard energy argument, it is easy to prove the conclusion for s > % + 1 (see [13]).

Ifs> %, the results can be proved similarly with the help of the higher order commutator esti-
mates (see [3]). We omit the details here for brevity. O
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2.2. Linear energy dissipation

The idea of showing the global well-posedness of solutions to the nonlinear system (2.2) is
partially motivated by Guo and Wang [6,30] on the compressible Navier—Stokes equations, and
Ren, Wu, Zhang and the second author [25,26] on the incompressible MHD equations without
magnetic diffusion. To illustrate the main idea of our proof, we visit the linear part of nonlinear
system (2.2):

{8tp—Ap—V-V:O, 23)
ov—eAv—Vp=0.

For any nonnegative integer ¢, the standard £-th level energy identity of (2.3) reads as

1d

3 (19 P, + 19V 32 ) ) + 19 Py + eIV VI sy =0, 24)

2
L2(R4
be employed since we anticipate our results hol(iliR f)or & = 0. Therefore we have to pursue other
ways to find the dissipation for v. The idea here is to construct an interactive energy functional
between p and v by using the dissipative structure of v in the first equation of (2.3). To this end,
we apply V¢ to equations (2.3); and (2.3),, take the inner product with —V¢V - v and V¢*!p,
respectively. Then integrating the results and adding up, we have

In (2.4), there is a dissipation term e[| V¢*ly]| for v. However this dissipation term cannot

d
E/ Hlp-Vivdx + V'V VI )
Rd
+(1+e)/v“2p.v‘+lvdx— IV pll 2 ey = 0. (2.5)
Rd

However the integral terms in (2.5) cannot be estimated using (2.4) and (2.5). To overcome this
difficulty, we investigate the (£ + 1)-th level dissipation for p:

1d
S (I DI 2ty + 1 VI o)) + IV 2P 2y + N9V 2y =0, 26)

Now collecting (2.4), (2.5) and (2.6), we obtain for any constant § > 0

1d
= — (VP22 ay F IV P2 oy FIVEVIE 2 oy HIVETIVIZ, g +28 [ VI p - Vivdx
2 dt L>(R) L2(R9) L2(R9) L2(R4)

Rd

+ (||V‘+‘p||iz(w) IV 2172y + SIVOV VI ey + €IV VT2 o)
+ el V2V gay + (1 +e)5fv‘+2pv‘fv-vdx —a||v‘3+1p||iz(w)) —0.
Rd

By taking § suitably small and using (2.1), we can control the cross term and thus establish the
g-independent dissipation for both p and v (e.g. see Lemma 2.3 below).
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2.3. Nonlinear energy dissipation structure

Motivated by the above analysis on the linear system (2.3), we introduce the following energy
for the nonlinear system (2.2) by using the £th and (£ + 1)th level dissipations:

E®) =1V PI72gay + 1V PIT 2y + 1V V72
+ IV gy + 25/V€+1p -Vivdx,

R4

Fe@) = IV plgagay + IV P12 gay +81VV - VI 2 oy + VI

+s||v€+2v||i2(Rd) +5(1 +e)/v€+2pva-vdx — a||vf+1p||iz(Rd) (2.7
]Rd

for any nonnegative integer £, where 0 < § < 1 is a constant. For the nonlinear energy (2.7), we
have the following basic dissipation structure.

Lemma 2.2. Let E¢(t) and Fy(t) be defined by (2.7). Then for any £ > 0, it holds that
1d
——& @)+ Fe(t
27 (1) + Fe ()

:/vfpv‘fv-(pv)dx—f<vf+2p+5va-v>va-(pv)dx
R4 R4
—sfv’iv-vv@|v|2dx+a/(v“lv.v—sv‘f“p)v”wvﬁdx. (2.8)
R4 R4

Proof. Applying V¢ to equations (2.2); and (2.2),, and taking the inner product with V¢p
and Vi, respectively, we obtain

1d
521V PITaeay + 1V Pl ey = / VipV'V - vdx = / VEpViV - (pv)di

R4 R4

and
ld lo 2 41,2 41 £ 4 112
EE”V V”LZ(Rd) + ||V V”LZ(Rd) — | Vi p .- Vivdx=—¢ | V'v.-VV*|v|<dx,
R4 R4
which implies that the ¢-th level dissipation holds:
1d L. 12 lo 2 £+1 2 C+1,12
S (I P 2ty + 19 V2 )+ (19 P12 sy + 19 V1 2 )
=/v‘pv€v-(pv)dx—sfv‘v.vv‘|v|2dx. (2.9)

R4 R
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Similarly, we can apply V‘*! to equations (2.2); and (2.2),, and then take the inner product with
V&1 p and V&, respectively, to obtain the £ 4 1 level dissipation:

1d
S (V5 Py, + 19 VI 2y ) + (1921 2 gty + 2192V 2 )
=fv@+1pvf+1v.(pv)dx—gfv‘f“v-vvf“wdx. (2.10)
R4 R4

On the other hand, to establish a dissipation independent of &, we apply V* to equations (2.2);
and (2.2),, take the inner product with —v!{V .vand ViT! p, respectively, and then have

—/(V‘p),vlv-vdx+/v”2pv5v-vdx+||va-v||§2(Rd)=—/v@v.(pv)v€v-vdx

Rd R4 R4

and

/(VZV)[ . VZ—dex —¢ / v€+2V . Ve-'r]pdx _ ||V€+1P||iz(Rd) =_¢ / V[+1p . VE-H |V|2dx.

Rd Rd Rd
This yields that
d
o / V-V pdx + VOV VI gy + (14 6) / V2PV vdx — IV Pl T e
R4 R4
= —/v‘fv A(pVV'V - vdx — s/v“lp -V v)dx. (2.11)
]Rd Rd

Thus, combining (2.9), (2.10) and (2.11), we have

1d
——(IV P22 pay F IV P12 s FIVEVIR 2 oy H VIV, g +28 [ VI p - Vivdx
2 dt L>(RY) L2(R9) L2(R4) L2(R4)

Rd

+ (||vf+‘p||iz(Rd) F IV DIT 2 gy + IV VI oy + €IVF VT2

+e||v‘+2v||iz(Rd)+5(1+s)/v‘5+2pv‘fv.vdx—5||vf+1p||iz(w))

Rd
:/leVKV~(pv)dx+/Vl+1pVK+1V~(pv)dx —afvlv-vvzv.(pv)dx
R4 R4 R4
—g/v‘v-vv‘f|v|2dx—e/v“lv.vv‘f“wdx —Se/v“lp.v“lwdx.

R4 R4 R4
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Then (2.8) follows from the integration by parts to the above identity. This completes the proof
of Lemma2.2. O

Moreover, for the nonlinear energy (2.7), we have the following property.
Lemma 2.3. For any § € (0, 1), there exist two constants co and ¢ such that
E®) =NV P72 gay + 1V P2y + 1V VT2 gty + 1V VI )
Fe@ = IV pllgagay + 1V P13 2 ay + IV VI ) + IVE2VIT 2
for any integer £ > 0, where A~ B <= coB < A < ¢yB.

Proof. By Young’s inequality and (2.1), we have

1 2 2
< IV Pl gay + IV VT2 g,

’/V”lp -Vvdx
R4

and

42 12 12
<Vl + Vv,

L2(R4)

‘/V@+2p . Vf-l—lvdx ®9)
R4

<IV*2pI7agay + CIVOV V172 gy

Thus the constants ¢y and ¢ can be readily found such that the desired conclusion holds. O
2.4. Nonlinear energy estimates

In this subsection, we derive the a priori estimates for the solutions of system (1.3). For
simplicity, we define the following quantities
K1 = [pa VEPVEV - (pv)dx
K = — [ (v“zp +oviV. v) VLV - (pv)dax
K3 :=—¢ [pa ViV- VVE v [2dx
Ky = £ fpa (v“lv v sv‘f“p) Vi [y 2dx.

Then (2.8) can be rewritten as
1d
EESZ(Z‘)'F‘FKO):]CI+IC2+IC3+IC4~ (2.12)

Now it is the key to estimating the terms K1, K2, K3 and K4. In the paper, we shall employ the
technique of a priori assumption. That is, we first assume that the solution (p, v) of equations
(2.2) satisfies for any ¢ € [0, T']
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2¢0
IV2 P74y + IVVO 72 ey < EM& (2.13)

and
PO 131 ey + IVO31 ey < K5 (2.14)

where ¢g and ¢y are from Lemma 2.3, and then derive the a priori estimates to obtain global
solutions. Finally, we show the obtained global solutions satisfy the above a priori assumptions
and close our argument.

We divide our analysis into two cases: d = 3 and d = 2. We first give the derivation for d = 3.

Lemma 2.4. Let the solution (p, v) of equations (2.2) satisfy (2.13) and (2.14) with d = 3. For
any given My > 0, if ko is suitably small, then there is a constant c1 > 0 such that for allt € [0, T']
we have

d
E&(t)Jrqfe(t) <0 (2.15)
fort=0,1,--,k—1.

Proof. The proof is split into three steps.
Step 1 (¢ = 0): In the following, we shall frequently use the following inequalities:
1 1

13 @) < CUAN o IV A oy 1 Loy < CIV fll 2 (2.16)

where the former is obtained by the Gagliardo—Nirenberg inequality and the latter follows from
the Sobolev inequality. The assumptions (2.13)—(2.14) will be used often in the sequel without
mention of them. Then for the term K;, we use the integration by parts, (2.16) and the Holder’s
inequality to obtain

K1 = ‘ —/Vp - (pv)dx
R3
= IVpll2@y llpVilL2 w3y

< IVPl2@y Pl ws) VI Lo w3y
1 3
5 C||P||22(R3) ”vP”zz(Rz) ||VV||L2(R3)
< cKo(||Vp||iz(R3) + ||VV||iz(R3)). (2.17)

For 5, by (2.16) and the Holder’s inequality, we have

|]C2|=‘/<V2p+8V-V)(Vp~V+pV-V>dx
R3

= C(IV2pllages) + 1991 2 ) (19213 ey IVl oy + 121 2wy | V¥ 2y
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= C(IVplaqes) + 199l 2, )||Vp||L2(R3 ||v2p||L2(R3 19Vl 2 g3)
<C|V vv)? v2pl? vv|?
” p||L2(R3 ” V”LZ(]R3) ” P||L2(R3) + ” V||L2(R3)
2 2 2
= Co(IV2 12 sy + 19V 2 ) (2.18)
where the following inequality has been used:

1 sy = L Wogey IV W) < CIV F 22 V2 Fl g (219)

For the terms /C3 and K4, we use (2.16) and Holder’s inequality to drive that

fv V|v|?dx /|v| V - vdx

R3
<ellvliz3msy ||V||L6(1R3) ||VV||L2(R3)

IKsl=¢ =¢

1
< Clivll;

LZ(]R3 ”VV”

L2(R3)

< Croll Vvl (2.20)

(R%)

and

IKal=¢

/(V(V-v) - 8Vp> -V |v[2dx

R3

= C8<||V2V||L2(R3) + ||Vp||L2(R3)> IVVILo@3y VI 23 ®3)

< Ce(IVP¥ sy + 19 Pl ) IV 2 IV s 19V

< CIVl g oy (19 P2y + £ 92V g5 )

= Co(IVPIagas) + 1 VVIEaggs) ). (2.21)

Substituting (2.17)—(2.21) into (2.12) and using Lemma 2.3, we obtain

d
&)+ Fot) < coxo(||Vp||iz(R3) V2Pl gy + 1VVI7 s + s||v2v||iz(R3))

N =

C
< —OKo]:o(t)-
co

1

If we let k¢ be suitably small such that f—(?/co <5, wecan find a positive constant ¢ such that

1d
EESO(I) +c1Fo(t) <0.
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Step 2 (¢ = 1): In this case, with Leibniz’s formula, Holder’s inequality and (2.16), we have

:‘—/Vzp(pr—i—pVN)dx
R3

K1l = ‘/Vp.vvav)dx
3

< 192 pl 2oy IV P lscey IVl ey + 121 ey 19V o,

1
< IVl (1972 IV gy 19V gy 11 g IV 2y 192V )
< (1Pl + ¥ 1 ) (192212 ) + 19 2e))

= Cro(IV2p 12 gy + 192Vl 2w 2.22)

and

|/C2|=‘/(VSP—{—SVV-V)-(VVp~V+Vp.VV—l—VpV~V+pVV-V)dx

= (19l + V2Vl 2es) )

2
v p||L6(R3)”V“L3(R3) + ||VP||L3(R3)||VV||L6(]R3) + ||P||LOO(R3)||V2V||L2(]R3))

= C(IVpllzs) + IV e )
(1v? Pl M sy IV Y ) + 1V P2 s V2P 2 12Vl 2 )

< C(19P1 20, 19 P + WVl ) (192 P12 sy + 1921 )
3 2 3 2 2.2
= C(Koz Mé +Ko)(IIV Pll2sy + 1V vlle(Rs)). (2.23)

Similarly, for K3 and K4, we use € € [0, 1] to deduce that

K3l =¢

/V2V~V|V|2dx

R3

< cnans(Rs)qunm(Rs) V2Vl 2R3
(R)

<civi? ) 3||VV|| 2y V2V 72 g
L*(R>) L*(R>) L*(R>)

< Chol| VY12 s (2.24)

)

and
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[Kql =

(vz(v V) — 5V2p> (Vzv V4 Vv VV)dx
R3

= Ce(IV3¥l2 + 19%pl2 ) (192l 2 IVl = + ||VV||L6||Vv||Ls)
< c8(||v Vil + ||v2p||Lz)||v2v||Lz||Vv||L2(R3 Iv2 v||L2(R3
< IV s IV s, (192013 192V + £l 9912
1 1
< Cid Mg (VP12 + IV2VI2, + el Vv, ). (2.25)
Substituting (2.22)—(2.25) into (2.12) and using Lemma 2.3 yields
1d
=—&1@) + Fi(t
27 1) 1(2)
1
<C <Ko +K02 M3 ) (19212 gy + 197 P12y + V2V s, + 197V o))

2C;
< 29 M F ).
co

Nl—

If we allow «p to be suitably small such that ZCI OEM0 < %, we can find a positive constant ¢
such that

1d
EZ&(I) + a1 Fi1(@) <0.

Step 3 (£ > 2): In this case, the estimates are more delicate. First of all, for the term Ky, we use
the integration by parts and Leibniz’s formula to obtain

L
Ki=- f Ve vi(pvdx ==Y ¢} / Vi I pvivdx,

R3 Jj=0 R3

where C'e/ = (j) denotes the binomial coefficient. This, together with Holder’s inequality,

gives that

4
K11 < €Y IV pllags) IV pV IVl Lams).
Jj=0

We need to estimate the second factor on the right hand side. To this end, we notice that for any
¢ > 2 we have either j < 3L or j > % + 1 for any nonnegative integer j. If j < #, we first

use the interpolation inequality (2.19) and the Gagliardo—Nirenberg inequality to derive that

3¢—4j—-1
l+1 2 l+1
IV pll oo sy < C||V°‘1p||L2(§g; IVipll ;;;Rz) < Clpl, 3 IV p||L2(R3 IV pll z;;Rz),
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where

L+ 1
o :=— €10,2].
YT 20— )

Furthermore the Gagliardo—Nirenberg inequality yields that

jtl jtl
—j (23} l 1 1
IVl 2y < CIVI s IV VI

Thus we have

IV pVE IV 2

. o
< IV pll ooy IV VI L2 3y

S e -2 T 41 t+y s,
< IS IV 192l g 19l s 1941V S D
3 1
i 7 +1 +1
<CkiM} <||v Tl paes, + 1V V||L2(R3)>. (2.26)

On the other hand, if j > % + 1, we can use the interpolation to deduce that

IV pll 2@y < C||Vp||L2(R3 IV Pl 2 )
and
t—j +1 W=t et &
v _'lV”LOO(R?’) = C||Vazv||L2 R3)”V * V”Lz(Rz) = C”V”Lz(Rs “VV”Lz(Rz Ve V”Lz(Rz)’
where
2(j—1H—¢
w=2U D= o
2 -0

Thus we obtain

IV pV vl 23

<|IV/ p||Lz<Rs>||vHv||Loo<Rs>
—1 2(j 1)

<C||v|| L2 ||VP||L2(R3 ||Vv||L2 ) Svet

e IR
p”LZ(RS)”V V”LZ(R3)
= Cko(IV pll 2y + IV V2, ). 2.27)
Hence combining (2.26) and (2.27), for any integer j > 0, we have

. . 3 1
IV7 PV ¥l 2y = € (166 Mg +x0) IV plliagesy + 19 Vo)) 228)
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which gives rise to

1

3 1
Kl = €5 Mg +10) IV pllzgasy (19 llzgas + 19 Vi) )

3
Tas3 1.2 1op2
= C (16 MG +x0) (195 I sy + IV 112 g )-
Next, we turn to the estimate of term K,. Considering that

{+1
ZCHI / (vf+2p+5va.v)v/pv"“—fvdx
R3

by Leibniz’s formula, we first use Holder’s inequality to obtain
£+1
K2l = €Y (1952 pllaqes) + IVl 2y ) IV 0V 7V 2 es).
j=0

Ifj< < 3t Holder’s inequality and the interpolation give that

IV pVE IV 2wy < IV pll ey IV VI 2 s

= C”Vmp”LZGR3 HVEHPHEZ(R%”v"”é(ﬂ@ ||VE+1V||L2(R*)
= C”p”mmz ||V2P||L2(R-3)IIV”zplle(R3 IIVv||L2(R3 vty
where
o3 1= M €[0,2].
2(6=7)

It then follows from Young’s inequality that

1 3
i 1-j Ias1 2 1
IV pV IV pasy < Cieg M IV plle(Rs Iver v||L2(R;)

13
= €y Mg (V2 pllagesy + IV Wl e ).
On the other hand, if j > <53, we set

2+1
oy = —— €[0,1]
2(j—1)

and perform a similar procedure as above to obtain

(2.29)

LZ(R3)’

(2.30)



Z.-A. Wang et al. / J. Differential Equations 260 (2016) 2225-2258

2241
IV pV IV 2wy < IV Il 2@y IV 0 ooy
j—1 j—1 j—1 j—1
+1 +1 4 1
< C ” Vanzé[g;) ”Vz+2p|| ZZ;ER’;) ” VOMVHZZA;ER’S) ” V + ||L2(§r3l)
< oIV pll 2y + ||v@“v||Lz(Rs>)- 231)

Notice that for any £ > 3 or £ =2 and j # 2, we have either j < =¢ £ or j=> ”3 for any nonnega-
tive j. Thus we need to consider the case { =2 and j =2. Indeed in this case we have

IV PV VI 2@y < 192 pll oo sy IV VI 2

1
< CIVVIL2@) IV Pl 2 s, ||V4p||L2(Rg

= Cro(IV** pllisy + IV Pl ).

(2.32)
By (2.30)—(2.32), we find that for any j > 0, it holds that

. 1 3
IV pVE vy < c(;«g M{ + xo) <||v‘+2p||Lz(R3) + ||V4+1v||Lz(R3)) (2.33)

which upon the substitution gives

13
1ol = € (i My +50) (I P12 ) + IV V12 g5 )

(2.34)
For the term K3, we first use the integration by parts and Leibniz’s formula to obtain

4
/c3=g/vf(v-v)-v€|v|2dx=sZCl{/vﬂ(v-v)-vav‘*f'vdx,

R3 Jj=0 R3

which, along with the Holder’s inequality, gives that

L

.
K3l < C Y IVl 2y IV VIV,
j=0

Then taking a similar procedure to that of estimating /1, namely, replacing p with v in (2.28)
we can deduce that

3 1
VIV IV gy = € (g Mg+ k0 ) IV V2o,

which implies that

K| < C(K0 M +0) IV VI g (2.35)

Finally, we estimate the term /4. By Leibniz’s formula, we have
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{+1
Ki=e) /., / (v”‘ V.y—svit! p)vav”‘*fvdx
j=0

R3
which, along with the Holder’s inequality, yields that

L+1
Kal = Ce Y (19 pllages) + IVl 2y ) IV vl sy (236)
j=0

Same as estimating Ky, namely replacing p by v in (2.33), we end up with for any integer j > 0:
. . 13
VIV T s, < Cs(xg M{ + Ko) (||v5+1v|| @) + IV Lz(Rs)) (2.37)
Substituting (2.37) into (2.36) gives
1 3
1,7 12 12 42412
sl = € (kg M +50) (I P12 g + IV VIR sy + 21V VD)) (238)
Substituting the estimates (2.29), (2.34), (2.35) and (2.38) into (2.12), we conclude that
1d
——&E(t) + Folt
27 0 (1) + Fo(t)
L3
= Carct Mg (195 Iy + IV 2Pl sy + IV VIR0 sy + 819210

C, | 3
< 2kEMEF ) (2.39)
co

S piw

1
by Lemma 2.3. If we let kg small such that S—g/c(;‘ My < %, we can find a positive constant ¢; such

that
1d
EESg(t)%—cl}"g(t) <0 forany ¢ > 2.

Thus we complete the proof Lemma 2.4. O

Lemma 2.5. Let the solution (p, v) of equations (2.2) satisfy (2.13) and (2.14) with d = 2. For
any given My > 0, if kg is suitably small, then the same energy estimates (2.15) holds.

Proof. In this case, we shall frequently use the following inequalities:

1 1 1 1
1@ < Ol o IV age, and 1f sy < CUFI e IV £l gy, (240)
which are obtained by the Gagliardo—Nirenberg inequality. We divide the proof into two steps.

Step 1 (¢ = 0): We shall estimate K1, Ky, K3 and X4 one by one. First, for 1 and K, we use
the integration by parts, Holder’s inequality and (2.40) to derive that
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|/c1|=‘/pv<pv>dx ='/pr~vdx
RZ 2

= ||P||L4(R2) ||VP||L2(R2)||V||L4(R2)

C”p ”LZ(RZ) ”Vp” LZ(RZ) ”V”LZ(RZ) ”VVHLZ(RZ)
= Cao(IV P2y + 191222, (2.41)

and

|IC2|=‘/<V2p+8V~V)<Vp-v+pV~v>dx

< C(||V2P||L2(R2) + ||VV||L2(R2)) <||VP||L4(R2) VIl L4r2y + 1PNl oo ||VV||L2(R2)>
= C(IV2pll 2@, + 199l 2 )

(||Vp||L2(R2)||v2p||Lz(Rz)||v||L2(R2)||vV|| D@y T ||p||L2(R2)||v2p||L2(R2)||Vv||Lz(Rz))
= (Il + IVl @ ) (1922132, + 1991225, )
= Ceo(IV2 P12 ey + VY12 a2 (242)
= LZ(RZ) LZ(RZ) . .

Similarly, we estimate K3 and X4 as follows:

/|v|2v -vdx
RZ

2
=< ||v||L4(R2) ||VV||L2(R2)

K3l =¢

< CIVll2@2) | VVI 2 g2,

< Cieol VI35 o) (2.43)

and

K4l =¢

/(V(V-v) —8Vp> - V|v[2dx

R2

< C8(||V2V||L2(R2) +1IVp ||L2(R2)> IVVIL4 @2y VI L4 r2)

1
= Ce(IVVl2@) + IV Pl 2@ ) IVHVI

LZ(RZ)“V”

L2(R2)”VV||L2(R2)
< Celvllp ey (IV P, + V¥ ey + IVVI 22 o))

= Cko(IV P12 g, + 199122 g0, + £ VY1 g ) (2.44)
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Substituting (2.41)—(2.44) into (2.12) and using Lemma 2.3, we obtain

Eago(t) +~F0(t) = CSKO(”VP”Lz(Rz) + ”V p”LZ(RZ) + ”VV”LZ(RZ) +8”V v”LZ(RZ))

Cs
< —koFo(1).
o
If we take k¢ suitably small such that %"0 < % we can find a positive constant ¢ such that

1d
EEEO(I) +C]F0(t) <0.

Step 2 (£ > 1): In this case, the estimates for Ky, 2, K3 and /4 are more subtle. First of all,
for /1, we use the integration by parts and Leibniz’s formula to obtain

14

Ki=- / vt p . vEi(pvydx = — ch / vl p v pviivdx.
R? =0 g
It then follows from Holder’s inequality that
e . .
K1l <C Y IV Pl IV pV VI 2y (2.45)

j=0
We need estimate the second factor on the right hand side of inequality (2.45). For0 < j <¢—1,

we use Holder’s inequality, Gagliardo—Nirenberg interpolation inequality and Young’s inequality
to obtain

IV9 pV IVl 2y < IV pll oo @2y IV VI 2 g2y

i+l Jj+1
e 1 £+1 z 1 T £+1 T
C”P”degz) ”v P”L;(Rz ”V”L;(RZ)HV v”Lz(ng)

= C (Pl + V2@ ) (194 Pl + 195Vl g )-
On the other hand, for j = ¢, we perform a similar procedure and obtain that
IV pV IVl 2y < IVEPI 2@y IV o2
< cupn%z) IV“*p zz;Rz vl ;;}Rz)uv”‘w %2)

= C (Pl + IV 2@ ) (194 Pl + 195Vl g )-

In summary, for any 0 < j </, it has that
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IV PV IVl 2y
= C (Pl + IVl ) (19 pllags + IV V). @246)

Substituting (2.46) into (2.45), we have

11 = (PN + IVl 2y ) (19 PIZagga) + 191V o)

= Cro IV pllagey + IV V22 )- @.47)
We now estimate the term K. Since

L+1
KZZ_ZC;H/(V‘f+2p+5va.v)wpv‘f“—fvdx
=0
R2

by Leibniz’s formula, we use Holder’s inequality to obtain

{+1
Kal<C) (||vf+2p||Lz(Rz) + ||v4+1v||Lz(Rz)) IV pVH v o o). (2.48)
j=0

To estimate the second factor on the right hand side of (2.48), we employ the Holder’s inequality
and (2.40) to deduce that if j =0, then

. o
IV pVH I 2wy = 1PV VI 22
1
<Pl ooy IV VI 2 g2y
1 1
2 2 2 +1
< 1P 22 1V P oy IV Y 22y -
If 1 <j<¢, wehave
IV pVE IV 2wy < IV pll e @) IV VI 2 g2
=z ern 7 7h e+l -7
S C”VP”Lz(Rz)”v p”Lz(Rz)”V”Lz(Rz)”V V”LZ(RZ)’

while if j = £ + 1, then

e+1 e+1
IV vl 2 mey < IV pll 2@y VI oo r2y
£+

1
“+2
LZ(RZ) ||Va5V||

1 {41 1
2 42 2 L+1g, +2
S C”P”Lz(Rz)”V pl LZ(RZ)”V V”LZ(RZ)’

where a5 ;= ﬁ € (0, 1). Therefore for 0 < j < £+ 1, we obtain
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V7 PV vl o gy
1 1
< C(IP1 252, 17PN 2y + 1Py + W11y ) (1942l gy + 19 Wil 2 ey ).
(2.49)
Substituting (2.49) into (2.48) and using (2.13)—(2.14), one has
K2
1 1 2
< C(||P||22(Rz)||V2P||zz(Rz) + Pl w2y + ”V”Hl(]Rz))(”V“_ZPHLZ(]RZ) + ||V£+1V||L2(R2))
11
= C (g Mg +x0) (172l s, + IV V12 ) ). (2.50)
The terms /3 and /C4 can be similarly. Indeed, for 3, we have
l : . .
Ki=e) C] / VYV - v) - VIV vdx
j=0 R2

14
<CY IV 2@ VIV 2 s
j=0
< CIVF VI o) IVl 22
< Cieol VI oy (251)

where we have used the estimate ||VjVV£_jV||L2(R2) < C||V||L2(R2)||VZ+1V||L2(R2) for all
0 < j <1 (see the estimates of (2.46)). For K4, we have

£+1

Ki=—eY Cl / (v“‘v V- av”‘p)vav”l*f'vdx
Jj=0 R2
L+1
< Ce X (IVFVlae) + 1Vl ) IV 70 2 g,
j=0

By the same derivation of (2.49), one has
IVIVVE Ty o 2y
1 1
< C(IV 2, 192V gy + ¥y ) (192l 2y + 1941 2y
< % % V@+2 Vl-l—l
< C KO MO =+ Ko || V||L2(]R2) + || V||L2(]R2)

for 0 < j < £+ 1, which implies that
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L1
K41 = Ce (1 Mg +10) (I 2Vl 2y + 19 Dl 2gey ) (195429l 2y + 19Vl o)
L1
= C (kg M +50) (IVF Pl o) + IV VIR o) + V2V g ). (2.52)

Substituting the estimates (2.47), (2.50), (2.51) and (2.52) into (2.12), we conclude that
1d
——C&p(t) + Folt
37 0 (1) + Fe(t)
L1
< C4(K<§ MG +50) (1Y Py + 1V VDo o) + eIV 50
2Cy
< —KO Mg ]-' (1) (2.53)
o

by Lemma 2.3. If we take ko suitably small such that ZCCO“K MO2 < 2, we can find a positive
constant ¢ such that

1d
——& @) +c1Fe(®) <0 forany ¢>1.
2dt
The proof of Lemma 2.5 is completed. O
Now we are in a position to give the a priori estimates for solutions of (2.2).

Lemma 2.6 (A priori estimates). Suppose that the solution (p,v) of system (2.2) satisfies the
assumption of Lemma 2.4. Then it holds that

IV P2 gay + IV PONT 2y + IV VO 2y + 1V VO 2 e,
t

+e / (nv@“p(r)niz(w) +IV P20,
0

+ IV gy, + IV VO g )
< i—g(nvfpouiw) 1V pollZ 2 gy + 1V V0l 2 gy + ||vf+1vO||iz(Rd)) (2.54)
foranyte[0,T]and £=0,1,---,k—1.
Proof. The conclusion follows from Lemmas 2.3, 2.4 and 2.5 directly. O
2.5. Proof of Theorem 1.1

For any ¢ € [0, T], by taking £ =0 in (2.54), we have

A A

C
PO gy + VO 11 gy < (npon,,l(Rd) + Vol gy ) = o
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If n is suitably small such that i—gnz < /cg, we can deduce that

PO gay + VO3 oy <5, 1€[0,T1,

which closes the a priori assumption (2.14).
By (2.54) with £ = 1, we also have

2 2 2 2
IVZ PO} 2 gay + IV VO 72 ga)
¢o 2 2 2 2 s 12
=< a(HVPO”Lz(Rd) + “V pO“LZ(Rd) + “VVO”LZ(IRd) + ”V V0||L2(R‘1)>
é\0 260
< —+ My < —M;
o co

for any ¢ € [0, T], which closes the a priori assumption (2.13).
On the other hand, by summing up (2.54) from £ =0 to k — 1, we can deduce that

PO e gy + VO e g,
t

+ / (I PO i gty + IV s gy + NV VO ) )
0

= &5 (P01 gy + V013 e )
for any ¢ € [0, T'], which gives (1.4).
Finally the standard continuity argument concludes the global existence of solution (p, V)
from the local existence in Lemma 2.1 and the a priori estimates given in Lemma 2.6. This
completes the proof of Theorem 1.1 by noticing that p =u —u. 0O

3. Decay estimates

In this section, we prove Theorem 1.2 by using the energy methods. Without loss of generality,
we may assume that there exists a positive constant M > 1 such that

12011 gty + V03— ay < M+ 3.1)

since (ug — i1, vo) € H 5 (RY) x H™%(R?). For simplicity, we set A :=+/—A, which is defined
by the Fourier transform Af (&) = |£|f(§).

Lemma 3.1. Suppose that the solution (p,v) of system (2.2) satisfies the assumption of
Lemma 2.4. Assume that

POy iy + VO pay <2M7. 1€[0,T], (3.2)

where 0 <5 < %. Then
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e foranyte€[0,T]andallt=0,1,---,k — 1, we have
—(s+¢
IV P12 2ty + IV DI 2 gty + IV VI ) + IV VIR ) < CME(1 1) 70T
(3.3)

e for some positive constant k > 1 and any t € [0, T], we have

: dt(nA—Sanz @iy HIATVIZ a0 ) FIAT VI3 gy + eI AT VI 0
<CMin A pll2gay(1+1) 75, (3.4)

where C is a positive constant independent of t.

Proof. To derive (3.3), we first use the interpolation to obtain that

14 s {+1 s s {+1 s
19" Pl ey < ClpIGTTL, IVEH pIEEL < 20M 7 v+ p T

and

s+L
+é+| L1 sHE+T +é+1 41 +/+1
IVl gy < VI b IV VI gty < 20M T 9 )

Similarly, we can deduce that

IV pll2ray < C||Vp||é”t@)||v“2p|| ;;‘ggd) chH IV 2pl| ;;‘;;gd)

where we have used the interpolation inequality

H—l

IV Pl sy = 1P s ey < Cllpll S(Rd>||p||;,ﬁ'(w) CM;.
Moreover, the a priori estimate (2.15) in Lemma 2.4 implies that

102
”V + V”LZ(Rd)

< cs(||V‘po||iz(Rd) 1V poll7 2y + 1V V0lI7 2 oy + ||vf+1vo||iz(Rd)) <C

and thus

s+l
041 C+1 g T
IV @ay < IV -

Then by collecting the above estimates and using Lemma 2.3, we obtain

2 s+L

Ee(n) <CMTTT @),
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which, together with (2.15) in Lemma 2.4 again, yields that

s+4+1

—5@(t)+cM ”‘5 ST (1) <0.

By a direct calculation, we can deduce that

(s+¢) (s+0)

Eu1) < CMP(EO) 7 +1) M0 <cMP(1+1)
which, together with Lemma 2.3, gives (3.3).

We now turn to prove (3.4). For this purpose, we apply A™° to equations (2.2); and (2.2),,
and take the inner product with A™°p and A ~%v, respectively, to obtain

d o - -
2 AT Py + IAT VDI gy = Jpa A PATV - vdx = [ A pAT*V - (pV)dx,
1 d

E”A v||L2(R,,)+g||A SVV||L2(Rd) Jga ATV p - A" vdx

= —& [pa ATV- AT V|v|%dx,

which, along with integration by parts, implies that
5 (A7 Pty + 1A V2 ) + AT VI 2y + N AT VI
= / A pATV - (pv)dx — E/Aﬂv -ATSV|v|Pdx

R4 Rd

=81+ 8. (3.5)

To estimate S and S, we will use the following LP—-L9 estimate

1 1 «
”A_af”Lq(Rd)SC”f”Lp(Rd) Wlth 525—5, 0<(X <d and 1§p<q<+00

(3.6)

(Stein [28], page 119, Theorem 1). We divide the proof into two cases: d =3 and d = 2.

Case 1 (d = 3). In this case, for Sy, it follows from Holder’s inequality and the LP—L9 estimate
(3.6) that

Sl =< C”A_Sp”LZ(R3) ||A_S(Vp v+ PV . V) ||L2(R3)

)
< CIAT Pl (19p VI s o+ 0PV Y )

= CIA Pl (IVPI 1 oy Mls) + 1P e) 1V VI s, 3))

+1

Then by Sobolev embedding and the interpolation, we see
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2541 —2s

81 = CIA™ Pl (121 ey 192Dl s 19V 2
2s5+1 5 2s
F IVl IV 192V

25+1
< CIA™ pll2gs) (1Pl 2@sy + IVIl2@wsy) * (IVPI2@sy + VY 2@®3))
~(IV?pll 2y + IV VI 2gsy) © - (3.7
The term S; can be estimated similarly as follows:
2s+1

S =<ClA™ V||L2(R3)”V”L2(Rz ”VVHLZ(]R*) ”V V“LZ(R?)’ (3.8)

which is obtained simply by replacing p with v in the estimate of Sj.
Substituting (3.7)—(3.8) into (3.5), and using the decay estimate (3.3) with £ =1 and £ =2
we obtain

S S
S (1A P12y + 1A T V132 ) ) + 1A VP 2 + £l AT VI
3-2s

= M (1A pllagesy + 1A ™Vl 2y ) (1 +07 T (1407 F5
< M3 (1A pllagesy + 1A ™Vl 2oy ) (14075, (3.9)

where
_s+1 s+2 3-—2s

. > 1
2 2 4

by s € (0, 3).

Case 2 (d = 2). The procedure of estimating S; and S is analogous with the case of d = 3.
Indeed, by Holder’s inequality, the L”—L7 estimate (3.6) and the interpolation, we have that

S =IATplle@) [AT (VP -v+pV -V g

< I Pl (19p VI 2 1PV 2 )

= CIA™ Pl 2y (IV P2y VI 2 o + 121, 2 oIV 22e2))

LS (R2) Ls (R2

< CIA™ pll 2y (19 Pl 2 IV gy | V¥ + 12132y 19 21 2oy 1 V¥ 2y
and
Sy < el A7Vl 2y AT VIV [ 2 g2

<C|A™ Vv
AT VI 22 IV ||L 2 &)
< CIAT VI 2@y IVl

L2 (RZHVV“LZ(RZ)

< C”A V”L2 Rz)”V”LZ(RZ)”VV“LZ(RZ)'
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Then employing the decay estimates (3.3) with £ = 1, we have

1d

3 (1A Pl ey + AT VIT a2 ) + DAV P12 ) + eI AT VI oy

_ (+D2=s)
2

< CM%nS(nA—SpuLz(Rz) + ||A_SV||L2(R2))(1 +1)

Taking « := W, we have k > 1 by s € (0, 1). Thus,

1d
2dt

<CMpt <||A_Sp||Lz(Rz) + ||A_SV||L2(R2)>(1 +1)7" .

(1A P13 sy + 1A VIZa gy ) + ATV pl2 o)

This completes the proof of Lemma 3.1. 0O
We now turn to the proof of Theorem 1.2 on the decay estimates of solutions.

Proof of Theorem 1.2. By Lemma 3.1, the decay estimates (1.5) can be obtained from (3.3)
provided that we can close the a priori assumption (3.2) for some constant M; > 0. Now we
show (3.2) holds in fact. For this purpose, we first use (3.4) to obtain

IA™ POy raty + 1A VO 2,

= (1A polia gy + 1A Vol 220
t

+ CMlzn% / (HA_SP(T)”LZ(Rd) + ”A_SV(T)”LZ(Rd))(l + 'L')_Kdl'
0

= (187 P2 gy + 147 V0l 2oz )

D=

+ Mt sup (IA7 PO s, + 1A VO g )
7€[0,1]

/(1 +1) "dr

= (A Pl gy + 1A Vol 220 )

s _ _ 2
+CMint sup (1A PO gay + 1A VO 20
7€[0,1]

by « > 1. For simplicity, we first set

,_ - 2 — 2 2
M) = TZ}BP,](”A POy + 1AV 2z )

and then use Young’s inequality to obtain
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. 1 .
MA(t) < M? +CMPnt M(r) < ZM%) + M? + CsMin?

for some positive constant Cg independent of n and M;. Then, by taking n suitably small such
that Cen 2 M12 < %, we can deduce

IA™ PO 72 gy + 1A VO gy < MP(0) < 2MF,

which closes the a priori assumption (3.2).
Thus the standard continuity argument gives the desired estimate (1.5). This completes the
proof of Theorem 1.2. O

4. Convergence rate of diffusion

In this section, we will use the energy methods to derive that the solutions of (2.2) with
& > 0 converge to that of (2.2) with ¢ =0 as ¢ — 0. Without loss of generality, we may assume
e € [0, 1] throughout this section.

Proof of Theorem 1.3. Let (p®, v®) be the solution of system (2.2) with & > 0 obtained in
Theorem 1.1. We define

P=pt—p° V=v"—v°

Substituting them into (1.3), we end up with
P,—AP—-V-V=V-(PV¥+pV), xeR? >0,

V, —eAVE — VP = —eV|v¢|?, xeR >0, 4.1)
P(x,00=0, V(x,0)=0, xeR4,

For any 0 < ¢ < k — 2, applying V* to equations (4.1); and (4.1),, and taking the inner product
with VEP and V4V, respectively, we have

1d
QE“V[P”izw)JF ||V‘+1P||§2(Rd) —/v‘Pv‘v.de:-/v”lp.v@(vapov)dx

R4 R4
and
1d 14 2 12 42 ¢ £+1 l 14 14 &2
——|IV' VT2 may —€ [ VV-V7TNVAx — [ VTPV Vdx=—¢ | V'V - V"V|v*|“dx.
2dr L2
R R R4

Then the sum of above two identities gives
1d
2dt

=5/VZV-V“‘zvsdx—/V€+1P-V((Pvg+pov>dx—8/V€V-V(V|VS|2dx. 4.2)

R4 R4 R4

(IVE P2y + IV VI aggay ) + IV Pl o,
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Summing up (4.2) from £ =0 to £ =k — 2, we have
1d 2 2 2
S (1P iz ) + 1V 2y ) + 1V P12

—sZ/v@V V2 gy — Z/VMP vi PV +p°V)d

Opd
k=2
— SZ/VZV VIV Ve Pdx
=0py
=11+ +Is. 4.3)

First 71 can be estimated by the Holder’s inequality and (1.4) as follows:

k=2
Ti<e ) IVVI@s V2V gy < Cell VI o IV Lty < CellV I e gay.-
=0
4.4)
For 7,, we use Holder’s inequality, the product estimate and the interpolation to infer that
k=2
T < ) IV Pl [ V(P + V)| o,
£=0
< CIVP g2y 1PV iy + 12V gz g )
< CIV Pl a2y (1P 2y IV sty + 1P ey |V ke )
= CIV Pl gaqeey (1 Pllsoageny + 1V sy )- 45
Similarly, for 73, we have
k—2
T<e) IVVIL@n IV lL2@e < CellVI -2 IV I gay < CEIV Il gay
=0
4.6)

Substituting (4.4), (4.5) and (4.6) into (4.3), and using Young’s inequality, we have

1d

52 (1P Wz ) + IV 2y ) + 1V P2

< CellVl gioagay + CIIV Pll ooy (I Pl iagrey + 1V I i )

1
= SIVPE sy + C(IP 2y + 1V I 2y ) + €2,
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which yields that

d
(PPt ty + 1V i 2y) = G (1P Wity + 1V gt 2y ) + Coe?s
where C7 is a positive constants independent of €. Hence, by Gronwall’s inequality, we get
1P s gy + IV a2 ey < €7 forany 1 € [0, 00).
This completes the proof of Theorem 1.3. O
5. Proof of Theorem 1.4
We are in a position to prove Theorem 1.4. Since u remains the same in the original model
(1.1) and the transformed system (1.3), the result for u is straightforward. With the Cole—Hopf
transformation (1.2), the existence of global classical solutions of (1.1) results from Theorem 1.1

directly with parabolic regularity theory. Next we derive the time convergence rate for u which
follows from (1.5) and the Gagliardo—Nirenberg inequality for d = 2, 3 that

flu — L_l“LOO(]Rd) = ||P||L00(Rd)
d
WMMMWPMW)

C ”p”L2(Rd) ” V p”LZ(Rd)
<Cc+ t)‘T
where we have used the fact that higher derivative has steeper decay in time (see Theorem 1.2).
We proceed to examine the decay rate for the chemical concentration c. From the second equation
of (1.1) and the Cole—Hopf transformation (1.2), we can derive that

(Inc); = —eVv+ vt —u

which, upon the integration, yields

t
c(x, 1) = co(x) exp ( —ar + f(ﬁ —u+e(v - VV))d‘L’). (5.1

From (1.5) and Gagliardo—Nirenberg inequality, we have

1
f ||I/l — M”Loo(Rd)dT < C/ ”p”Lz(Rd) ||Vdp||z2(Rd)dT

< C/ ”p”LZ(Rd)”V p”LZ(Rd)
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t
1+s
< C/(l +1) Tdr
0

<Cc+n'7. (5.2)

In a similar way, we may readily derive that

t
f IVl oo aydT < C(A+1)~* (5.3)
0
and
t
1—=s
f VY oaydT <C(1+1) 7. (5.4)
0

Substituting (5.2)—(5.4) into (5.1), we can derive that

g
lell oo gay < Ce™*UFDI=CU+D 2 —CU+n17 < it

Now we let (u®, ¢®) denote the solution of (1.1) with ¢ > 0, and derive the estimate v® — o

with respect to €. To this end, we let ¢ = v° — " and obtain the equation for ¢ from the second
equation of (1.1) as follows:

{q,:eAq—uoq—(us—uo)cs, xeR >0
q(x,0)=0.

Then applying V¢ to the equation, taking inner product with V¢g and adding up the results from
[=0tol =k — 2, we arrive at

1d
2dt
Rd

2 2
”q”kaZ(Rd) + 8”‘1 ”Hk—l(Rd)

k=2 k=2
==, / ViqVi(qu'ydx =) / ViV —u)e)dx = Ti + .
IZORd l:ORd

For J1, we have the following estimates

k=2

T = D IV gl IV (qu) 2 ey
=0

< Cligll gr—2 ey lqu®ll g2 gay
2 0
=< ”q“Hk—Z(Rd)”u “LOO(R‘I)

2
S ”q”kaZ(Rd)‘
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Similarly, 7> is estimated as:

k=2

Jo <Y IVl 2@y I V@€ = u®)e 2 gay
=0

< Cllgl g2y lu® = u®ll i ey 167 1| o
< Cllg a2 gy + 11" =152 gy 1€ 117 o

< CUllg I ga) + 7.

Thus it follows that

1d

2dr / 1412y + €001 ey < CUIG I gy + £%€)

R4
which, along with the Gronwall’s inequality, gives the desired results and the proof is completed.
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