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Abstract In this paper, we study the existence and nonexistence of traveling wave
solutions for the one-dimensional microscopic and macroscopic chemotaxis models.
The microscopic model is based on the velocity jump process of Othmer et al. (SIAM
J Appl Math 57:1044–1081, 1997). The macroscopic model, which can be shown to
be the parabolic limit of the microscopic model, is the classical Keller–Segel model,
(Keller and Segel in J Theor Biol 30:225–234; 377–380, 1971). In both models, the
chemosensitivity function is given by the derivative of a potential function, �(v),
which must be unbounded below at some point for the existence of traveling wave
solutions. Thus, we consider two examples: �(v) = ln v and �(v) = ln[v/(1 − v)].
The mathematical problem reduces to proving the existence or nonexistence of solu-
tions to a nonlinear boundary value problem with variable coefficient on R. The main
purpose of this paper is to identify the relationships between the two models through
their traveling waves, from which we can observe how information are lost, retained,
or created during the transition from the microscopic model to the macroscopic model.
Moreover, the underlying biological implications of our results are discussed.
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740 R. Lui, Z. A. Wang

1 Introduction

Chemotaxis is the directed movement of cells or organisms in response to chemical
stimulus. It is a basic cellular process and plays an essential role in many important bio-
logical processes such as embryonic development, wound healing, and angiogenesis
(Parent 2004). The mathematical study of chemotaxis was initiated with the pioneering
work of Keller and Segel (1970), in which an advection-diffusion equation was pro-
posed from a macroscopic (population-based) perspective to describe the aggregation
of Dictyostelium discoideum in response to waves of cyclic adenosine monophosphate
(cAMP). Their model is now commonly referred to as the Keller–Segel model. Since
then, large amount of research have been performed and papers written on this and
other related models (Horstmann 2003, 2004).

Modeling chemotaxis from a cell-based perspective was initiated by Patlak (1953),
and later further developed by Alt (1980), and by Othmer et al. (1988). In Othmer et al.
(1988), the authors derived a transport equation based on a velocity jump process to
describe chemotactic movement of individual cells. It can be shown that the parabolic
limit of the transport equation is the Keller–Segel model (Othmer and Hillen 2002).
This provides support for the success of both Keller–Segel model and transport model
in describing chemotactic movement from different perspectives. In this paper, the
transport equation and the Keller–Segel model will be referred to as microscopic and
macroscopic models, respectively.

The main result of this paper is the existence and nonexistence of traveling wave
solutions for the one-dimensional microscopic and macroscopic models and their rela-
tionships. The experimental observation of traveling bands of bacterial chemotaxis was
reported by Adler (1966). The mathematical modeling and analysis of traveling waves
was first presented by Keller and Segel (1971b), which stimulated a flurry of activities
by others [see Horstmann (2004) and references therein]. However all these theoret-
ical results deal with the macroscopic model only. The result of traveling waves for
the microscopic model was not reported to date. Since the macroscopic behavior is
translated from the microscopic properties, we are motivated in this paper to study
the traveling wave solutions for both macroscopic and microscopic chemotaxis model
and examine how the traveling wave parameters in the microscopic model are trans-
lated to the macroscopic model. Biological implications of our results will be given
at the end. In the rest of this section, we shall present the models that we study in this
paper.

Let u+(t, x), u−(t, x) be the number densities of cells moving to the right and to
the left at time t and position x , respectively. Let v(t, x) be the chemical concentration
that induces chemotactic cell movement. Suppose at random times, the cells change
directions according to a Poisson process with intensity λ±. Then, by assuming that
the cells migrate with a constant speed s, u± and v satisfy the following system of
equations:

⎧
⎪⎨

⎪⎩

u+
t + su+

x = −λ+u+ + λ−u−

u−
t − su−

x = λ+u+ − λ−u−

vt = Dvxx + g(u, v),

(1.1)
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Traveling wave solutions from microscopic to macroscopic chemotaxis models 741

where g(u, v) represents the kinetics between the chemical and the cells, and u =
u+ + u− is the total cell density. In general, λ±, which we shall refer to as the turning
rate functions, may depend on v, vx and vt . If λ± are independent of vt , we follow
Erban and Othmer (2004) and assume that they take the form

λ±(v, vx ) = λ0 ∓ sκ�(v)x = λ0 ∓ sκϕ(v)vx , (1.2)

where λ0 is the basal turning frequency when the cell is fully adapted to the signal and
κ is related to the internal dynamics (signal transduction) of the cell. An example of
κ > 0 given in Erban and Othmer (2004) is

κ = b0ta/[(1 + 2λ0ta)(1 + 2λ0te)] (1.3)

where ta and te are the adaptation and excitation time constants and b0 > 0 is a scaling
constant. �(v) and its derivative ϕ(v) are called chemical potential and chemosensi-
tivity functions, respectively (Hillen and Painter 2009). We assume that ϕ(v) > 0 in
this paper. As a result, v acts as a chemoattractant which reduces the turning frequency
for cells moving to the right when vx > 0.

The parabolic limit mentioned above refers to the scalings ξ = εx, τ = ε2t for
system (1.1) and passing to the limit as ε ↓ 0. Assuming that the turning rate functions
are of the form (1.2), the parabolic limit of (1.1) is the Keller–Segel model:

{
uτ = (duξ − χu�(v)ξ )ξ

vτ = Dvξξ + g(u, v),
(1.4)

where d and χ are given by [see Erban and Othmer (2004)]

d = s2/(2λ0) and χ = s2κ/λ0. (1.5)

In a recent paper, Wang (2009), one of the authors (Wang) proved that the parabolic
limit of (1.1) is also (1.4) when λ± also depends on the temporal gradient vt of the
chemical concentration.

During transition from the microscopic model to the macroscopic model, an impor-
tant question is how much information in the microscopic model are lost, retained, or
created in the macroscopic model. Inspired by this question, we examine the existence
and nonexistence of traveling wave solutions for both models in this paper. We show
that the existence of traveling waves solutions for the microscopic model is closely
related to the value of the traveling wave speed c relative to the single cell speed s.
We identify the relationship between the microscopic model and macroscopic model
in terms of their traveling wave solutions. We then discuss the biological implications
based on our results.

The organization of this paper is as follows. In Sect. 2, we formulate our problem,
derive some conditions for the existence of traveling wave solutions, and state our main
results in Theorem 2.5, Propositions 2.9 and 2.10. In Sect. 3, we prove Theorem 2.5,
separating the proof into three cases: c = 0, 0 < c < s, and c = s. Sections 4 and 5
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742 R. Lui, Z. A. Wang

contain the proofs of Proposition 2.9 and 2.10, respectively. In Sect. 6 we summarize
our results and discuss the underlying biological implications.

2 Problem formulation and statements of main results

Throughout this paper, we shall assume that the turning-rate functions, λ±, are of
the form (1.2). Typical potential functions and their corresponding chemosensitivity
functions are:

�(v) = v, ϕ(v) = 1 (Direct measurement)

�(v) = ln v, ϕ = 1

v
(Logarithmic)

�(v) = v

Kd + v
, ϕ(v) = Kd

(Kd + v)2 (Michaelis-Menten receptor kinetics)

�(v) = ln

(
v

1 − v

)

, ϕ(v) = 1

v(1 − v)
(Bounded signal).

(2.1)

On the macroscopic level, the Direct Measurement potential function has been
used extensively in the study of pattern formation of the Keller–Segel model (Hillen
and Painter 2009), and first appeared in the paper by Rosen (1976). The Logarithmic
potential function was first used by Keller and Segel (1971b), to describe the traveling
band behavior of bacteria and subsequently used extensively by many other researchers
[see Tindall et al. (2008) and the references therein]. The Michaelis-Menten Receptor
Kinetics potential function was first applied by Lapidus and Schiller (1976) to fit the
experimental observation of Brown and Berg (1974), where Kd represents the recep-
tor-ligand binding dissociation rate constant. The Bounded Signal potential function
is included for the study of traveling front solutions. This is the only potential function
in (2.1) that is unbounded at two points.

On the microscopic level, the chemosensitivity function, ϕ(v), characterizes the
sensing mechanism employed by cells to detect and transduce signal. The Direct Mea-
surement chemosensitivity function represents linear response and signal-independent
sensitivity. The other chemosensitivity functions in (2.1) represent nonlinear sensing
mechanisms that are signal dependent. The Logarithmic chemosensitivity function
applies to the situation where the cells are highly sensitive at low concentration of the
signal and become less sensitive as signal concentration increases due to adaptation.
The Michaelis-Menten Receptor Kinetics chemosensitivity function was motivated
by a receptor-signal binding model which postulates that at high signal concentration,
the receptors on the cell surface may be fully occupied and the cell is unable to further
resolve a gradient (Lapidus and Schiller 1976). The Bounded Signal chemosensitivity
function postulates high sensitivity at the low and high concentrations of the signal.
This kind of sensing mechanism has not been addressed in the literature and we pro-
pose it here to study the existence of traveling pulse-front solutions in the case where
the traveling wave speed coincide with the individual cell speed (see Sect. 4). There
are some other sensing mechanisms that are summarized in Tindall et al. (2008) and
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Traveling wave solutions from microscopic to macroscopic chemotaxis models 743

Hillen and Painter (2009), but the study of each of such mechanisms will go beyond
the scope of this paper.

2.1 Microscopic model

Let u = u+ + u− and let j = s(u+ − u−) be the total density flux. Then system (1.1)
can be written as

⎧
⎨

⎩

ut + jx = 0
jt + s2ux = −F1u − F2 j
vt = Dvxx + g(u, v),

(2.2)

where

F1 = s(λ+ − λ−) and F2 = λ+ + λ−.

Traveling wave solutions of (2.2) are special solutions of the form ũ(z), j̃(z), ṽ(z)
where z = x − ct and c is a constant called the wave speed. Substituting F1, F2 into
(2.2), we have

⎧
⎨

⎩

−cuz + jz = 0
−cjz + s2uz = 2s2κuϕ(v)vz − 2λ0 j
−cvz = Dvzz + g(u, v),

(2.3)

where the tildes on top of u, j, v have been deleted for notational convenience. We
assume zero flux boundary conditions j (±∞) = 0. From the first equation of (2.2),
we have

∫

R

u(t, x)dx =
∫

R

u0(x)dx = m0 > 0.

Since u ≥ 0, we have u(±∞) = 0, j = cu, and system (2.3) may be simplified to the
following traveling wave system:

{
(s2 − c2)uz = −2cλ0u + 2s2κu�(v)z

−cvz = Dvzz + g(u, v).
(2.4)

Note that we can recover u± from the formulas u± = (u ± j/s)/2. We impose the
following boundary conditions on u and v:

u(±∞) = 0 and v(±∞) = v±, (2.5)

where v± are finite. If v± = 0, then we call the solutions of (2.4) and (2.5) traveling
pulse-pulse solutions. If v− = 0 and v+ > 0, then we call the solutions traveling
pulse-front solutions.
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744 R. Lui, Z. A. Wang

From the relation j = cu, we have

u+(z) − u−(z)

u+(z) + u−(z)
= c

s
. (2.6)

Since u± ≥ 0, (2.6) implies that −s ≤ c ≤ s. If c2 �= s2, we integrate the first
equation in (2.4) to obtain

u(z) = C0e−2σ(λ0cz−s2κ�(v)), (2.7)

where σ = 1/(s2 − c2) and C0 > 0 is the constant of integration. Since u(−∞) = 0,
we have �(v−) = limz→−∞ �(v(z)) = −∞. If c2 = s2, then �(v)z = ϕ(v)vz =
λ0/cκ . Thus, ϕ(v±) are unbounded. Among the potential functions given in (2.1), only
the Logarithmic and Bounded Signal potential functions satisfy these conditions with
v− = 0. Therefore, we only consider these two potential functions for the microscopic
model in this paper.

2.2 Macroscopic model

The traveling wave system for the macroscopic model (1.4) is

{−cU = dUz − χU�(V )z

−cVz = DVzz + g(U, V ),
(2.8)

where we have assumed that U (−∞) = 0, U ′(−∞) = 0, and �(V )z is bounded. Let
d, χ be defined by (1.5). Then (2.8) can be written as

{
s2Uz = −2cλ0U + 2s2κU�(V )z

−cVz = DVzz + g(U, V ).
(2.9)

This is the same as (2.4) except that s2 − c2 is replaced by s2 on the left. We impose
the following boundary conditions on U and V :

U (±∞) = 0 and V (±∞) = V±. (2.10)

An equation similar to (2.7) can be derived with σ replaced by σ̃ = 1/s2. Hence,
we also only consider the Logarithmic and Bounded Signal potential functions with
V− = 0 for the macroscopic model in this paper.

Remark 2.1 If (u(z), v(z)) is a solution of (2.4) with speed c, then (u(−z), v(−z)) is
also a solution of (2.4) with speed −c. Similar statement can be made for the macro-
scopic model (2.9). Hence, for the proof of the existence of traveling wave solutions
with speed c, it suffices to assume that c ≥ 0. Also, it is obvious from the traveling
wave systems (2.4) and (2.9) that translations of a traveling wave solution is also a
traveling wave solution.
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Traveling wave solutions from microscopic to macroscopic chemotaxis models 745

Remark 2.2 If we substitute (2.7) into the second equation in (2.4), we obtain the
following boundary value problem

Dvzz + cvz + g(C0e−2σ(λ0cz−s2κ�(v)), v) = 0, v(±∞) = v±. (2.11)

This boundary value problem also holds for the macroscopic traveling wave sys-
tem (2.9) by changing σ to σ̃ . Clearly, not much can be said about (2.11) without
knowing g(u, v). Therefore, we assume throughout this paper that g is linear; i.e.
g(u, v) = αu − βv. This form of kinetics has not been considered in the study of the
traveling waves before, but it has been used extensively to study global existence and
pattern formations of the Keller–Segel model, Hillen and Painter (2009). However, this
form was not included in the forms studied by Horstmann and Stevens in Horstmann
and Stevens (2004). In this paper, we shall find conditions on α, β such that traveling
wave solutions exist.

Remark 2.3 Suppose v(z) is a solution of (2.11) with g(u, v) = αu−βv. Let τ satisfy
e2σλ0cτ = C0. Then v(z + τ) is a solution of (2.11) corresponding to C0 = 1. There-
fore, without loss of generality, we shall assume that C0 = 1 in (2.11) throughout this
paper.

Remark 2.4 Suppose g(u, v) = αu − βv in (2.11). Then g(0, v±) = −βv± = 0.
Hence, traveling pulse-front solutions can exist only if β = 0.

We now state the main results of this paper. For convenience, we let

k = 2σλ0c and r = 2σ s2κ

for the rest of this paper. In the following theorems, the microscopic (macroscopic)
model refers to traveling wave Eqs. (2.4) and (2.5) [(2.9) and (2.10)]. Traveling wave
solutions mean either traveling pulse-pulse solutions or traveling pulse-front solutions.

Theorem 2.5 Let �(v) = ln v and let g(u, v) = αu − βv. Then

(i) for the case c = 0, the microscopic and macroscopic models are identical.
Traveling pulse-pulse solutions of speed zero exist if and only if D > 0, 2κ >

1, α > 0 and β > 0. Traveling pulse-front solutions of speed zero do not exist.
(ii) for the case 0 < c < s, it holds that

(a) if D = 0, then traveling pulse-pulse solutions of speed c exist for the
microscopic model if and only if r ≥ 1, α < 0, and β < 0. Traveling
pulse-front solutions of speed c exist if and only if r ≥ 1, α < 0 and β = 0,

(b) if D > 0, then traveling pulse-pulse solutions of speed c exist for the
microscopic model if r > 1, α < 0, β < 0, and 2

√−βD ≤ c < s.
Traveling pulse-front solutions of speed c exist if r > 1, α < 0 and β = 0.
Same results in (ii) hold for the macroscopic model with r replaced by
r̃ = 2κ = χ/d.

(iii) for the case c = s, traveling wave solutions of speed c do not exist for the
microscopic model. For the macroscopic model, it holds that
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746 R. Lui, Z. A. Wang

(a) if D = 0, then the macroscopic model admits traveling pulse-pulse solu-
tions of speed c if and only if 2κ ≥ 1, α < 0, and β < 0. It also admits
traveling pulse-front solutions of speed c if and only if 2κ ≥ 1, α < 0 and
β = 0,

(b) if D > 0, then the macroscopic model has traveling pulse-pulse solutions
of speed c if 2κ > 1, α < 0, β < 0 and c ≥ 2

√−βD. It also admits
traveling pulse-front solutions of speed c if 2κ > 1, α < 0 and β = 0.

Remark 2.6 For the microscopic model to be biologically meaningful, the turning
rate functions, λ±, should be nonnegative. Since the proof of Theorem 2.5 does not
require the conditions under which the turning rate functions are nonnegative, we
present the conditions for the non-negativity of turning rate functions separately in
Proposition 2.10.

Remark 2.7 The microscopic model is only valid if 0 ≤ c ≤ s since population
wave speed cannot exceed individual cell speed. However, for the macroscopic model,
which comes from (2.8), c can be arbitrarily large. In fact, we shall see in Sect. 3.3 that
Theorem 2.5(iii)(a) and (b) are valid even if c > s. In addition, from Theorem 2.5(iii),
the microscopic model does not possess traveling wave solutions when c = s. Hence,
the most biologically relevant case is when 0 ≤ c < s.

Remark 2.8 In our model, the presence of the chemoattractant causes individual cells
to change directions and the population to slow down and travel at speed c. Our
analysis is divided into the cases of zero diffusion (D = 0) and nonzero diffusion
(D �= 0) for the chemical. The former applies to haptotaxis, or gliding movement of
myxobacteria towards slime trails (Othmer and Stevens 1997), and the latter applies
to the diffusible chemical which is the case in most situations (Horstmann 2003). In
Theorem 2.5, one of the main conditions for the existence of traveling wave solutions
for the microscopic model is r > 1, or equivalently, 2κ > 1 − (c/s)2. Since κ is
related to the internal dynamics of the cell, this condition means that the chemoattrac-
tant needs to have a suitably strong impact on the cells before the population movement
can develop into a traveling wave. In the kinetic term g(u, v) for the chemical, the con-
ditions α < 0, β ≤ 0 mean that the chemoattractant is consumed by cells (α < 0) to
balance the exponential growth of the chemical (β < 0). For the macroscopic model,
the equivalent condition is χ > d, which means that the chemotactic effect has to
overcome the diffusion effect before traveling waves can exist. Some species, such as
Dictyostelium discoideum and E. Coli, can secret their own chemicals for chemotaxis
(Eisenbach 2004). In such a case, both α and β are positive, and Theorem 2.5(i) says
that standing wave solutions can exist if D > 0 and κ is suitably large.

It can be shown from (2.7) that if c = s, then �(v+) = ∞. Hence, there is no
traveling wave solution if �(v) = ln v but there may be traveling pulse-front solution
for the Bounded Signal potential function with v+ = 1. The following result verifies
this.

Proposition 2.9 Let �(v) = ln[v/(1−v)] for 0 < v < 1 and let g(u, v) = αu −βv.
Suppose c = s. Then traveling pulse-front solutions for the microscopic model with
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v− = 0, v+ = 1 exist if and only if α < 0, β = 0 and s2 > Dλ0/κ . In addi-
tion, the turning rate functions, λ±, are nonnegative for all parameter values. For
the macroscopic model, assuming that D = 0, traveling pulse-front solutions with
V− = 0, V+ = 1 exist if α < 0, β = 0 and 2κ ≥ 1.

The following proposition addresses the non-negativity of turning rate functions
λ± for the biologically most significant case 0 ≤ c < s and traveling pulse-pulse
solutions (i.e. β �= 0). Note that traveling wave solutions of the microscopic model do
not exist if �(v) = ln v and c = s. The proposition and proof can be readily extended
to the case of traveling pulse-front solutions (i.e. β = 0) with obvious modifications.

Proposition 2.10 Let the hypotheses of the microscopic model in Theorem 2.5(i),
Theorem 2.5(ii)(a) and Theorem 2.5(ii)(b) be satisfied for cases (i), (ii)(a) and (ii)(b)
below, respectively. Then

(i) for the case c = 0, λ± are nonnegative on R if λ0 ≥ sκ
√

β/D.

(ii) for the case 0 < c < s,
(a) if D = 0, it holds that

(1) if r > 1, then λ± are positive on R if and only if −κβ/λ0 < c/s <

2κ − 1.
(2) if r = 1, then λ+ is always negative near −∞.

(b) if D > 0 and κ > 1, then λ± are positive on R if

c

s
<

Dλ0(κ − 1)

s2κ2 + Dλ0(κ − 1)
. (2.12)

Remark 2.11 From the proof of Proposition 2.10, condition (2.12) ensures that the
turning rate functions, λ±, are positive at a local minimum. In case D = 0, such a
condition is no longer needed because λ± are monotone. This fact does not seem to
be true when D > 0 but we cannot find a numerical example to show that (2.12) is
actually necessary.

3 Proof of Theorem 2.5

3.1 Case c = 0

In this case, (2.4) and (2.9) are identical so we only consider (2.4). Equation (2.7)
becomes u(z) = v2κ(z). Hence, v± = 0 and there is no pulse-front solution. The
boundary value problem (2.11) becomes

Dvzz + αv2κ − βv = 0, v(±∞) = 0. (3.1)

It is clear that there is no traveling wave solution if D = 0. If αβ ≤ 0, then v is either
concave or convex on R which is inconsistent with v(z) ≥ 0 and v(±∞) = 0. Hence,
αβ > 0. We write (3.1) as a first-order system:

{
vz = w

wz = 1
D (βv − αv2κ).

(3.2)
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Fig. 1 Phase portrait of (3.2) for the case c = 0 with D = 1, α = 1, β = 1, and κ = 1. The dashed curve
is the homoclinic orbit corresponding to the traveling pulse solution for v

If 2κ < 1, then the right side of the above system is not differentiable at the ori-
gin. If 2κ = 1, then (3.1) is linear. It can be solved explicitly and shown to have no
nonnegative solution. Thus, 2κ > 1. System (3.2) has two steady states (0, 0) and
(δ, 0), where δ2κ−1 = β/α > 0. The eigenvalues of the linearized matrices at (0, 0)

and (δ, 0) are ±√
β/D and ±√

β(1 − 2κ)/D, respectively. If β < 0, then (0, 0) is a
center and there is no trajectory connecting (δ, 0) to (0, 0) or itself that lies entirely in
the region v > 0. Therefore, β > 0. The origin is then a saddle and (δ, 0) is a center.
System (3.2) is a Hamiltonian system with

H(v,w) = 1

2
w2 − β

2D
v2 + α

(2κ + 1)D
v2κ+1 (3.3)

which is constant on any trajectory. Figure 1 shows the trajectory (dashed line) of a
traveling wave solution for v connecting the unstable manifold to the stable manifold
at the origin. This completes the proof of Theorem 2.5(i).

3.2 Case 0 < c < s

3.2.1 Microscopic model

The boundary value problem (2.11) becomes

Dvzz + cvz + αe−kzvr − βv = 0, v(−∞) = 0, v(∞) = v+. (3.4)

Proof of Theorem 2.5(ii)(a) when D = 0.
We first consider traveling pulse-pulse solutions with v+ = 0.
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Traveling wave solutions from microscopic to macroscopic chemotaxis models 749

r < 1: Let f1 = −β/c and let f2(z) = −α exp(−kz)/c. Then (3.4) becomes vz +
f1v = f2(z)vr . The change of variable y = v1−r transforms the above equation into
yz + (1 − r) f1 y = (1 − r) f2(z). The general solution of this equation is y(z) =
C1e(1−r)βz/c + C2e−kz where C1 > 0 and

C2 = (1 − r)α

kc + β(1 − r)
. (3.5)

Therefore, v is given by

v(z) =
(

C1e(1−r)βz/c + C2e−kz
) 1

1−r
. (3.6)

If r < 1, then v(∞) → ∞ if β > 0 and v(−∞) → ∞ if β ≤ 0. Hence, there is no
traveling wave solution in this case.

r = 1: Equation (3.4) is linear and can be solved to yield

v(z) = C3 exp

(
β

c
z + α

kc
e−kz

)

(3.7)

u(z) = C3 exp

((
β

c
− k

)

z + α

kc
e−kz

)

(3.8)

where (2.7) has been used to obtain u(z). It is easy to see that v(±∞) = u(±∞) = 0
if and only if α < 0 and β < 0. Hence, traveling pulse-pulse solutions exist for this
case.

r > 1: The calculations in the case r < 1 and (3.6) are still valid. Note that the out-
ermost exponent in (3.6) is negative. If β > 0, then v(z) → ∞ as z → ∞. If β = 0,
then v(z) → C1/(r−1)

1 > 0 as z → ∞. So in both cases, v cannot be a traveling pulse
solution. If β < 0, then v(z) → 0 as z → ∞. If C2 > 0, then v(z) → 0 as z → −∞
so v is a traveling pulse. The condition C2 > 0 is equivalent to α < 0. Thus, if both
α and β are negative, then v(±∞) = 0. Now u is given by

u(z) = e−kzvr (z), (3.9)

which implies that u(∞) = 0. From (3.6), u(z) ∼ ekz/(r−1) as z → −∞. (Here,
f (x) ∼ g(x) as x → x0, where x0 is an extended real number, means that
limx→x0 f (x)/g(x) = constant �= 0.) Thus, u(−∞) = 0 and traveling pulse-pulse
solutions exist. Numerical example of a traveling pulse-pulse solution is shown in
Fig. 2a and the corresponding turning rate functions are shown in Fig. 2b.

We now consider traveling pulse-front solutions with v+ > 0.
From Remark 2.4, we have β = 0 and v satisfies the equation cvz = −αe−kzvr . If

r = 1, then

v(z) = C4 exp
( α

kc
e−kz

)
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Fig. 2 a Traveling wave solutions of the microscopic model with �(v) = ln v, g(u, v) = αu − βv, and
D = 0, β �= 0. b Graphs of turning rate functions λ± corresponding to the traveling wave solutions shown
in (a). Parameter values are: α = −1, β = −1, s = 4, c = 2, λ0 = 4, and κ = 1
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Fig. 3 a Traveling wave solutions of the microscopic model with �(v) = ln v, g(u, v) = αu − βv, and
D = 0, β = 0. b Graphs of turning rate functions λ± corresponding to the traveling wave solutions shown
in (a). Parameter values are: α = −1, s = 4, c = 2, λ0 = 10, and κ = 1

where C4 > 0. In order for v(−∞) = 0, α must be negative. Then v(∞) = C4 and
v(z) is a traveling front solution. If r �= 1, then (3.6) becomes

v(z) =
[

v1−r+ + α(1 − r)

ck
e−kz

] 1
1−r

.

In order for v(−∞) = 0, we must have r > 1, and in order that v(z) > 0, we must
have α < 0. Thus, traveling pulse-front solutions exist if and only if r ≥ 1, α < 0 and
β = 0. The proof of Theorem 2.5(ii)(a) with D = 0 is complete. Numerical example
of a traveling pulse-front solutions is shown in Fig. 3a and the corresponding turning
rate functions are shown in Fig. 3b.

Proof of Theorem 2.5(ii)(b) when D > 0 By dividing (3.4) throughout by D and rel-
abeling the constants c/D, s/D, α/D, β/D, λ0/D as c, s, α, β, λ0, respectively, we
may assume that D = 1. Note that the last assumption in the Theorem 2.5 is stated
with respect to the unscaled c, s, α, β and λ0. If r = 1, Eq. (3.4) is linear with variable
coefficient and cannot be solved explicitly. We do not discuss this case here.
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We first consider traveling pulse-pulse solutions with v+ = 0.
Let w = veμz and let

μ = −k

r − 1
where r �= 1. (3.10)

Then w satisfies the equation

wzz + (−2μ + c)wz + (μ2 − cμ − β)w = −αwr . (3.11)

Rewriting (3.11) as a first order system, we have

{
w′ = �

�′ = −a� − bw − αwr ,
(3.12)

where a = −2μ+c and b = μ2 −cμ−β. There are two equilibria: (w1, �1) = (0, 0),
which always exists, and (w2, �2) = ([−b/α]1/(r−1), 0), which exists if −b/α > 0. If
0 < r < 1, the right side of (3.12) is not differentiable at the origin. Thus, we assume
that r > 1 which implies that μ < 0 and a > 0. It can be shown that if (w2, �2) does
not exist, then there cannot be a trajectory connecting the unstable manifold to the
stable manifold at the origin. Therefore, no traveling pulse solutions exist in that case.

Let us assume that −b/α > 0 and (w2, �2) exists. Let J1 and J2 be the linearized
matrices at these two equilibria, respectively. Then the eigenvalues of matrix J1 are

ξ1 = −a − √
a2 − 4b

2
, ξ2 = −a + √

a2 − 4b

2
,

and the eigenvalues of J2 are

η1 = −a − √
a2 + 4b(r − 1)

2
, η2 = −a + √

a2 + 4b(r − 1)

2
.

If b < 0, then ξ1 < 0 < ξ2. If there is a trajectory connecting (0, 0) to (w2, �2),
then v(z) ∼ (w2 + Ceη2z)e−μz as z → ∞ which means v+ = ∞ since μ < 0
and Re(η2) < 0. Thus we assume that b > 0 and consequently α < 0. If β > 0,
then Eq. (3.4) is not satisfied at the maximum of v(z). Therefore, both α and β are
negative. Since a2 − 4b = c2 + 4β, we have ξ1 < ξ2 < 0 if c2 ≥ −4β which is
one of our hypotheses. Also, η1 < 0 < η2. We now show that there is a trajectory
connecting the unstable manifold of (w2, �2) to (0, 0). This trajectory will give us
traveling pulse-pulse solutions.

Consider the parabolic equation

wt = wxx + h(w) (3.13)

where h(w) = w(b +αwr−1). We look for traveling wave solution w̃(z) = w̃(x − ĉt)
satisfying the boundary conditions w̃(−∞) = w2 and w̃(∞) = 0. The traveling wave
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Fig. 4 a Traveling wave solutions of the microscopic model with �(v) = ln v, g(u, v) = αu − βv, and
D = 1, β �= 0. b Graphs of turning rate functions λ± corresponding to the traveling waves shown in (a).
Parameter values are: α = −1, β = −0.125, s = 4, c = 1.25, λ0 = 5.8, and κ = 1.35

equation is ŵzz + ĉŵz + h(ŵ) = 0. Since h(0) = h(w2) = 0, h(w) > 0 in (0, w2),
h′(0) = b > 0, h′(w2) = (1−r)b < 0 and h′′(w) = αr(r −1)wr−2 < 0, Eq. (3.13) is
a Fisher-KPP type equation. It is known that [see Kolmogorov et al. (1937)] there exist
traveling front solutions if and only if ĉ ≥ 2

√
h′(0) which translates to c2 ≥ −4β.

In other words, if this condition holds, then there is a decreasing function w satisfy-
ing Eq. (3.11) such that w(−∞) = w2 and w(∞) = 0. The only questions left are
whether v(±∞) and u(±∞) equal to zero.

From above, v(z) = w(z)e−μz, η2 > 0 and μ < 0. Therefore, v(z) ∼ (w2 +
Ceη2z)e−μz → 0 as z → −∞. On the other hand, v(z) ∼ e(ξ2−μ)z as z → ∞,
which approaches zero as z → ∞ if ξ2 − μ < 0. This last condition is equivalent to
a2 − 4b < c2 which is satisfied because β < 0.

Turning to u(z), from (3.9), we have

u(z) ∼ (w2 + Ceη2z)r e−(μr+k)z as z → −∞.

From (3.10), μr + k = μ. Since η2 > 0, r > 1 and μ < 0, it follows that u(z) ∼
(w2 + Ceη2z)r e−μz → 0 as z → −∞. Similarly,

u(z) ∼ e(ξ2r−μ)z as z → ∞.

Since r > 1 and ξ2 < 0, we have ξ2r − μ < ξ2 − μ < 0. Therefore, u(z) → 0 as
z → ∞. The proof of the first part of the proposition is complete. Numerical example
of a traveling pulse-pulse solution (u, v) is shown in Fig. 4a and the corresponding
turning rate functions are shown in Fig. 4b.

We now consider traveling pulse-front solutions with v+ > 0.
From Remark 2.4, we have β = 0. One observes from the above proof that ξ2 = μ

if β = 0 so that v(z) approaches a constant as z → ∞. Therefore traveling pulse-front
solutions exist for the microscopic model if r > 1, α < 0 and β = 0. Numerical
example of a traveling pulse-front solution is shown in Fig. 5a and the corresponding
turning rate functions are shown in Fig. 5b. The proof of Theorem 2.5(ii)(b) with
D > 0 is complete.
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Fig. 5 a Traveling wave solutions of the microscopic model with �(v) = ln v, g(u, v) = αu − βv, and
D = 1, β = 0. b Graphs of turning rate functions λ± corresponding to the traveling waves shown in (a).
Parameter values are α = −1, s = 4, c = 1, λ0 = 7.25, and κ = 1.4

3.2.2 Macroscopic model

From the first equation of the traveling wave system (2.9), we have

U (z) = e−2σ̃ λ0cz V 2κ(z)

where σ̃ = 1/s2. Thus the above results on microscopic model also hold for macro-
scopic model with r replaced by r̃ = 2κ = χ/d.

Remark 3.1 From the above analysis, we see that the microscopic and macroscopic
models have traveling pulse-pulse solutions if r ≥ 1 and r̃ ≥ 1, respectively. Since
r > r̃ , in case r > 1 > r̃ , traveling pulse-pulse solutions exist for the microscopic
model but not for the macroscopic model.

3.3 Case c = s

3.3.1 Microscopic model

We have shown in Sect. 2 that traveling wave solutions do not exist for the microscopic
model if c > s. Now we examine the case c = s. Since u is not identically zero,
let (a, b) be the maximum interval where u > 0. Here, a, b may be extended real
numbers and if a or b is finite, then u must vanish there by continuity. From the first
equation of (2.4), we have

v(z) = C0eλ0z/sκ in (a, b). (3.14)

From the second equation of (2.4), we have

u(z) = −

(

D
(

λ0
sκ

)2 + s
(

λ0
sκ

)
− β

)

C0eλ0z/sκ

α
in (a, b). (3.15)
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From (3.15), α �= 0 for otherwise, u is undefined on (a, b). In other words, if α = 0,
then the second equation of (2.4) does not contain u and cannot be used to find u.
From (3.15), u cannot vanish anywhere which implies that a = −∞ and b = ∞. In
other words, u > 0 on R. It then follows from (3.14) that v(∞) = v+ = ∞. Since
v+ is finite, no traveling wave solution exists for the Logarithmic potential function
when c = s.

3.3.2 Macroscopic model

Integrating the first equation in (2.9), we have

U (z) = e−k̃z V 2κ(z)

where k̃ = 2λ0c/s2. Substituting this into the second equation of (2.9), we have

DVzz + sVz + αe−k̃z V 2κ − βV = 0, V (−∞) = 0, V (∞) = V+. (3.16)

Comparing (3.16) with (3.4), we can conclude Theorem 2.5(iii) directly from the
results obtained in the previous subsections. From the above results, we see that there
are significant differences between the two models when c = s.

4 Proof of Proposition 2.9

Let �(v) = ln[v/(1 − v)] for 0 < v < 1. Then ϕ(v) = �′(v) = 1/[v(1 − v)],
�−1(v) = 1/(1 + e−v). Let c = s. For the microscopic model, using an argu-
ment similar to that presented in Sect. 3.3, one can show that u > 0 on R so that
�(v)z = λ0/sκ . Integrating and from above, we have

v(z) = 1

1 + C6e−λ0z/sκ
, (4.1)

where C6 > 0. Hence, v+ = 1, v− = 0 and v(z) is a traveling front. Let g(u) =
αu − βv. Then the equation Dvzz + cvz + αu − βv = 0 can be solved explicitly to
yield

u(z) = ξ(z)

α

{

−s + Dλ0

sκ

(

1 − 2C6

C6 + eλ0z/sκ

)}

+ β

α
v(z) (4.2)

where

ξ(z) = vz(z) =
λ0
sκ C6 exp

(
−λ0

sκ z
)

(
1 + C6 exp

(
−λ0

sκ z
))2 .
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Fig. 6 a Traveling pulse-front solutions of the microscopic model for the case c = s where �(v) =
ln[v/(1 − v)] and g(u, v) = αu − βv. b Graphs of turning rate functions correspond to the traveling
pulse-front solutions in (a). Parameter values are α = −2, β = 0, C6 = 1, λ0 = 1, s = 1, D = 1 and
κ = 2.

Since ξ(±∞) = 0, we must have β = 0 in order for u(±∞) = 0. The term inside
the parenthesis in (4.2) increases from −1 to 1 as z increases from −∞ to ∞. Since
ξ(z) > 0, we must have α < 0 and s2 > Dλ0/κ in order that u(z) > 0. If these
conditions are satisfied, then (u, v) is a traveling pulse-pulse solution. A numerical
example is shown in Fig. 6a.

Next we show the non-negativity of the turning rate functions λ± = λ0 ∓
sκ�(v)z = λ0∓sκvz/[v(1−v)]. Let ζ = C6e−λ0z/sκ . Then from (4.1), v = 1/(1+ζ )

and

vz

v(1 − v)
=

λ0
sκ ζ

(1 + ζ )2

1
1

1+ζ

(
1 − 1

1+ζ

) = λ0

sκ
.

Thus, λ± = λ0 ∓ sκ(λ0
sκ ) = λ0 ∓ λ0 ≥ 0 with λ+ = 0 and λ− = 2λ0. Graphs of

the turning rate functions corresponding to the traveling wave solutions in Fig. 6a are
shown in Fig. 6b.

For the macroscopic model and Bounded Signal potential function, one cannot
express V in terms of �−1. Solving the first equation of (2.9), we have

U (z) = e−2λ0z/s
(

V

1 − V

)2κ

(4.3)

where we have scaled the constant of integration to one by translation. Substituting
this into the second equation of (2.9), the resulting differential equation is too complex
to be analytically tractable. Therefore, we assume that D = 0 and g(u, v) = αu. From
the second equation of (2.9), we have

Vz = −α

s

(
V

1 − V

)2κ

e−2λ0z/s . (4.4)

123

 Author's personal copy 



756 R. Lui, Z. A. Wang

If α > 0, then Vz < 0 and no traveling wave solutions with V (−∞) = 0 exist. If
α < 0, we assume that 2κ ≥ 1 and let W = V/(1 − V ). Then V = W/(1 + W ) and

Wz(z)

(1 + W (z))2 = −α

s
W (z)2κe−bz (4.5)

where b = 2λ0/s > 0. Let W (z) be defined implicitly by

∞∫

W (z)

1

ξ2κ(1 + ξ)2 dξ = − α

bs
e−bz .

It is clear that W (z) satisfies (4.5). Since 2κ ≥ 1, the function 1/[ξ2κ(1 + ξ)2] is not
integrable at the origin and integrable at infinity. Thus, W (−∞) = 0 and W (∞) = ∞.
This implies that V− = 0 and V+ = 1 and V (z) is a traveling front solution for the
macroscopic model. Note that if 2κ = 1, then W (z) can be expressed in terms of the
Lambert W function. The proof of the proposition is complete.

Remark 4.1 For the microscopic model, v is determined only by the potential function
and u can then be determined from the second equation of (2.4). However, for the mac-
roscopic model, U is given in terms of V by (4.3) through the potential function and
V is then determined from the second equation of (2.4). Hence, there are fundamental
differences between the traveling wave solutions of the microscopic and macroscopic
models in the case c = s.

5 Proof of Proposition 2.10

Recall that k = 2σλ0c, r = 2σ s2κ, σ = 1/(s2 − c2), and α and β are negative when
0 < c < s. In the following, we let θ(z) = vz(z)/v(z) and η = c/s ∈ (0, 1). Since
�(v) = ln v, the turning rate function λ±(z) = λ0 ∓ sκθ(z). Note that κ > 1 implies
the condition 2κ > 1 + η which in turn implies the condition r > 1.

Proof of case (i) when c = 0.
When c = 0, the existence of traveling wave solutions has been proved in Sect. 3.1.

From (3.2), λ± = λ0 ∓ sκw/v where w = vz . Since (v(z), w(z)) → (0, 0) as
|z| → ∞, the Hamiltonian (3.3) is zero along the traveling wave trajectory. That is
1
2w2 − β

2D v2 + α
(2κ+1)D v2κ+1 = 0, which can be rearranged as

w2

v2 = β

D
− 2α

(2κ + 1)D
v2κ−1.

Since v ≥ 0, we have
∣
∣w

v

∣
∣ ≤

√
β
D . From above, λ± ≥ λ0 −sκ

√
β
D ≥ 0 if λ0 ≥ sκ

√
β
D .

The proof of case (i) of Proposition 2.10 is complete.
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Proof of case (ii)(a) when 0 < c < s and D = 0. Suppose r > 1. Then v is given by
(3.6),

θ(z) = 1

c(1 − r)

C1β(1 − r)eβ(1−r)z/c − cC2ke−kz

C1eβ(1−r)z/c + C2e−kz
(5.1)

and

θ ′(z) = C1C2(β(1 − r)/c + k)2e(β(1−r)/c−k)z

(1 − r)(C1eβ(1−r)z/c + C2e−kz)2
< 0. (5.2)

Hence, θ(∞) < θ(z) < θ(−∞). From (5.1), one has

θ(−∞) = − k

1 − r
= −2σλ0c

1 − r
> 0 and θ(+∞) = β

c
< 0.

In order for λ± ≥ 0 on R, it is necessary and sufficient that

λ0 + sκβ

c
> 0 and λ0

(

1 − 2σ sκc

r − 1

)

> 0. (5.3)

The first inequality in (5.3) is equivalent to η > −κβ/λ0. The second inequality in
(5.3) simplifies to 2sκc < 2s2κ − s2 + c2. Dividing by s2, rearranging, and dividing
by 1 − η, we have η < 2κ − 1.

If r = 1, then v is given by (3.7) which yields

θ(z) = β

c
− α

c
e−kz .

Since α < 0, θ(z) is decreasing, θ(−∞) = ∞, and λ+ = λ0 − sκθ(z) is always
negative near −∞. The proof of Proposition 2.10(ii)(a) is complete.

Proof of case (ii)(b) when 0 < c < s and D > 0.
Recall that in the proof of Theorem 2.5(ii)(b), we have scaled the parameters

c, s, α, β and λ0 (except κ) by dividing them by D so that we may assume that D = 1.
Suppose λ+ or λ− has a local minimum at z∗. Then from the definitions of λ±,

θz(z∗) = 0. Since θ = vz/v, we have θz = vzz/v − θ2, and the equation in (3.4)
becomes

θz + θ2 + cθ + αwr−1 − β = 0,

where w = veμz and μ = −k/(r −1) < 0. At z∗, we have (θ∗)2 +cθ∗ +α(w∗)r−1 −
β = 0, where θ∗ = θ(z∗) and w∗ = w(z∗). Therefore,

θ∗ = −c ± √
c2 + 4β − 4α(w∗)r−1

2
.
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From the proof of Theorem 2.5(ii)(b), w(z) decreases from w2 = (−b/α)1/(r−1) to
0. Since α < 0, the term inside the above radical sign is less than c2+4β−4α(−b/α) =
c2 + 4β + 4(μ2 − cμ − β) = (2μ − c)2. Since μ < 0, we have −c + μ ≤ θ∗ ≤ −μ

and

λ±(z∗) ≥ min {λ0 + sκ(−c + μ), λ0 + sκμ} . (5.4)

The first term on the right of (5.4) is positive if λ0 − sκk/(r − 1) > sκc, which is
same as

λ0

(
2σ s2κ − 1 − 2sκσc

2σ s2κ − 1

)

> sκc.

Since σ = 1/(s2 − c2), the above inequality is same as

λ0

(
(1 − η)(2κ − 1 − η)

2κ − 1 + η2

)

> sκc. (5.5)

Since 2κ > 1 + η, the function (2κ − 1 − η)/(2κ − 1 + η2) is decreasing on (0, 1)

so that

κ − 1

κ
<

2κ − 1 − η

2κ − 1 + η2 < 1. (5.6)

Therefore, a sufficient condition for (5.5) to hold is

λ0 >
ηs2κ2

(1 − η)(κ − 1)
. (5.7)

Solving for η in (5.7) and dividing c, s, λ0 by D to return to their unscaled forms, we
obtain (2.12). The condition that the second term on the right of (5.4) is positive is the
same as 2σ s2κ − 1 − 2sκσc > 0. This is equivalent to 2κ > 1 + η which is satisfied
because κ > 1. Therefore, from (5.4), λ±(z∗) cannot be negative if κ > 1 and (2.12)
hold.

Besides the critical points, we also have to check the behavior of vz(z)/v(z) as
|z| → ∞. Recall that in the proof of Theorem 2.5(ii)(b), we have shown that v(z) ∼
e(ξ2−μ)z as z → ∞. Therefore, vz(z)/v(z) → ξ2 − μ = (−c + √

c2 + 4β)/2 < 0 as
z → ∞ and we require that

λ0 > sκ

(
c − √

c2 + 4β

2

)

. (5.8)

This condition is implied by (5.7) since the right side of (5.7) is greater than sκc.
Multiplying the right side of (5.8) by c + √

c2 + 4β, rearranging, and dividing
λ0, β, s, c by D to return them to their unscaled forms, we obtain
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η +
√

η2 + 4βD

s2 >
−2κβ

λ0
.

If we let D → 0, above becomes λ0 + κβ/η > 0 which is one of the conditions in
the case D = 0, r > 1. To continue, v(z) ∼ (w2 + Ceη2z)e−μz as z → −∞. Since
η2 > 0, we have vz(z)/v(z) → −μ = k/(r − 1) as z → −∞. Therefore, we also
need λ0 − sκk/(r − 1) > 0. This simplifies to 2κ > 1 + η which follows from the
condition κ > 1. Hence, the conditions κ > 1 and (2.12) already ensure that λ± > 0
at ±∞. The proof of Proposition 2.10 is complete.

6 Summary and biological implications

In this paper, we studied the existence and nonexistence of traveling wave solutions for
the microscopic and macroscopic chemotaxis models. The macroscopic model was
obtained from the microscopic model by passing to the parabolic limit. We assumed
that the potential function is of the Logarithmic or Bounded Signal type. We found that
proving the existence of traveling wave solutions is equivalent to proving the existence
of solutions to a nonlinear second-order (D > 0), or first-order (D = 0), boundary
value problem on R.

Because of symmetry, we only need to consider the case when the traveling wave
speed c is nonnegative. The results for the Logarithmic potential function is as follows.
If c = 0, then the microscopic and macroscopic models are the same, and we give a
sufficient and necessary condition for the existence of traveling pulse-pulse solutions.
No traveling pulse-front solutions exist in this case. For 0 < c < s, both models
admit traveling wave solutions that are qualitatively similar. For c ≥ s, traveling wave
solutions do not exist for the microscopic model but exist for the macroscopic model.
In summary, the larger the c, the more different are the traveling wave solutions of the
two models. Since cell population consists of individual cells and so population wave
speed cannot exceed individual cell speed, we conclude that the relevant biological
situation for the existence of traveling wave solutions is when 0 ≤ c ≤ s.

When 0 < c < s and D = 0, a necessary condition for the existence of traveling
wave solutions for the microscopic model is 2ρκ ≥ 1, where κ is a measurement of
the internal dynamics of the cell and ρ = s2/(s2 − c2). This condition is replaced
by 2κ ≥ 1 for the macroscopic model whose traveling wave solutions can exist for
all values of c. Therefore, traveling wave solutions are preserved during the transition
from the microscopic model to the macroscopic model if 2ρκ > 2κ > 1 but may
be lost if c, s and κ are such that 2ρκ > 1 > 2κ . This quantitative characterization
indicates that the transition of traveling waves from the microscopic model to the
macroscopic model may depend on the strength of internal dynamics, i.e., the value
of internal parameter κ . When 0 < c < s and D > 0, the analysis is more involved
and we gave a sufficient condition for the existence of traveling wave solutions [see
Theorem 2.5ii(b)].

For c = s and the Bounded Signal potential function, we showed that there are
some fundamental differences between the traveling wave solutions of the microscopic
and macroscopic models (see Remark 4.1). This implies that when the cell population
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traveling speed is identical to the individual cell speed, there might be dramatic changes
in the transition from individual to collective behavior of cells.

The chemical kinetics in this paper is assumed to be linear, i.e. g(u, v) = αu −βv.
Except when c = 0, two other necessary conditions for the existence of traveling wave
solutions are α < 0 and β ≤ 0. If β < 0, traveling wave solutions are pulse-pulse
solutions and when β = 0, traveling wave solutions are pulse-front solutions. When
c = 0, it requires that α > 0, β > 0. In the formulation of our model in Sect. 2, we
assumed that the chemical is the chemoattractant. The condition α < 0 means that
cells consume the chemical (e.g. food) and the condition α > 0 corresponds to the
endogenous chemotaxis meaning that the cells, such as E. Coli, secrete the chemical
themselves.

Consider a traveling wave solution of (2.4) where � is the Logarithmic potential
function and the turning rate functions λ± = λ0 ∓ sκ�(v)z are nonnegative on R.
Since �′(v) = ϕ(v) = 1/v → ∞ as v → 0, low chemical concentration dominates
the chemotactic response. This appears to be a puzzle as stated in Hillen and Painter
(2009). However, assuming that u > 0 and dividing the first equation of (2.4) by
−us2, we obtain after some algebra the equation

(c

s
− 1

) [(c

s
+ 1

) uz

u
− 2

s
λ0

]

= 2

s
λ+ ≥ 0.

Since u decreases to zero as z → ∞, uz/u ≤ 0 as z → ∞. The above equation implies
that c ≤ s. In other words, if traveling wave solutions exist and the turning rate func-
tions are nonnegative, then the macroscopic speed cannot exceed the biological limit.
We have given conditions when the turning rate functions are nonnegative in Propo-
sition 2.10. This also implies that �(v)z = vz/v is bounded on R for otherwise the
turning rate functions will be negative at some point. Thus the Logarithmic potential
function is an appropriate form for studying traveling wave solutions of chemotaxis
models. This choice has already been used successfully by Keller and Segel (1971b),
to interpret traveling band behavior of bacteria observed in experiment. Our study
here also supports such a choice of potential functions. However, we do not expect
our explanation to be true in general if the solutions are not traveling wave solutions.
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