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{
ut − (uv)x = Duxx,

vt + (εv2 − u)x = εvxx
(1.1)

for x ∈ R and t � 0 with the initial data

(u, v)(x,0) = (u0, v0)(x) →
{

(u−, v−) as x → −∞,

(u+, v+) as x → +∞.
(1.2)

The conservation laws (1.1) are derived from the original well-known Keller–Segel model

{
ut = (

Dux − χuc−1cx
)

x,

ct = εcxx − u f (c)
(1.3)

which was proposed by Keller and Segel [7] to describe the traveling band behavior of bacteria due
to the chemotactic response (i.e. the oriented movement of cells to the chemical concentration gradi-
ent) observed in experiments [1,2]. In model (1.3), u(x, t) denotes the cell (i.e. bacteria) density and
c(x, t) denotes the chemical (i.e. oxygen) concentration, D > 0 and ε > 0 denote the diffusion coeffi-
cients of cells (bacteria) and the chemical, respectively. χ is a positive constant often referred to as
chemosensitivity. f (c) is a kinetic function describing the chemical reaction between cells and the
chemical.

When f (c) is a positive constant, namely, f (c) = α > 0, the existence of traveling wave solutions
of (1.3) with ε = 0 was established by Keller and Segel themselves [7]. When ε �= 0, the existence and
linear instability of traveling wave solutions of (1.3) were shown by Nagai and Ikeda [18] where the
authors also obtained the diffusion limits of traveling wave solutions of (1.3) as ε approaches zero.

In this paper, we consider the case where f (c) = αc(α > 0), which means that oxygen is consumed
only when cells (bacteria) encounter the chemical (oxygen). We derive the system of conservation
laws (1.1) from (1.3). The crucial step in the derivation is to make a change of variable through

v = −c−1cx = −(ln c)x (1.4)

which was first introduced in [21] for a chemotaxis model proposed in [10] describing the chemo-
tactic movement for non-diffusible chemicals (i.e. ε = 0), and was later applied in [12,13] to study
the nonlinear stability of traveling wave solutions. It turns out this transformation also extends its
capacity to the full Keller–Segel model (1.3) for ε �= 0. Indeed, with the magic transformation (1.4), we
derive the following viscous conservation laws from (1.3)

{
ut − χ(uv)x = Duxx,

vt + (
εv2 − αu

)
x = εvxx.

(1.5)

Substituting the scalings

t̃ = αt, x̃ =
√

α

χ
x, ṽ =

√
χ

α
v, D̃ = D

χ
, ε̃ = ε

χ

into (1.5) and dropping the tildes for convenience, we obtain the system of conservation laws (1.1).
In the present paper, we restrict our attention to the transformed system (1.1) instead of the

original Keller–Segel model (1.3). It turns out that translating the results of the transformed system
(1.1) back to the original Keller–Segel model (1.3) produces many interesting consequences, which will
be presented in a separate paper.

Since u(x, t) represents cell density, we assume that u � 0 and hence u± � 0. By the same reason
we suppose c(x, t) � 0. Because the Keller–Segel model (1.3) describes the directed movement of cells
toward the chemical which is consumed by cells when they encounter, the wave is an “invasion”
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pattern. That is, the wave profile of u decreases from its tail to front and that of c increases from
its tail to the front, which requires cx > 0. Due to the transformation (1.4) and c(x, t) � 0, we have
v(x, t) � 0. Therefore we consider the solution (u, v) of system (1.1), (1.2) in the following physical
region

X = {
(u, v)

∣∣ u � 0, v � 0, u± � 0, v± � 0
}
. (1.6)

In the region X , we shall prove the existence of traveling wave solutions to the system of conser-
vation laws (1.1) and that the solution to the Cauchy problem (1.1), (1.2), where the initial data is
certain small perturbation of a traveling wave, approaches a shifted traveling wave as t → ∞ with-
out the smallness constraints on the wave strength. It is worthwhile to remark that the small wave
strength is generally an assumption imposed in most of the studies for the stability of traveling waves
for nonlinear conservation laws (e.g. see [11,14]).

The rest of this paper is organized as follows. We state the main results of our paper in Section 2,
which consist in two parts: the existence and the stability of traveling wave solutions of system (1.1).
In Section 3, we show the existence of traveling wave solutions for (1.1). We prove the nonlinear
stability of the traveling wave solutions based on a priori estimates in Section 4. Finally, we give a brief
summary in Section 5.

2. Statement of main results

In this section, we shall provide some preliminary analysis and then state the main results of this
paper.

2.1. Existence of traveling waves

We first show that the system (1.1) without viscosity is a genuinely nonlinear hyperbolic system
under some conditions for ε. In the absence of the viscous terms, (1.1) becomes

{
ut − (uv)x = 0,

vt + (
εv2 − u

)
x = 0.

(2.1)

The Jacobian matrix of (2.1) is

J (u, v) =
[−v −u

−1 2εv

]

and its eigenvalues satisfy

λ2 + (v − 2εv)λ − 2εv2 − u = 0 (2.2)

which has two real roots

λ1(u, v) = (2ε − 1)v

2
−

√[(2ε + 1)v]2 + 4u

2
,

λ2(u, v) = (2ε − 1)v

2
+

√[(2ε + 1)v]2 + 4u

2
(2.3)

with respective eigenvectors

r1(u, v) =
[−λ1 + 2εv

1

]
, r2(u, v) =

[
λ2 − 2εv

−1

]
.
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Since u � 0, hence λ1 < 0 < λ2 and system (2.1) is hyperbolic. Furthermore, direct calculations yields

∇λ1(u, v) · r1(u, v) = −1 − v√[(2ε + 1)v]2 + 4u
+ ε − ε(2ε + 3)v√[(2ε + 1)v]2 + 4u

,

∇λ2(u, v) · r2(u, v) = 1 − v√[(2ε + 1)v]2 + 4u
− ε − ε(2ε + 3)v√[(2ε + 1)v]2 + 4u

.

Noticing that −1 − v√
[(2ε+1)v]2+4u

< 0 and 1 − v√
[(2ε+1)v]2+4u

> 0 due to u � 0, v � 0 and ε > 0, one

shows that ∇λ1(u, v) · r1(u, v) < 0 if

0 < ε <

1 + v√
((2ε+1)v)2+4u

1 − (2ε+3)v√
((2ε+1)v)2+4u

� 1

and ∇λ2(u, v) · r2(u, v) > 0 if ε < 1. We require

0 < ε < 1 (2.4)

to ensure that the hyperbolic system (2.1) is genuinely nonlinear.
Now we define the traveling wave ansatz

(u, v)(x, t) = (U , V )(z), z = x − st

where s denotes the wave speed and z is the traveling wave variable. Substituting the above ansatz
into (1.1), one obtains the traveling wave equations

{−sU z − (U V )z = DU zz,

−sV z + (εV 2 − U )z = εV zz
(2.5)

with boundary conditions

(U , V )(z) → (u±, v±) as z → ±∞ (2.6)

where u± � 0 and v± � 0.
Integrating (2.5) once yields that

{
DU z = −sU − U V + �1 =: F (U , V ),

εV z = −sV + εV 2 − U + �2 =: G(U , V )
(2.7)

where �1 and �2 are constants satisfying

�1 = su− + u−v− = su+ + u+v+,

�2 = sv− − ε(v−)2 + u− = sv+ − ε(v+)2 + u+. (2.8)

Rearranging (2.8), we deduce that the wave speed s is determined by

{−s(u+ − u−) − (u+v+ − u−v−) = 0,

−s(v+ − v−) + [
ε(v+)2 − u+ − ε(v−)2 + u−

] = 0
(2.9)
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which can be reduced to a quadratic equation of s,

s2 + v−s + u+
(

ε(v2+ − v2−)

u+ − u−
− 1

)
= 0. (2.10)

Note that when ε is small such that

ε(v2+ − v2−)

u+ − u−
< 1, (2.11)

the discriminant of the quadratic (2.10) is positive and hence (2.10) gives two solutions with opposite
signs, where the positive s corresponds to the waves speed of second characteristic family of system
(1.1) and the negative s corresponds to that of the first characteristic family. Hereafter we only con-
sider the case of s > 0 and the analysis extends to the case s < 0. The positive wave speed s is given
by

s = − v−
2

+ 1

2

√
v2− + 4u+

(
1 − ε

v2+ − v2−
u+ − u−

)
. (2.12)

Since v− < 0 and
ε(v2+−v2−)

u+−u− − 1 < 0, then s > |v−| = −v− , which is equivalent to

s + v− > 0. (2.13)

The entropy condition for the shock of second characteristic family (e.g. see [9]) is

λ2(u+, v+) < s < λ2(u−, v−) (2.14)

where λ2(u, v) is defined in (2.3). When ε is small, we derive from the entropy inequality (2.14) that

0 � u+ < u−, v− < v+ � 0 (2.15)

which will be used later to prove the existence of traveling waves.
The first result of the paper concerning the existence of traveling wave solutions of (1.1), namely,

the existence of solutions to (2.5), (2.6), is as follows.

Theorem 2.1. Let (2.14) hold. If ε is small, then there exists a monotone shock profile (U , V )(x − st) to system
(2.5), (2.6), which is unique up to a translation and satisfies U z < 0 and V z > 0, where the wave speed s is
given by (2.12).

Remark 2.1. Since U z < 0 and V z > 0, 0 � u+ < U < u− and v− < V < v+ � 0. By (2.5) and (2.7), one
easily shows that U z , V z , U zz and V zz are all bounded. Furthermore, from (2.3) we see that system
(2.1) is strictly hyperbolic, i.e., λ1 �= λ2, when 0 � u+ < U < u− and v− < V < v+ � 0. The same is
true if (u, v) is a small perturbation of the traveling wave.
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2.2. Nonlinear stability of traveling waves

The second result of this paper is the asymptotic stability of traveling wave solutions obtained in
Theorem 2.1 under the small initial perturbation of the form

+∞∫
−∞

(
u0(x) − U (x)
v0(x) − V (x)

)
dx = x0

(
u+ − u−
v+ − v−

)
+ ηr1(u−, v−) (2.16)

where r1(u−, v−) is the first eigenvector evaluated at (u−, v−). The coefficients x0 and η are uniquely
determined by the initial data (u0(x), v0(x)). For the stability of small-amplitude waves of conserva-
tion laws corresponding to the case η �= 0, the reader is referred to [15,20] and references therein.
In this paper, we assume that η = 0 as in [4,6]. However, we consider the large-amplitude waves in
contrast to the small-amplitude waves in [4,6]. Now by conservation laws (1.1) and system (2.5), we
derive that

+∞∫
−∞

(
u(x, t) − U (x + x0 − st)
v(x, t) − V (x + x0 − st)

)
dx =

+∞∫
−∞

(
u0(x) − U (x + x0)

v0(x) − V (x + x0)

)
dx

=
+∞∫

−∞

(
u0(x) − U (x)
v0(x) − V (x)

)
dx +

+∞∫
−∞

(
U (x) − U (x + x0)

V (x) − V (x + x0)

)
dx

=
+∞∫

−∞

(
u0(x) − U (x)
v0(x) − V (x)

)
dx − x0

(
u+ − u−
v+ − v−

)
= 	0.

We decompose the solution (u, v) of systems (1.1), (1.2) by

(u, v)(x, t) = (U , V )(x − st + x0) + (φx,ψx)(x, t) (2.17)

where

(
φ(x, t),ψ(x, t)

) =
x∫

−∞

(
u(y, t) − U (y + x0 − st), v(y, t) − V (y + x0 − st)

)
dy

for all x ∈ R and t � 0.
It then holds that

φ(±∞, t) = 0, ψ(±∞, t) = 0 for all t > 0.

We further assume, without loss of generality, that the translation x0 = 0. Then (2.16) becomes

+∞∫
−∞

(
u0(x) − U (x)
v0(x) − V (x)

)
dx =

(
0
0

)
. (2.18)
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The initial conditions of the perturbation (φ,ψ) are thus given by

(φ0,ψ0)(x) =
x∫

−∞
(u0 − U , v0 − V )(y)dy. (2.19)

The asymptotic stability of traveling wave solutions of (1.1) means that (u − U , v − V )(x, t) =
(φx,ψx)(x, t) → 0 as t → ∞.

Next, we introduce some notations. Let ‖ f ‖ denote the L2 norm of any function f ∈ L2(R),

‖ f ‖ =
(∫ ∣∣ f (x)

∣∣2
dx

)1/2

where the integral lacking limits of integration means the integral over the whole real line R. Let
H p(R) denote the usual Sobolev space W p,2(R), and we use ‖ f ‖p to denote the H p norm for any
f ∈ H p(R) where p � 1,

‖ f ‖p =
(∫ p∑

i=0

∣∣∣∣ di

dxi
f (x)

∣∣∣∣
2

dx

)1/2

.

The main theorem on the asymptotic stability is as follows.

Theorem 2.2. Let (U , V )(x − st) be a viscous shock profile of (1.1) obtained in Theorem 2.1. If ε is small and
u+ > 0, then there exists a constant ε0 > 0 such that if ‖u0 − U‖1 +‖v0 − V ‖1 +‖(φ0,ψ0)‖ � ε0 and η = 0
in (2.16), the Cauchy problem (1.1), (1.2) has a unique global solution (u, v)(x, t) satisfying u(x, t) � δ0 > 0
for some δ0 > 0 for all x ∈ R, t � 0, and

(u − U , v − V ) ∈ (
C
([0,∞); H1) ∩ L2([0,∞); H1))2

.

Furthermore, the solution (u, v) has the following asymptotic nonlinear stability

sup
x∈R

∣∣(u, v)(x, t) − (U , V )(x − st)
∣∣ → 0 as t → +∞. (2.20)

Remark 2.2. It is worthwhile to remark that the above nonlinear stability results hold true regardless
of the strengths of the waves. That is, the wave amplitude |u+ − u−| + |v+ − v−| can be large, in
contrast to the previous results related to the nonlinear stability of traveling waves to conservation
laws, where various smallness conditions on wave strengths were imposed (e.g. see Ref. [4,5,11,15,17,
20]).

3. Proof of existence Theorem 2.1

In this section, we shall perform the phase plane analysis to prove the existence of traveling wave
solutions of (1.1) as stated in Theorem 2.1. By the definition of constants �1 and �2 in (2.8), we see
that the ODE system (2.7) has two and only two equilibria (u−, v−) and (u+, v+). The Jacobian matrix
of the linearized system of (2.7) about equilibrium (u±, v±) is

Ĵ (u±, v±) =
[ −s−v±

D − u±
D

− 1
ε

−s+2εv±
ε

]
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whose eigenvalues σ satisfy

σ 2 +
(

s + v±
D

+ s − 2εv±
ε

)
σ + 1

εD

(
(s + v±)(s − 2εv±) − u±

) = 0. (3.1)

One easily verifies that the discriminant of quadratic (3.1) is non-negative in the region X defined
in (1.6). Hence all roots of (3.1) are real. Furthermore, the two roots σ1 and σ2 satisfy

σ1σ2 = 1

εD

(
s2 + (v± − 2εv±)s − 2εv2± − u±

) =: H (s, u±, v±).

From (2.2), we see that H (λ2(u−, v−), u−, v−) = H (λ2(u+, v+), u+, v+) = 0. Using the entropy
condition (2.14), we show that

σ1σ2|(u−,v−) = H (s, u−, v−) < H
(
λ2(u−, v−), u−, v−

) = 0,

σ1σ2|(u+,v+) = H (s, u+, v+) > H
(
λ2(u+, v+), u+, v+

) = 0.

On the other hand, s + v+ > s + v− > 0 from (2.13). If ε is small such that

2εv± < s, (3.2)

then

σ1 + σ2 = −
(

s + v±
D

+ s − 2εv±
ε

)
< 0.

Therefore the equilibrium (u−, v−) is a saddle and (u+, v+) is a stable node. Next we shall prove
that there is a heteroclinic connection between (u−, v−) and (u+, v+).

To this end, we look at the nullclines of system (2.5) which are given by

{
U (V + s) = �1,

U = εV 2 − sV + �2.
(3.3)

The first equation of (3.3) gives a hyperbola (see the solid line in Fig. 1) and second equation gives a
parabola (see the dashed line in Fig. 1). Due to the definition of constants �1 and �2 in (2.8), these
two curves must intersect at the equilibrium points (u−, v−) and (u+, v+) in the fourth quadrant of
(U , V ) plane (possibly including axes) due to u± � 0 and v± � 0 (see (2.15)). We shall show that the
region (see an illustration in Fig. 1) enclosed by these two curves in the fourth quadrant comprises
an invariant region of system (2.7) (2.6), which is defined by

G =
{
(U , V )

∣∣∣ �1

V + s
� U � εV 2 − sV + �2

}
. (3.4)

The edges of the region G are denoted by

Γ1 = {
(U , V )

∣∣ F (U , V ) = −U (V + s) + �1 = 0, u+ < U < u−, v− < V < v+
}
,

Γ2 = {
(U , V )

∣∣ G(U , V ) = εV 2 − sV − U + �2 = 0, u+ < U < u−, v− < V < v+
}
.

Note that Γ1 is a portion of the hyperbola and Γ2 is a portion of the parabola (see Fig. 1). Along the
edge Γ1 : F (U , V ) = 0, U z = 0 and the direction field of (2.7) is vertical. We shall show that indeed
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Fig. 1. A numerical plot of the phase plane of system (2.7), where the solid line (hyperbola) represent the nullcline U (V +s) = �1

and dashed line (parabola) represents the nullcline U = εV 2 − sV + �2. The parameter values are �1 = 1, �2 = 1/4, s = 2,
ε = 1/2.

the direction field of (2.7) along the edge Γ1 points upward, which requires that V z|(U ,V )∈Γ1 > 0.
Note that along the edge Γ2 : G(U , V ) = 0, V z = 0. It is straightforward to see that if a point (Ũ , Ṽ )

is below the edge Γ2, then V z = G(Ũ , Ṽ ) > 0. Since the edge Γ1 is below Γ2, V z|(U ,V )∈Γ1 > 0, which
immediately shows that the trajectory of (2.7) along the edge Γ1 points upward. Similar idea leads to
U z|(U ,V )∈Γ2 < 0 and hence the direction field of (2.7) along the edge Γ2 points to the left horizontally.
Therefore G is an invariant region of system (2.7). The phase portrait is illustrated in Fig. 1.

To show that there is a heteroclinic connection between (u−, v−) and (u+, v+), it suffices to show
that the unstable manifold of system (2.7) emanating from the saddle (u−, v−) points inside the
invariant region G .

To this end, we calculate the tangent directions of the nullclines at (u−, v−). Solving V from the
first equation of (3.3) and differentiating with respect to U , we derive

dV

dU

∣∣∣∣
Γ1

(u−,v−)

= − �1

U 2

∣∣∣∣
(u−,v−)

= − s + v−
u−

, (3.5)

where dV
dU |Γ1

(u−,v−) denotes the tangent direction of Γ1 at (u−, v−). From the second equation of (3.3),
we derive

dV

dU

∣∣∣∣
Γ2

(u−,v−)

= 1

dU/dV

∣∣∣∣
(u−,v−)

= 1

2εv− − s
, (3.6)

where dV
dU |Γ2

(u−,v−)
is the tangent direction of Γ2 at (u−, v−).

Next we compute the direction of the unstable manifold of system (2.7) at the saddle (u−, v−)

and compare it with the directions of the nullclines calculated above. To this end, we consider the
positive eigenvalue of Ĵ (u−, v−),

σ2 = − s+v−
D + −s+2εv−

ε

2
+

√
(− s+v−

D − −s+2εv−
ε )2 + 4u−

εD

2
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which has the following eigenvector

r̃2 =
[ − u−

D

σ2 + s+v−
D

]
.

Tangent to the eigenvector r̃2 , the direction of the unstable manifold of (2.7) at (u−, v−) is given by

dV

dU

∣∣∣∣
(u−,v−)

= σ2 + s+v−
D

− u−
D

=
1
2 (

s+v−
D − s−2εv−

ε ) + 1
2

√
(

s+v−
D − s−2εv−

ε )2 + 4u−
εD

− u−
D

= −2

s − 2εv− − ε
D (s + v−) +

√
(s − 2εv− − ε

D (s + v−))2 + 4εu−
D

=: −2

M
. (3.7)

Furthermore, for ε > 0 small, by Taylor expansion, the denominator M of (3.7) can be rewritten as

M = 2(s − 2εv−) + 2ε

D
M1 + E1

where

M1 = u−
s − 2εv− − ε

D (s + v−)
− (s + v−)

and

E1 = −1

8

[
4εu−

D(s − 2εv− − ε
D (s + v−))2

]2

+ O(
ε3)

which satisfies

lim
ε→0

E1

ε2
= − 2u2−

D2s2
. (3.8)

Now we proceed with calculating

M1 =
(u− − u+) + (u+ − s2 − sv− − u+

εv2+−εv2−
u+−u− ) + E2

s − 2εv− − ε
D (s + v−)

= (u− − u+) + E2

s − 2εv− − ε
D (s + v−)

(3.9)

where Eq. (2.10) has been used and

E2 = ε

[(
2v− + s + v−

D

)
(s + v−) + u+

v2+ − v2−
u+ − u−

]
= O(ε). (3.10)
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Let Lε = (u− − u+) + E2. Taking into account that u+
v2+−v2−
u+−u− > 0 and s + v− > 0, if we choose ε such

that

0 < ε <
u− − u+

|(2v− + s+v−
D )(s + v−) − u+

v2+−v2−
u−−u+ |

(3.11)

and

ε <
s

|2v− + s+v−
D | , (3.12)

then Lε > 0 and M1 > 0. Moreover it follows from (3.9) that limε→0 M1 = u−−u+
s > 0. Since E1 =

O(ε2) (see (3.8)), then 2ε
D M1 + E1 > 0 when ε is small. Thus if ε is small, it has that M � 2(s−2εv−).

Therefore, we derive from (3.7) that

0 >
σ2 + s+v−

D

− u−
D

>
−2

2(s − 2εv−)
= − 1

s − 2εv−
. (3.13)

On the other hand, since σ2 > 0, we have

σ2 + s+v−
D

− u−
D

<

s+v−
D

− u−
D

= − s + v−
u−

< 0. (3.14)

Therefore, combining (3.5), (3.6), (3.13) and (3.14), we end up with

dV

dU

∣∣∣∣
Γ2

(u−,v−)

<
dV

dU

∣∣∣∣
(u−,v−)

<
dV

dU

∣∣∣∣
Γ1

(u−,v−)

(3.15)

where the left-hand side of (3.15) represents the tangential direction of the edge Γ2 at (u−, v−), the
right-hand side of (3.15) is the tangential direction of the edge Γ1 at (u−, v−), and the middle term
of (3.15) is the direction of unstable manifold of system (2.7) at (u−, v−). Hence we conclude that
the unstable manifold of (2.7) at (u−, v−) is between the tangent lines of Γ2 and Γ1 at (u−, v−) and
points into the region G . Since the manifold is trapped inside the invariant region G , this unstable
manifold has to go to the stable equilibrium (u+, v+) by the Poincaré–Bendixson theorem. This tra-
jectory connecting (u−, v−) and (u+, v+) generates a solution for the system (2.7). From (2.7) and
(3.4), we see that U z < 0 and V z > 0 and hence the proof of Theorem 2.1 is completed.

The following Lemma is established for later use.

Lemma 3.1. There exists a constant k > 0 such that V z � k|U z| for all (U , V ) ∈ G .

Proof. Along the traveling wave trajectory, it has that from (2.7) and Theorem 2.1,

0 <
εV z

D|U z| = − G(U , V )

F (U , V )
= − ε

D

dV

dU
.

From (3.15) we see − dV
dU |(u−,v−) > 0 is bounded. Therefore εV z

D|U z | is bounded at (u−, v−). By continuity,
εV z

D|U z | is bounded for (U , V ) along the trajectory near (u−, v−). The same argument shows that εV z
D|U z |

is bounded for (U , V ) along the trajectory near (u+, v+).
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Away from (u±, v±), the trajectory is in the interior of the bounded region G which does not
contain equilibrium inside. Therefore along the trajectory, − G(U ,V )

F (U ,V )
> 0 is bounded, and hence so is

εV z
D|U z | .

Thus εV z
D|U z | is bounded for any (U , V ) ∈ [u+, u−] × [v−, v+] along the trajectory. The proof is fin-

ished. �
4. Proof of stability Theorem 2.2

4.1. Reformulation of stability problem

The proof of Theorem 2.2 is based on iterative L2 energy estimates. The method of energy esti-
mates for the nonlinear stability of small-amplitude viscous shock profiles of conservation laws was
first introduced independently by Matsumura and Nishihara in [17] and by Goodman in [4]. It has
been further developed over the years, see [6,11,14,15,20]. We establish the stability estimates with-
out the smallness assumption on the wave strengths. In what follows, we use C to denote a generic
constant which changes from one line to another. An integral lacking limits of integration means an
integral over the whole real line R.

In view of (2.17), we decompose the solution of (1.1) in the form

(u, v)(x, t) = (U , V )(x − st) + (φx,ψx)(x, t) = (U , V )(z) + (φ̄z, ψ̄z)(z, t) (4.1)

with (φ̄, ψ̄) in some functional space which will be defined below. For simplicity of notation, we will
omit the bars in (φ̄, ψ̄) in the following text.

Substituting (4.1) into (1.1), using (2.5) and integrating the resulting equations with respect to z,
we obtain the equations for the perturbation (φ,ψ)

{
φt = Dφzz + (s + V )φz + Uψz + φzψz,

ψt = εψzz + sψz + φz − 2εV ψz − εψ2
z

(4.2)

with initial data given by

(φ,ψ)(z,0) = (φ0,ψ0)(z), z ∈ R (4.3)

where (φ0,ψ0) is defined in (2.19).
We seek solutions of the reformulated problem (4.2) (4.3) in the following solution space

X(0, T ) = {(
φ(z, t),ψ(z, t)

)
: φ,ψ ∈ C

([0, T ); H2) ∩ C1((0, T ); H1), φz,ψz ∈ L2((0, T ); H2)}
with 0 � T � +∞.

Let

N(t) = sup
0�τ�t

{∥∥φ(·, τ )
∥∥

2 + ∥∥ψ(·, τ )
∥∥

2

}
. (4.4)

By the Sobolev embedding theorem, we have

sup
z∈R

{|φ|, |φz|, |ψ |, |ψz|
}

� N(t) (4.5)

for t � 0.
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Theorem 2.2 is proved based on the following theorem.

Theorem 4.1. Let (φ0,ψ0) ∈ (H2(R))2 and ε > 0 small. If u+ > 0, then there exists a constant δ1 > 0 such
that if

N(0) � δ1, (4.6)

the Cauchy problem (4.2), (4.3) has a unique global solution (φ,ψ) ∈ X(0,+∞) which satisfies

∥∥(
φ(·, t),ψ(·, t)

)∥∥2
2 +

t∫
0

∫ ∣∣U z(z)
∣∣∣∣(φ(z, τ ),ψ(z, τ )

)∣∣2
dz dτ +

t∫
0

∥∥(
φz(·, τ ),ψz(·, τ )

)∥∥2
2 dτ

� C N2(0) (4.7)

for all t ∈ [0,+∞), where C > 0 is a constant. Moreover the following asymptotic behavior holds

sup
z∈R

∣∣(φz,ψz)(z, t)
∣∣ → 0 as t → +∞. (4.8)

With Theorem 4.1, we can immediately show the positivity of u as claimed in Theorem 2.2. In fact,
if the initial perturbation (4.3) satisfies (4.6), then by (4.7) there is a constant C > 0 such that

∣∣φz(z, t)
∣∣ �

√
2N(t) � C N(0) � Cδ1.

Thus for all x ∈ R and t � 0, it follows from (4.1) that

u(x, t) = (
u(x, t) − U (z)

) + U (z) = φz(z, t) + U (z) � −C N(0) + u+ � −Cδ1 + u+ = δ0 > 0

provided that δ1 is suitably small and u+ is positive.
The global existence of (φ,ψ) announced in Theorem 4.1 follows from the local existence theorem

and the a priori estimates which are given below.

Proposition 4.2 (Local existence). For any δ2 > 0, there exists a positive constant T depending on δ2 such that
if (φ0,ψ0) ∈ (H2(R))2 with N(0) � δ2/2, the problem (4.2), (4.3) has a unique solution (φ,ψ) ∈ X(0, T )

satisfying

N(t) < 2N(0) (4.9)

for any 0 � t � T .

Proposition 4.3 (A priori estimates). Assume that (φ,ψ) ∈ X(0, T ) is a solution obtained in Proposition 4.2
for a positive constant T . Then there is a positive constant δ3 > 0, independent of T , such that if

N(t) < δ3

for any 0 � t � T , the solution (φ,ψ) of (4.2), (4.3) satisfies (4.7) for any 0 � t � T .
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With the solution (φ,ψ) obtained in Theorem 4.1 and traveling wave solution (U , V ) given in
Lemma 2.1, we have the desired solution of the problem (1.1) (1.2) through the relation (4.1).

The local existence in Proposition 4.2 can be shown in a standard way (cf. [19]) and we omit
the proof. Theorem 4.1 is a consequence of Proposition 4.2 and Proposition 4.3 by the continuation
argument. It only remains to prove Proposition 4.3 which will be shown based on the following
energy estimates.

Lemma 4.4. Let (φ0,ψ0) ∈ (H2(R))2 and (φ,ψ) be a solution of (4.2), (4.3). If u+ > 0 and ε > 0 is small,
then there exists a constant C > 0, such that

∥∥φ(·, t)
∥∥2

2 + ∥∥ψ(·, t)
∥∥2

2 +
t∫

0

∫ ∣∣U z(z)
∣∣∣∣(φ(z, τ ),ψ(z, τ )

)∣∣2
dz dτ

+ D

t∫
0

∥∥φz(·, τ )
∥∥2

2 dτ + ε

t∫
0

∥∥ψz(·, τ )
∥∥2

2 dτ

� C

(
‖φ0‖2

2 + ‖ψ0‖2
2 +

t∫
0

∫ (|φ| + |φz| + |φzz|
)|φzψz|dz dτ

)

+ Cε

( t∫
0

∫ ∣∣ψ2
z ψzz

∣∣dz dτ +
t∫

0

∫
|ψzψzzψzzz|dz dτ +

t∫
0

∫ ∣∣ψψ2
z

∣∣dz dτ

)

+ C

t∫
0

∫ (|φzz| + |φzzz|
)∣∣(φzψz)z

∣∣dz dτ . (4.10)

Then Proposition 4.3 can be proved by Lemma 4.4.

Proof of Proposition 4.3. In fact it only remains to show that the a priori estimate (4.7) holds. To this
end, we need to estimate the nonlinear terms on the right-hand side of (4.10). Indeed, by applying the
Sobolev embedding theorem, all these nonlinear terms can be bounded by C N(t)(

∫ t
0 ‖(φz(·, τ )‖2

2 dτ +∫ t
0 ‖ψz(·, τ ))‖2

2 dτ ) for some constant C > 0. Then from Lemma 4.4, we have

N2(t) +
t∫

0

∫ ∣∣U z(z)
∣∣ · ∣∣(φ(z, τ ),ψ(z, τ )

)∣∣2
dz dτ +

t∫
0

∥∥φz(·, τ )
∥∥2

2 dτ +
t∫

0

∥∥ψz(·, τ )
∥∥2

2 dτ

� C N2(0) + C N(t)

( t∫
0

∥∥φz(·, τ )
∥∥2

2 dτ +
t∫

0

∥∥ψz(·, τ )
∥∥2

2 dτ

)

for t ∈ [0, T ] and some constant C > 0.
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Therefore, letting N(t) � 1
2C , we obtain the following estimate for any t ∈ [0, T ],

N2(t) +
t∫

0

∫ ∣∣U z(z)
∣∣ · ∣∣(φ(z, τ ),ψ(z, τ )

)∣∣2
dz dτ +

t∫
0

∥∥φz(·, τ )
∥∥2

2 dτ +
t∫

0

∥∥ψz(·, τ )
∥∥2

2 dτ

� C N2(0)

which gives the desired estimate (4.7). �
Proof of Theorem 4.1. By standard arguments (e.g. see [12,13,22]), we derive from the global estimate
(4.7) that

∥∥(
φz(·, t),ψz(·, t)

)∥∥
1 → 0 as t → +∞. (4.11)

Consequently, for all z ∈ R, it follows that

φ2
z (z, t) = 2

z∫
−∞

φzφzz(y, t)dy

� 2

( +∞∫
−∞

φ2
z dy

)1/2( +∞∫
−∞

φ2
zz dy

)1/2

→ 0 as t → +∞. (4.12)

Applying the same argument to ψz leads to, for all z ∈ R,

ψ2
z (z, t) → 0 as t → +∞.

Hence (4.8) is proved and the proof of Theorem 4.1 is completed. �
4.2. Energy estimates

In this subsection, we are devoted to proving Lemma 4.4 which is a consequence of a series of
energy estimates given below.

Lemma 4.5 (L2-estimates). Let the assumptions in Lemma 4.4 hold. Then there exist constants ν0 > 0 and
C > 0 such that the solution (φ,ψ) of (4.2), (4.3) satisfies

∥∥φ(·, t)
∥∥2 + ∥∥ψ(·, t)

∥∥2 + ν0

t∫
0

∫ ∣∣U z(z)
∣∣∣∣(φ(z, τ ),ψ(z, τ )

)∣∣2
dz dτ

+ D

t∫
0

∥∥φz(·, τ )
∥∥2

dτ + ε

t∫
0

∥∥ψz(·, τ )
∥∥2

dτ

� C

(
‖φ0‖2 + ‖ψ0‖2 +

t∫
0

∫
|φφzψz|dz dτ + ε

t∫
0

∫ ∣∣ψψ2
z

∣∣dz dτ

)
. (4.13)
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Proof. Multiplying the first equation of (4.2) by φ/U and the second by ψ , and adding them, we end
up with the following equation after integrating the result w.r.t. z,

1

2

d

dt

∫ (
φ2

U
+ ψ2

)
dz + D

∫
φ2

z

U
dz + 1

2

∫
δ(z)φ2 dz + ε

∫
ψ2

z dz

=
∫

φφzψz

U
dz + ε

∫
V zψ

2 dz − ε

∫
ψψ2

z dz (4.14)

where

δ(z) = −
(

D

U

)
zz

+
(

s + V

U

)
z
. (4.15)

From (2.5), (2.7), (2.8) and the fact U z < 0, one infers that

δ(z) = −2�1

U 3
U z = −ν(z)U z = ν(z)|U z| (4.16)

where

ν(z) = 2�1

U 3
. (4.17)

Since �1 = su− + u−v− = u−(s + v−) > 0 due to (2.13) and 0 < u+ < U < u− , it follows that

ν(z) = 2�1

U 3
>

u−(s + v−)

u3−
=: ν0 > 0. (4.18)

Substituting (4.16) and (4.18) into (4.14), integrating the result with respect to t , and using the bound-
edness of U , we have

∥∥φ(·, t)
∥∥2 + ∥∥ψ(·, t)

∥∥2 + ν0

t∫
0

∫ ∣∣U z(z)
∣∣∣∣φ(z, τ )

∣∣2
dz dτ + D

t∫
0

∥∥φz(·, τ )
∥∥2

dτ

+ ε

t∫
0

∥∥ψz(·, τ )
∥∥2

dτ

� C

(
‖φ0‖2 + ‖ψ0‖2 +

t∫
0

∫
|φφzψz|dz dτ + ε

t∫
0

∫ ∣∣ψψ2
z

∣∣dz dτ + ε

t∫
0

∫
V zψ

2 dz dτ

)
(4.19)

where C > 0 is a constant.
To finish the proof, it remains to estimate term

∫ t
0

∫
V zψ

2 dz dτ in (4.19). Noticing that 0 < V z �
k|U z| from Lemma 3.1, it suffices to estimate

∫ t
0

∫ |U z|ψ2 dz dτ . To this end, we multiply the first
equation of (4.2) by φ, the second by Uψ , add them, and integrate the resulting equation w.r.t. z to
have
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1

2

d

dt

∫ (
φ2 + Uψ2)dz + D

∫
φ2

z dz + 1

2

∫
V zφ

2 dz + s

2

∫
U zψ

2 dz

=
∫

U (φψz + ψφz)dz + ε

∫
Uψψzz dz − 2ε

∫
U V ψψz dz

+
∫

φφzψz dz − ε

∫
Uψψ2

z dz

= −
∫

U zφψdz − ε

∫
U zψψz dz − ε

∫
Uψ2

z dz + ε

∫
(U z V + U V z)ψ

2 dz

+
∫

φφzψz dz − ε

∫
Uψψ2

z dz. (4.20)

Integrating (4.20) with respect to t leads to

− s

2

t∫
0

∫
U zψ

2 dz dτ = s

2

t∫
0

∫
|U z|ψ2 dz dτ

= 1

2

∫ (
φ2 + Uψ2)dz − 1

2

∫ (
φ2

0 + Uψ2
0

)
dz + D

t∫
0

∫
φ2

z dz dτ + 1

2

t∫
0

∫
V zφ

2 dz dτ

+
t∫

0

∫
U zφψdz dτ + ε

t∫
0

∫
U zψψz dz dτ + ε

t∫
0

∫
Uψ2

z dz dτ

− ε

t∫
0

∫
(U z V + U V z)ψ

2 dz dτ −
t∫

0

∫
φφzψz dz dτ + ε

t∫
0

∫
Uψψ2

z dz dτ . (4.21)

By Cauchy–Schwarz inequality, we have the following inequalities

−
t∫

0

∫
U zφψ dz dτ � s

4

t∫
0

∫
|U z|ψ2 dz dτ + 1

s

t∫
0

∫
|U z|φ2 dz dτ ,

ε

t∫
0

∫
U zψψz dz dτ � ε

t∫
0

∫
|U z|ψ2 dz dτ + ε

4

t∫
0

∫
|U z|ψ2

z dz dτ . (4.22)

Furthermore, by the boundedness of U , V and U z and V z as well as Lemma 3.1, there is a constant
m > 0 which depends on u± and v± such that

−ε

t∫
0

∫
(U z V + U V z)ψ

2 dz dτ � mε

t∫
0

∫
|U z|ψ2 dz dτ . (4.23)

Substituting (4.22) and (4.23) into (4.21) yields
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(
s

4
− (m + 1)ε

) t∫
0

∫
|U z|ψ2 dz dτ

� 1

2

∫ (
φ2 + Uψ2)dz − 1

2

∫ (
φ2

0 + Uψ2
0

)
dz + D

t∫
0

∫
φ2

z dz dτ

+
(

k

2
+ 1

s

) t∫
0

∫
|U z|φ2 dz dτ + ε

t∫
0

∫
Uψ2

z dz dτ + ε

4

t∫
0

∫
|U z|ψ2

z dz dτ

−
t∫

0

∫
φφzψz dz dτ + ε

t∫
0

∫
Uψψ2

z dz dτ

� C

(
‖φ0‖2 + ‖ψ0‖2 +

t∫
0

∫
|φφzψz|dz dτ + ε

t∫
0

∫
|ψψ2

z |dz dτ

+ ε

t∫
0

∫
V zψ

2 dz dτ

)
(4.24)

where (4.19) and the boundedness of U and U z have been used. Utilizing the condition 0 < V z � k|U z|
from Lemma 3.1 again, one has

(
s

4
− (m + 1)ε − Ckε

) t∫
0

∫
|U z|ψ2 dz dτ

� C

(
‖φ0‖2 + ‖ψ0‖2 +

t∫
0

∫
|φφzψz|dz dτ + ε

t∫
0

∫
|ψψ2

z |dz dτ

)
. (4.25)

If ε is small such that s
4 − (m + 1)ε − Ckε > 0, namely,

0 < ε <
s

4(m + 1 + Ck)
(4.26)

then (4.25) gives that

t∫
0

∫
|U z|ψ2 dz dτ

� C

(
‖φ0‖2 + ‖ψ0‖2 +

t∫
0

∫
|φφzψz|dz dτ + ε

t∫
0

∫ ∣∣ψψ2
z

∣∣dz dτ

)
. (4.27)

Hence
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ε

t∫
0

∫
V zψ

2 dz dτ � kε

t∫
0

∫
|U z|ψ2 dz dτ

� Cε

(
‖φ0‖2 + ‖ψ0‖2 +

t∫
0

∫
|φφzψz|dz dτ + ε

t∫
0

∫ ∣∣ψψ2
z

∣∣dz dτ

)
. (4.28)

Finally, the substitution of (4.28) into (4.19) finishes the proof of (4.13). �
Next we derive the estimates for the first order derivatives of (φ,ψ).

Lemma 4.6 (H1-estimates). Let the assumptions in Lemma 4.4 hold. Then the solution (φ,ψ) of (4.2), (4.3)
satisfies

∥∥φz(·, t)
∥∥2 + ∥∥ψz(·, t)

∥∥2 + D

t∫
0

∥∥φzz(·, τ )
∥∥2

dτ + ε

t∫
0

∥∥ψzz(·, τ )
∥∥2

dτ

� C

(
‖φ0‖2

1 + ‖ψ0‖2
1 +

t∫
0

∫ (|φ| + |φz| + |φzz|
)|φzψz|dz dτ

)

+ Cε

( t∫
0

∫ ∣∣ψ2
z ψzz

∣∣dz dτ +
t∫

0

∫ ∣∣ψψ2
z

∣∣dz dτ

)
. (4.29)

Proof. Multiplying the first equation of (4.2) by −φzz/U , the second equation by −ψzz , adding them
and integrating the resulting equation w.r.t. z, we obtain with some rearrangement

1

2

d

dt

∫ (
φ2

z

U
+ ψ2

z

)
dz + D

∫
φ2

zz

U
dz + ε

∫
V zψ

2
z dz + ε

∫
ψ2

zz dz

=
∫ [

−
(

1

U

)
z
φtφz + 1

2

(
s + V

U

)
z
φ2

z

]
dz −

∫
1

U
φzφzzψz dz + ε

∫
ψ2

z ψzz dz. (4.30)

We now estimate the first term on the right-hand side of (4.30). For convenience, we denote

I =
∫ [

−
(

1

U

)
z
φtφz + 1

2

(
s + V

U

)
z
φ2

z

]
dz.

Indeed, by using the first equation of (4.2), we have

I = 1

2

∫ [(
D

U

)
zz

−
(

s + V

U

)
z

]
φ2

z dz −
∫

U

(
1

U

)
z
φzψ

′
z dz −

∫ (
1

U

)
z
φ2

z ψz dz. (4.31)

In view of (4.15) and (4.16), one has

(
D

U

)
zz

−
(

s + V

U

)
z
= −δ(z) = 2�1

U 3
U z. (4.32)

By Cauchy–Schwarz inequality and the boundedness of U , U z as well as U zz , we deduce that
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−U

(
1

U

)
z
φzψz = −

(
U

(
1

U

)
z
φzψ

)
z
+ U

(
1

U

)
z
φzzψ +

(
U z

(
1

U

)
z
+ U

(
1

U

)
zz

)
φzψ

= −
(

U

(
1

U

)
z
φzψ

)
z
− U z

U
φzzψ +

(
U z

(
1

U

)
z
+ U

(
1

U

)
zz

)
φzψ

� −
(

U

(
1

U

)
z
φzψ

)
z
+ D

2

φ2
zz

U
+ C

(|U z|ψ2 + φ2
z

)
. (4.33)

Substituting (4.32) and (4.33) into (4.31) yields

I � D

2

∫
φ2

zz

U
dz + C

∫ (|U z|ψ2 + φ2
z

)
dz + C

∫
φ2

z |ψz|dz (4.34)

where the boundedness of U and U z has been used again. Now we substitute (4.34) into (4.30) and
integrate the result with respect to t . By the boundedness of U , V , U z, V z and inequality (4.13), we
end up with

∫ (
φ2

z + ψ2
z

)
dz + D

t∫
0

∫
φ2

zz dz dτ + ε

t∫
0

∫
ψ2

zz dz dτ

� C
(‖φ0‖2

1 + ‖ψ0‖2
1

) + C

t∫
0

∫ (|φ| + |φz| + |φzz|
)|φzψz|dz dτ

+ Cε

t∫
0

∫ ∣∣ψψ2
z

∣∣dz dτ + Cε

t∫
0

∫ ∣∣ψ2
z ψzz

∣∣dz dτ , (4.35)

which completes the proof of (4.29). �
Finally, we show the estimates for the second order derivatives of (φ,ψ).

Lemma 4.7. Let the assumptions in Theorem 4.4 hold. Then there is a constant C > 0 such that the solution
(φ,ψ) of (4.2), (4.3) satisfies

∥∥φzz(·, t)
∥∥2 + ∥∥ψzz(·, t)

∥∥2 + D

t∫
0

∥∥φzzz(·, τ )
∥∥2

dτ + ε

t∫
0

∥∥ψzzz(·, τ )
∥∥2

dτ

� C

(
‖φ0‖2

2 + ‖ψ0‖2
2 +

t∫
0

∫ (|φ| + |φz| + |φzz|
)|φzψz|dz dτ

)

+ Cε

( t∫
0

∫ ∣∣ψ2
z ψzz

∣∣dz dτ +
t∫

0

∫
|ψzψzzψzzz|dz dτ +

t∫
0

∫ ∣∣ψψ2
z

∣∣dz dτ

)

+ C

t∫
0

∫ (|φzz| + |φzzz|
)∣∣(φzψz)z

∣∣dz dτ . (4.36)
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Proof. We multiply the first equation of (4.2) by 1/U , differentiate the resulting equation with respect
to z twice and differentiate the second equation of (4.2) with respect to z twice to obtain

⎧⎪⎨
⎪⎩

(
1

U
φt

)
zz

=
(

D

U
φzz

)
zz

+
(

s + V

U
φz

)
zz

+ ψzzz +
(

1

U
φzψz

)
zz

,

ψtzz = εψzzzz + sψzzz + φzzz − 2ε(V ψz)zz − ε
(
ψ2

z

)
zz.

(4.37)

Now multiplying the first equation of (4.37) by φzz and the second equation by ψzz , integrating the
results w.r.t. z and adding them, we get

1

2

d

dt

∫ (
φ2

zz

U
+ ψ2

zz

)
dz +

∫ [(
1

U

)
zz

φt + 2

(
1

U

)
z
φtz

]
φzz dz + ε

∫
ψ2

zzz dz

= D

∫ (
φzz

U

)
zz

φzz dz +
∫ (

s + V

U
φz

)
zz

φzz dz − 2ε

∫
(V ψz)zzψzz dz

− ε

∫ (
ψ2

z

)
zzψzz dz +

∫ (
1

U
φzψz

)
zz

φzz dz

=: I1 + I2 + I3 + I4 + I5. (4.38)

Using the integration by parts, we deduce that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I1 = D

2

∫ (
1

U

)
zz

φ2
zz dz − D

∫
1

U
φ2

zzz dz,

I2 = −1

2

∫ (
s + V

U

)
zzz

φ2
z dz + 3

2

∫ (
s + V

U

)
z
φ2

zz dz,

I3 = −2ε

∫
V zzψzψzz dz − 3ε

∫
V zψ

2
zz dz.

(4.39)

Substituting (4.39) into (4.38) leads to

1

2

d

dt

∫ (
φ2

zz

U
+ ψ2

zz

)
dz + D

∫
1

U
φ2

zzz dz

+
∫ [(

1

U

)
zz

φt + 2

(
1

U

)
z
φtz

]
φzz dz + ε

∫
ψ2

zzz dz + 3ε

∫
V zψ

2
zz dz

= −1

2

∫ (
s + V

U

)
zzz

φ2
z dz + 1

2

∫ [
3

(
s + V

U

)
z
+

(
D

U

)
zz

]
φ2

zz dz

− 2ε

∫
V zzψzψzz dz − ε

∫ (
ψ2

z

)
zzψzz dz +

∫ (
1

U
φzψz

)
zz

φzz dz. (4.40)

Now we estimate the third term on the left-hand side of (4.40). Substituting the first equation of (4.2)
into it, one derives that

[(
1

U

)
zz

φt + 2

(
1

U

)
z
φtz

]
φzz

=
(

D

(
1

U

)
z
φ2

zz

)
z
+ 2(s + V )

(
1

U

)
z
φ2

zz +
[
(s + V )

(
1

U

)
zz

+ 2V z

(
1

U

)
z

]
φzφzz
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− U

(
1

U

)
zz

ψzφzz +
(

1

U

)
zz

φzψzφzz + 2

(
U

(
1

U

)
z
ψzφzz

)
z

− 2U z

(
1

U

)
z
ψzφzz + 2

(
1

U

)
z
(φzψz)zφzz. (4.41)

Then the substitution of (4.41) into (4.40) yields

1

2

d

dt

∫ (
φ2

zz

U
+ ψ2

zz

)
dz + D

∫
1

U
φ2

zzz dz + ε

∫
ψ2

zzz dz + 3ε

∫
V zψ

2
zz dz

= −1

2

∫ (
s + V

U

)
zzz

φ2
z dz + 1

2

∫ [
3

(
s + V

U

)
z
+

(
D

U

)
zz

− 4(s + V )

(
1

U

)
z

]
φ2

zz dz

−
∫ [

(s + V )

(
1

U

)
zz

+ 2V z

(
1

U

)
z

]
φzφzz dz +

∫ [
U

(
1

U

)
zz

+ 2U z

(
1

U

)
z

]
ψzφzz dz

−
∫ (

1

U

)
zz

φzψzφzz dz − 2
∫ (

1

U

)
z
(φzψz)zφzz dz

− 2ε

∫
V zzψzψzz dz − ε

∫ (
ψ2

z

)
zzψzz dz +

∫ (
1

U
φzψz

)
zz

φzz dz. (4.42)

If we write

(
ψ2

z

)
zzψzz = ((

ψ2
z

)
zψzz

)
z − 2ψzψzzψzzz,(

1

U
φzψz

)
zz

φzz =
(

1

U

)
zz

φzψzφzz +
(

1

U

)
z
(φzψz)zφzz +

(
1

U
(φzψz)zφzz

)
z
− 1

U
(φzψz)zφzzz

and use the boundedness of U , V as well as the boundedness of their derivatives (see Remark 2.1),
and utilize the Cauchy–Schwarz inequality, then we have from (4.42) that

∫ (
φ2

zz + ψ2
zz

)
dz + D

t∫
0

∫
φ2

zzz dz dτ + ε

t∫
0

∫
ψ2

zzz dz dτ

� C

∫ (
φ2

0,zz + ψ2
0,zz

)
dz + C

t∫
0

∫ (
φ2

z + φ2
zz + ψ2

z

)
dz dτ

+ Cε

t∫
0

∫ (
ψ2

z + ψ2
zz

)
dz dτ + ε

t∫
0

∫
|ψzψzzψzzz|dz dτ

+ C

t∫
0

∫
|φzψzφzz|dz dτ + C

t∫
0

∫ ∣∣(φzψz)z
∣∣(|φzz| + |φzzz|

)
dz dτ . (4.43)

The combination of (4.43) with (4.13) and (4.29) finishes the proof of (4.36). �
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5. Summary

This paper established the existence and nonlinear stability of traveling wave solutions for a sys-
tem of conservation laws which was derived from the well-known Keller–Segel model through an
artful transformation. We proved the existence of traveling wave solutions by the phase plane analy-
sis, and showed the asymptotic nonlinear stability of traveling wave solutions without the smallness
assumption on the wave strength via the method of energy estimates. There are several interesting
points rising from the current studies, as outlined below.

The first point is about the smallness assumption of ε. Usually the diffusion is a dissipative effect
stabilizing the system. But in the problem considered here the diffusion coefficient ε needs to be
small. Indeed, ε appears not only as a diffusion coefficient in the transformed system (1.1), but also
as a coefficient of the first order term. As a result, we are able to show the existence and stability of
traveling wave solutions if ε is small. The question for large ε is still open. We shall investigate such
a problem in the future.

The second point is about the stability of traveling wave solutions when u+ = 0. In the present pa-
per, we showed the asymptotic nonlinear stability of traveling wave solutions for u+ > 0. The methods
exposed in this paper would fail if u+ = 0. However u+ = 0 is not a physical assumption in general,
which indicates that cell density is zero in the region that has not been invaded by cells themselves,
for instance the cancer cell density during the metastasis. It is interesting to note that when u+ = 0,
the traveling wave equation of the Keller–Segel model (1.3) can be converted to a traveling wave
equation of the well-known Fisher–KPP type model [3,8], as shown in [16]. Therefore it is possible to
investigate such a problem using the approaches for the study of Fisher–KPP equation.

This paper is focused on the transformed system (1.1) instead of the original Keller–Segel model
itself. Our ultimate goal is to translate the results of system (1.1) back to the original Keller–Segel
model (1.3) using the transformation (1.4). However it turns out this backward translation will pro-
duce some interesting consequences, and the exploration of these outcomes goes beyond the scope
of this paper. Instead we shall explore the application of the results of system (1.1) to the original
Keller–Segel model in a separate paper.
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