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Abstract. By constructing sub and super solutions, we establish the exis-

tence of traveling wave solutions to a two-species chemotaxis model, which
describes two interacting species chemotactically reacting to a chemical signal

that is degraded by the two species. We identify the full parameter regime in

which the traveling wave solutions exist, derive the asymptotical decay rates of
traveling wave solutions at far field and show that the traveling wave solutions

are convergent as the chemical diffusion coefficient goes to zero.

1. Introduction. The chemotaxis system, a well-known mathematical model to
describe cell motion in response to a chemical cue, has many applications in bio-
logical systems. For instance, the propagation of traveling bands of chemotactic
bacterial along a capillary tube toward the chemical energy sources consumed by
the bacteria can be described by the following model proposed by Keller and Segel
[13] {

ut = [ux − χuφ(w)x]x,
wt = εwxx − u

(1.1)

where u(x, t) denotes the bacterial population densities, w(x, t) the chemical concen-
tration, ε > 0 is the chemical diffusion coefficient, and χ ∈ R the chemotactic coeffi-
cients measuring the strength of chemotactic interactions. The function φ = φ(w) is
the chemotactic sensitivity function describing the signalling mechanism by which
bacteria response to the chemical. The model (1.1) is usually referred to as a one-
species chemotaxis model since only one species u is considered in the dynamics.
It was shown in [13] that if φ(w) = logw, namely the sensitivity function is loga-
rithmic, the model (1.1) can reproduce the propagating wave bands observed in the

2010 Mathematics Subject Classification. Primary: 35C07, 35K55, 46N60; Secondary: 62P10,
92C17.

Key words and phrases. Chemotaxis, multi-species, logarithmic sensitivity, traveling wave so-

lutions, maximum principle, sub and super-solutions, asymptotic behavior.
The research of T.C. Lin was supported by the NCTS, TIMS and NSC grant 97-2918-I-002-010

of Taiwan. The research of Z.A. Wang was supported in part by the Hong Kong RGC General
Research Fund No. 502711.

2907

http://dx.doi.org/10.3934/dcds.2014.34.2907


2908 TAI-CHIA LIN AND ZHI-AN WANG

experiment of [1]. Subsequently the application of the logarithmic sensitivity func-
tion in chemotaxis models stimulated a large number of studies on the existence and
(linear) stability of traveling wave solutions (see [3, 10, 22, 23, 24, 25, 26, 27, 28, 31]
and references therein). Recently both experiments and model simulation were used
in [12] to show that E. coli bacteria do sense the spatial gradient of the logarithmic
ligand concentration, which in turn rationalizes the use of logarithmic sensitivity
in previous studies. The nonlinear stability of traveling wave solutions to a one-
species chemotaxis model with logarithmic sensitivity and exponential consumption
for the chemical (i.e. replacing the term −u in (1.1) by −uw) was established by
the method of energy estimates in [11, 18, 20], and a generalization in [19] for the
chemical consumption function.

Situations where the two populations react to one single chemical signal have been
described experimentally in [14, 16, 21] and mathematically in [4, 7, 8, 17, 29, 32].
Recently a wide class of multi-species chemotaxis models and their mathematical
properties have been discussed in [9] where, however, the traveling wave solution
was not discussed. In the present paper, we shall study the traveling wave solutions
of the following two interacting species chemotaxis model ut = [ux − χ1uφ(w)x + βuφ(v)x]x,

vt = [vx − χ2vφ(w)x + βvφ(u)x]x,
wt = εwxx − (u+ v)

(1.2)

where u(x, t), v(x, t) denote the two interacting cell population densities and w(x, t)
the chemical concentration. Besides, χ1, χ2, β ∈ R denote the chemotactic coeffi-
cients, ε > 0 is the chemical diffusion coefficient, and φ is the chemotactic sensitivity
function. In particular, as χ1 < 0 and χ2, β > 0, (1.2) becomes a particularized
case of [9, equation (4.1)] where both u and v consume w. The relevant biological
background can be found in [9]. The interactions of u, v and w are governed by the
coupling constants χ1, χ2 and β in (1.2). The sign of χ1, χ2 and β determines the
chemotactic interaction (either attraction or repulsion) of pairs (u,w), (v, w) and
(u, v), respectively. The details are listed as follows:

χ1 > 0 (or χ1 < 0): u is attracted (or repelled) by w;
χ2 > 0 (or χ2 < 0): v is attracted (or repelled) by w;
β > 0 (or β < 0): u and v are repelled (attracted) each other;
β = 0: u and v have no mutual chemotactic interaction.

The main goal of this paper is to find under what conditions on parameters χ1, χ2, β,
the traveling wave solutions of (1.2) with logarithmic sensitivity φ(w) = lnw exist
for (x, t) ∈ R× [0,∞). It would be natural to believe that the existence of traveling
wave solutions of (1.2) may be affected by the sign of χ1, χ2 and β. Indeed in this
paper we shall show that the sign conditions of χ1, χ2 and β are not sufficient to
guarantee the existence of traveling wave solutions, and the traveling wave solutions
exist only for the parameters in certain parameter regimes (see Theorem 2.1) plotted
in Fig. 1 which gives the regions of (χ1, χ2) for −1 < β 6= 1. When β = 1, traveling
wave solutions exist if χ1 = χ2 ≥ 2, see Theorem 2.2.

Due to the high dimensionality of the traveling wave system of ordinary differ-
ential equations (ODEs) corresponding to the chemotaxis model, the study of trav-
eling wave solutions to the two-species chemotaxis model (1.2) faces much greater
challenges than one-species models in general. In this paper, taking advantage of
logarithmic sensitivity which may reduce the dimensionality of the system and em-
ploying the sub and super solution method, we are able to establish the existence
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Figure 1. Numerical plots of parameter Region I in which the
traveling wave solutions exist.

and asymptotic behavior of traveling wave solutions to the two-species chemotaxis
model (1.2). Furthermore we may extend the idea of [23, 30] for one-species model
to two species model (1.2) and obtain the ε-convergence of traveling wave solutions
using the fact that the wave speed is independent of the chemical diffusion rate ε.

The rest of this paper is organized as follows. In section 2, main results of
this paper are stated. In section 3, we establish several key Theorems which will be
essentially used in section 4 where we prove our main results and identify the explicit
parameter regimes in which traveling wave solutions exist. Finally we establish the
ε-convergence of traveling wave solutions in section 5.

2. Statement of main results. Integrating the first two equations of (1.2) yields
the conservation of mass of u and v, namely∫

R
u(x, t)dx =

∫
R
u0(x)dx =: N1,

∫
R
v(x, t)dx =

∫
R
v0(x)dx =: N2 (2.1)

where N1, N2 are prescribed positive numbers denoting the cell mass of u and v,
respectively. This requires u(±∞) = v(±∞) = 0. Hence the traveling wave solution
of (1.2) in (x, t) ∈ R× [0,∞) is a non-constant special solution in C2(R) with ansatz

(u, v, w)(x, t) = (U, V,W )(z), z = x− ct

where c is the wave speed and z is called the wave (or moving) variable. Upon the
substitution of above ansatz into (1.2), the traveling wave equations are obtained
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as  −cU
′ = U ′′ − χ1(Uφ′(W ))′ + β(Uφ′(V ))′,

−cV ′ = V ′′ − χ2(V φ′(W ))′ + β(V φ′(U))′,
−cW ′ = εW ′′ − (U + V )

(2.2)

where ′ = d
dz . Next one needs to determine the appropriate boundary conditions

for the traveling wave solutions. Since u, v and w denote the densities of biological
species, we restrict our attention to the non-negative solution U, V,W ≥ 0 only.
Moreover the mass preservation (2.1) implies that∫

R
U(z)dz = N1,

∫
R
V (z)dz = N2 (2.3)

which indicates U(±∞) = V (±∞) = 0. Moreover the integration of the third
equation of (2.2) on (y, z) yields

ε[W ′(z)−W ′(y)] =

∫ z

y

(U + V )(ξ)dξ − c[W (z)−W (y)],

which implies that W ′(±∞) exists. Since W (±∞) exists as boundary conditions,
we obtain W ′(±∞)=0. If we write the third equation of (4.1) as (e

c
ε zW ′)′ =

1
εe

c
ε z(U + V ), then the integration of above equation leads to

W ′ =
1

ε
e−

c
ε z

∫ z

−∞
e
c
ε ξ(U + V )(ξ)dξ > 0

since U, V ≥ 0. This implies that W (z) is monotone increasing if it exists. Therefore
the appropriate boundary conditions for (U, V,W )(z) would be:

U(±∞) = V (±∞) = 0,W (−∞) = 0,W (∞) = m, (2.4)

where m > 0 is a constant.
In the following, we adopt the convention a(z) ∼ b(z) as z → ±∞ if and only if

limz→±∞
a(z)
b(z)

= c with c being a constant. In the sequel, we shall use C to denote a generic
constant which may vary in the context. Then our first main result concerning the
existence and asymptotical behavior of traveling wave solutions for β 6= ±1 is as
follows.

Theorem 2.1. Let ε ≥ 0 and β2 6= 1. Denote λ1 = βχ2−χ1

β2−1 , λ2 = βχ1−χ2

β2−1 .

Then for each c > 0, the traveling wave solution (U, V,W ) to model (1.2) satisfying
the boundary condition (2.4) exists if and only if β > −1 and min{λ1, λ2} ≥ 1.
Moreover if we let C denote a generic positive constant and s = c

β+1 > 0, then the

traveling wave solution has the following asymptotic behavior:
(i) If ε = 0 and λ1=λ2 ≥ 1, then

W (z) =


(
m1−λ2 + C(λ2−1)

s e−sz
) 1

1−λ2
, λ1 = λ2 > 1,

me−
C
s e
−sz

, λ1 = λ2 = 1
(2.5)

and if λ1 > λ2

W (z) ∼
(
m1−λ2 +

C(λ2 − 1)

s
e−sz

) 1
1−λ2

, as z → ±∞; (2.6)

(ii) If ε > 0 and λ1 ≥ λ2 ≥ 1, then
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(a) If λ2 > 1, then

W (z) ∼ e−µ2z, as z → −∞,
W (z)−m ∼ e− cε z, as z →∞

(2.7)

where µ2 = s
1−λ2

< 0.

(b) If λ2 = 1, then

W (z) ∼ e( s4−
c
2ε )z− 2C

c
√
ε
e−

s
2
z

, as z → −∞,
W (z)−m ∼ e− cε z, as z →∞.

(2.8)

The asymptotic behaviors of U and V as z → ±∞ in case (i) and (ii) are determined
by

U(z) ∼ e−szW (z)λ1 ; V (z) ∼ e−szW (z)λ2 .

Remark 1. In Theorem 2.1, we assume that λ1 ≥ λ2 without loss of generality.
When λ1 ≤ λ2, the same results hold by interchanging λ1 and λ2 in the theorem.

Our next main result is the existence theorem of traveling wave solutions when
β = ±1.

Theorem 2.2. Let φ(w) = lnw and let ε ≥ 0, β2 = 1. Then the following assertions
hold.

(i) If β = −1, there is no traveling wave solution to (1.2);
(ii) If β = 1 and χ1 6= χ2, then (1.2) does not have a traveling wave solution;
(iii) If β = 1 and χ1 = χ2, then

(a) the system (1.2) has no traveling wave solution if χ1 = χ2 < 2;
(b) the system (1.2) has a traveling wave solution satisfying (2.4) if χ1 = χ2 =

2, such that the asymptotic behavior of the solution component (U, V ) as z → ±∞
is given by

U(z) = V (z) ∼ e− c2 zW (2.9)

where the asymptotic behavior of W is

W (z) ∼ e( c8−
c
2ε )z− 2C

c
√
ε
e−

c
4
z

, as z → −∞,
W (z)−m ∼ e− cε z, as z →∞;

(2.10)

(c) the system (1.2) has a solution if χ1 = χ2 > 2, such that the asymptotic
behavior of the solution component (U, V ) as z → ±∞ is given by

U(z) ∼ e− c2 zW χ̃1 , V (z) ∼ e− c2 zW χ̃2 ,

where the asymptotic behavior of W is the same as those in Theorem 2.1 by replacing
s with c

2 and (λ1, λ2) with (χ̃1, χ̃2), where (χ̃1, χ̃2) can be arbitrarily chosen such
that min{χ̃1, χ̃2} ≥ 1.

The last theorem is concerned with the convergence of traveling wave solutions
as ε→ 0. Since the wave speed determines the wave profile, one needs to guarantee
the convergence of wave speed with respect to ε first. Fortunately if we integrate
the third equation of (2.2) over (−∞,∞), we find the wave speed as

c = (N1 +N2)/m

which is a constant depending only on cell mass N1, N2 and m, but independent of
ε. This allows the possibility to prove the ε-convergence of traveling wave solutions.
Indeed, we have the following precise result:
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Theorem 2.3. Let traveling wave solutions of (1.2) be denoted by (Uε, Vε,Wε) for
ε > 0 and by (U0, V0,W0) for ε = 0. Then for each z ∈ R, it follows that

|(Uε, Vε,Wε)− (U0, V0,W0)| = O(ε), as ε→ 0.

3. Key theorems. In this section, we shall establish several theorems that are
essential to prove our main results.

Proposition 1. Consider the problem{
εp′′ + cp′ − αe−kzpλ = 0,
p(−∞) = 0, p(∞) = ω > 0

(3.1)

with ε > 0, where p = p(z), z ∈ R, α, k, λ > 0 and c ≥ 0. Then
(i) If λ < 1, (3.1) does not have a solution;
(ii) If λ > 1, (3.1) has a unique solution for each c > 0 such that p′(z) > 0 and

p(z) =


[(

η
α

)1/(λ−1)

− Ceγz
]
e−µz, as z → −∞,

ω − Ce− cε z, as z →∞
(3.2)

where

µ =
k

1− λ
< 0, η = εµ2 − cµ > 0, γ = µ+

−c+
√
c2 + 4(εµ2 − cµ)λ

2
> 0.

(iii) If λ = 1, then for each c > 0 (3.1) has a unique solution satisfying p′(z) > 0
and

p(z) ∼ e( k4−
c
2ε )z− 2

√
α

c
√
ε
e−

k
2
z

, as z → −∞,
p(z)− ω ∼ e− cε z, as z →∞.

The most of results in Proposition 3.1 has been proved in [22, 30, 6]. The full
proof is length and we present it in Appendix for completeness. Next we employ
Proposition 1 to establish the following theorem which is the key to the proof of
our main results in the next section.

Theorem 3.1. Consider the problem{
εφ′′(z) + cφ′(z) = c1e

−szφλ1 + c2e
−szφλ2 ,

φ(−∞) = 0, φ(∞) = m > 0
(3.3)

with ε > 0, where c1, c2, s > 0 are constants and λ1, λ2 > 0 are parameters. If
F (z, φ) ∈ L1(R), where F (z, φ) = c1e

−szφλ1 + c2e
−szφλ2 , then we have

(i) If min{λ1, λ2} < 1, the problem (3.3) has no solution.
(ii) If min{λ1, λ2} ≥ 1, the problem (3.3) has a unique solution with φ′ > 0.

Moreover if λ1 ≥ λ2 ≥ 1, then the asymptotic behavior of the solution satisfies
(a) If λ2 > 1, then

φ(z) ∼

{ (
A1 +A2e

γ2z
)
e−µ2z, as z → −∞,

m−A3e
− cε z, as z →∞.

(3.4)

where Ai > 0 (i = 1, 2, 3) are constants and

µ2 =
s

1− λ2
< 0, γ2 = µ2 +

−c+
√
c2 + 4(µ2

2 − cµ2)λ2

2
> 0.
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(b) If λ2 = 1, then

φ(z) ∼ e( s4−
c
2ε )z− 2

√
c̃

c
√
ε
e−

s
2
z

, as z → −∞,
φ(z)−m ∼ e− cε z, as z →∞

(3.5)

where c̃ is a positive constant such that c2 ≤ c̃ ≤ c2 + c1m
λ1−λ2 . If λ2 ≥ λ1 ≥ 1,

the above decay rates hold true by interchanging λ1 and λ2.

Proof. (i) Without loss of generality, we assume that 0 < λ1 < 1. Then we prove
the theorem by contradiction. Suppose that (3.3) has a solution φ. Then by the
maximum principle, φ > 0 in R. Hence{

εφ′′ + cφ′ ≥ c1e−szφλ1 , z ∈ R,
φ(−∞) = 0, φ(∞) = m > 0

(3.6)

which asserts that φ is a sub-solution of{
εϕ′′ + cϕ′ = c1e

−szϕλ1 , z ∈ R,
ϕ(−∞) = 0, ϕ(∞) = m > 0.

(3.7)

To construct a super-solution of (3.7), we set

ψ(z) = mξ(z +K) for z ∈ R

where K is a nonzero constant to be determined and ξ is the positive solution of{
εξ′′ + cξ′ = c1e

−szξ2, z ∈ R,
ξ(−∞) = 0, ξ(∞) = 1.

(3.8)

Note that the existence of monotone solutions to (3.8) has been established in [30],
see also Proposition 1 (ii). Hence 0 < ξ < 1 in R due to ξ′ > 0. It is then easy to
check from (3.8) that

εψ′′(z) + cψ′(z) =
c1
m
e−s(z+K)ψ2(z)

= c1me
−s(z+K)ξ2(z +K)

≤ c1me−s(z+K)ξλ1(z +K)

= c1m
1−λ1e−s(z+K)ψλ1(z)

= c1e
−szψλ1(z)

(3.9)

for all z ∈ R, provided that K satisfies esK = m1−λ1 , namely K = (1−λ1) lnm
s .

Hence ψ satisfies {
εψ′′ + cψ′ ≤ c1e−szψλ1 in R,
ψ(−∞) = 0, ψ(∞) = m

(3.10)

which indicates that ψ is a super-solution of (3.7). Now we claim that φ ≤ ψ in R.
Indeed, let η = φ− ψ. Subtracting (3.10) from (3.6), we obtain

εη′′ + cη′ ≥ c1e−sz(φλ1 − ψλ1) = q(z)η = c1e
−sz
(
φλ1 − ψλ1

φ− ψ

)
η in R

where q(z) = c1e
−sz φλ1−ψλ1

φ−ψ = c1λ1e
−sz ξ̃λ1−1 ≥ 0 in R and ξ̃ is between φ and ψ.

Then by the maximum principle, we have

max
|z|≤R

η(z) ≤ max
|z|=R

η(z) = max
|z|=R

(φ(z)− ψ(z))→ 0 as R→∞
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where we have used the fact that φ(−∞) = ψ(−∞) = 0 and φ(∞) = ψ(∞) = m >
0. This proves our claim. Then by the comparison principle of elliptic equations,
(3.7) has a solution ϕ such that φ ≤ ϕ ≤ ψ. This contradicts Theorem 1 which says
that (3.7) does not have a solution if λ1 < 1. By contradiction, the proof of (i) is
completed.

(ii) We assume that λ1 ≥ λ2 ≥ 1 without loss of generality. Let φ̄ be a positive
solution of {

εφ′′ + cφ′ = c1e
−szφλ1 , z ∈ R,

φ(−∞) = 0, φ(∞) = m > 0.
(3.11)

Since εφ′′+cφ′ = c1e
−szφλ1 < c1e

−szφλ1 +c2e
−szφλ2 , φ̄ is a super-solution of (3.3).

Next we shall construct a nonzero sub-solution of (4.5). To this end, let ϕ(z) be a
solution of {

εϕ′′ + cϕ′ = δe−szϕλ2 , z ∈ R,
ϕ(−∞) = 0, ϕ(∞) = m

(3.12)

where δ is a constant such that c2 < δ < c1m
λ1−λ2 + c2.

We remark that the existence of unique solution to (3.12) has been shown in
[30, 22] for λ2 > 1, and in [15] for λ2 = 1, see also Proposition 1. Now we assume
that

φ = σϕ (3.13)

where 0 < σ < 1 is to be determined later. We shall show that for appropriate small
σ, φ is a sub-solution of (3.3). To this end, we first substitute (3.13) into (3.12) and
obtain {

εφ′′ + cφ′ = δσe−szϕλ2 , z ∈ R,
φ(−∞) = 0, φ(∞) = σm.

(3.14)

Then to prove that φ is a sub-solution of (3.3), it suffices to require that

δσe−szϕλ2 > c1e
−szσλ1ϕλ1 + c2e

−szσλ2ϕλ2 for all z ∈ R

which, upon cancelation, is equivalent to

c1σ
λ1−1ϕλ1−λ2 + c2σ

λ2−1 < δ, for all z ∈ R. (3.15)

Noticing that 0 < σ < 1, λ1 − λ2 ≥ 0 and ϕ is a solution of (3.12) with ϕ′(z) > 0
and hence ϕ < m, we have c1σ

λ1−1ϕλ1−λ2 + c2σ
λ2−1 < c1σ

λ2−1mλ1−λ2 + c2σ
λ2−1.

Hence if we choose σ such that

σ < min

{
1,

(
δ

c1mλ1−λ2 + c2

) 1
λ2−1

}
, (3.16)

then (3.15) is ensured, which shows that φ is a sub-solution of (3.3). Next we show

that φ ≤ φ̄ for all z ∈ R. To this end, let ζ = φ − φ̄. Noting that with (3.16), φ
satisfies from (3.14){

εφ′′ + cφ′>c1e
−szφλ1 + c2e

−szφλ2 , z ∈ R,
φ(−∞) = 0, φ(∞) = σm.

(3.17)

Then ζ satisfies that

εζ ′′+cζ ′ ≥ c1e−sz(φλ1−φ̄λ1)+c2e
−szφλ2 ≥ c1e−sz(φλ1−φ̄λ1) = c1e

−sz φ
λ1 − φ̄λ1

φ− φ̄
ζ.
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Since
φλ1−φ̄λ1
φ−φ̄ ≥ 0 and φ(−∞) = 0 = φ̄(−∞), (φ − φ̄)(∞) = (σ − 1)m < 0, it

follows from the maximum principle that

max
|z|≤R

ζ(z) ≤ max
|z|=R

ζ(z) = max
|z|=R

(φ(z)− φ̄(z))≤0 as R→∞

which implies that φ(z) ≤ φ̄(z) for all z ∈ R. By the comparison principle, we

obtain a solution φ to (3.3) such that φ ≤ φ ≤ φ.
For the uniqueness, we assume that φ and ψ are the solutions of (3.3), i.e.

εφ′′ + cφ′ = c1e
−szφλ1 + c2e

−szφλ2 in R and φ(−∞) = 0, φ(∞) = m > 0

and

εψ′′ + cψ′ = c1e
−szψλ1 + c2e

−szψλ2 in R and ψ(−∞) = 0, ψ(∞) = m > 0.

Then defining η = φ− ψ, we have

η′′ + cη′ = H(z)η,

where H(z) = c1e
−sz φλ1−ψλ1

φ−ψ + c2e
−sz φλ2−ψλ2

φ−ψ ≥ 0. Hence by the maximum prin-

ciple again, we have

max
|z|≤R

|η(z)| ≤ max
|z|=R

|η(z)| → 0 as R→ +∞

which implies that η ≡ 0 for all z ∈ R. Therefore φ ≡ ψ in R and the uniqueness is
proved. Next we prove the monotonicity of the traveling wave solution φ. To this
end, we first show φ′(−∞) = 0. Indeed integrating the first equation of (3.3) over
(y, z), we have

0 = ε(φ′(y)− φ′(z)) + c(φ(y)− φ(z)) +

∫ z

y

F (z, φ)dz

which, along with the assumption F (z, φ) ∈ L1(R), indicates that φ′(±∞) exists.
Since φ(±∞) exists, we obtain that φ′(±∞) = 0. Then we can rewrite the equation
(3.3) as

(e
c
ε zφ′)′ =

c1
ε
e( cε−s)zφλ1 +

c2
ε
e( cε−s)zφλ2 .

Then we integrate it over (−∞, z] and obtain that

φ′ =
1

ε
e−

c
ε z

[
c1

∫ z

−∞
e( cε−s)ξφλ1(ξ)dξ + c2

∫ z

−∞
e( cε−s)ξφλ2(ξ)dξ

]
which asserts that φ′ > 0 since φ > 0 in R and c1, c2 > 0.

To finish the proof of Theorem 3.1 (ii), it remains to derive the asymptotic decay
rates announced. We consider the case λ1 ≥ λ2 ≥ 1. Since φ′(z) > 0, we have from
(3.3) that 0 < φ(z) < m for all z ∈ R. Then we have

εφ′′ + cφ′=e−szφλ2(c1φ
λ1−λ2 + c2)

≤ (c2 + c1m
λ1−λ2)e−szφλ2 .

On the other hand, it has that

εφ′′ + cφ′ = c1e
−szφλ1 + c2e

−szφλ2 ≥ c2e−szφλ2 .

Therefore it follows that

εφ′′ + cφ′ ∼ c̃e−szφλ2 for all z ∈ R (3.18)
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where c2 ≤ c̃ ≤ c2 + c1m
λ1−λ2 . Then the asymptotic behavior (6.8) follows directly

from (3.18) by Proposition 1 (ii). When λ2 = 1, we obtain (3.5) from (3.18) with
Proposition 1 (iii). The proof of Theorem 3.1 (ii) is completed.

4. Existence of traveling wave solutions to system (1.2). In this section, we
shall apply Theorem 3.1 to establish traveling wave solutions to the system (1.2).
To this end, we rewrite (2.2) with φ(w)= lnw as −cU

′ = U ′′ − χ1(U W ′

W )′ + β(U V ′

V )′,

−cV ′ = V ′′ − χ2(V W ′

W )′ + β(V U ′

U )′,
−cW ′ = εW ′′ − (U + V ).

(4.1)

As the analysis in section 2, the existence of traveling wave solutions to (1.2) is
equivalent to the existence of solutions of (4.1) subject to the boundary condition
(2.4). Solving the first two equations of (4.1) and using the boundary condition
(2.4), we have

U(z) = C1e
−czWχ1V −β , V (z) = C2e

−czWχ2U−β (4.2)

if the integration constant is zero, where C1, C2 > 0 are constants of integration.
In the following, we shall prove Theorem 2.1 and Theorem 2.2.

4.1. Proof of Theorem 2.1. Theorem 2.2 gives the existence and non-existence
of traveling wave solutions for β2 = 1. Next we consider the case β2 6= 1 for which
we first solve (4.2) to obtain that

U(z) = C3e
−szWλ1 , V (z) = C4e

−szWλ2 (4.3)

with C3 =
(
Cβ2
C1

) 1
β2−1

, C4 = C3

(
C1

C2

) 1
β−1

and s = c
β+1 , λ1 = βχ2−χ1

β2−1 , λ2 = βχ1−χ2

β2−1 .

If min{λ1, λ2} ≤ 0, it is clear that U(−∞) = ∞ if λ1 ≤ 0 and V (−∞) = ∞ if
λ2 ≤ 0 since W (−∞) = 0 . Thus a necessary condition for (U, V ) in (4.3) to be a
traveling wave solution component satisfying (2.4) is

λ1 =
βχ2 − χ1

β2 − 1
> 0, λ2 =

βχ1 − χ2

β2 − 1
> 0. (4.4)

Substituting (4.3) into the third equation of (4.1) and using (2.4), we obtain the
following problem{

εW ′′ + cW ′ = C3e
−szWλ1 + C4e

−szWλ2 ,
W (−∞) = 0, W (∞) = m > 0.

(4.5)

We note from (4.3) and (2.3) that F (z,W ) = C3e
−szWλ1 + C4e

−szWλ2 ∈ L1(R).
It is helpful to give a remark before proceeding.

Remark 2. If s < 0, then the evaluation of equation (4.5) at z =∞ will contradict
the boundary condition W (∞) = m > 0. Hence a necessary condition for (4.5) to
have a solution is s = c

β+1 > 0, which is equivalent to β > −1 due to c > 0.

Now we are ready to prove Theorem 2.1. We split our analysis to the case ε > 0
and ε = 0.
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Zero diffusion ε = 0. With ε = 0, (4.5) becomes

W ′ = c3e
−szWλ1 + c4e

−szWλ2 , W (−∞) = 0, W (∞) = m > 0. (4.6)

where c3 = C3/c > 0, c4 = C4/c > 0. We first have the following non-existence
result.

Lemma 4.1. If min{λ1, λ2} < 1, then there is no solution to (4.6).

Proof. Without loss of generality, we assume λ2 < 1. Supposing that (4.6) has a
solution W (z), we have from (4.6) that

W ′ > c4e
−szWλ2 > 0. (4.7)

Since W (−∞) = 0, it follows that W (z) > 0 for all z ∈ R. Now using the boundary
condition in (4.6) to solve (4.7), one has

W 1−λ2 < m1−λ2 − c4(1− λ2)

s
e−sz.

Clearly, if z < 0 and |z| is sufficiently large such that z < z̃ = − 1
s ln sm1−λ2

c4(1−λ2) , above

inequality implies that W 1−λ2 < 0 which contradicts the fact that W (z) > 0 for all
z ∈ R. Then the proof is finished.

Next, we shall prove the following result.

Lemma 4.2. If min{λ1, λ2} ≥ 1, then (4.6) has a unique solution.

Proof. We proceed with two cases: λ1 = λ2 and λ1 6= λ2.
Case 1. λ1 = λ2. In this case, the problem (4.6) becomes

W ′ = (c3 + c4)e−szWλ2 , W (−∞) = 0, W (∞) = m > 0.

Solving above problem directly yields the unique solution as

W (z) =


(
m1−λ2 + (c3+c4)(λ2−1)

s e−sz
) 1

1−λ2
, λ1 = λ2 > 1,

me−
c3+c4
s e−sz , λ1 = λ2 = 1

(4.8)

which gives (2.5) in Theorem 2.1.
Case 2. λ1 6= λ2. Without loss of generality, we assume that λ1 > λ2. We
first notice that W (z) < m for all z ∈ R since W ′ > 0 and W (∞) = m. Hence
Wλ1 < Wλ2mλ1−λ2 and we have from (4.6) that

c4e
−szWλ2 < W ′ < (c3m

λ1−λ2 + c4)e−szWλ2 = c5e
−szWλ2 (4.9)

where c5 = c3m
λ1−λ2 + c4. Solving above inequality with boundary conditions in

(4.6), we obtain that W (z) is bounded such that W1(z) ≤ W (z) ≤ W2(z), where
W1 is the solution of W ′ = c5e

−szWλ2 , W (−∞) = 0, W (∞) = m > 0 and W2 is
the solution of W ′ = c4e

−szWλ2 , W (−∞) = 0, W (∞) = m > 0. This shows that
(4.6) has a solution. For the asymptotic behavior, we see from (4.9) that

W ′ ∼ Ce−szWλ2

where c4 ≤ C ≤ c5. This gives that

W (z) ∼
(
m1−λ2 +

C(λ2 − 1)

s
e−sz

) 1
1−λ2

, as z → ±∞ (4.10)

which yields (2.6) in Theorem 2.1.

Then the proof of Theorem 2.1 (i) is completed. Next we consider the case ε > 0.
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Nonzero diffusion ε > 0. When ε > 0, the existence of solution W (z) of (4.5)
with W ′ > 0 follows directly from Theorem 3.1 with Remark 2. Once we obtain W ,
we can substitute W back into (4.3) to obtain the solution component (U, V ) of the
system (4.1). Now we need to verify that the obtained solution (U, V,W ) fulfills the
boundary condition (2.4). First the boundary condition for W (z) has been verified
from (4.5) directly. Furthermore from (4.3), it follows that U(+∞) = V (+∞) = 0
since s > 0. Hence it remains to check if U(−∞) = V (−∞) = 0 which is not
obvious yet. Under the assumption that λ1 ≥ λ2 ≥ 1, we obtain from Theorem 3.1
(ii) that

W (z) ∼

{
(A1 +A2e

γ2z)e−µ2z, λ2 > 1,

e
( s4−

c
2ε )z− 2

√
c̃

c
√
ε
e−

s
2
z

, λ2 = 1,
as z → −∞

where the constants A1, A2, γ2, µ2 are given in Theorem 3.1 (ii) and c̃ is an arbitrary
constant such that C4 ≤ c̃ ≤ C4 + C3m

λ1−λ2 . Therefore one has from (4.3) that

U(z) = C3e
−szWλ1 ∼

 (A1 +A2e
γ2z)e−

s(1+λ1−λ2)
1−λ2

z, λ2 > 1,

e
[λ1( s4−

c
2ε )−s]z− 2λ1

√
c̃

c
√
ε
e−

s
2
z

, λ2 = 1,
as z → −∞

and

V (z) = C4e
−szWλ2 ∼

{
(A1 +A2e

γ2z)e−
s

1−λ2
z, λ2 > 1,

e
[λ2( s4−

c
2ε )−s]z− 2λ2

√
c̃

c
√
ε
e−

s
2
z

, λ2 = 1,
as z → −∞.

Noticing that s(1+λ1−λ2)
1−λ2

< 0 and s
1−λ2

< 0 due to λ1 ≥ λ2>1, one immediately ob-

tains that U(−∞) = V (−∞) = 0, which is consistent with the boundary condition
(2.4).

Fig. 2 (a) shows a numerical solution of (4.5) and Fig. 2 (b) plots the numerical
solution U and V which are obtained from W shown in Fig. 2 (a) by (4.3). From the
simulation, we see that W is a wavefront and U, V are pulsating waves, as expected.
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Figure 2. An illustration of numerical traveling wave solutions of
system (1.2), where ε = 0.1, c = 2, s = 1/4, λ1 = 4, λ2 = 2, C3 =
C4 = 1,m = 10. The solution W is solved from (4.5), U and V are
obtained from (4.3).
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4.2. Proof of Theorem 2.2. (i) If β = −1, we can derive from (4.2) that
C1C2W

χ1+χ2(z) = e2cz, which does not hold for χ1 + χ2 = 0. When χ1 + χ2 6= 0,
we have that W (−∞) = ∞ if χ1 + χ2 < 0 and W (∞) = ∞ if χ1 + χ2 > 0. Hence
(4.1) does not possess a traveling wave solution for any χ1, χ2 ∈ R when β = −1.

(ii) If β = 1 and χ1 6= χ2, we solve (4.2) and have W (z) =
(
C1

C2

) 1
χ2−χ1

is a

constant, which leads to from the third equation of (4.1) that U + V ≡ 0. This
implies that U = V ≡ 0 for all z ∈ R since U, V ≥ 0. Therefore (4.1) does not have
a solution for β = 1, χ1 6= χ2.

(iii) For the case β = 1, χ1 = χ2, we derive from (4.2) that C1 = C2 =: C2 with
C > 0 and

(UV )(z) = C2e−czWχ (4.11)

where χ =: χ1 = χ2. We may write (4.11) as

U(z) = Ce−c̃1zW χ̃1 , V (z) = Ce−c̃2zW χ̃2 (4.12)

where c = c̃1 + c̃2, χ = χ̃1 + χ̃2. It can be easily seen that if either c̃1 ≤ 0 or c̃2 ≤ 0,
the boundary condition of U or V as z → ∞ will be violated. Hence we assume
that c̃1 > 0, c̃2 > 0. Then substituting (4.12) into the third equation of (4.1) and
using the boundary condition (2.4), we obtain{

εW ′′ + cW ′ = Ce−c̃1zW χ̃1 + Ce−c̃2zW χ̃2 ,
W (−∞) = 0, W (∞) = m > 0.

(4.13)

If min{χ̃1, χ̃2} < 1 and thus χ = χ̃1 + χ̃2 < 2, the existence of solutions to (4.13) is
ruled out by Theorem 3.1 (i). Hence we consider the case min{χ̃1, χ̃2} ≥ 1 which
implies that χ ≥ 2. Under this condition, if we consider a special case c̃1 = c̃2 = c

2 ,
we can apply Theorem 3.1 to conclude that (4.13) has a solution. Particularly
if χ = χ1 = χ2 = 2, then χ̃1 = χ̃2 = 1 and the asymptotic behavior of the
traveling wave solution for (4.13) is given by Proposition 1 (iii), which gives (2.10)
and moreover (2.9) was implied by (4.13). However when χ = χ1 = χ2 > 2, for each
combination of χ̃1 ≥ 1 and χ̃2 ≥ 1 such that χ̃1 + χ̃2 = χ > 2, (1.2) has a solution
with corresponding asymptotic decay rates as given by Theorem 3.1, which finally
leads to the asymptotic behavior as announced in the Theorem. Once we obtain
W , the substitution of W into (4.12) gives the existence and asymptotical behavior
of U and V . Hence the proof of Theorem 2.2 (iii) is finished.

4.3. Parameter regimes for traveling waves. From the results derived in the
preceding subsection, we know that under assumption β > −1 and β 6= 1, a sufficient
and necessary condition for the existence of traveling wave solutions to (1.2) is
min{λ1, λ2} ≥ 1. In this section, we shall show that the set

I = {(χ1, χ2) |min{λ1, λ2} ≥ 1} (4.14)

is not empty, where λ1, λ2 are defined in terms of χ1, χ2 in (4.4). That is we show
for any given β > −1 and β 6= 1, there exist χ1, χ2 ∈ R such that (χ1, χ2) ∈ I.
From (4.4), we see that min{λ1, λ2} ≥ 1 is equivalent to

βχ2 − χ1

β2 − 1
≥ 1,

βχ1 − χ2

β2 − 1
≥ 1. (4.15)

Then we have the following cases to solve (4.15).
Case 1. If β > 1, then β2 − 1 > 0. We solve (4.15) and obtain that

I = {(χ1, χ2) | χ1/β + (β2 − 1)/β ≤ χ2 ≤ βχ1 − (β2 − 1)}.



2920 TAI-CHIA LIN AND ZHI-AN WANG

An illustration of such region I is plotted in Fig. 1 (a), where we choose β = 2.
Case 2. If 0 < β < 1, then β2 − 1 < 0. Then solving (4.15) gives

I = {(χ1, χ2) | βχ1 − (β2 − 1) ≤ χ2 ≤ χ1/β + (β2 − 1)/β}.

A plot of such region I is given in Fig. 1 (b), where β = 1/2.
Case 3. If β = 0, then (4.15) directly gives

I = {(χ1, χ2) | χ1 ≥ 1, χ2 ≥ 1}

whose numerical graph is given in Fig. 1 (c).
Case 4. If −1 < β < 0, then β2 − 1 < 0. Then we solve (4.15) and have

I = {(χ1, χ2) | χ2 ≥ max{βχ1 − (β2 − 1), χ1/β + (β2 − 1)/β}}.

A numerical plot of such region I is given in Fig. 1 (d), where β = −1/2.
Thus, if (χ1, χ2) lies in the region I as plotted in Fig. 1, the existence of traveling

wave solutions of (1.2) can be guaranteed.

5. Diffusion limit. In this section, we show the traveling wave solutions are con-
vergent with respect to the chemical diffusion coefficient ε based on the ideas of
[23, 30]. We first establish the ε-convergence for the solution component W as
follows.

Lemma 5.1. Let Wε and W0 be the traveling wave solution of (4.5) for ε > 0 and
for ε = 0, respectively. Then it follows that

|Wε −W0| = O(ε) as ε→ 0.

Proof. Denote the wave speed for ε > 0 by cε and c0 for ε = 0. Then it is important
to notice that cε = c0 = (N1 +N2)/m by integrating the third equation of (4.1). For

convenience, we denote h(z,W ) = C3e
−szWλ1 + C4e

−szWλ2 and W̃ = Wε −W0.

Then by (4.5) and (2.4), we can derive that W̃ satisfies

εW̃ ′′ + c0W̃
′ + εW ′′0 = h(z,Wε)− h(z,W0) (5.1)

subject to

W̃ (±∞) = W̃ ′(±∞) = 0. (5.2)

By the mean value theorem, we find two positive numbers ξ1 and ξ2 between W0

and Wε such that

h(z,Wε)− h(z,W0) = e−kz[C3(Wλ1
ε −W

λ1
0 ) + C4(Wλ2

ε −W
λ2
0 )]

= e−kz[C3λ1ξ
λ1−1
1 (Wε −W0) + C4λ2ξ

λ2−1
2 (Wε −W0)]

= e−kz(C3λ1ξ
λ1−1
1 + C4λ2ξ

λ2−1
2 )W̃ .

Noticing that C3λ1ξ
λ1−1
1 + C4λ2ξ

λ2
2 > 0, we multiply (5.1) by W̃ and obtain

εW̃W̃ ′′ + c0W̃W̃ ′ + εW ′′0 W̃ = (C3λ1ξ
λ1−1
1 + C4λ2ξ

λ2−1
2 )W̃ 2 ≥ 0. (5.3)

Hence integrating (5.3) on both sides over (z,∞), yields

I =

∫ ∞
z

(εW̃ ′′ + c0W̃
′)W̃dy + ε

∫ ∞
z

W̃W ′′0 dy ≥ 0 (5.4)
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which, along with the boundary condition (5.2), yields

I = −εW̃ ′W̃ − c0
2
W̃ 2 − ε

∫ ∞
z

|W̃ ′|2dy + ε

∫ ∞
z

W̃W ′′0 dy

≤ −ε
2

(W̃ 2)′ − c0
2
W̃ 2 + ε

∫ ∞
z

W̃W ′′0 dy.

(5.5)

This gives

ε

2
(W̃ 2)′ +

c0
2
W̃ 2 ≤ ε

∫ ∞
z

W̃W ′′0 dy. (5.6)

Let z0 be a point at which |W̃ (z)| attains its maximum on R. Then (W̃ 2)′(z0) =

2W̃ ′(z0)W̃ (z0) = 0, and it follows from (5.6) that

W̃ 2(z0) ≤ 2ε

c0

∫ ∞
z0

|W̃ (z0)| · |W ′′0 |dy ≤
2ε

c0
|W̃ (z0)|

∫ ∞
z0

|W ′′0 |dy (5.7)

which gives that

|W̃ (z)| ≤ |W̃ (z0)| ≤ 2ε

c0
‖W ′′0 ‖L1(R). (5.8)

With (4.8) and (4.10), by simple calculation, we see that W ′′0 exponentially decays
with respect to z as |z| → ∞, which implies ‖W ′′0 ‖L1(R) <∞. Therefore (5.8) gives
rise to

|W̃ | = |Wε −W0| = O(ε) as ε→ 0 (5.9)

which completes the proof.

With Lemma 5.1, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Due to Lemma 5.1, it remains to show the ε-convergence for
Uε and Vε. In fact, by (4.3) and the mean value theorem, we derive that

Uε − U0 = C3e
−szWλ1

ε − C3e
−szWλ1

0

= C3e
−szζλ1−1(Wε −W0)

where ζ is between W0 and Wε with 0 < ζ < m. Hence by (5.9), it has that

|Uε − U0| = O(ε) as ε→ 0

for each z ∈ R. The same argument applied to Vε and V0 yields that

|Vε − V0| = O(ε) as ε→ 0

for all z ∈ R. The proof of Theorem 2.3 is thus completed. �

6. Appendix. In this appendix, we are devoted to presenting the proof for Propo-
sition 1 to make the paper self-contained. To this end, we shall first present two
results of [5] that were used in our proof.

Proposition 2. ([5, Chapter IV (Theorem 2)]) Let A be a constant matrix whose
characteristic roots λ1, . . . , λn are all simple, and let ξi be a characteristic vector
of A belonging to the characteristic root λi(i = 1, . . . , n). If B(t) is a continuous
matrix defined for t ≥ t0 such that∫ ∞

t0

|B(t)|dt <∞,
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then the equation
dx

dt
= [A+B(t)]x

has a fundamental system of solutions x1(t), . . . , xn(t) satisfying for t→∞

xk(t) ∼ eλktξk, (k = 1, . . . , n).

Proposition 3. ([5, Chapter IV (Theorem 14)]) Let f(x) be a positive, twice con-
tinuously differentiable function for x ≥ x0 such that∫ ∞

x0

|f− 3
2 f ′′|dx <∞.

Then the equation

d2y

dx2
= f(x)y

has a fundamental system of solutions satisfying for x→∞

y ∼ [f(x)]−
1
4 exp

{
±
∫ x

x0

[f(ξ)]
1
2 dξ

}
.

Next we present a well-known result for the traveling wave solutions of the Fisher
equation which was summarized in [31]. Consider the Fisher equation

ut = εuxx + f(u), x ∈ R, t ≥ 0 (6.1)

where the kinetic function f(u) satisfies the following conditions

(1) f(u), f ′(u) ∈ C[0,∞);

(2) f(0) = f(a) = 0 for some a > 0;

(3) f(u) > 0 for all u ∈ (0, a) and f(u) < 0 for u ∈ (a,∞);

(4) f ′(0) > 0 and f ′(a) < 0.

(6.2)

A prototypical form of f(u) satisfying condition (6.2) is f(u) = u(1−u/a) where a is
called the carrying capacity. The traveling wave solution u(x, t) = U(x−ct) =: U(z)
of (6.1) satisfies the equation

εU ′′ + cU ′ + f(U) = 0.

Then the following result holds.

Theorem 6.1. Let (6.2) hold. Then (6.1) has a unique (up to a translation)
bounded nonnegative traveling wave solution U(z) with U ′ < 0 for all z ∈ R and
boundary condition U(−∞) = a, U(+∞) = 0 if and only if

c ≥ c̄ = 2
√
εf ′(0). (6.3)

Moreover, the traveling wave solution U(z) = U(x−ct) has the following asymptotic

behavior as |z| → ∞ for c > c̄ = 2
√
εf ′(0):

U(z) =

{
a− Ceλ+(a)z, z → −∞
Ceλ+(0)z, z →∞.

where

λ+(ξ) =
−c+

√
c2 − 4εf ′(ξ)

2ε
.
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Proof of Proposition 1. The assertions (i) and (ii) in Proposition 1 have been proved
in papers [22, 30] by transforming the equation (3.1) into an equation with constant
coefficients via a change of variable. However such transformation only works for
λ 6= 1. When λ = 1, the existence of solutions to (3.1) in the assertion (iii) has
already been given in [6] by applying the result of [15]. For completeness, we sketch
those proofs below and present a detailed proof for the decay rates in (iii) which is
new. we first consider the case λ 6= 1 for which we define

µ =
k

1− λ
(6.4)

and introduce a new variable P (z) such that

p(z) = P (z)e−µz. (6.5)

Then substituting (6.5) into (3.1) and canceling e−µz yield that

εP ′′ + sP ′ + f(P ) = 0 (6.6)

where

f(P ) = ηP − αPλ = ηP (1− αPλ−1/η) (6.7)

and s = c − 2εµ, η = εµ2 − cµ. If λ < 1, then f(P ) is not differentiable at P = 0
and there is no traveling wave solution to (6.6) by simple analysis. If λ > 1, then

µ < 0 and f(P ) defined in (6.7) satisfies the conditions in (6.2) with a = ( ηα )
1

λ−1

and hence by Theorem 6.1, we know that (6.6) have a unique solution (up to a

translation) with P ′(z) < 0 for all z ∈ R and P (−∞) = ( ηα )
1

λ−1 , P (+∞) = 0 iff

s ≥ 2
√
εf ′(0) = 2

√
εη. Moreover the traveling wave solutions have the following

asymptotic decay rate for s > 2
√
εη (i.e. c > 0)

P (z) =

(
η

α

) 1
λ−1

− q1e
λ+
2 z, as z → −∞,

P (z) = q2e
λ+
1 z, as z →∞

(6.8)

where q1, q2 are positive constants and

λ+
1 =

−s+
√
s2 − 4εη

2ε
=

(2εµ− c) +
√
c2

2ε
= µ

and

λ+
2 =

−s+
√
s2 + 4εη(λ− 1)

2ε
=

(2εµ− c) +
√
c2 + 4εηλ

2ε
.

Then by (6.5) and (6.8), we have

p(z) =

[(
η

α

) 1
λ−1

− q1e
λ+
2 z

]
e−µz, as z → −∞, (6.9)

and

p(z) = q2e
(λ+

1 −µ)z = q2, as z → +∞.
From the boundary condition in (3.1), we see that q2 = ω. But we need to derive
the asymptotic decay rate of p(z) as z → +∞ since λ+

1 −µ = 0. From (3.1), we see
that the dynamics of q(z) as z → +∞ is determined by the equation εp′′ + cp′ = 0,
which yields that p(z) − ω ∼ e−

c
ε z. Noticing that µ < 0, we can directly verify

that s ≥ 2
√
εη ⇐⇒ c ≥ 0. But when c = 0, the equation (3.1) becomes εp′′ =

αe−kzpλ > 0, which means that p is convex and can not satisfies the boundary
condition in (3.1). Hence the problem (3.1) has a solution iff c > 0. To finish the
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proof of Proposition 1 (ii), it remains to show the monotonicity of p. To this end, we
first remark from (6.9) it follows that p′(−∞) = 0. Then we integrate the equation
(6.16) over (−∞, z) and obtain

p′ = αe−
c
ε z

∫ z

−∞
e( cε−k)ξp(ξ)dξ > 0

for all z ∈ (−∞,∞) since p(ξ) ≥ 0 and p(ξ) 6≡ 0 for all ξ ∈ R.
Next we proceed to prove Proposition 1 (iii). For the existence, above approach

for λ > 1 no longer works for λ = 1 due to the transformation (6.4). In this case,
we define a change of independent variable with an idea of [6]

τ = e−
c
ε z,

namely d
dz = − cεe

− cε z d
dτ = − cετ

d
dτ . It is clear τ ∈ [0,∞) and

τ =

{
0, if z = +∞,
∞, if z = −∞.

By defining w(τ) = p(−ε ln τ/c), we obtain from (3.1) that w′′(τ)− αε
c2 e

( 2c
ε −k)zw(τ)r

= 0, which leads to

w′′(τ) = ζτθw(τ)r, w(0) = ω, w(∞) = 0 (6.10)

where

ζ =
αε

c2
> 0, θ =

kε

c
− 2 =

ε

d
− 2.

The equation in (6.10) is a type of linear Emden-Fowler equation [2] and the exis-
tence of solutions of (6.10) with condition w′ < 0 was guaranteed by [15], as shown
in [6]. We proceed to show the uniqueness of solutions. If we let p1(z) and p2(z) be
two solutions of (3.1). Then p̃(z) = p1(z)− p2(z) satisfies{

εp̃′′ + cp̃′ − αe−kz p̃ = 0,
p̃(−∞) = 0, p̃(∞) = 0.

(6.11)

Then multiplying the first equation of (6.11) by p̃ and integrating the result over R
yields ∫

R
(ε|p̃′(z)|2 + αe−kz p̃2(z))dz = 0

which implies that p̃ ≡ 0 since α > 0 and hence the uniqueness is obtained. To finish
the proof, it remains to derive the asymptotic behavior of the solutions announced
in (iii). We first study the asymptotics as z → ∞ by considering the following
problem {

εp′′ + cp′ − αe−kzp = 0, z ∈ (0,∞)
p(0) = %, p(∞) = ω

(6.12)

where we assume that p(0) = % with 0 < % < ω.

Denoting p′ = ρ and X =

[
p
ρ

]
, we can write the first equation of (6.12) as

X ′ = (A+B(z))X (6.13)

where

A =

[
0 1
0 − cε

]
, B(z) =

[
0 0

αe−kz

ε 0

]
.
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It is straightforward to obtain the eigenvalues of A as

λ1 = − c
ε
, λ2 = 0 (6.14)

with corresponding eigenvectors

xi =

[
1
λi

]
, i = 1, 2.

Considering the fact that∫ ∞
0

|B(z)|dz =
α

ε

∫ ∞
0

e−kzdz =
α

εk
<∞,

then by Proposition 2, the solution of system (6.13) satisfies

X ∼ c1eλ1zx1 + c2e
λ2zx2, as z →∞

and hence p = c1e
− cε z + c2. Applying the boundary condition yields that c1 = %−ω

and c2 = ω. Therefore it follows that

p− ω ∼ e− cε z, as z →∞.

Next we proceed to explore the asymptotics as z → −∞ and consider the problem{
εp′′ + cp′ − αe−kzp = 0, z ∈ (−∞, 0)
p(−∞) = 0, p(0) = %.

(6.15)

Note that the coefficient e−kz is singular at z = −∞, it is unfeasible to treat the
problem (6.15) directly. Instead we shall transform the problem to a non-singular
problem. To this end, we rewrite the differential equation as

(e
c
ε zp′)′ − α

ε
e(c/ε−k)zp = 0. (6.16)

By change of variables

τ = e−
c
ε z, q(τ) = p(−ε ln τ/c) (6.17)

we have p′(z) = − cεe
− cε zq′(τ), where τ ∈ [1,∞) and

τ =

{
1, if z = 0,
∞, if z = −∞. (6.18)

Then the substitution of (6.17) into (6.15) yields{
q′′(τ) = εα

c2 τ
θq(τ), τ ∈ [1,∞)

q(1) = %, q(∞) = 0
(6.19)

where

θ =
εk

c
− 2. (6.20)

For the convenience to proceed, we let f(τ) = εα
c2 τ

θ and shall apply the results in
Proposition 3 to derive the asymptotical behavior of solutions to (6.19). To this

end, we need to verify
∫∞

1
|f− 3

2 f ′′|dτ < ∞. Since f ′′(τ) = εα
c2 θ(θ − 1)τθ−2 and

− θ2 − 2 = − εk2c − 1 < −1, we find that∫ ∞
1

|f− 3
2 f ′′|dτ =

αε

c2
|θ(θ − 1)|

∫ ∞
1

|f− 3
2 τθ−2|dτ

≤ c√
εα
|θ(θ − 1)|

∫ ∞
1

τ−
θ
2−2dτ <∞.
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Then by Proposition 3, the solution of system (6.19) has the following asymptotic
behavior as τ →∞:

q(τ) ∼ [f(τ)]−
1
4 e−

∫ τ
1

[f(ξ)]
1
2 dξ =

(
c2

εα

) 1
4

τ−
θ
4 e−

√
εα
c

∫ τ
1
ξ
θ
2 dξ

=

(
c2

εα

) 1
4

e
2
√
εα

c(θ+2) τ−
θ
4 e−

2
√
εα

c(θ+2)
τ
θ
2
+1

which along with (6.20) yields

q(τ) ∼ τ−
εk−2c

4c e
− 2
√
α

k
√
ε
τ
εk
2c
.

Thanks to (6.17) and (6.18), we have

p(z) = q(e−
c
ε z) ∼ e( k4−

c
2ε )z− 2

√
α

k
√
ε
e−

k
2
z

, as z → −∞.
Hence we obtain the asymptotic behavior of solutions as z → ±∞ for λ = 1, and
the proof of Proposition 1 is completed. �
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