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1. Introduction

There are various wave propagating phenomena driven by chemotaxis which, unlike
diffusion, directs the motion of species up or down a chemical concentration
gradient. Examples include the propagation of traveling band of bacterial toward
the oxygen,1,2 the outward propagation of concentric ring waves by E. coli,3–5

the spiral wave patterns during the aggregation of Dictyostelium discoideum10,17

and the migration of Myxococcus xanthus as traveling waves in the early stage of
starvation-induced fruiting body development.43 The mathematical study of chemo-
tactic traveling waves was started by Keller and Segel in the ’70s14,15 where they
proposed the following model:{

ut = [Dux − χu(log c)x]x,

ct = εcxx − ucm,
(1.1)

to describe the propagation of traveling bands of chemotactic bacteria with a con-
stant speed observed in the celebrated experiment of Adler,1,2 where u(x, t) denotes
the bacterial density and c(x, t) the oxygen concentration. D > 0 and ε ≥ 0 are the
bacterial and chemical diffusion coefficients, and χ > 0 is called the chemotactic
coefficient.

When 0 ≤ m < 1, Keller and Segel16 showed that model (1.1) with ε = 0 can
generate the traveling bands, whose speeds were in satisfactory agreement with
experimental observation of Refs. 1 and 2. Subsequently, a sequence of rigorous
works on various aspects of traveling wave solutions of (1.1) with ε ≥ 0 had been
carried out, cf. Refs. 28, 29, 32, 33, 35, 36 and references therein. When m = 1, the
model (1.1) was used by Nossal31 to describe the chemotactic boundary formation
by bacterial population in response to the substrate consisting of nutrients if ε = 0,
and by Rosen33,34 to show the phenomenological theory for the chemotaxis and
consumption of oxygen by motile aerobic bacteria if ε > 0. Recently the structure
of chemotaxis model (1.1) with ε ≥ 0 have been advocated to describe the directed
movement of endothelial cells toward the signaling molecule vascular endothelial
growth factor (VEGF) during the initiation of angiogenesis,6–8,18,40 where u denotes
the density of endothelial cells and c stands for the concentration of VEGF. When
m > 1, the model (1.1) does not admit traveling wave solutions (e.g. see Refs. 36 and
41), and the global solutions of (1.1) with other forms of chemotactic sensitivity
function were studied in Refs. 7–9, 20 and 39 for both bounded and unbounded
domains.

The existence of traveling wave solutions of the Keller–Segel model (1.1) has
been extensively studied as aforementioned, the stability of traveling wave solutions
remains open for quite a long time due to the singular logarithmic sensitivity log c.
The linear instability of traveling wave solutions to (1.1) in certain functional spaces
was first obtained in Ref. 29 for a special casem = 0. The linear stability/instability
of traveling wave solutions for m �= 0 still remains open. The nonlinear stability
of traveling wave solutions to (1.1) is more challenging and remains open for an
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even longer time until recently the last two authors proved the nonlinear stability
of traveling waves in Refs. 23 and 24 for ε = 0 and in Ref. 25 for ε > 0 small with
m = 1, u+ > 0, where the initial data were prescribed as

(u(x, 0), c(x, 0)) = (u0(x), c0(x)) → (u±, c±) as x→ ±∞. (1.2)

Since u and c in (1.1) represent the biological particle densities, our attention will
be restricted to the biologically relevant regime in which u± ≥ 0 and c± ≥ 0.

Studying the nonlinear stability of traveling wave solutions of (1.1) directly
remains very challenging due to the logarithmic singularity in the first equation.
The works in Refs. 23–25 adopt the Hopf–Cole type transformation in Refs. 19
and 42

v = −(log c)x = −cx
c

(1.3)

and transform the system (1.1) and (1.2) with m = 1 into a system of viscous
conservation laws {

ut − χ(uv)x = Duxx,

vt + (εv2 − u)x = εvxx,
(1.4)

with initial data

(u, v)(x, 0) = (u0, v0)(x) → (u±, v±) as x→ ±∞, (1.5)

where v0(x) = −(log c0)x = − c0x

c0
. After the transformation, the logarithmic singu-

larity in (1.1) does not appear in (1.4), which provides an opportunity for analysis.
The transformation (1.3) was first applied in Ref. 19 to obtain system (1.4) with
ε = 0 and later was further employed to obtain the model (1.4) with ε > 0 in
Ref. 25 to study the existence and stability of traveling wave solutions where ε > 0
was assumed to be small. Recently the last author of this paper establishes the
existence of traveling wave solutions of (1.1) for any large ε > 0 and u+ = 0 in
Ref. 40. Apparently the transformation (1.3) is not helpful for the Keller–Segel
model (1.1) with m �= 1. The results of Refs. 23–25 essentially assumed that the
right asymptotic state of cell density u(x, t) is strictly positive, i.e. u+ > 0, due to
technical difficulties for the case u+ = 0 which leads to singularities in the energy
estimates. For the stability in the case of u+ = 0, the recent work12 overcame
the singularities by using the weighted energy estimates to establish the nonlinear
stability of traveling wave solutions in the inviscid case ε = 0.

The purpose of this paper is to establish the same stability result as that in
Ref. 12 for the viscous case ε > 0. It turns out that the nonlinear stability analysis
for ε > 0 requires a lot of additional effort in the energy estimates for the diffu-
sion coefficient ε generates a nonlinear convection term in the hyperbolic system
(1.4). Thanks to the transformation (1.3), the nonlinear stability of traveling wave
solutions of (1.1) can be proved for ε > 0 small. Although the smallness of ε does
not seem to be necessary as illustrated by our numerical simulation in Sec. 4, the
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stability of traveling wave solutions for large ε > 0 has to be left as an open prob-
lem due to the technical difficulties. Novel ideas are anticipated to attack such a
problem. Moreover, we give the regularity and asymptotic behavior of the chemical
concentration c(x, t) and present the numerical simulations of the stability of trav-
eling wave solutions (U, C), where the results for c are new comparing with those in
the previous papers.12,23–25 Finally we mention that as ε = 0, the initial-boundary
value problem of the model (1.4) has been studied in Refs. 22 and 44, and the
Cauchy problem was investigated in Refs. 11, 20 and 45.

The rest of this paper is arranged as follows. In Sec. 2, we state our main results
on the nonlinear stability of (U, V ) and then on C. In Sec. 3, we show the details
of weighted energy estimates and prove our main results. In Sec. 4, we show the
numerical simulations to verify our analytical results and make predictions for the
remaining open questions.

2. Preliminaries and Main Results

A traveling wave solution of (1.1) in (x, t) ∈ R× [0,∞) is a particular non-constant
solution in the form

u(x, t) = U(z), c(x, t) = C(z), z = x− st, (2.1)

with U, C ∈ C∞(R) satisfying boundary conditions

U(±∞) = u±, C(±∞) = c±, U ′(±∞) = C′(±∞) = 0, (2.2)

where s is the wave speed assumed to be non-negative without loss of gener-
ality, z is called the wave variable, the prime ′ means the differentiation in z,
u−/u+ and c−/c+ are called left/right end states of u and c, respectively, describ-
ing the asymptotic behavior of traveling wave solutions as t → +∞/−∞. When
u+ > 0, the existence of traveling wave solutions of (1.1) with m = 1 was shown
in Ref. 26 and elaborated in Ref. 41. The nonlinear stability of traveling wave
solutions with u+ > 0 was established in Ref. 25. When u+ = 0 and ε > 0, the
existence of traveling wave solutions with asymptotic decay rates at far field to
(1.1), (2.1), (2.2) with m = 1 has been established previously in Ref. 40. This
paper will be able to investigate the nonlinear stability of traveling wave solutions
for this case. To proceed, we first quote the existence results in Ref. 40 for later
use.

Proposition 2.1. (Theorem 3.3 and Theorem 4.1 in Ref. 40) Let m = 1, ε > 0
and u+ = 0. Then the system (1.1) has a unique (up to a translation) monotone
traveling wave solution (U, C)(z) satisfying c+ > 0, c− = 0 and U ′(z) < 0, C′(z) > 0
for all z ∈ R, where the wave speed is uniquely determined by

s = χ

√
u−
χ+ ε

. (2.3)
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Moreover, the solution component U(z) has the following asymptotic behavior :

U(z)
D
χ − ρ

D
χ ∼ Ceλz , as z → −∞,

U(z) ∼ Ce−
s
D z , as z → ∞,

(2.4)

where C is a generic positive constant and

λ = − s

χ
+

−s+
√
s2 + 4ερr
2ε

> 0, ρ =
s2

χ2
(ε+ χ), r =

χ

D
+ 1. (2.5)

Next we are devoted to investigating the stability of traveling wave solutions
obtained in Proposition 2.1. Our plan is to study the traveling wave solutions of
the transformed system (1.4) first and then transfer the results back to the original
system (1.1).

A traveling wave solution of (1.4) is a solution in the form

(u, v)(x, t) = (U, V )(z), z = x− st,

satisfying equations {−sUz − χ(UV )z = DUzz,

−sVz + (εV 2 − U)z = εVzz ,
(2.6)

with boundary conditions

U(±∞) = u±, V (±∞) = v±, U ′(±∞) = V ′(±∞) = 0. (2.7)

Integrating (2.6) with respect to z and using (2.7) yield{
DUz = −sU − χUV + �1,

εVz = −sV + εV 2 − U + �2,
(2.8)

where {
�1 = su− + χu−v− = su+ + χu+v+,

�2 = sv− − ε(v−)2 + u− = sv+ − ε(v+)2 + u+.

The speed s is determined by the Rankine–Hugoniot condition{−s(u+ − u−) − χ(u+v+ − u−v−) = 0,

−s(v+ − v−) + [ε(v+)2 − u+ − ε(v−)2 + u−] = 0.
(2.9)

Note that the transformation (1.3) and the results in Proposition 2.1 require
that V (z) = −Cz

C < 0. Since c+ > 0, it follows that

v+ = 0. (2.10)

Moreover, v+ = u+ = 0 indicates that �1 = �2 = 0 and{
s+ χv− = 0,

u− = (χ+ ε)v2−,
(2.11)
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by which we have ρ = u−. The Hopf–Cole transformation (1.3) yields that

V (z) = −Cz(z)/C(z),

which, in combination with Proposition 2.1 and the transformation (1.3), gives the
existence of traveling wave solution (U, V )(z) to the transformed system (1.4) as
follows.

Proposition 2.2. Let m = 1, ε > 0 and u+ = v+ = 0. Then system (1.4) has
a unique (up to a translation) monotone traveling wave (U, V )(x − st) satisfying
Uz < 0 and Vz > 0 with wave speed s = −χv−. Moreover, the traveling wave
solution component U has the following asymptotic behavior

U(z) − u− ∼ Ceλz, as z → −∞,

U(z) ∼ Ce−
s
D z, as z → ∞,

(2.12)

where C is a generic positive constant.

Next we proceed to investigate the nonlinear asymptotic stability of traveling
wave solutions to the transformed system (1.4) with initial condition (1.5). The
approach employed in Ref. 25 for u+ > 0 cannot be applied for u+ = 0 directly due
to the singularity in the estimates. In this paper, we shall introduce an unbounded
weight function to overcome the singularity and apply the weighted energy estimates
to prove the nonlinear stability of traveling wave solutions for u+ = 0. The weight
function we choose is the following

w(z) = 1 + eηz with η :=
s

D
, z ∈ R. (2.13)

In what follows, Hk
w(Ω) denotes the space of measurable functions f so that√

w∂jxf ∈ L2 for 0 ≤ j ≤ k with norm ‖f‖Hk
w(Ω) := (

∑k
j=0

∫
w(x)|∂jxf |2dx)

1
2 .

For simplicity, the convention ‖ · ‖ := ‖ · ‖L2(Ω), ‖ · ‖k := ‖ · ‖Hk(Ω) and ‖ · ‖k,w :=
‖ · ‖Hk

w(Ω) will be used.
Then the nonlinear stability of traveling wave solutions to (1.4) and (1.5) is as

follows.

Theorem 2.1. Let u+ = v+ = 0, and (U, V )(z) be the solution obtained in Propo-
sition 2.2. Let ε > 0 be suitably small. Assume that there exists a constant x0 such
that the initial perturbation from the spatially shifted traveling waves with shift x0

is of integral zero, namely φ0(∞) = ψ0(∞) = 0, where

(φ0, ψ0)(x) :=
∫ x

−∞
(u0(y) − U(y + x0), v0(y) − V (y + x0))dy.

Then there exists a constant δ0 > 0, such that if ‖u0 − U‖1,w + ‖v0 − V ‖1,w +
‖φ0‖w + ‖ψ0‖ ≤ δ0, the system (1.4) has a unique solution (u, v)(x, t) satisfying

(u − U, v − V ) ∈ C([0,∞), H1
w) ∩ L2((0,∞), H2

w)
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and the following asymptotic stability:

sup
x∈R

|(u, v)(x, t) − (U, V )(x + x0 − st)| → 0, as t→ ∞.

Finally, transferring the results for the transformed system (1.4) back to the
original chemotaxis model (1.1), we obtain the following theorem.

Theorem 2.2. Let m = 1, u+ = c− = 0 and C be the traveling wave solution
obtained in Proposition 2.1. If ε > 0 is small, then there exists a constant ε0 > 0
such that if ‖u0−U‖1,w+‖(ln c0)x− (lnC)x‖1,w+‖φ0‖w+‖ψ0‖ ≤ ε0 and φ0(∞) =
ψ0(∞) = 0, where

φ0(x) =
∫ x

−∞
(u0(y) − U(y + x0))dy, ψ0(x) = −ln c0(x) + ln C(x+ x0),

the Cauchy problem (1.1) and (1.2) has a unique global solution (u, c)(x, t) with

(u − U, cx/c− Cx/C) ∈ C([0,∞);H1
w) ∩ L2((0,∞);H2

w),

or furthermore

c− C ∈ C([0,∞);H1) ∩ L2((0,∞);H2), if c0(x) − C(x+ x0) ∈ H1 (2.14)

and the following asymptotic stability

sup
x∈R

|(u, c)(x, t) − (U, C)(x+ x0 − st)| → 0, as t→ ∞.

Finally we remark that regularity result for c−C given by (2.14) is a new result
compared to the previous results in Ref. 12 where ε = 0. We prove the convergence
of c− C as a direct consequence of (2.14), which is also different from the proof in
Ref. 12 (see details in Remark 3.1). Particularly we find that the weighted function
is not needed for the chemical concentration c(x, t).

3. Nonlinear Asymptotic Stability

3.1. Energy estimates

The weighted energy method has been used for the stability of viscous shock waves
of systems of hyperbolic conservation laws and their variants (e.g. see Refs. 13, 21
and 30). To make this method available for the system (1.4) with vacuum asymp-
totic state, we have to overcome the technical difficulties arising from the singular-
ities caused by vacuum and the nonlinearities caused by the advection term ε(v2)x
in (1.4).

In this subsection, we establish some a priori estimates in order to prove the
nonlinear stability of the traveling wave solution of (1.4) and (1.5) with χ > 0, u+ =
0. The main result is that the solution of (1.4) with data (1.5), which is a small
perturbation with zero integral from the traveling wave solution (U, V )(x − st),
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approaches this traveling wave solution (U, V )(x − st), translated properly by an
amount x0, i.e.

sup
x∈R

|(u, v)(x, t) − (U, V )(x + x0 − st)| → 0, as t → +∞,

where x0 satisfies the following identity derived from the conservation of mass
principle ∫ +∞

−∞

(
u0(x) − U(x)
v0(x) − V (x)

)
dx = x0

(
u+ − u−
v+ − v−

)
+ βr1(u−, v−),

where r1(u−, v−) denotes the first right eigenvector of the Jacobian matrix of (1.4)
in the absence of viscous terms evaluated at (u−, v−), see details in Ref. 37. The
coefficient β yields the diffusion wave in general.37 Both β and x0 will be uniquely
determined by the initial data (u0, v0) in (1.5). For the stability of small-amplitude
shock waves of conservation laws with diffusion wave, i.e. β �= 0, we refer to Refs. 27
and 38 for details. In this paper, we do not consider diffusion waves, i.e. assum-
ing β = 0 and we consider the stability of large-amplitude waves. Then by the
conservation laws (1.4), we derive that∫ +∞

−∞

(
u(x, t) − U(x+ x0 − st)
v(x, t) − V (x + x0 − st)

)
dx

=
∫ +∞

−∞

(
u0(x) − U(x+ x0)
v0(x) − V (x + x0)

)
dx

=
∫ +∞

−∞

(
u0(x) − U(x)
v0(x) − V (x)

)
dx+

∫ +∞

−∞

(
U(x) − U(x+ x0)
V (x) − V (x + x0)

)
dx

=
∫ +∞

−∞

(
u0(x) − U(x)
v0(x) − V (x)

)
dx− x0

(
u+ − u−
v+ − v−

)
=
(

0
0

)
. (3.1)

By assuming β = 0, the initial perturbation is a spatially shifted traveling wave
with a shift x0 such that the following integral is zero:∫ +∞

−∞

(
u0(x) − U(x+ x0)
v0(x) − V (x + x0)

)
dx =

(
0
0

)
. (3.2)

Then we employ the anti-derivative to decompose the solution as

(u, v)(x, t) = (U, V )(x+ x0 − st) + (φz , ψz)(z, t), (3.3)

where z = x− st. Then

(φ(z, t), ψ(z, t)) =
∫ z

−∞
(u(y, t) − U(y + x0 − st), v(y, t)

−V (y + x0 − st))dy, (3.4)
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for all z ∈ R and t ≥ 0. It then follows from (3.1) that

φ(±∞, t) = ψ(±∞, t) = 0, for all t > 0. (3.5)

The initial data of (φ, ψ) is thus given by

(φ0, ψ0)(z) =
∫ z

−∞
(u0(y) − U(y + x0), v0(y) − V (y + x0))dy, (3.6)

which satisfies (φ0, ψ0)(±∞) = 0 by the assumption (3.2).
Substituting (3.3) into (1.4), integrating the resultant equation with respect to

z and using (2.6), we get{
φt = Dφzz + (s+ χV )φz + χUψz + χφzψz,

ψt = εψzz + (s− 2εV )ψz + φz − εψ2
z .

(3.7)

We look for solutions to the reformulated system (3.7) in the following solution
space

X(0, T ) := {(φ(z, t), ψ(z, t)) : φ ∈ C([0, T ];H2
w), φz ∈ L2((0, T );H2

w),

ψ ∈ C([0, T ];H2), ψz ∈ C([0, T ];H1
w) ∩ L2((0, T );H2

w)},
where the weight function w is given by (2.13). Define

N(t) := sup
τ∈[0,t]

(‖φ(·, τ)‖2,w + ‖ψ(·, τ)‖2 + ‖ψz(·, τ)‖1,w). (3.8)

By the Sobolev embedding theorem, it holds

sup
τ∈[0,t]

{‖φ(·, τ)‖L∞ , ‖φz(·, τ)‖L∞ , ‖ψ(·, τ)‖L∞ , ‖ψz(·, τ)‖L∞} ≤ N(t). (3.9)

For system (3.7), we have the following results.

Proposition 3.1. If ε > 0 is small, there exists a positive constant δ0, such that
if N(0) ≤ δ0, then the Cauchy problem (3.7) has a unique global solution (φ, ψ) ∈
X(0,+∞) satisfying

‖φ‖2
2,w + ‖ψ‖2

2 + ‖ψz‖2
1,w +

∫ t

0

(‖φz(·, τ)‖2
2,w + ‖ψz(·, τ)‖2

2,w)dτ

≤ C(‖φ0‖2
2,w + ‖ψ0‖2

2 + ‖ψ0z‖2
1,w) ≤ CN 2(0), (3.10)

for all t ∈ [0,+∞). Moreover, it holds that

sup
z∈R

|(φz , ψz)(z, t)| → 0, as t→ ∞. (3.11)

In view of (3.3), Theorem 2.1 is a consequence of Proposition 3.1. To prove
Proposition 3.1, by a standard method, we can first prove the local existence of a
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unique solution to system (3.7) given below; and then by the standard continuation
process, the global existence of (φ, ψ) follows directly from the following a priori
estimates.

Proposition 3.2. (Local existence) For any δ1 > 0, there exists a positive con-
stant T0 depending on δ1, such that if (φ0, ψ0) ∈ H2

w × H2
w and N(0) ≤ δ1, then

(3.7) has a unique solution (φ, ψ) ∈ X(0, T0) satisfying N(t) ≤ 2N(0) for any
t ∈ [0, T0].

Proposition 3.3. (A priori estimate) Suppose that (φ, ψ) ∈ X(0, T ) is a solu-
tion to (3.7) obtained in Proposition 3.2 for some positive T . If ε > 0 is small,
then there exists a positive constant δ2 > 0 independent of T, such that if
N(t) ≤ δ2 for any t∈ [0, T ], then the solution (φ, ψ) of (3.7) satisfies (3.10) for any
t ∈ [0, T ].

Now we present a result which will essentially be employed in the L2 estimates
of (φ, ψ). However, it is unnecessary if ε = 0.

Lemma 3.1. Let (U, V ) be a traveling wave solution of (1.4) obtained in Proposi-
tion 2.2. Then there is a constant C0 independent of ε > 0 such that

|Vz | ≤ C0. (3.12)

Proof. First we multiply the second equation of (2.6) by Vz and integrate the
results over (−∞, z) to obtain that

−s
∫ z

−∞
V 2
z dz +

∫ z

−∞
(εV 2 − U)zVzdz =

∫ z

−∞
εVzzVzdz =

1
2
εV 2
z .

Noticing that
∫ z
−∞(εV 2 −U)zVzdz = 2ε

∫ z
−∞ VV 2

zdz−
∫ z
−∞ UzVzdz, and V ≤ 0, we

have

s

∫ z

−∞
V 2
z dz +

1
2
εV 2
z + 2ε

∫ z

−∞
|V |V 2

z dz = −
∫ z

−∞
UzVzdz

≤ s

2

∫ z

−∞
V 2
z dz +

1
2s

∫ z

−∞
U2
z dz,

where we have used the Cauchy–Schwarz inequality. Then it follows that∫ z

−∞
V 2
z dz +

ε

s
V 2
z +

4ε
s

∫ z

−∞
|V |V 2

z dz ≤ 1
s2

∫ z

−∞
U2
z dz. (3.13)

From the first equation of (2.8), and noting that �1 = 0 and V ≤ 0, U ≥ 0,
we have

|Uz| = −Uz =
s

D
U +

χ

D
UV ≤ s

D
U ≤ su−

D
, (3.14)
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which entails that∫ z

−∞
U2
z dz ≤ −‖Uz‖L∞

∫ z

−∞
Uzdz ≤ −su−

D

∫ z

−∞
Uzdz ≤ su2

−
D

. (3.15)

Next we split into two cases ε ≥ 1 and ε < 1 to examine the boundedness of |Vz |.
When ε ≥ 1, we obtain from (3.13) and (3.15) that

V 2
z ≤ 1

εs

∫ z

−∞
U2
z dz ≤

u2
−
D

:= C1.

Hence |Vz | ≤
√
C1 as ε ≥ 1. We proceed to estimate |Vz | as ε < 1. To this end, we

multiply the second equation of (2.6) by Vzz and integrate the results over (−∞, z)
to obtain

s

2
V 2
z + ε

∫ z

−∞
V 2
zzdz

=
∫ z

−∞
(εV 2 − U)zVzzdz

= ε

∫ z

−∞
2VV zVzzdz −

∫ z

−∞
UzVzzdz

= ε

∫ z

−∞
V (V 2

z )zdz +
∫ z

−∞

[
− s

D
Uz − χ

D
(UV )z

]
Vzdz − UzVz

= εVV 2
z − ε

∫ z

−∞
V 3
z dz −

s

D

∫ z

−∞
UzVzdz − χ

D

∫ z

−∞
(UV 2

z + VUzVz)dz − UzVz

≤ − s

D

∫ z

−∞
UzVz +

s

4
V 2
z +

U2
z

s
, (3.16)

where we have used the first equation of (2.8), Cauchy–Schwarz inequality and the
fact that U ≥ 0, V ≤ 0, Vz ≥ 0 and Uz ≤ 0. From (3.14) and (3.16), we have

V 2
z ≤ − 4

D

∫ z

−∞
UzVzdz +

4u2
−

D2
. (3.17)

On the other hand, by Cauchy–Schwarz inequality and (3.13) as well as (3.15),
one has

− 4
D

∫ z

−∞
UzVzdz ≤ 4

2D

∫ z

−∞
(U2

z + V 2
z )dz

≤ 2
D

(
1 +

1
s2

)∫ z

−∞
U2
z dz

≤ 2s
D2

(
1 +

1
s2

)
u2
−. (3.18)
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Then the combination of (3.17), (3.18) and (2.3) yields that

V 2
z ≤ 4

D2

(
s

2
+

1
2s

+ 1
)
u2
− =

4
D2

(
χ

2

√
u−
χ+ ε

+
1
2χ

√
χ+ ε

u−
+ 1

)
u2
−

≤ 4
D2

(
1
2
√
χu− +

1
2χ

√
χ+ 1
u−

+ 1

)
u2
− =: C2. (3.19)

Then taking C0 =
√
C1 +

√
C2, we complete the proof.

The proof of Proposition 3.3 is based on the following series of lemmas. Without
loss of generality, we assume that N(t) < 1. In what follows, for notational sim-
plicity,

∫∞
−∞ f(x, t)dx and

∫ t
0

∫∞
−∞ f(x, τ)dxdτ will be abbreviated as

∫
f(x, t) and∫ t

0

∫
f(x, τ).

Lemma 3.2. Let the assumptions in Proposition 3.3 hold, then there exists a con-
stant C > 0 such that

‖φ‖2
w + ‖ψ‖2 +D

∫ t

0

‖φz(·, τ)‖2
wdτ + ε

∫ t

0

‖ψz(·, τ)‖2dτ +D

∫ t

0

‖Uz(·)φ(·, τ)‖2dτ

≤ C

(
‖φ0‖2

w + ‖ψ0‖2 +N(t)
∫ t

0

∫
wψ2

z

)
. (3.20)

Proof. Multiplying the first equation of (3.7) by φ/U and the second one by χψ,
and adding them, we obtain

1
2

(
φ2

U
+ χψ2

)
t

−
[
Dφφz
U

+
(s+ χV )φ2

2U
+ εχψψz + χ

(s
2
− εV

)
ψ2 + χφψ

]
z

+
Dφ2

z

U
+ εχψ2

z +
φ2

2

(
s+ χV

U

)
z

=
DU z

U2
φφz + εχVzψ

2 +
χφφzψz
U

− εχψψ2
z . (3.21)

By the first equation of (2.8), a direct calculation gives

(
s+ χV

U

)
z

=
χVz
U

− (s+ χV )Uz
U2

=
χVz
U

+
DU 2

z

U3
, (3.22)

with Vz > 0 owing to Proposition 2.2. By Young’s inequality, it holds that

DUz

U2
φφz ≤ 3Dφ2

z

4U
+

DU 2
zφ

2

3U3
and

χφφzψz
U

≤ D

8U
‖φ(·, t)‖L∞φ2

z +
2χ2

DU
‖φ(·, t)‖L∞ψ2

z .

(3.23)
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Substituting (3.22) and (3.23) into (3.21) and integrating the resultant inequal-
ity over R × [0, t], we get

1
2

∫ (
φ2

U
+ χψ2

)
+
D

4

∫ t

0

∫
φ2
z

U
+ εχ

∫ t

0

∫
ψ2
z +

χ

2

∫ t

0

∫
Vzφ

2

U
+
D

6

∫ t

0

∫
U2
zφ

2

U3

≤ εχ

∫ t

0

∫
Vzψ

2 +
DN (t)

8

∫ t

0

∫
φ2
z

U
+

2χ2N(t)
D

∫ t

0

∫
ψ2
z

U
+ εχN(t)

∫ t

0

∫
ψ2
z

+
1
2

∫ (
φ2

0

U
+ χψ2

0

)
,

where we have used the fact that ‖φ(·, t)‖L∞ ≤ N(t) < 1 and ‖ψ(·, t)‖L∞ ≤ N(t) <
1. Thus, using ψ2

z ≤ u−ψ2
z/U , we derive

∫ (
φ2

U
+ χψ2

)
+
D

4

∫ t

0

∫
φ2
z

U
+ 2εχ

∫ t

0

∫
ψ2
z + χ

∫ t

0

∫
Vzφ

2

U
+
D

3

∫ t

0

∫
U2
zφ

2

U3

≤ 2εχ
∫ t

0

∫
Vzψ

2 + CN (t)
∫ t

0

∫
ψ2
z

U
+ C

∫ (
φ2

0

U
+ χψ2

0

)
. (3.24)

We next estimate the term
∫ t
0

∫
Vzψ

2. Multiplying the first equation of (3.7) by
V φ/U and the second one by χV ψ and adding them to get

1
2

[
V

U
φ2 + χV ψ2

]
t

+
DV
U

φ2
z + εχV ψ2

z

+
φ2

2

[
1
U

(s+ χV )V
]
z

+
χψ2

2
[(s− 2εV )V ]z

= F (z, t)z −D

(
V

U

)
z

φφz − χVzφψ − εχVzψψz +
χV

U
φφzψz − εχV ψψ2

z ,

(3.25)

where F (z, t) = V
[
Dφφz

U + (s+χV )φ2

2U + εχψψz + χ( s2 − εV )ψ2 + χφψ
]
.

It is easy to compute that

[
1
U

(s+ χV )V
]
z

=
Vz
U

(2χV + s) +
DV U2

z

U3

=
χVz(V − v−)

U
+
χVzV

U
+
DV U2

z

U3
, (3.26)

where we have used the fact that s = −χv− and s+ χV = −DU z

U . Similarly,

χ

2
[(s− 2εV )V ]z = χVz

(s
2
− 2εV

)
= χVz

(s
2

+ 2ε|V |
)
. (3.27)
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Noticing that v− ≤ V ≤ 0, by Young’s inequality, we have∣∣∣∣D
(
V

U

)
z

φφz

∣∣∣∣ =
∣∣∣∣DVz

U
φφz − DV Uz

U2
φφz

∣∣∣∣
≤ DVz

2U
φ2 +

DVz
2U

φ2
z +

D|V |
2U

φ2
z +

D|V |U2
z

2U3
φ2, (3.28)

|χVzφψ| ≤ χVzφ
2

s
+
χs

4
Vzψ

2 and |εχVzψψz | ≤ χε

2
(ψ2
z + V 2

z ψ
2). (3.29)

Substituting (3.26)–(3.29) into (3.25) and applying the fact Vz ≤ Vzu−/U , we
obtain

χ
(s

2
+ 2ε|V |

)
Vzψ

2 +
χVz(V − v−)

2U
φ2

≤ Fz(z, t) +
1
2
|V |
(
φ2

U
+ χψ2

)
t

+
D

2
(Vz + 3|V |)φ

2
z

U
+
(
χε

2
+ εχ|V |

)
ψ2
z

+
(
χ|V |

2
+
D

2
+
χu−
s

)
Vzφ

2

U
+D|V |U

2
zφ

2

U3
+
(
χs

4
+
χεVz

2

)
Vzψ

2

+
χV

U
φφzψz − εχV ψψ2

z . (3.30)

Then rearranging the above inequality and integrating the result yield that

χ

∫ t

0

∫ (s
4

+ 2ε|V |
)
Vzψ

2 + χ

∫ t

0

∫
Vz(V − v−)

2U
φ2

≤ 1
2

∫
|V |
(
φ2

U
+ χψ2 − φ2

0

U
− χψ2

0

)
+
D

2
(‖Vz‖∞ + 3‖V ‖∞)

∫ t

0

∫
φ2
z

U

+
(

1
2

+ ‖V ‖∞
)
εχ

∫ t

0

∫
ψ2
z +

(
χ‖V ‖∞

2
+
D

2
+
χu−
s

)∫ t

0

∫
Vzφ

2

U

+D‖V ‖∞
∫ t

0

∫
U2
zφ

2

U3
+
χε

2
‖Vz‖∞

∫ t

0

∫
Vzψ

2

+
∫ t

0

∫ (
χ|V φφzψz |

U
+ εχ|V ψ|ψ2

z

)
. (3.31)

Using (3.24), it follows that∫ t

0

∫ (χs
4

+ 2χε|V |
)
Vzψ

2

≤ 2ζχε
∫ t

0

∫
Vzψ

2 + Cζ

∫ (
φ2

0

U
+ ψ2

0

)
+ CζN(t)

∫ t

0

∫
ψ2
z

U

+
∫ t

0

∫ (
χ|V φφzψz |

U
+ εχ|V ψ|ψ2

z

)
, (3.32)
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with

ζ =
21
2
‖V ‖∞ +

9
4
‖Vz‖∞ +

1
4

+
D

2χ
+
u−
s

≤ 21|v−|
2

+
9C0

4
+

1
4

+
D

2χ
+
u−
s

= ζ̃ ,

where we have used the fact ‖V ‖L∞ ≤ −v− and Lemma 3.1. Therefore∫ t

0

∫ (χs
4

+ 2χε|V | − 2ζ̃χε
)
Vzψ

2

≤ Cζ̃

∫ (
φ2

0

U
+ ψ2

0

)
+ Cζ̃N(t)

∫ t

0

∫
ψ2
z

U

+
∫ t

0

∫ (
χ|V φφzψz |

U
+ εχ|V ψ|ψ2

z

)
. (3.33)

Then choosing ε small enough such that

ε <
s

8ζ̃
,

we have∫ t

0

∫
Vzψ

2 ≤ C

∫ (
φ2

0

U
+ ψ2

0

)
+ CN (t)

∫ t

0

∫
ψ2
z

U

+
∫ t

0

∫ (
χ|V φφzψz|

U
+ εχ|V ψ|ψ2

z

)

≤ C

∫ (
φ2

0

U
+ ψ2

0

)
+ CN (t)

∫ t

0

∫
ψ2
z

U
+ CN (t)

∫ t

0

∫
φ2
z

U
, (3.34)

where we have used the fact ‖φ(·, t)‖∞ ≤ N(t) and the following estimates derived
from the Cauchy–Schwarz inequality

χ|V φφzψz|
U

≤ CN (t)
(
φ2
z

U
+
ψ2
z

U

)
, εχ|V ψ|ψ2

z ≤ Cu−N(t)
ψ2
z

U
.

Substituting (3.34) into (3.24), we obtain∫ (
φ2

U
+ χψ2

)
+
(
D

4
− CN (t)

)∫ t

0

∫
φ2
z

U
+ ε

∫ t

0

∫
ψ2
z +

D

3

∫ t

0

∫
U2
zφ

2

U3

≤ C

∫ (
φ2

0

U
+ ψ2

0

)
+ CN (t)

∫ t

0

∫
ψ2
z

U
.

Thus, when N(t) is small enough, we get∫ (
φ2

U
+ χψ2

)
+D

∫ t

0

∫
φ2
z

U
+ ε

∫ t

0

∫
ψ2
z +

D

3

∫ t

0

∫
U2
zφ

2

U3

≤ C

∫ (
φ2

0

U
+ ψ2

0

)
+ CN (t)

∫ t

0

∫
ψ2
z

U
. (3.35)
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To complete the proof, we now bound 1
U in terms of weight function w defined

in (2.13). By (2.12), there exists a constant M > 0 such that for any z ≥ M ,
1
U ∼ Ce

s
D z. By the definition of weight function w in (2.13), one can find two

constants ν > µ > 0 such that

µw ≤ 1
U

≤ νw, for any z ≥M.

When z < M , because 1
U is monotone increasing in (−∞,∞) and 1 < w(z) ≤ 2eηM ,

we have

w

2u−eηM
≤ 1
u−

≤ 1
U

≤ 1
U(M)

≤ w

U(M)
, for any z < M.

In all, one can find two constants C2 > C1 > 0 such that

C1w(z) ≤ 1
U(z)

≤ C2w(z), for all z ∈ R. (3.36)

The desired inequality (3.20) follows from (3.35) and (3.36).

Lemma 3.3. Let the assumptions in Proposition 3.3 hold, then there exists a con-
stant C > 0 such that

‖φz‖2
w + ‖ψz‖2 + ‖ψz‖2

w +D

∫ t

0

‖φzz(·, τ)‖2
wdτ +

∫ t

0

‖ψz(·, τ)‖2
wdτ

+ ε

∫ t

0

‖ψzz(·, τ)‖2
wdτ ≤ C(‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w). (3.37)

Proof. Differentiating (3.7) with respect to z yields{
φzt = Dφzzz + (s+ χV )φzz + χVzφz + χUzψz + χUψzz + χ(φzψz)z ,

ψzt = εψzzz + sψzz − 2ε(V ψz)z + φzz − ε(ψ2
z)z .

(3.38)

Multiplying the first equation of (3.38) by φz/U and the second by χψz , integrating
the resultant equations with respect to z and adding them, noting that

Dφzzzφz
U

= D

(
φzzφz
U

)
z

− Dφ2
zz

U
−
[
Dφ2

z

2

(
1
U

)
z

]
z

+
φ2
z

2

(
D

U

)
zz

,

(s+ χV )φzzφz
U

=
(

(s+ χV )φ2
z

2U

)
z

− φ2
z

2

(
s+ χV

U

)
z

,

χ(φzψz)zφz
U

=
(
χφ2

zψz
U

)
z

− χφzψzφzz
U

+
χUzφ

2
zψz

U2
,

χ[sψzz − 2ε(V ψz)z]ψz = χ
[(s

2
− εV

)
ψ2
z

]
z
− εχVzψ

2
z and

−εχ(ψ2
z)zψz = −2εχ

3
(ψ3
z)z ,



September 17, 2014 14:42 WSPC/103-M3AS 1450038

Stability of traveling waves of the Keller–Segel system 2835

we have

1
2
d

dt

∫ (
φ2
z

U
+ χψ2

z

)
+D

∫
φ2
zz

U
+ εχ

∫
ψ2
zz + εχ

∫
Vzψ

2
z

=
1
2

∫
φ2
z

[(
D

U

)
zz

−
(
s+ χV

U

)
z

]
+ χ

∫
Vzφ

2
z

U
+ χ

∫
Uzψzφz
U

−χ

∫ (
φzzφzψz

U
− Uzφ

2
zψz

U2

)
. (3.39)

Owing to the first equation of (2.6) and the fact that u+ = v+ = 0, a simple
calculation gives(

D

U

)
zz

−
(
s+ χV

U

)
z

= −2Uz
U3

(s+ χv+)u+ = 0. (3.40)

Using the first equation of (2.8) and V ≤ 0, we get |DUz

U | = −DUz

U = s+ χV ≤ s.
Thus, by Cauchy–Schwarz inequality and ‖ψz(·, t)‖L∞ ≤ N(t) < 1, we have∫ ∣∣∣∣UzψzφzU

∣∣∣∣ ≤ s

D

∫
|ψzφz | ≤ C

∫
Uψ2

z + C

∫
φ2
z

U
and

∫ ∣∣∣∣Uzφ2
zψz

U2

∣∣∣∣ ≤ CN (t)
∫
φ2
z

U
.

(3.41)

Substituting (3.40) and (3.41) into (3.39), integrating the equation over (0, t),
we obtain

1
2

∫ (
φ2
z

U
+ ψ2

z

)
+D

∫ t

0

∫
φ2
zz

U
+ εχ

∫ t

0

∫
ψ2
zz + εχ

∫ t

0

∫
Vzψ

2
z

≤ 1
2

∫ (
φ2

0z

U
+ ψ2

0z

)
+ C

∫ t

0

∫
φ2
z

U
+ C

∫ t

0

∫
Uψ2

z

+
DN (t)

2

∫ t

0

∫
φ2
zz

U
+ CN (t)

∫ t

0

∫
φ2
z

U
.

This inequality in combination with (3.20) and the fact that Vz > 0 leads to∫ (
φ2
z

U
+ ψ2

z

)
+D

∫ t

0

∫
φ2
zz

U
+ ε

∫ t

0

∫
ψ2
zz

≤ C

(
‖ψ0‖2

1 + ‖φ0‖2
1,w +

∫ t

0

∫
Uψ2

z +N(t)
∫ t

0

∫
ψ2
z

U

)
. (3.42)

We proceed to estimate the term
∫ t
0

∫
Uψ2

z . To achieve this, we multiply the first
equation of (3.7) by ψz to get

χUψ2
z = φtψz −Dφzzψz − sφzψz − χV φzψz − χφzψ

2
z . (3.43)
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Owing to the second equation of (3.38),

φtψz = (φψz)t − φψzt = (φψz)t − φ[εψzzz + sψzz − 2ε(V ψz)z + φzz − ε(ψ2
z)z]

= (φψz)t − ε(φψzz)z + εφzψzz − s(φψz)z + sφzψz − (φφz)z + φ2
z

+ 2ε(φV ψz)z − 2εV φzψz + ε(φψ2
z)z − εφzψ

2
z (3.44)

and

−Dφzzψz = Dψz[−ψzt + εψzzz + sψzz − 2ε(V ψz)z − ε(ψ2
z)z ]

= D

[
−1

2
(ψ2
z)t − εψ2

zz + ε(ψzψzz)z +
s

2
(ψ2
z)z

− εVzψ
2
z − ε(V ψ2

z)z −
2ε
3

(ψ3
z)z

]
. (3.45)

Substituting (3.44) and (3.45) into (3.43) and integrating the resultant equation
over R × [0, t], we derive

D

2

∫
ψ2
z + εD

∫ t

0

∫
ψ2
zz + χ

∫ t

0

∫
Uψ2

z + εD

∫ t

0

∫
Vzψ

2
z

≤ D

2

∫
ψ2

0z +
∫
φψz −

∫
φ0ψ0z +

εD

2

∫ t

0

∫
ψ2
zz +

( ε

2D
+ 1
)∫ t

0

∫
φ2
z

+
χ

2

∫ t

0

∫
Uψ2

z +
(
ε2

χ
+ χ

)∫ t

0

∫
V 2φ2

z

U
+ (χ+ ε)N(t)

∫ t

0

∫
ψ2
z , (3.46)

where we have used the Young’s inequality and the fact that ‖φz(·, t)‖L∞ ≤ N(t).
Noting Vz > 0, φ2

z ≤ u−
U φ2

z and |V | ≤ −v−, it then follows from (3.46) and (3.20)
that ∫

ψ2
z + ε

∫ t

0

∫
ψ2
zz +

∫ t

0

∫
Uψ2

z

≤ C

(∫
ψ2

0z +
∫
φ2

0 +
∫
φ2 +

∫ t

0

∫
φ2
z

U
+N(t)

∫ t

0

∫
ψ2
z

)

≤ C

(
‖ψ0‖2

1 + ‖φ0‖2
w +N(t)

∫ t

0

∫
ψ2
z

U

)
, (3.47)

which in combination with (3.42) gives that∫ (
φ2
z

U
+ ψ2

z

)
+
∫ t

0

∫
φ2
zz

U
+ ε

∫ t

0

∫
ψ2
zz

≤ C

(
‖ψ0‖2

1 + ‖φ0‖2
1,w +N(t)

∫ t

0

∫
ψ2
z

U

)
. (3.48)

The fact that U is monotone decreasing in (−∞,∞) implies U(0) < U(z) < u−
for z ∈ (−∞, 0). Noting 1 < w(z) < 2 for z ∈ (−∞, 0), we have U(z) > U(0) >
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U(0)
2 w(z) for z ∈ (−∞, 0). Thus, one can deduce from (3.47) and (3.36) that∫ 0

−∞
wψ2

z + ε

∫ t

0

∫ 0

−∞
wψ2

zz +
∫ t

0

∫ 0

−∞
wψ2

z

≤ C

(
‖ψ0‖2

1 + ‖φ0‖2
w +N(t)

∫ t

0

∫
wψ2

z

)
. (3.49)

Now it is left to estimate
∫ t
0

∫
wψ2

z . Multiplying the second equation of (3.38)
by eηzψz, we derive(

eηz

2
ψ2
z

)
t

+
[sη

2
+ εVz − εηV

]
eηzψ2

z + εeηzψ2
zz

=
[
εψzze

ηzψz +
(s

2
− εV

)
eηzψ2

z −
2ε
3
ψ3
ze
ηz

]
z

− εηeηzψzψzz + eηzψzφzz +
2εη
3
eηzψ3

z . (3.50)

By Young’s inequality,

|εηeηzψzψzz| ≤ ε

2
eηzψ2

zz +
εη2

2
eηzψ2

z and |eηzψzφzz | ≤ sη

4
eηzψ2

z +
1
sη
eηzφ2

zz .

Thus, integrating (3.50) over R × [0, t] and using (3.48), we get∫
eηzψ2

z +
∫ t

0

∫ [sη
2

+ 2εVz − 2ηεV − εη2
]
eηzψ2

z + ε

∫ t

0

∫
eηzψ2

zz

≤
∫
eηzψ2

0z +
2
sη

∫ t

0

∫
eηzφ2

zz +
4εηN(t)

3

∫ t

0

∫
eηzψ2

z

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)
∫ t

0

∫
wψ2

z

)
, (3.51)

where we have used ‖ψz(·, t)‖L∞ ≤ N(t) in the first inequality and the fact that
eηz ≤ w ≤ 1

C1U
for z ∈ R by (3.36) in the second inequality. When ε > 0 is small

enough so that ε ≤ s
2η = D

2 , it follows from (3.51) that∫ +∞

0

eηzψ2
z +

∫ t

0

∫ +∞

0

eηzψ2
z + ε

∫ t

0

∫ +∞

0

eηzψ2
zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)
∫ t

0

∫
wψ2

z

)
. (3.52)

Recalling from (2.13) that w = 1+eηz, it holds that eηz ≥ w(z)
2 for z ∈ [0,+∞).

Then it follows from (3.52) that∫ +∞

0

wψ2
z +

∫ t

0

∫ +∞

0

wψ2
z + ε

∫ t

0

∫ +∞

0

wψ2
zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)
∫ t

0

∫
wψ2

z

)
,
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which in combination with (3.49) gives∫
wψ2

z +
∫ t

0

∫
wψ2

z + ε

∫ t

0

∫
wψ2

zz

≤ C

(
‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w +N(t)
∫ t

0

∫
wψ2

z

)
.

Thus∫
wψ2

z + (1 − CN (t))
∫ t

0

∫
wψ2

z + ε

∫ t

0

∫
wψ2

zz ≤ C(‖φ0‖2
1,w + ‖ψ0‖2

1 + ‖ψ0z‖2
w).

Choosing N(t) small enough, we have∫
wψ2

z +
∫ t

0

∫
wψ2

z + ε

∫ t

0

∫
wψ2

zz ≤ C(‖φ0‖2
1,w + ‖ψ0‖2

1 + ‖ψ0z‖2
w). (3.53)

Therefore, by (3.20), (3.48) and (3.53), we derive (3.37).

We next give the estimates of the second-order derivatives of (φ, ψ).

Lemma 3.4. Let the assumptions in Proposition 3.3 hold, then there exists a con-
stant C > 0 such that

‖φzz‖2
w + ‖ψzz‖2 +D

∫ t

0

‖φzzz(·, τ)‖2
wdτ +

∫ t

0

‖ψzz(·, τ)‖2
wdτ + ε

∫ t

0

‖ψzzz(·, τ)‖2dτ

≤ C(‖φ0‖2
2,w + ‖ψ0‖2

2 + ‖ψ0,z‖2
1,w). (3.54)

Proof. Differentiating (3.38) with respect to z gives

φzzt = Dφzzzz + (s+ χV )φzzz + χVzφzz + χ(Vzφz)z + χ(Uzψz)z

+ χUzψzz + χUψzzz + χ(φzψz)zz ,

ψzzt = εψzzzz + sψzzz − 2ε(V ψz)zz + φzzz − ε(ψ2
z)zz.

(3.55)

Multiplying the first equation of (3.55) by φzz/U and the second by χψzz and using

Dφzzzz · φzz
U

= D

(
φzzz · φzz

U

)
z

− Dφ2
zzz

U

− D

2

(
φ2
zz

(
1
U

)
z

)
z

+
D

2
φ2
zz

(
1
U

)
zz

,

(s+ χV )φzzz · φzz
U

=
[
(s+ χV )

2U
φ2
zz

]
z

− φ2
zz

2

(
s+ χV

U

)
z

,

[sψzzz − 2ε(V ψz)zz ]ψzz =
[ s
2
(ψ2
zz) − 2ε(V ψz)zψzz

]
z

+ 2εVzψzψzzz

+ ε(V ψ2
zz)z − εVzψ

2
zz,

−ε(ψ2
z)zzψzz = −ε[(ψ2

z)zψzz]z + 2εψzψzzψzzz ,
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we obtain

1
2
d

dt

∫ (
φ2
zz

U
+ ψ2

zz

)
+D

∫
φ2
zzz

U
+ εχ

∫
ψ2
zzz + εχ

∫
Vzψ

2
zz

= χ

(∫
Vzφ

2
zz

U
+
∫

(Vzφz)zφzz
U

+
∫

(Uzψz)zφzz
U

+
∫
Uzψzzφzz

U

+
∫

(φzψz)zzφzz
U

+ 2ε
∫
Vzψzψzzz + 2ε

∫
ψzψzzψzzz

)
, (3.56)

where we have used (3.40). Because |Uz/U | ≤ C, |Vz| ≤ C, ‖ψz(·, t)‖L∞ ≤ N(t)
and ‖φz(·, t)‖L∞ ≤ N(t) for any t ∈ [0, T ], we get by Cauchy–Schwarz inequality

χ

∫
(Vzφz)zφzz

U
= −χ

∫
Vzφzφzzz

U
+ χ

∫
VzUzφzφzz

U2

≤ D

4

∫
φ2
zzz

U
+
Cχ2

D

∫
φ2
z

U
+D

∫
φ2
zz

U
+
Cχ2

D

∫
φ2
z

U
,

χ

∫
(Uzψz)zφzz

U
= −χ

∫
Uzψzφzzz

U
+ χ

∫
U2
zψzφzz
U2

≤ D

4

∫
φ2
zzz

U
+
Cχ2

D

∫
Uψ2

z +D

∫
φ2
zz

U
+
Cχ2

D

∫
Uψ2

z ,

χ

∫
(φzψz)zzφzz

U
= −

∫
(φzψz)zφzzz

U
+
∫

(φzψz)zφzzUz
U2

≤ DN (t)
4

∫
φ2
zzz

U
+

2χ2N(t)
D

∫
φ2
zz

U
+

2χ2N(t)
D

∫
ψ2
zz

U
.

Integrating (3.56) over (0, t) and using (3.37), we have

∫ (
φ2
zz

U
+ ψ2

zz

)
+D

∫ t

0

∫
φ2
zzz

U
+ ε

∫ t

0

∫
ψ2
zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0z‖2
w + ‖ψ0‖2

2 +N(t)
∫ t

0

∫
ψ2
zz

U
+
∫ t

0

∫
Uψ2

zz

)
. (3.57)

We next estimate
∫ t
0

∫
Uψ2

zz. Multiplying the first equation of (3.38) by ψzz, we
have

χUψ2
zz = φztψzz − [Dφzzz + sφzz + χV φzz + χVzφz + χUzψz + χ(φzψz)z ]ψzz.

Noting that by the second equation of (3.55), it has that

φztψzz = (φzψzz)t − φzψzzt

= (φzψzz)t − φz[εψzzzz + sψzzz + φzzz − 2ε(V ψz)zz − ε(ψ2
z)zz]
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= (φzψzz)t − ε(φzψzzz)z + εφzzψzzz − s(φzψzz)z + sφzzψzz

− (φzφzz)z + φ2
zz + 2ε(φz(V ψz)z)z − 2εφzz(V ψz)z

+ ε(φz(ψ2
z)z)z − εφzz(ψ2

z)z,

−Dφzzzψzz = D[−ψzzt + εψzzzz + sψzzz − 2ε(V ψz)zz − ε(ψ2
z)zz]ψzz

= D

{
−1

2
(ψ2
zz)t + ε(ψzzψzzz)z − εψ2

zzz +
s

2
(ψ2
zz)z − 2ε[ψzz(V ψz)z ]z

+ 2εψzzz(V ψz)z − ε[ψzz(ψ2
z)z]z + εψzzz(ψ2

z)z

}
.

Then we have

D

2
d

dt

∫
ψ2
zz + χ

∫
Uψ2

zz + εD

∫
ψ2
zzz

=
d

dt

∫
φzψzz + ε

∫
φzzψzzz +

∫
φ2
zz − 2ε

∫
φzz(V ψz)z

− ε

∫
φzz(ψ2

z)z + 2εD
∫
ψzzz(V ψz)z + εD

∫
ψzzz(ψ2

z)z

−χ

∫
[V φzz + Vzφz + Uzψz + (φzψz)z ]ψzz. (3.58)

Note that the Cauchy–Schwarz inequality gives,

χ

∫
(V φzz + Vzφz + Uzψz)ψzz

≤ χ

4

∫
Uψ2

zz + Cχ

(∫
V 2φ2

zz

U
+
∫
V 2
z φ

2
z

U
+
∫
U2
zψ

2
z

U

)
,

∫
(φzψz)zψzz ≤ N(t)

∫
ψ2
zz +N(t)

∫
φ2
zz

U
+
N(t)

4

∫
Uψ2

zz .

Thus, integrating (3.58) over [0, t], using the Cauchy–Schwarz inequality and choos-
ing N(t) small enough, we have

1
2

∫
ψ2
zz +

∫ t

0

∫
Uψ2

zz + ε

∫ t

0

∫
ψ2
zzz

≤ C

(
‖ψ0‖2

2 + ‖ψ0z‖2
w + ‖φ0‖2

2,w +N(t)
∫ t

0

∫
ψ2
zz

U

)
. (3.59)

Substituting (3.59) into (3.57) leads to∫ (
φ2
zz

U
+ ψ2

zz

)
+
∫ t

0

∫
φ2
zzz

U
+ ε

∫ t

0

∫
ψ2
zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0z‖2
w + ‖ψ0‖2

2 +N(t)
∫ t

0

∫
ψ2
zz

U

)
. (3.60)
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Applying the same argument in deriving (3.49), we get from (3.59) that

∫ 0

−∞
wψ2

zz +
∫ t

0

∫ 0

−∞
wψ2

zz + ε

∫ t

0

∫ 0

−∞
wψ2

zzz

≤ C

(
‖ψ0‖2

2 + ‖ψ0z‖2
w + ‖φ0‖2

2,w +N(t)
∫ t

0

∫
wψ2

zz

)
. (3.61)

We proceed to estimate
∫ t
0

∫
wψ2

zz . Multiplying the second equation of (3.55) by
eηzψzz , as in (3.50), we get(

eηz

2
ψ2
zz

)
t

+
sηeηz

2
ψ2
zz + εeηzψ2

zzz

=
[
εψzzze

ηzψzz +
s

2
eηzψ2

zz − 2ε(V ψz)zeηzψzz − ε(ψ2
z)ze

ηzψzz

]
z

− εηeηzψzzψzzz + 2ε(V ψz)zeηzψzzz + 2ε(V ψz)zηeηzψzz + eηzφzzzψzz

+ ε(ψ2
z)zηe

ηzψzz + ε(ψ2
z)ze

ηzψzzz. (3.62)

By Young’s inequality, it follows that

|−εηeηzψzzψzzz + 2ε(V ψz)zeηzψzzz | ≤ ε

4
eηzψ2

zzz + Cεeηz(ψ2
z + ψ2

zz),

|eηzφzzzψzz | ≤ eηzφ2
zzz + Ceηzψzz.

Thus, integrating (3.62) over R × [0, t], by (3.36) we have

∫
eηzψ2

zz + sη

∫ t

0

∫
eηzψ2

zz +
3ε
2

∫ t

0

∫
eηzψ2

zzz

≤
∫
eηzψ2

0zz + Cε

∫ t

0

∫
eηzψ2

zz + Cε

∫ t

0

∫
eηzψ2

z

+ 2
∫ t

0

∫
eηzφ2

zzz +
εN(t)

2

∫ t

0

∫
eηzψ2

zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)
∫ t

0

∫
wψ2

zz

)
, (3.63)

where we have used |Vz | ≤ C, |V | ≤ C and ‖ψz(·, t)‖L∞ ≤ N(t) in the first
inequality, and (3.37) and (3.60) in the second inequality. It follows from (3.63)
that ∫ +∞

0

eηzψ2
zz +

∫ t

0

∫ +∞

0

eηzψ2
zz + ε

∫ t

0

∫ +∞

0

eηzψ2
zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)
∫ t

0

∫
wψ2

zz

)
. (3.64)
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Noting eηw ≥ w(z)
2 for z ∈ [0,+∞), we get from (3.64) that∫ +∞

0

wψ2
zz +

∫ t

0

∫ +∞

0

wψ2
zz + ε

∫ t

0

∫ +∞

0

wψ2
zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)
∫ t

0

∫
wψ2

zz

)
.

This inequality, in combination with (3.61), yields∫
wψ2

zz +
∫ t

0

∫
wψ2

zz + ε

∫ t

0

∫
wψ2

zzz

≤ C

(
‖φ0‖2

2,w + ‖ψ0‖2
2 + ‖ψ0z‖2

1,w +N(t)
∫ t

0

∫
wψ2

zz

)
.

Choosing N(t) small enough, we have∫
wψ2

zz +
∫ t

0

∫
wψ2

zz + ε

∫ t

0

∫
wψ2

zzz ≤ C(‖φ0‖2
2,w + ‖ψ0‖2

2 + ‖ψ0z‖2
1,w). (3.65)

Therefore, the desired (3.54) follows from (3.20), (3.37), (3.57) and (3.65).

Proof. (of Proposition 3.1) From global estimate (3.10), we have

‖φz(·, t), ψz(·, t)‖1,w → 0, as t→ +∞.

Hence, for all z ∈ R,

φ2
z(z, t) = 2

∫ z

−∞
φzφzz(y, t)dy

≤ 2
(∫ ∞

−∞
φ2
zdy

)1
2
(∫ ∞

−∞
φ2
zzdy

)1
2

≤ ‖φz(·, t)‖2
1,w → 0, as t→ +∞.

Applying the same procedure to ψz leads to

ψz(z, t) → 0, as t→ +∞, for all z ∈ R.

Hence (3.11) is proved.

3.2. Proof of main results

Theorem 2.1 is a direct consequence of Proposition 3.1 where the global estimate
(3.10) guarantees that N(t) is small for all t > 0 under the assumption that N(0)
is small.

It only remains to prove Theorem 2.2. Noticing that u in the original system
(1.1), (1.4) remains the same as one in the transformed system, we only need to
derive the results for c(x, t).
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First as a consequence of Theorem 2.1 and the transformation (1.3), we have

(u− U, cx/c− Cx/C) ∈ C([0,∞);H1
w) ∩ L2([0,∞);H2

w).

Next we proceed to derive the results for c− C, namely (2.14) in Theorem 2.2. To
this end, we note that c(x, t) and C(z) satisfy equations

ct = εcxx − uc, 0 = εCzz − UC + sCz,
where z = x− st with s > 0. By defining θ(z, t) = c(x, t)−C(x+x0 − st), we derive
from the above two equations that

θt = εθzz − (U + φz)θ − Cφz + sθz. (3.66)

We first derive the L2-estimates for θ. To this end, we multiply Eq. (3.66) by θ and
integrate the result with respect to z, and obtain

1
2
d

dt

∫
θ2 + ε

∫
θ2z +

∫
Uθ2 = −

∫
φzθ

2 −
∫

Cφzθ. (3.67)

Next we will use the technique of smallness of θ, as done for φ and ψ above.
Indeed from the transformation (1.3) and decomposition (3.3), we have

c0(x)
C(x+ x0)

= e
R ∞

x
(v0(ξ)−V (ξ+x0))dξ = e−ψ0(x),

where we have used (3.6) and the fact ψ0(±∞) = 0 to derive that
∫∞
x

(v0(ξ)−V (ξ+
x0))dξ = −∫∞

−x(v0(ξ) − V (ξ + x0))dξ = −ψ0(x). Note that C(x+ x0) is a traveling
wave solution bounded by c+ > 0. Then by the Taylor expansion, we have

θ0(x) = θ(x, 0) = c0(x) − C(x+ x0) = C(x+ x0)e−ψ0(x) − C(x+ x0)

= C(x+ x0)(e−ψ0(x) − 1)

= C(x+ x0)ψ0

∞∑
n=1

(−1)n

n!
ψn−1

0 . (3.68)

Since we have assumed that ‖ψ0‖L∞ is small, see (3.9), the series
∑∞

n=1
(−1)n

n! ψn−1
0

is convergent. Noticing that 0 ≤ C ≤ c+ for x ∈ R, then by the assumption
of Theorem 2.2 and (3.68), we have ‖θ0‖1 ≤ δ0 for some small constant δ0> 0.
Now we set M(t) = supτ∈[0,t] ‖θ(·, τ)‖1, which gives M(0) ≤ δ0. We assume that
M(t) ≤ δ1 where 1 > δ1 > 0. Then we employ the Cauchy–Schwarz inequality to

have: −φzθ2 ≤ 1
2M(t)Uθ2 + 1

2M(t)φ
2
z

U and Cφzθ ≤ c+|φzθ| ≤ 1
2Uθ

2 + c2+
2
φ2

z

U , which
in combination with (3.67) yield that

1
2
d

dt

∫
θ2 + ε

∫
θ2z +

1
2
(1 −M(t))

∫
Uθ2 ≤

(
c2+
2

+M(t)
)∫

φ2
z

U

≤ C

∫
wφ2

z . (3.69)
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From the inequality (3.20), (3.53) and noting that M(t) < 1, it follows that∫ t

0

‖φz(·, τ)‖2dτ ≤
∫ t

0

‖φz(·, τ)‖2
wdτ ≤ C(‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w). (3.70)

Then integrating the inequality (3.69) in t and using (3.70), we end up with

‖θ‖2 + ε

∫ t

0

‖θz‖2 +
∫ t

0

∫
Uθ2 ≤ C(‖φ0‖2

1,w + ‖ψ0‖2
1 + ‖ψ0z‖2

w + ‖θ0‖2). (3.71)

We proceed to estimate the first-order derivative of θ. Multiplying (3.66) by
−θzz and integrating the resulting equation with respect to z, we get

1
2
d

dt

∫
θ2z + ε

∫
θ2zz =

∫
Uθθzz +

∫
φzθθzz +

∫
Cφzθzz. (3.72)

By the Cauchy–Schwarz inequality, we have

Uθθzz ≤ ε

4u−
Uθ2zz +

u−
ε
Uθ2 ≤ ε

4
θ2zz +

u−
ε
Uθ2,

φzθθzz ≤M(t)|φzθzz| ≤ ε

4
θ2zz +

M2(t)
ε

φ2
z,

Cφzθzz ≤ c+|φzθzz| ≤ ε

4
θ2zz +

c2+
ε
φ2
z .

Then applying the above inequalities into (3.72) yields

1
2
d

dt

∫
θ2z +

ε

4

∫
θ2zz ≤

u−
ε

∫
Uθ2 +

1
ε
(M2(t) + c2+)

∫
φ2
z ,

which, upon the integration with respect to t, gives

‖θz‖2 + ε

∫ t

0

‖θzz‖2 ≤ C(‖φ0‖2
1,w + ‖ψ0‖2

1 + ‖ψ0z‖2
w + ‖θ0‖2

1), (3.73)

where the assumption M(t) ≤ δ1 < 1, (3.70) and (3.71) have been used. Then the
combination of (3.71) and (3.73) gives (2.14) in Theorem 2.2.

Finally the global estimates (3.71) and (3.73) validate our assumption M(t) ≤
δ1 < 1 under the condition that M(0) is small. We then have from the standard
argument that ‖θz‖ → 0 as t → ∞ and ‖θ(·, t)‖ is bounded for all t > 0. Then for
all z ∈ R, we get

θ2(x, t) = 2
∫ x

−∞
θθy(y, t)dy ≤ 2‖θ(·, t)‖ · ‖θz(·, t)‖ ≤ C‖θz(·, t)‖ → 0, as t→ ∞,

which implies |θ(x, t)| → 0 as t→ ∞. This completes the proof of Theorem 2.2.

Remark 3.1. Here we prove the convergence of C as a natural consequence of the
global estimates (3.71) and (3.73) as shown above. An alternative approach to prove
the convergence of C is to use the transformation (1.3) and write |c(x, t) − C(x +
x0 − st)| = C(x+ x0 − st)|1 − e−ψ(x,t)| and then use the fact ψ(x, t) → 0 as t→ ∞
by the global estimate (3.10).
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4. Numerical Simulations

In this section, we will use numerical simulations to illustrate the stability of tra-
veling wave solutions of (1.1) and (1.2) for m = 1 and small ε > 0 as proved
in the paper. On the other hand, for large ε > 0, the numerical simulation will be
performed to make the predictions. In our theoretical results, the nonlinear stability
of traveling wave solutions requires ε > 0 to be small, which is generally undesirable
since ε > 0 is the chemical diffusion coefficient in the original model (1.1) as a
stabilizing factor. The numerical simulation indeed shows that the traveling wave
solution still remains stable for large ε > 0, which verifies our suspicion.

Numerically solving the system (1.1) is very challenging due to the logarithmic
sensitivity. As we know, the numerical solutions of the Keller–Segel model (1.1)
have not yet been obtained. Our strategy here is to solve the transformed system
(1.4) with the second equation of (1.1). That is we solve the following system of
three equations instead of two equations:


ut − χ(uv)x = Duxx,

vt + (εv2 − u)x = εvxx,

ct = εcxx − uc,

(4.1)

with initial data

(u, v, c)(x, 0) = (u0, v0, c0)(x) → (u±, v±, c±), as x→ ±∞, (4.2)

where v0(x) = −(log c0)x = − c0x

c0
. Since the traveling wave solutions converge to

the asymptotic states exponentially as x → ∞, the domain R can be effectively
approximated by a finite interval with a suitably large length. In simulation, the
domain is set as [0, 400] and mesh size is 0.2. The boundary conditions are set as
Dirichlet conditions to comply with the initial data. The Matlab PDE solver based
on finite difference scheme is implemented to perform the numerical computations.
Only the interested biological quantities u(x, t) and c(x, t) will be plotted numeri-
cally. We first set an initial traveling wavefront profile (U, C)(x) of the Keller–Segel
system (1.1) as

U(x) = ũ(x) =
u−

1 + exp(2(x− 100))
,

C(x) = c̃(x) =
c+

1 + exp(−2(x− 100))
.

(4.3)

Then by the relation (1.3), the initial traveling wave profile for V (x) is

V (x) = −C′(x)
C(x)

=
−2

1 + exp((x− 100))
.

Thus the left and right asymptotic states of the traveling wave solution (U, V, C),
namely (u−, v−, c−) and (u+, v+, c+), satisfy u+ = c− = v+ = 0, v− = −2 and
u− = (ε+χ)v2

− = 4(ε+χ), where c+ > 0 can be arbitrarily chosen. Next we choose
appropriate perturbations. Noting that only the right end state u+ = 0 generates
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the singularity and hence the exponential weight function is merely imposed at
z = +∞ as seen from (2.13). That is the initial value u0 must exponentially decay
at x = +∞ with rate η = s

D . On the other hand, from the proof for the convergence
of C in Sec. 3.2, we know that weight function is not needed for the chemical
concentration c(x, t) at x = +∞. Following these observations, we set the initial
value (u0, c0) as

(u0 − U)(x) =
sinx

((x − 100)/10)2 + 1
· 1
1 + eη(x−100)

,

(c0 − C)(x) =
sinx

((x − 100)/10)2 + 1
· 1
1 + e−2(x−100)

,

(4.4)

such that (u0 − U, c0 − C) ∈ H1
w(R) × H1(R) as required by Theorem 2.2, where

η = s
D , s = −χv− and the initial value for v(x, t) is v0(x) = − c0x

c0
. In the numerical

simulations, we fix several parameter values: D = 2, χ = 1, c+ = 1. Then s =
−χv− = 2 and η = 1, and the initial data (u0, c0) satisfying (4.3) and (4.4) are
plotted in Fig. 1.

We explore the numerical simulations for two cases: small and large ε > 0. First
we let ε = 0.1 small and hence u− = (ε+χ)v2− = 4.4. With the initial data given in
(4.4), we employ the Matlab PDE solver to compute the system (4.1). The resulting
numerical solution (u, c) is plotted in Fig. 2. It is observed that the solution (u, c)
stabilizes to a traveling wave profile, which verifies our theoretical results. Next
we examine the case of large ε > 0. For this scenario, it remains unknown in this
paper whether or not the traveling wave solutions is stable since our theoretical
result requires the smallness of ε > 0. Hence it is worthwhile to explore this case
numerically to foresee the possible outcomes. To this end, we choose ε = 5 and
then u− = (ε + χ)v2

− = 24. The initial value (u0, c0) is set as in (4.4). Figure 3
shows the time evolution of numerical solution starting from such an initial value.
It is clearly found in the simulation that the solution evolves to a steady traveling
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Fig. 1. The numerical plot of initial value (u0, c0) given by (4.4) with ε = 0.1, where u− =
4.4, c+ = 1, u+ = c− = 0.
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Fig. 2. The numerical illustration of the time evolution of the traveling wave solution (u, c) to
the system (4.1) and (4.2) with u+ = 0 for small ε > 0, where the initial value satisfies (4.4) and is
plotted in Fig. 1. Other parameter values are ε = 0.1, D = 2, χ = 1, c+ = 1, u− = 4.4. Each curve
represents the solution (wave) profile at a certain time starting at t = 0 and spaced by t = 15.
The arrow indicates that the wave propagates from the left to the right.
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Fig. 3. The numerical simulation of the evolutionary traveling wave solution (u, c) of the system
(4.1) and (4.2) with u+ = 0 for large ε > 0, where ε = 5 and other parameter values are the same
as those in Fig. 2. Each curve represents the solution (wave) profile at a certain time starting at
t = 0 and spaced by t = 15. The arrow indicates the direction of wave propagation.

wave solution. This implies that traveling wave solution of the system (1.1) for large
ε > 0 is still stable. However, the technical difficulty makes us leave this problem
open in this paper.
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