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Abstract. The existence of a global weak solution to the Cauchy problem
for a one-dimensional Camassa-Holm equation is established. In this paper,
we assume that the initial condition u0(x) has end states u±, which has much
weaker constraints than that u0(x) ∈ H1(R) discussed in [30]. By perturb-
ing the Cauchy problem around a rarefaction wave, we obtain a global weak
solution as a limit of viscous approximation under the assumption u− < u+.

1. Introduction. In this paper, we are concerned with the global existence of weak
solutions to the Camassa-Holm equation

∂tu− ∂2
x∂tu+ 3u∂xu = 2∂xu∂

2
xu+ u∂3

xu, (1.1)

with initial data
u(0, x) = u0(x) → u± as x→ ±∞, (1.2)

which is formally equivalent to a dispersive shallow water equation [1]:





∂tu+ u∂xu+ ∂xP = 0, t > 0, x ∈ R

P (t, x) =
1

2

∫ ∞

−∞

e−|x−y|

(
u2 +

1

2
(∂xu)

2

)
(t, y)dy,

(1.3)

where u is the fluid velocity in the x direction(or equivalently the height of water’s
free surface above a flat bottom). The equation (1.1) is completely integrable (see
[15], [8] for the periodic case and [3], [10], [13] for the non-periodic case). A few non-
linear dispersive and wave equations are lucky enough to be completely integrable
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in the sense that there exist a Lax pair formulation of the equation. This means in
particular that they enjoy infinitely many conservation laws. In many cases these
conservation laws provide control on high Sobolev norms which seems to be quite
an exceptional event. For the general discussion on complete integrability in infinite
dimensions, we refer to [19] for a detailed exposition. Quite a number of PDEs have
been discovered to be completely integrable. However, most of them still remain
obscure due to the lack of any physical significance. The equation

∂tu+ 2K∂xu− ∂2
x∂tu+ 3u∂xu = 2∂xu∂

2
xu+ u∂3

xu, (1.4)

which was discovered by Funchssteiner and Fokas [20], has enjoyed such obscurity.
But a few years ago, this equation was rederived by Camassa and Holm [6] using
an asymptotic expansion directly in the Hamiltanian for Euler’s equations in the
shallow water regime. They showed that (1.4) is Bi-Hamiltanian, i.e., it can be
expressed in Hamiltanian form in two different ways. The novelty of Camassa and
Holm’s work was that they gave a physical derivation for (1.4) and showed that, for
the special case K = 0, (1.4) possessed a solitary waves of the form c exp(−|x− ct|)
with discontinuous first derivatives, which they named “peakon”(travelling wave
solutions with a corner at their peak). More importantly, the peakons are or-
bitally stable (cf. [17])which means that the shape of the peakons is stable so that
these wave patterns are physically recognizable, moreover, these peakons are soli-
tons (cf. [16], [4]). Another feature of the Camassa-Holm equation is that it can
be treated as a generalization of the Benjamin-Bona-Mahoney(BBM) equation or
the Korteweg-de Vries(KdV) equation in some sense(See [6]). These three vari-
ous equations all gave the good and consistent approximation for the full inviscid
water wave equation in the small-amplitude and shallow-water regime. However,
the Camassa-Holm equation has several important features that distinguish it from
the BBM and KdV equations. Namely, while all solutions to BBM and KdV are
global, the Camassa-Holm equation has global smooth solutions as well as smooth
solutions that blow up (cf. [12]). Moreover, the only way singularities can develop
in a solution corresponding to a smooth initial data decaying at infinity is in the
form wave breaking: the slope ux becomes unbounded while u stays bounded (cf.
[9]) (this elaborate statement can be also found in [2] and [30]). Since the physical
significance that (1.4) exhibits, which was discovered by Camassa and Holm, (1.4)
has attracted a broad interest from researchers(see [1, 3, 4, 11, 15]). Cooper and
Shepard [18] derived a variational approximation to the solitary waves of (1.4) for
general K. In [7], the numerical solutions of time-dependent form and a discussion
of the Camassa-Holm equation as a Hamiltanian system was presented. Boyd [2]
derived a perturbation series for general K which converges even at the peak limit
and gave three analytical representations for the spatially periodic generalization of
the peakon called “Coshoidal wave”. In [26], zero curvature formulation are given
for the “dual hierarchies” of standard soliton equation hierarchies including the
Camassa-Holm equation hierarchy. As pointed out exactly in [14], (1.1) represents
the equation for geodesics on the diffeomorphism group.

In the paper [30], Xin and Zhang obtained the global-in-time existence of weak
solutions to Camassa-Holm equations for the special case K = 0 with initial data
u(0, x) = u0(x) ∈ H1(R). Recently, Bressan and Constantin in [5] obtained the
unique global conservative solutions of the Camassa-Holm equation with initial
data in H1. We observe that the assumption u0(x) ∈ H1(R) implies u0(x) → 0 as
x → ±∞, which is a rigorous constraint in applications. The aim of this paper is
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to establish the global existence of the weak solution to problem (1.1)-(1.2) with
initial data u0(x) → u± as x→ ±∞, where the initial data with end states u± has
much weaker constraints than that u0(x) ∈ H1(R). Toward this end, we assume
that the limits u± of the initial data u0(x) at x = ±∞ satisfy u− < u+, i.e., a
hyperbolic wave is a rarefaction wave. Under this circumstance, we perturb the
Cauchy problem (1.1), (1.2) around the rarefaction wave wR(x/t) which satisfies
the Riemann problem (2.1). Then we reformulate the Cauchy problem (1.1), (1.2)
to a new Cauchy problem (3.1) and prove the global existence of a weak solution to
this new problem, and thus a global weak solution of original problem (1.1), (1.2)
follows. Moreover, we study the asymptotic behavior of the solution of problem
(1.1), (1.2) and show that the solution tends to a rarefaction wave as t→ ∞.

Before giving the precise statements of the main results, we introduce the defi-
nition of a weak solution to the Cauchy problem (1.1)-(1.2) similarly as in [30]:

Definition 1.1. A continuous function u = u(t, x) is said to be a global weak
solution to the Cauchy problem (1.1)-(1.2) if

(1) u(t, x) − φ(t, x) ∈ C([0,∞) × R) ∩ L∞([0,∞);H1(R)) and

‖u− φ‖H1(R) ≤ C(‖u0 − φ0‖H1(R) + 1), ∀ t > 0,

u0(x) → u± as x→ ±∞,

where C is a positive constant depending only on u+, u− and φ(t, x) satisfies






∂tφ+ 3φ∂xφ = 0,

φ(0, x) = φ0(x) =
u+ + u−

2
+
u+ − u−

2
Kq

∫ σx

0

(1 + y2)−qdy.
(1.5)

Here σ > 0 is an arbitrary constant andKq is chosen such thatKq

∫ ∞

0
(1+y2)−q dy =

1 for each q > 1/2.
(2) u(t, x) satisfies equation (1.1) in the sense of distributions and takes on the

initial data pointwise.

The main result of this paper is as follows.

Theorem 1.1. Suppose u− < u+, u0 − φ0 ∈ H1(R) and φ0 given in (1.5). Then
the Cauchy problem (1.1)-(1.2) has a global weak solution. Furthermore, the global
weak solution u = u(t, x) satisfies

lim
t→+∞

|u(t, x) − φ(t, x)| = 0 (1.6)

for all x ∈ R.

Theorem 1.1 can be regarded as the extension of Theorem 1.2 in [30] as u− =
u+ = 0. Our main goal is to study the stability of the simple wave to the Camassa-
Holm Equations. That is, one shall be interested in the following initial-boundary
problem





∂tu− ∂2
x∂tu+ 3u∂xu = 2∂xu∂

2
xu+ u∂3

xu, x ∈ (0,∞)
u(t, 0) = u−, t ≥ 0,
u(0, x) = u0(x) → u+, as x→ +∞.

(1.7)
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Since the solution of (1.7) has a boundary at x = 0, the signs of the characteristic
speeds u± divide the asymptotic state into five cases (c.f. [23]):






(1) u− < u+ < 0,
(2) u− < u+ = 0,
(3) u− < 0 < u+,
(4) 0 = u− < u+,
(5) 0 < u− < u+.

(1.8)

When u− < 0 and u+ = 0, we observe that φ(x) = u−e
−x is a stationary solution to

(1.7). The interesting problem is to study the asymptotic behavior of solutions to
the system (1.7), i.e., one can show that the initial-boundary problem (1.7) admits
a unique global solution u(t, x) which converges, as t → +∞, i) to the stationary
solution or ii) to the rarefaction wave of the Burgers equation. However, the key
point is to obtain the existence of the weak solutions. This is the main purpose of
this paper. The stability of the simple wave to the Camassa-Holm Equations will
be discussed in further work.

The main idea of proving Theorem 1.1 closely follows the method developed by
Xin-Zhang in [30]. The major difference is that our assumption on initial datum
is not in H1(R), not even in L2(R). One key observation is that we can perturb
the initial datum with a rarefaction wave define by (2.1) because of u− < u+.
The difference quantity, v, between the solution u to the original problem and the
rarefaction wave φ satisfies another new “shallow-water-like” equation (see (3.1)).
The initial datum of this difference converges to zero as |x| → +∞. The crucial
element is to show that this new problem has a global weak solution. Note that
the rarefaction wave φ is not in L1(R) for any t > 0, although it is smooth enough.
Some extra efforts have to be made to deal with the complexity of the appearance
of φ (when φ ≡ 0 this new problem is nothing but the problem in [30]). We obtain
the global existence result by using the vanishing viscosity method as performed in
[30]. It turns out that the Young measures play a role in passaging limits of the
approximate viscous solutions vε. A further question can be addressed: is this global
weak solution u close to the rarefaction wave φ in some sense? Indeed, the positivity
of ∂xφ and the estimates for the approximation vε gives us the integrability of v(·, x)
for a.e. x. This, combined with the control of ∂tv, in turn shows that v(t, x), i.e.,
u(t, x) − φ(t, x) converges to zero as t→ +∞ for all x.

The rest of this paper is organized as follows. In section 2 we establish some pre-
liminary estimates for the smooth rarefaction wave φ. In section 3, we reformulate
the original problem to a new equivalent Cauchy problem and establish the global
existence of this new problem with viscosity. In section 4, we show the existence of
a global existence of problem (1.1) and (1.2) and examine the asymptotic behavior
of solutions.

Notation: Hereafter, we use C to denote generic constants without any con-
fusion, which may change from line to line. When the dependence of the con-
stant on some index or a function is important, we highlight it in the notation.
Lp = Lp(R)(1 ≤ p ≤ ∞) denotes usual Lebesgue space with the norm

‖f‖Lp =

(∫

R

|f(x)|p dx
) 1

p

, 1 ≤ p <∞,

‖f‖L∞ = ess sup
x∈R

|f(x)|,
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and the integral region R will be omitted if it does not cause any confusion. In the
double integral, the differential dxdt will be omitted often for the simplicity of the

presentation, i.e., the integral
∫ t

0

∫
R
f(t, x)dxdt is briefly denoted by

∫ t

0

∫
f(t, x).

2. Preliminaries. To investigate the Cauchy problem (1.1) and (1.2), we first
consider the following Riemann problem for non-viscous Burgers equation






∂tw
R + 3wR∂xw

R = 0 ,

wR(0, x) = wR
0 (x) =

{
u− , x < 0 ,
u+ , x > 0 .

(2.1)

It is well known( for more details, see Smoller [27] ), when u− < u+, that the solution
of the Riemann problem (2.1) is the center rarefaction wave wR(t, x) = wR(x/t)
which reads

wR(x/t) =





u−, x ≤ 3u−t,
x/3t, 3u−t < x < 3u+t,
u+, x ≥ 3u+t.

It is clear that the solution wR(x/t) is discontinuous. Using a similar approach
applied in [24] and [28], the smooth solution of the Riemann solution wR(t, x) can
be approximated by φ(t, x) which satisfies





∂tφ+ ∂x

(
3

2
φ2

)
= 0,

φ(0, x) = φ0(x) =
u+ + u−

2
+
u+ − u−

2
Kq

∫ σx

0

(1 + y2)−qdy,
(2.2)

with σ > 0 an arbitrary constant and Kq chosen such that for each q >
1

2
it holds

that Kq

∫ ∞

0

(1 + y2)−q dy = 1. It is straightforward to check that φ0(x) → u± as

x→ ±∞.
Since φ0(x) is monotonically increasing, the method of the characteristic curve

allows a unique smooth solution in all time. Then we have the following lemma.

Lemma 2.1. There exists a unique smooth solution φ(t, x) to problem (2.2) which

has the following properties by setting ũ =
1

2
(u+ − u−) > 0:

(i) u− < φ(t, x) < u+, ∂xφ(t, x) > 0 for all (t, x) ∈ [0,∞) × R;

(ii) For any p with 1 ≤ p ≤ ∞, there exists a constant Cp,q depending on p, q such
that

‖∂xφ(t)‖Lp ≤ Cp,q min(σ1− 1
p ũ, ũ

1
p t−1+ 1

p ),

‖∂2
xφ(t)‖Lp ≤ Cp,q min

(
σ2− 1

p ũ, σ(1− 1
p
)(1− 1

2q
)ũ−

p−1

2pq t−1− p−1

2pq

)
,

‖∂3
xφ(t)‖Lp ≤ Cp,q min

(
σ3− 1

p ũ
1
p , a(σ, ũ, t)

)
,

‖∂4
xφ(t)‖Lp ≤ Cp,q min

(
σ4− 1

p ũ, b(σ, w̃, t)
)
,
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where

a(σ, ũ, t) = σ3ũ(1 + σũt)
1
p
−4 + σ2(1− 1

p
)(1− 1

2q
)ũ−

p−1

pq t−
1
p
−(1− 1

p
)(1+ 1

q
)

+σ(2− 1
p
)(1− 1

2q
)ũ−

2p−1

2pq t−1− 2p−1

2pq ,

b(σ, ũ, t) = σ3ũ(1 + σũt)
1
p
−5 + σ(3− 2

p
)(1− 1

2q
)ũ−

3p−2

2pq t−(1+ 3
2q

)+ 1
pq

+σ(3− 1
p
)(1− 1

2q
)ũ−

3p−1

2pq t−1− 3p−1

2pq ;

(iii) There exists a constant Cq depending on q such that

∫ ∣∣∣∣
(∂2

xφ)2

∂xφ
(t, x)

∣∣∣∣ dx =

∥∥∥∥
(∂2

xφ)2

∂xφ
(t)

∥∥∥∥
L1

≤ Cq min(σ2ũ, σ1− 1
2q ũ−

1
2q t−1− 1

2q ),

∫ ∣∣∣∣
(∂3

xφ)2

∂xφ
(t, x)

∣∣∣∣ dx =

∥∥∥∥
(∂3

xφ)2

∂xφ
(t)

∥∥∥∥
L1

≤ Cq min
(
ũ(σ2 + σ4), β(q, σ, ũ)

)
,

∫ ∣∣∣∣
(∂2

x∂tφ)2

∂xφ
(t, x)

∣∣∣∣ dx =

∥∥∥∥
(∂2

x∂tφ)2

∂xφ
(t)

∥∥∥∥
L1

≤ Cq min
(
(ũ + ũ3)σ4, γ(q, σ, ũ)

)
,

where

β(q, σ, ũ) = σ2− 1
q ũ−

1
q t−1− 1

q + σ4ũ(1 + ũσt)−6 + σ3− 3
2q ũ−

3
2q t−1− 3

2q ;

γ(q, σ, ũ) = σ2− 1
q ũ−

1
q t−1− 1

q + σ4ũ(1 + ũσt)−6 + σ2ũt−2 + σ5− 3
2q ũ2− 3

2q t−1− 3
2q ;

(iv) ‖∂l
t∂

k
xφ‖L∞ ≤ C|w+ − w−|l+k+1, l, k ≥ 0, l + k ≤ 4;

(v) sup
R

|φ(t, x) − wR(x/t)| → 0 as t→ ∞.

Proof. The proof of the global existence of solutions to the Cauchy problem of
conservation law (2.2) is very routine, which follows from the method of character-
istics directly. It only remains to prove the last inequality in (iii) since the rest of
estimates have been proved in [24, 25, 28, 32].

Indeed, the method of characteristic curve yields for all time t,

φ(t, x) = φ0(x0(t, x)), (2.3)

where x0(t, x) is given by the relation

x = x0(t, x) + 3φ0(x0(t, x))t. (2.4)

Noting that

∂x0(t, x)

∂x
=

1

1 + 3φ′0(x0)t
,
∂x0(t, x)

∂t
= − 3φ0(x0)

1 + 3φ′0(x0)t
, (2.5)

we have from (2.3),(2.4) and (2.5),

∂xφ(t, x) =
φ′0(x0)

1 + 3φ′0(x0)t
, ∂2

xφ(t, x) =
φ′′0 (x0)

(1 + 3φ′0(x0)t)3
, (2.6)

and

∂2
x∂tφ(t, x) = − 3φ0(x0)φ

′′′
0 (x0)

(1 + 3φ′0(x0)t)4
− 9φ′0(x0)φ

′′
0 (x0)

(1 + 3φ′0(x0)t)4
+

27φ0(x0)(φ
′′
0 (x0))

2t

(1 + 3φ′0(x0)t)5
, (2.7)

where the prime means the derivative with respect to x0.
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From (2.2), one has

φ′0(x0) = Kqũ(1 + (σx0)
2)−qσ ≤ Kqũσ, (2.8)

|φ′′0 (x0)| ≤ 2qσ(Kqũσ)−
1
2q |φ′0(x0)|1+

1
2q , (2.9)

|φ′′′0 (x0)| ≤ 2q(2q + 3)σ2(σKqũ)
− 1

q |φ′0(x0)|1+
1
q . (2.10)

In addition, when x0 ≥ 1, we have

|φ′′0 (x0)| ≥ 2qσ2(Kqũσ)−
1
q |φ′0(x0)|1+

1
q . (2.11)

Thus the Cauchy-Schwartz inequality gives the following estimate

∫ ∣∣∣∣
(∂2

x∂tφ)2

∂xφ

∣∣∣∣ dx =

∫ ∣∣∣∣
1 + 3φ′0(x0)t

φ′0(x0)

∣∣∣∣
(
− 3φ0(x0)φ

′′′
0 (x0)

(1 + 3φ′0(x0)t)4
− 9φ′0(x0)φ

′′
0 (x0)

(1 + 3φ′0(x0)t)4

+
27φ0(x0)(φ

′′
0 (x0))

2t

(1 + 3φ′0(x0)t)5

)2

(
∂x0

∂x
)−1 dx0

≤ C

∫ |φ0(x0)φ
′′′
0 (x0)|2

φ′0(x0)(1 + 3φ′0(x0)t)6
dx0 + C

∫
φ′0(x0)φ

′′
0 (x0)

2

(1 + 3φ′0(x0)t)6
dx0

+C

∫ |φ0(x0)φ
′′
0 (x0)

2|2t2
φ′0(x0)(1 + 3φ′0(x0)t)8

dx0, (2.12)

where we used the variable transformation dx0 = ∂x0

∂x dx.
Next we are going to estimate the three integrals on the right hand side of (2.12)

respectively. To estimate the first integral, we break the integral domain R into two
parts in order to use the inequality (2.11). That is

∫ |φ0(x0)φ
′′′
0 (x0)|2

φ′0(x0)(1 + 3φ′0(x0)t)6
dx0 =

∫

|x0|<1

+

∫

|x0|≥1

. (2.13)

Then we proceed to estimate the integrals on the right hand side of (2.13). Indeed,
noting that φ0(x0) is bounded, we get from (2.8) and (2.10)

∫

|x0|<1

|φ0(x0)φ
′′′
0 (x0)|2

φ′0(x0)(1 + 3φ′0(x0)t)6
dx0

≤ Cqσ
4− 2

q ũ−
2
q

∫

|x0|<1

|φ′0(x0)|1+
2
q

(1 + 3φ′0(x0)t)6
dx0

≤ Cqσ
4− 2

q ũ−
2
q (1 + ũKqσt)

−6

∫

|x0|<1

|φ′0(x0)|1+
2
q dx0

≤ Cqσ
4ũ(1 + ũσ)−6, (2.14)

the last inequality resulting from the fact that
∫

R
(φ′0(x0))

r dx0 ≤ Cr,qσ
r−1ũr, which

is clear from (2.8).
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Now we introduce the variable transformation y = φ′0(x0)t and deduce from
(2.10) and (2.11) that

∫

|x0|<1

|φ′0(x0)φ
′′′
0 (x0)|2

φ′0(x0)(1 + 3φ′0(x0)t)6
dx0

≤ C

∫ φ′

0(1)t

0

|φ′′′0 (x0)|2
y(1 + 3y)6|φ′′0 (x0)|

dy

≤ C
(
2qσ2(Kqũσ)−

1
q

)−1 (
2q(2q + 3)σ2(Kqũσ)−

1
q

)2
∫ ∞

0

|φ′0(x0)|1+
1
q

y(1 + 3y)6
dy

≤ Cqσ
2− 1

q ũ−
1
q t−1− 1

q

∫ ∞

0

(1 + 3y)−6+ 1
q dy

≤ Cqσ
2− 1

q ũ−
1
q t−1− 1

q . (2.15)

Thus the combination of (2.14) and (2.15) completes the estimate for the first
integral on the right hand side of (2.12). Next we estimate the second integral on
the right hand side of (2.12). In fact, it follows from (2.9) that

∫
φ′0(x0)φ

′′
0 (x0)

2

(1 + 3φ′0(x0)t)6
dx0

≤ Ct−2

∫ φ′

0(0)

0

y|φ′′0 (x0)|
(1 + 3y)6

dy

≤ 2Cqσ(Kqũσ)−
1
2q t−2

∫ ∞

0

y|φ′0(x0)|1+
1
2q

(1 + 3y)6
dy

≤ Cqσ
2ũt−2

∫ ∞

0

y

(1 + 3y)−6
dy

≤ Cqσ
2ũt−2. (2.16)

Furthermore, we estimate the third integral on the right hand side of (2.12) by

∫ |φ0(x0)φ
′′
0 (x0)

2|2t2
φ′0(x0)(1 + 3φ′0(x0)t)8

dx0 (2.17)

≤ (Kqσũ)
2t2

∫ ∞

0

|φ′′0(x0)|3
y(1 + 3y)8

dy

≤ (Kqσũ)
2t2

∫ ∞

0

|φ′′0 (x0)|3

y3+ 3
2q (1 + 3y)6−

3
2q

dy

≤ Cqσ
5− 3

2q ũ2− 3
2q t−1− 3

2q

∫ ∞

0

(1 + 3y)−6+ 3
2q dy

≤ Cqσ
5− 3

2q ũ2− 3
2q t−1− 3

2q . (2.18)

Substitution of (2.14),(2.15),(2.16) and (2.18) into (2.12) yields

∫ ∣∣∣∣
(∂2

x∂tφ)2

∂xφ

∣∣∣∣ dx ≤ γ(q, σ, ũ), (2.19)

where

γ(q, σ, ũ) = σ2− 1
q ũ−

1
q t−1− 1

q + σ4ũ(1 + ũσt)−6 + σ2ũt−2 + σ5− 3
2q ũ2− 3

2q t−1− 3
2q .
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On the other hand, since φ′0(x0) > 0, it follows from (2.12) that
∫ ∣∣∣∣

(∂2
x∂tφ)2

∂xφ

∣∣∣∣ dx

≤ C

∫ |φ′′′0 (x0)|2
φ′0(x0)

dx0 + C

∫
|φ′0(x0)||φ′′0 (x0)|2dx0 + C

∫ |φ′′0 (x0)|4
φ′0(x0)3

dx0

≤ Cqσ
4− 2

q ũ−
2
q

∫
(φ′0(x0))

1+ 2
q dx0 + Cqσ

3− 1
q ũ1− 1

q

∫
(φ′0(x0))

2+ 1
q dx0

+Cqσ
4− 2

q ũ−
2
q

∫
(φ′0(x0))

1+ 2
q dx0

≤ Cqσ
4ũ+ Cqσ

4ũ3. (2.20)

Putting (2.19) and (2.20) together completes the proof for the last inequality in
(iii) of Lemma 2.1.

Corollary 2.2. Let σ = ũ, q = 1 in the Lemma 2.1, then the solution φ(t, x) to
(2.2) satisfies the following properties:

(i) u− < φ(t, x) < u+, ∂xφ(t, x) > 0 for all (t, x) ∈ [0,+∞) × R;

(ii) For any p with 1 ≤ p ≤ ∞, there exists a constant Cp depending on p such
that

‖∂xφ(t)‖Lp ≤ h(ũ)Cp(1 + t)−1+ 1
p ,

‖∂2
xφ(t)‖Lp ≤ h(ũ)Cp(1 + t)−

3p−1

2p ,

‖∂3
xφ(t)‖Lp ≤ h(ũ)Cp(1 + t)−2+ 1

p ,
∥∥∥∥

(∂2
xφ)2

∂xφ
(t)

∥∥∥∥
L1

≤ Ch(ũ)(1 + t)−
3
2 ,

∥∥∥∥
(∂3

xφ)2

∂xφ
(t)

∥∥∥∥
L1

≤ Ch(ũ)(1 + t)−2,

∥∥∥∥
(∂2

x∂tφ)2

∂xφ
(t)

∥∥∥∥
L1

≤ Ch(ũ)(1 + t)−2,

where h(ũ) is a function of ũ and satisfies lim
ũ→0

h(ũ) = 0;

(iii) ‖∂l
t∂

k
xφ‖L∞ ≤ C|u+ − u−|l+k+1, l, k ≥ 0, l + k ≤ 4;

(iv) sup
R

|φ(t, x) − wR(x/t)| → 0 as t→ ∞ .

3. Global existence for the normalized problem with viscosity. Let v =
u−φ, we can recast the Cauchy problem (1.1) to the following reformulated Cauchy
problem 




∂tv − ∂2
x∂tv + 3

2∂x

(
(v + φ)2 − φ2

)

= 2(v + φ)∂2
x(v + φ) + (v + φ)∂3

x(v + φ) + ∂2
x∂tφ,

v|t=0 = v0(x) = u0(x) − φ0(x) → 0, x→ ±∞.

(3.1)

For the convenience of presentation, we define f(v) = 3
2

(
(v + φ)2 − φ2

)
and

g(v, ∂xv, ∂
2
xv, ∂

3
xv, ∂

2
x∂tv) = 2∂x(v+φ)∂2

x(v+φ)+ (v+φ)∂3
x(v+φ)+ ∂2

x∂tφ+ ∂2
x∂tv.
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Then (3.1) takes the following form
{
∂tv + ∂x(f(v)) = g(v, ∂xv, ∂

2
xv, ∂

3
xv, ∂

2
x∂tv),

v|t=0 = v0(x) → 0, x→ ±∞.
(3.2)

It is formally equivalent to the following problem





∂tv + v∂xv + ∂x(P + φv − φ2) = 0,
(t, x) ∈ [0,∞) × R,

(−∂2
x + I)P = 1

2 (∂xv + ∂xφ)2 + (v + φ)2,

v(0, x) = v0(x),

(3.2′)

where I denotes the identity operator. We plan to obtain a global solution of (3.2)
as a weak limit of a viscosity solution approximation, which solves the following
viscous problem





∂tv
ε + ∂x(f(vε)) = ε∂2

xv
ε + g(vε, ∂xv

ε, ∂2
xv

ε, ∂3
xv

ε, ∂2
x∂tv

ε),
(t, x) ∈ R

+ × R,

vε(0, x) = vε
0(x) → 0, x→ ±∞,

(3.3)

where 0 < ε ≤ 1, vε
0(x) = ηε ∗ v0(x) and ηε denotes the standard mollifier.

Next we are devoted to proving the global existence of solutions to problem
(3.3), which consists of a local existence and the a priori estimates. For the sake
of simplification, we will drop the superscript ε in vε(t, x) to denote the solution of
(3.3) in the rest of this section if there is no any ambiguity.

Since we can rewrite (3.3) as follows




∂tv + v∂xv + ∂x(P + φv − φ2) = ε∂2
xv,

(t, x) ∈ [0,∞) × R,

(−∂2
x + I)P = 1

2 (∂xv + ∂xφ)2 + (v + φ)2,

v(0, x) = v0(x),

(3.4)

by the standard argument for a nonlinear parabolic equation (cf.[30] also), one can
obtain the local well-posedness result for v0(x) ∈ H2(R). Precisely, we have the
following local existence result.

Lemma 3.1. (Local existence). Let v0 ∈ H2(R). Then for each ε > 0, there exists
a positive constant T > 0, such that the Cauchy problem (3.3) admits a unique
smooth solution v(t, x) ∈ C([0, T ), H2(R)) ∩ L2([0, T ), H3(R)).

To obtain the global existence, it only remains to derive the a priori estimates,
which is given in the following lemma.

Lemma 3.2. ( A priori estimates). Let v0 ∈ H2(R) and v(t, x) be a solution
obtained in Lemma 3.1, then it holds that

‖v(t)‖2
H1 +

∫ t

0

∫
∂xφ(v2 + (∂xv)

2) + ε

∫ t

0

∫
((∂xv)

2 + (∂2
xv)

2)

≤ C1(‖v0‖2
H1 + h(ũ)), (3.5)

‖∂2
xv(t)‖L2 + ε

∫ t

0

∫
|∂3

xv(s, ·)|2dxds ≤ C2(1 + ‖v0‖2
H1 + h(ũ)) (3.6)
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where C1 > 0 is a constant independent of ε and C2 > 0 is a constant depending on
ε.

Proof. We first prove inequality (3.5). To this end, we multiply (3.3) by v and
integrate it with respect to x over R to get

1

2

d

dt

∫
(v2 + (∂xv)

2)dx+ ε

∫
(∂xv)

2dx+

∫
v∂x(f(v))dx

= 2

∫
v∂x(v + φ)∂2

x(v + φ)dx +

∫
v(v + φ)∂3

x(v + φ)dx +

∫
∂2

x∂tφvdx.
(3.7)

The third term of the left hand side of (3.7) is estimated as
∫
v∂x(f(v))dx = −3

2

∫
v2∂xvdx− 3

∫
φvvxdx =

3

2

∫
∂xφv

2dx. (3.8)

Moreover, the second term of the right hand side of (3.7) can be rearranged as
∫
v(v + φ)∂3

x(v + φ)dx = −
∫
∂x(v(v + φ))∂2

x(v + φ)dx

= −2

∫
v∂x(v + φ)∂2

x(v + φ)dx−
∫
v∂2

xφ∂xvdx−
∫
v∂xφ∂

2
xφdx

+

∫
φ∂xv∂

2
xvdx+

∫
φ∂xφ∂

2
xvdx

= −2

∫
v∂x(v + φ)∂2

x(v + φ)dx+
1

2

∫
v2∂3

xφdx −
∫
∂xφ∂

2
xφvdx

−1

2

∫
∂xφ(∂xv)

2dx+

∫
∂2

x(φ∂xφ)vdx. (3.9)

Substituting (3.8) and (3.9) into (3.7), we get the following identity

1

2

d

dt

∫
(v2 + (∂xv)

2) dx+ ε

∫
(∂xv)

2dx+
3

2

∫
∂xφv

2 dx+
1

2

∫
∂xφ(∂xv)

2 dx

=
1

2

∫
∂3

xφv
2 dx−

∫
∂xφ∂

2
xφv dx+

∫
∂2

x(φ∂xφ)v dx+

∫
∂2

x∂tφv dx. (3.10)

Applying Young inequality and Corollary 2.2 yields

1

2

∫
∂3

xφv
2 dx−

∫
∂xφ∂

2
xφv dx+

∫
∂2

x(φ∂xφ)v dx +

∫
∂2

x∂tφv dx

≤ 1

2
‖∂3

xφ‖L∞

∫
v2dx+

1

4

∫
∂xφv

2dx +

∫
(∂2

xφ)2∂xφdx+
1

4

∫
∂xφv

2dx

+

∫
(∂2

x(φ∂xφ))2

∂xφ
dx+

1

4

∫
∂xφv

2dx+

∫
(∂2

x∂tφ)2

∂xφ
dx

≤ Ch(ũ)(1 + t)−4

∫
v2dx+

3

4

∫
v2∂xφdx+ ‖∂xφ‖∞

∫
(∂2

xφ)2dx

+

∫
(∂2

x(φ∂xφ))2

∂xφ
dx+

∫
(∂2

x∂tφ)2

∂xφ
dx

≤ Ch(ũ)(1 + t)−4

∫
v2dx+

3

4

∫
v2∂xφdx+ Ch(ũ)(1 + t)−

5
2

+Ch(ũ)(1 + t)−2 +

∫
(∂2

x(φ∂xφ))2

∂xφ
dx. (3.11)
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In addition, noting that φ(t, x) is bounded, we have from Corollary 2.2 that

∫
(∂2

x(φ∂xφ))2

∂xφ
dx =

∫
(2∂xφ∂

2
xφ+ φ∂3

xφ+ (∂2
xφ)2)2

∂xφ
dx

≤ C

∫
∂xφ(∂2

xφ)2dx+ C

∫
φ2(∂3

xφ)2

∂xφ
dx+ C

∫
(∂2

xφ)4

∂xφ
dx

≤ C‖∂xφ‖L∞

∫
(∂2

xφ)2dx+ C‖φ‖2
L∞

∫
(∂3

xφ)2

∂xφ
dx+ C‖∂2

xφ‖2
L∞

∫
(∂2

xφ)2

∂xφ
dx

≤ Ch(ũ)(1 + t)−2. (3.12)

Therefore, substituting (3.12) into (3.11), one has that

1

2

∫
∂3

xφv
2 dx−

∫

R

∂xφ∂
2
xφv dx +

∫
∂2

x(φ∂xφ)v dx+

∫
∂2

x∂tφv dx

≤ Ch(ũ)(1 + t)−4

∫
v2 dx+

3

4

∫
∂xφv

2 dx+ Ch(ũ)(1 + t)−2. (3.13)

Hence, the substitution of (3.13) into (3.11) yields

1

2

d

dt

∫
(v2 + (∂xv)

2) dx+
3

4

∫
∂xφv

2 dx +
1

2

∫
∂xφ(∂xv)

2 dx+ ε

∫
(∂xv)

2dx

≤ Ch(ũ)(1 + t)−4

∫
v2 dx+ Ch(ũ)(1 + t)−2. (3.14)

Integrating (3.14) with respect to t over [0, t], we arrive at

∫
(v2 + (∂xv)

2)dx +

∫ t

0

∫
∂xφ(v2 + (∂xv)

2)dxdτ + ε

∫ t

0

∫
(∂xv)

2dxdτ

≤ Ch(ũ)

∫ t

0

(1 + s)−4

∫
v2 dxdτ + ‖v0‖2

H1 + Ch(ũ), (3.15)

which implies

∫
v2 dx ≤ Ch(ũ)

∫ t

0

(1 + s)−4

∫
v2 dxdτ + ‖v0‖2

H1 + Ch(ũ). (3.16)

Applying Gronwall’s inequality to (3.16) gives us the inequality

∫
v2 dx ≤ C(h(ũ) + ‖v0‖2

H1). (3.17)

Substituting (3.17) into (3.15), we obtain that

‖v(t)‖2
H1 +

∫ t

0

∫
∂xφ(v2 + (∂xv)

2) dxdτ + ε

∫ t

0

∫
(∂xv)

2dxdτ ≤ C(‖v0‖2
H1 + h(ũ)).

(3.18)

To finish the proof of (3.5), it remains to estimate
∫ t

0

∫
|∂2

xv|2dxdτ . Toward this
end, we differentiate the first equation of (3.4) with respect to x and get

∂t∂xv + (∂xv)
2 + v∂2

xv + P −
(

1

2
(∂xv + ∂xφ)2 + (v + φ)2

)
+ ∂2

x(φv − φ2) = ε∂3
xv.
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We integrate the above equation to derive that

1

2

d

dt

∫
(v2 + (∂xv)

2)dx+ ε

∫
((∂xv)

2 + (∂2
xv)

2)dx

=
3

2

∫
∂x(v2)φdx +

5

2

∫
∂xv(∂xφ)2dx− 1

2

∫
∂2

xφ∂x(v2)dx

−
∫
∂xφ(∂xv)

2dx+

∫
∂xφ(∂xv)

2dx+ 2

∫
φ∂2

xφ∂xvdx

≤ 5

2

∫
∂xv(∂xφ)2dx+ 2

∫
φ∂2

xφ∂xvdx+

∫
∂xφ(∂xv)

2dx +
1

2

∫
∂3

xφv
2dx

≤ 5

(∫
∂xφ(∂xv)

2dx+

∫
(∂xφ)3dx

)
+

∫
∂xφ(∂xv)

2dx+

∫
φ2(∂2

xφ)2

∂xφ
dx

+

∫
∂xφ(∂xv)

2dx+
1

2
‖∂3

xφ‖L∞‖v‖2
L2

≤ 7

∫
∂xφ(∂xv)

2dx+ 5

∫
(∂xφ)3dx+

∫
φ2(∂2

xφ)2

∂xφ
dx+

1

2
‖∂3

xφ‖L∞‖v‖2
L2.

Integrating the above inequality, and applying Corollary 2.2 as well as (3.18), we

get the boundedness of
∫ t

0

∫
|∂2

xv|2dxdτ . Together with (3.18), we obtain (3.5).
Next, we derive (3.6). Indeed, it is straightforward to deduce from (3.4) that

1

2

d

dt

∫
|∂2

xv(t, x)|2dx+ ε

∫
|∂3

xv(t, x)|2dx

= 2

∫
(v∂xv∂

2
xv)(t, x)dx +

∫ [
∂3

xv

(
v∂2

xv +
1

2
(∂xv)

2 + P + φv − φ2

)]
(t, x)dx

≤ 2‖v(t, ·)‖L∞‖∂xv(t, ·)‖2
H1 +

ε

4

∫
|∂3

xv(t, x)|2dx+
1

ε
‖v(t, ·)‖2

L∞‖∂2
xv(t, ·)‖2

L2

+
1

8ε

∫
(∂xv)

4(t, x)dx +
1

2ε

∫
|P1(t, x)|2dx +

1

2

∫
|∂xv(t, x)|2dx

+
1

2

∫
|∂2

xP2(t, x)|2dx+
ε

4

∫
|∂3

xv(t, x)|2dx+
1

ε
‖φ(t, x)‖2

L∞‖v(t, ·)‖2
L2

+2

∫
|∂xv(t, x)|2dx+ ‖φ‖2

L∞‖∂2
xφ‖2

L2 + ‖∂xφ‖4
L4 , (3.19)

where

P1 =
1

4

∫
e−|x−y|(∂xφ+ ∂xv)

2(t, y)dy and P2 =
1

2

∫
e−|x−y|(φ+ v)2(t, y)dy.

Then we have

‖P1(t, ·)‖2
L2 ≤ C‖(∂xv + ∂xφ)(t, ·)‖4

L4 ≤ C(‖∂xv(t, ·)‖4
L4 + ‖∂xφ(t, ·)‖4

L4) (3.20)

and

‖∂2
xP2(t, ·)‖2

L2

≤ C‖(v + φ)(t, ·)‖2
L∞‖(∂2

xv + ∂2
xφ)(t, ·)‖2

L2 + C‖(∂xv + ∂xφ)(t, ·)‖4
L4

≤ C(‖v(t, ·)‖2
L∞ + ‖φ(t, ·)‖2

L∞)(‖∂2
xv(t, ·)‖2

L2 + ‖∂2
xφ(t, ·)‖2

L2)

+C‖∂xv(t, ·)‖4
L4 + C‖∂xφ(t, ·)‖4

L4 . (3.21)

By the Gagliardo-Nirenberg inequality, it follows that

‖∂xv(t, ·)‖4
L4 ≤ C‖v(t, ·)‖2

L∞‖∂2
xv(t, ·)‖2

L2 . (3.22)
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Substituting (3.22), (3.21) and (3.20) into (3.19), one has

1

2

d

dt

∫
|∂2

xv(t, ·)|2dx+
ε

2

∫
|∂3

xv(t, ·)|2dx ≤ C

(1 + t)3/2
+ C‖∂xv(t, ·)‖2

H1(R) (3.23)

where C = C(ε, ‖v(t, ·)‖L∞ , h(ũ)), which can be chosen independent of time due to

‖v(t, ·)‖L∞ ≤
√

2‖v(t, ·)‖H1 ≤
√

2‖v0‖H1 + C, ∀ t ∈ [0, T ). (3.24)

Now integrating (3.23) with respect to t over [0, t] and applying inequality (3.5)
establish inequality (3.6). Hence the proof of Lemma 3.2 is completed.

The combination of Lemma 3.1 and Lemma 3.2 gives the global existence theo-
rem.

Theorem 3.3. Assume vε
0(x) ∈ H2(R) for each ε > 0, then there exists a unique

solution vε = vε(t, x) ∈ C([0,∞);H2(R))∩L2([0,∞);H3(R)) to the Cauchy problem
(3.3). Furthermore, the solution vε(t, x) satisfies (3.5) and (3.6).

4. Existence of a weak solution. In this section, we will prove the global ex-
istence of weak solution to problem (3.2) using the vanishing viscosity method. It
turns out that the difficulty is how to pass limits of the viscous solution vε. A Young
measure argument guarantees the weak limit v which corresponds to a global weak
solution to (3.2). As a consequence, u = v + φ is a global weak solution to the
Cauchy problem (1.1)-(1.2). Before giving the proof, we first establish some crucial
estimates for ∂xv

ε.

Lemma 4.1. Suppose (vε, Pε) satisfies (3.4). Then there exists a positive constant
C depending only on ‖v0‖H1 , h(ũ), |u−|, |u+| such that

∂xv
ε ≤ 2

t
+ C, ∀ t > 0, x ∈ R.

Proof. Let qε = ∂xv
ε. Then it satisfies

{
∂tqε + (vε + φ)∂xqε + 1

2q
2
ε + ∂xφqε − ε∂2

xqε = Aε,

qε(0, x) = ∂xv
ε(0, x) ≡ ∂xv

ε
0(x),

(4.1)

where Aε = (vε + φ)2 − Pε + 5/2(∂xφ)2 − ∂2
xφv

ε + 2φ∂xφ. It follows from the fact

Pε(t, x) =
1

2

∫ +∞

−∞

e−|x−y|

(
(vε + φ)2(t, y) +

1

2
(∂yv

ε + ∂yφ)2(t, y)

)
dy

that for any t > 0,

‖Pε(t, ·)‖L∞(R)

≤ 1

4

∫ +∞

−∞

(∂yv
ε + ∂yφ)2(t, y) dy +

1

2

∫ +∞

−∞

e−|x−y|‖(vε + φ)2‖L∞ dy

≤ 1

2

(
‖∂xv

ε(t, ·)‖2
L2 + ‖∂xφ(t, ·)‖2

L2

)
+ 2(‖vε(t, ·)‖2

L∞ + ‖φ(t, ·)‖2
L∞)

≤ 5(‖vε(t, ·)‖2
H1 + ‖∂xφ(t, ·)‖2

L2 + ‖φ(t, ·)‖2
L∞)

≤ C(‖v0‖H1 , h(ũ), |u−|, |u+|). (4.2)
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Then we can deduce that

‖Aε‖L∞(R+×R)

≤ 5 sup
0≤t<∞

(‖vε(t, ·)‖2
L∞ + ‖φ(t, ·)‖2

L∞ + ‖Pε(t, ·)‖L∞

+‖∂xφ(t, ·)‖2
L∞ + ‖∂2

xφ(t, ·)‖2
L∞‖vε(t, ·)‖2

L∞)

≤ C(‖v0‖H1 , h(ũ), |u−|, |u+|). (4.3)

Since |∂xφqε| ≤ 1
4q

2
ε + 2‖∂xφ(t, ·)‖2

L∞ , it follows that

∂tqε + (vε + φ)∂xqε +
1

4
q2ε − ε∂2

xqε ≤ 1

4
R2,

for some R > 0. Let Qε(t) solves the following ODE




d

dt
Qε +

1

4
Q2

ε = R2

Qε(0) = max{0, ∂xv
ε
0}.

Then the comparison principle gives us

∂xv
ε(t, x) ≡ qε(t, x) ≤ Qε(t).

Direct computation tells us that Qε(t) ≤
2

t
+4R, which in turn implies our Lemma.

Using the same technique as in [30] and the previous estimates for φ and vε, we
get the following uniform local space-time higher integrability estimate for ∂xv

ε.

Lemma 4.2. Let α = 2k/(2l + 1) with k, l ∈ N and l ≥ k. Assume a > b and
T > 0. Then there exists a positive constant C = C(a, b, T, ‖v0‖H1 , h(ũ), α), but
independent of ε, such that

∫ T

0

∫ b

a

|∂xv
ε(t, x)|2+αdxdt ≤ C.

Proof. Let 0 ≤ χ ≤ 1, χ ∈ C∞
0 ((a − 1, b + 1)), and χ ≡ 1 on [a, b]. Set θ(ξ) =

(1+α)
∫ ξ

0 max{1, sα}ds for ξ ∈ R. Multiplying the equation (4.1) by ξ(x)θ′(qε) and
integrating the resultant equation on [0, T ]× R, we get

∫ T

0

∫
χ(x)

(
qεθ(qε) −

1

2
q2εθ

′(qε)

)
dxdt

=

∫
χ(x)θ(qε)

∣∣∣∣
T

0

−
∫ T

0

∫
(∂xφχ+ (v + φ)χ′)θ(qε)dxdt +

∫ T

0

∫
χ∂xφqεθ

′(qε)dxdt

+ε

∫ T

0

∫
χ′θ′(qε)∂xqεdxdt + (∂xqε)

2χθ′′(qε) −
∫ T

0

∫
Aεχθ

′(qε)dxdt. (4.4)

By the definition, we have
∫ T

0

∫
χ(x)

(
qεθ(qε) −

1

2
q2εθ

′(qε)

)
dxdt

≥
∫ T

0

∫

{|qε|≥1}

χ

(
1 − α

2
|qε|2+α + α|qε|

)
dxdt+

∫ T

0

∫

{|qε|<1}

χ

(
α+

1

2

)
|qε|2dxdt

≥
(

1 − α

2

) ∫ T

0

∫
χ|qε|2+αdxdt.
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Based on the estimates for φ and vε, all the terms on the right hand side of (4.4)
can be controlled by some constant depending only on a, b, T, ‖v0‖H1 , h(ũ), and α
(c.f. [30]). According to the definition of χ, the Lemma is established.

Lemma 4.3. There exists a subsequence {vεj , Pεj} of the sequence {vε, Pε} and

some functions (v, P ) with v ∈ L∞([0,∞);H1(R)) and P ∈ L∞([0,∞);W 1,∞
loc

(R))
such that vεj → v as j → +∞ uniformly on each compact subset of R

+ × R and
Pεj → P in Lq

loc
(R+ × R) as j → +∞ for 1 < q < +∞.

Proof. It is shown in Lemma 3.2 that {vε} is bounded in L∞(R+, H1(R)). Let

(−∂2
x + I)P1ε =

1

2
(∂xv

ε + ∂xφ)2, (−∂2
x + I)P2ε = (vε + φ)2,

Then it is easy to see that Pε = P1ε + P2ε and

‖P1ε(t, ·)‖2
H1 =

1

2

∫
P1ε(∂xv

ε + ∂xφ)2 ≤ ‖Pε(t, ·)‖L∞(‖vε(t, ·)‖2
H1 + ‖∂xφ(t, ·)‖2

L2),

as well as

‖∂xP2ε(t, ·)‖2
L2

=

∫ (∫
e−|x−y|(∂yv

ε + ∂yφ)(t, y)(vε + φ)(t, y)dy

)2

dx

≤ ‖(vε + φ)(t, ·)‖2
L∞

∫ (∫
e−|x−y||(∂yv

ε + ∂yφ)(t, y)|dy
)2

dx

≤ ‖(vε + φ)(t, ·)‖2
L∞

∫ (∫
e−|x−y|dy

∫
e−|x−y|(∂yv

ε + ∂yφ)2(t, y)dy

)
dx

≤ 2‖(vε + φ)(t, ·)‖2
L∞

∫ (∫
e−|x−y|(∂yv

ε + ∂yφ)2(t, y)dy

)
dx

= 4‖(vε + φ)(t, ·)‖2
L∞‖(∂yv

ε + ∂yφ)(t, ·)‖2
L2

≤ 8‖(vε + φ)(t, ·)‖2
L∞

(
‖∂yv

ε(t, ·)‖2
L2 + ‖∂yφ(t, ·)‖2

L2

)
.

Here we have used Hölder inequality and Fubini theorem. Now it is easy to deduce
from (4.2), Corollary 2.2 and Lemma 3.2 that

‖∂xPε(t, ·)‖L2 ≤ C

for all t > 0, where C is a constant independent of ε and t. Then it is clear that
{∂tv

ε} is bounded in L2([0, T ]×R) for any T > 0 from the above inequality, equation
(3.4) and Lemma 3.2. Therefore there exist some function v ∈ L∞([0,∞);H1(R))
such that

vεj ⇀ v weakly in L∞([0,∞);H1(R)),
vεj → v uniformly for any compact set in R

+ × R.

It can be also easily shown that {Pε} is uniformly bounded in L∞([0,∞);W 1,r
loc (R))∩

L∞([0,∞);W 2,1
loc (R)) for any r ∈ [1,+∞). Note that

(−∂2
x + I)

∂Pε

∂t
= 2(vε + φ)

(
∂vε

∂t
+
∂φ

∂t

)
+ (qε + ∂xφ)

(
∂qε
∂t

+ ∂x∂tφ

)
.
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One can show that (vε + φ)
(

∂vε

∂t + ∂φ
∂t

)
is uniformly bounded in L2([0, T ]× R) for

any T > 0. Furthermore, it holds that

(qε + ∂xφ)

(
∂qε
∂t

+ ∂x∂tφ

)

= −(qε + ∂xφ)(vε + φ)∂xqε −
1

2
q2ε(qε + ∂xφ) − ∂xφ(qε + ∂xφ)

+Aε(qε + ∂xφ) + ε∂2
xqε(qε + ∂xφ) + ∂t∂xφ(qε + ∂xφ)

= −1

2
∂x

(
(vε + φ)q2ε

)
− ∂xφ(vε + φ)∂xqε − ∂xφ(qε + ∂xφ)qε

+ε∂x (qε∂xqε) − ε(∂xqε)
2 + (qε + ∂xφ)(Aε + ∂t∂xφ),

which is uniformly bounded in L1([0, T );W−1,1
loc (R)). By the standard elliptic regu-

larity theory and the fact thatW−1,1
loc (R) →֒W

−(1+δ),r
loc (R) for any δ > 0 and r > 1, r

close to 1, we obtain that {∂tPε} is uniformly bounded in L1([0, T );W 1−δ,r
loc (R)) for

some δ > 0, r > 1. So Pε ∈ W 1,1
loc (R+ ×R))∩L∞([0,∞);W 1,∞

loc (R)) and there exists

P ∈ L∞([0,∞);W 1,∞
loc (R)) such that

Pεj → P in Lq
loc(R

+ × R)).

This completes the proof of Lemma 4.3.

Now let µt,x(λ) be the Young measure associated with {qε} ≡ {∂xv
ε}, see [30].

Then for any continuous function f = f(λ) with f(λ) = o(|λ|r) and ∂λf(λ) =
o(|λ|r−1) as |λ| → ∞ and r < 2, and ∀ ψ ∈ Ls

c(R) with 1/s+ r/2 = 1, there holds

lim
ε→0+

∫
f(qε(t, x))ψ(x)dx =

∫
f(q)ψ(x)dx

uniformly in each compact subset of R
+. Here

f(q) =

∫
f(λ)dµt,x(λ) ∈ C([0,∞);L

r′/r
loc (R))

with r′ ∈ (r, 2). Moreover, for all T > 0, we have

lim
ε→0+

∫ T

0

∫
g(qε)ϕdxdt =

∫ T

0

∫
g(q)ϕdxdt

and

λ ∈ Ll
loc(R

+ × R × R, dt⊗ dx⊗ dµt,x(λ)) for all l < 3,

where g = g(x, t, λ) is a continuous function satisfying g = o(|λ|l) as |λ| → ∞ for
some l < 3, and ϕ = ϕ(t, x) ∈ Lm([0, T ] × R) with l/3 + 1/m < 1. And also
λ ∈ L∞([0,∞);L2(R × R, dx⊗ dµx,t(λ))), q(t, x) = ∂xv(t, x).

We furthermore give the following Lemma.

Lemma 4.4. µt,x(λ) = δq(t,x)(λ) for a.e. (t, x) ∈ R
+ × R.

Proof. We sketch the proof which is comparable to the proof in [30]. The main
difference is that the appearance of nontrivial φ in the present case. The proof is
divided into six steps.

Step 1.
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Let E = E(λ) ∈ W 2,∞(R) be a given convex function with E(λ) = O(|λ|) and
DE(λ) = O(1) as |λ| → ∞. Then it follows that

∂t (E(qε)) + ∂x ((vε + φ)E(qε))

= qεE(qε) + ∂xφE(qε) −
1

2
q2εDE(qε) − ∂xφqεDE(qε)

+DE(qε)Aε + ε∂x (DE(qε)∂xqε) − εD2E(qε)(∂xqε)
2.

Since {√ε∂xqε} is uniformly bounded in L2(R+ × R), we obtain that

∂tE(q) + ∂x((v + φ)E(q))

≤ qE(q) − 1

2
q2DE(q) + ∂xφE(q) − ∂xφqDE(q)

+DE(q)

(
(v + φ)2 − P +

5

2
(∂xφ)2 − ∂2

xφv + 2φ∂xφ

)
.

In the following we will denote A = (v + φ)2 − P + 5
2 (∂xφ)2 − ∂2

xφv + 2φ∂xφ.
Step 2.

A similar argument as above applied to E(λ) = λ give us that

∂tq + ∂x((v + φ)q) =
1

2
q2 +A.

So ∂tq + (v + φ)∂xq = 1
2q

2 − q2 − ∂xφq +A. It can be shown that

∂tE(q) + ∂x((v + φ)E(q)) = (∂xφ+ q)E(q) +DE(q)

(
1

2
q2 − q2 − ∂xφq + A

)
.

Hence we get

∂t(E(q) − E(q)) + ∂x((v + φ)(E(q) − E(q)))

≤
∫ (

λE(λ) − 1

2
λ2DE(λ) + ∂xφ(E(λ) − λDE(λ))

)
dµt,x(λ)

−1

2
DE(q)(q2 − q2) +

(
DE(q) −DE(q)

)
A

+
1

2
DE(q)q2 − qE(q) + ∂xφ(qDE(q) − E(q)). (4.5)

Step 3.

Define

QR(λ) =

{
1
2λ

2, if |λ| ≤ R,
R|λ| − 1

2R
2, if |λ| > R,

and Q+
R(λ) = χ{λ≥0}QR(λ), Q−

R(λ) = χ{λ<0}QR(λ), where R > 0 and χA denotes
the characteristic function of the set A. Since QR(λ) is convex, we have

0 ≤ QR(q) −QR(q)

=
1

2
(q2 − q2) − 1

2

(∫
(|λ| −R)2χ{|λ|≥R}dµt,x(λ) − (|q| −R)2χ{|q|≥R}

)
.

It can be shown that q(t, x) ⇀ q0(x) = ∂xv0(x) as t→ 0+ in L2(R). Then

lim
t→0+

∫
(q(t, x))2dx ≥

∫
(q0(x))

2dx.

However, the energy estimate gives us

lim
t→0+

∫
(q(t, x))2dx ≤

∫
q2(t, x)dx ≤

∫
(q0(x))

2dx.
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Therefore, lim
t→0+

∫
(q(t, x))2dx =

∫
(q0(x))

2dx and

lim
t→0

∫ (
Q±

R(q) −Q±
R(q)

)
(t, x)dx = 0. (4.6)

Step 4.

Since qε(t, x) and q(t, x) are bounded from above by 2/t + C, suppµt,x(·) ⊂
(−∞, 2/t+ C). Applying (4.5) to E(λ) = Q+

R(λ), we obtain that for R > 2/t+ C

∂t(Q
+
R(q) −Q+

R(q)) + ∂x((v + φ)(Q+
R(q) −Q+

R(q)))

≤ −∂xφ

∫
λ2

2
χ{λ≥0}dµt,x(λ) + ∂xφ

q2

2
χ{q≥0} +

(
DQ+

R(q) −DQ+
R(q)

)
A

≤
(
DQ+

R(q) −DQ+
R(q)

)
A,

where we have used the fact that λ2

2 χ{λ≥0} is a convex function and ∂xφ ≥ 0. Then

for t > 2
R−C , we derive that

∫
(Q+

R(q) −Q+
R(q))(t, x)dx ≤

∫
(Q+

R(q) −Q+
R(q))(

2

R − C
, x)dx

+

∫ t

2
R−C

∫
A

(
DQ+

R(q) −DQ+
R(q)

)
dxds,

which is

1

2

∫
(q2+ − q2+)(t, x)dx ≤ 1

2

∫
(q2+ − q2+)(

2

R − C
, x)dx +

∫ t

2
R−C

∫
A(q+ − q+)dxds,

where h+ = max{0, h}, h− = min{0, h}. Letting R → +∞, we have

∫
(q2+ − q2+)(t, x)dx ≤ 2

∫ t

0

∫
A(q+ − q+)dxds. (4.7)

Step 5.

Applying (4.5) to E(λ) = Q+
R(λ), we get

∂t(Q
−
R(q) −Q−

R(q)) + ∂x((v + φ)(Q+
R(q) −Q+

R(q)))

≤ −R
2

(∫
λ(λ+R)χ{λ≤−R}dµt,x(λ) − q(q +R)χ{q≤−R}

)

−1

2
DQ−

R(q)(q2 − q2) +A
(
DQ−

R(q) −DQ−
R(q)

)

+∂xφ

(∫
(Q−

R(λ) − λDQ−
R(λ))dµt,x(λ) − (Q−

R(q) − qDQ−
R(q))

)
. (4.8)
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Note that
∫

(Q−
R(λ) − λDQ−

R(λ))dµt,x(λ) − (Q−
R(q) − qDQ−

R(q))

= −
∫ 0

−R

(
λ2

2
χ{−R<λ≤0} +

R2

2
χ{λ≤−R}

)
dµt,x(λ) +

q2

2
χ{−R<q≤0}

+
R2

2
χ{q≤−R}

= −
∫
Q−

R(λ)dµt,x(λ) +Q−
R(q) −

∫
R(λ+R)χ{λ≤−R}dµt,x(λ)

+R(q +R)χ{q≤−R}

≤ −
∫
R(λ+ R)χ{λ≤−R}dµt,x(λ) +R(q +R)χ{q≤−R}.

Then integrating (4.8) over [0, t) × R, and using (4.6), we have
∫ (

Q−
R(q) −Q−

R(q)
)

(t, x)dx

≤ −R
2

∫ t

0

∫ (∫
λ(λ +R)χ{λ≤−R}dµs,x(λ) − q(q +R)χ{q≤−R}

)
dxds

+
R

2

∫ t

0

∫
(q2 − q2)(s, x)dsdx +

∫ t

0

∫
A

(
DQ−

R(q) −DQ−
R(q)

)
dxds

+

∫ t

0

∫
∂xφ

(
−

∫
R(λ+R)χ{λ≤−R}dµs,x(λ) +R(q +R)χ{q≤−R}

)
dxds.

Step 6.

From the identity

Q−
R(q) −Q−

R(q)

=
1

2

(
q2− − q2−

)
− 1

2

(∫
(λ +R)2χ{λ≤−R}dµt,x(λ) − (q +R)2χ{q≤−R}

)

and (4.7), (4.8), we get

∫ (
1

2
(q2+ − q2+) +Q−

R(q) −Q−
R(q)

)
(t, x)dx

≤ R

∫ t

0

∫ (
1

2
(q2+ − q2+) +Q−

R(q) −Q−
R(q)

)
(s, x)dxds

+
R

2

∫ t

0

∫ (∫
R(λ+R)χ{λ≤−R}dµs,x(λ) −R(q +R)χ{q≤−R}

)
dxds

+

∫ t

0

∫
A

(
DQ−

R(q) −DQ−
R(q) + q+ − q+

)
dxds

+C

∫ t

0

∫ (
−

∫
R(λ+R)χ{λ≤−R}dµs,x(λ) +R(q +R)χ{q≤−R}

)
dxds,

where C > 0 is a constant such that ‖∂xφ‖L∞(R+×R) ≤ C.
Note that

0 ≤ DQ−
R(q)−DQ−

R(q)+q+−q+ = −
∫

(λ+R)χ{λ≤−R}dµt,x(λ)+(q+R)χ{q≤−R}.
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Let L > 0 be a constant such that ‖Aε‖L∞(R+×R) ≤ L/2 (see (4.3)). Then
∫ t

0

∫
A

(
DQ−

R(q) −DQ−
R(q) + q+ − q+

)
dxds

≤ R

2

∫ t

0

∫ (∫
L

R
(R+ λ)χ{λ≤−R}dµt,x(λ) − L

R
(R + q)χ{q≤−R}

)
dxds.

So for R ≥ 2
√
L+ 4C, we have

R

2

∫ t

0

∫ (∫
R(λ+R)χ{λ≤−R}dµs,x(λ) −R(q +R)χ{q≤−R}

)
dxds

+

∫ t

0

∫
A

(
DQ−

R(q) −DQ−
R(q) + q+ − q+

)
dxds

+C

∫ t

0

∫ (
−

∫
R(λ+R)χ{λ≤−R}dµs,x(λ) +R(q +R)χ{q≤−R}

)
dxds

≤ R

2

∫ t

0

∫ {∫ (
R

(
1 − L

R2

)
− 2C

)
(λ+R)χ{λ≤−R}dµs,x(λ)

−
(
R

(
1 − L

R2

)
− 2C

)
(q +R)χ{q≤−R}

}
dxds

≤ 0.

Therefore for R ≥ 2
√
L+ 4C, we get

∫ (
1

2
(q2+ − q2+) +Q−

R(q) −Q−
R(q)

)
(t, x)dx

≤ R

∫ t

0

∫ (
1

2
(q2+ − q2+) +Q−

R(q) −Q−
R(q)

)
(s, x)dxds.

Gronwall’s inequality implies that for R ≥ 2
√
L+ 4C,

∫ (
1

2
(q2+ − q2+) +Q−

R(q) −Q−
R(q)

)
(t, x)dx = 0, ∀ t ≥ 0.

Letting R → +∞, one obtains that
∫ (

q2 − q2
)
≤ 0, ∀ t ≥ 0.

So

∫
q2 =

∫
q2 for all t ≥ 0. Consequently, one has that

µt,x(λ) = δq(t,x)(λ), a.e. (t, x) ∈ R
+ × R.

The proof of Lemma 4.4. is finished.

Now we are in a position to prove the main results, i.e., Theorem 1.1.
From Lemma 4.2 and Lemma 4.4, we deduce that ∂xv

ε → ∂xv as ε → 0+ in
L2

loc(R
+ × R), which implies u(t, x) = v(t, x) + φ(t, x) is the desired global weak

solution to the Cauchy problem (1.1)-(1.2). The proof is standard, see, e.g., [30].
So we omit the details. To finish the proof, it remains to investigate the asymptotic
behavior of the solution v(t, x). Recalling (3.5), we have

∫ ∞

0

∫
∂xφv

2dxdt ≤ C.
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Fubini’s Theorem gives us that

∫ (
∂xφ

∫ ∞

0

v2(t, x) dt

)
dx ≤ C.

Hence there is a Lebesgue measure zero set N1 ⊂ R such that

v(·, x) ∈ L2(R) for all x ∈ R \N1. (4.9)

On the other hand, it follows from the proof of Lemma 4.3 that ‖∂xP (t, ·)‖L2 ≤
C for all t > 0. This, (3.2′) and the estimates for φ, v gives us that ∂tv ∈
L∞([0,∞);L2(R)). We may assume that

sup
t∈R+

∫
(∂tv(t, x))

2dx < +∞.

Denote

En = {x ∈ R|(∂tv(t, x))
2 ≥ n for some t > 0}

and N2 =

∞⋂

n=1

En. It follows that n|En| ≤ sup
t∈R+

∫
(∂tv(t, x))

2dx. Then |N2| = 0,

and ∀ x ∈ R \N2, there exists some M ∈ N, such that

(∂tv(t, x))
2 ≤M for all t > 0. (4.10)

Let N = N1 ∪N2. Then |N | = 0 and (4.8) (4.9) gives

lim
t→+∞

|v(t, x)| = 0 for x ∈ R \N. (4.11)

For any x ∈ N , there is a sequence {xj} ⊂ R \ N , such that xj → x as j → +∞.
Since

|v(t, x)| ≤ |v(t, xj)| + |v(t, x) − v(t, xj)|
≤ |v(t, xj)| + |x− xj |

1
2 ‖v(t, ·)‖H1

≤ |v(t, xj)| + C|x − xj |
1
2 ,

we conclude that

lim
t→+∞

|v(t, x)| = 0, for x ∈ N. (4.12)

Then (1.6) follows immediately from (4.10), (4.11). This completes the proof of the
Theorem 1.1.

With Theorem 1.1 and Lemma 2.1 (v), it is easy to observe that the weak solution
u(t, x) of Cauchy problem (1.1) and (1.2) approaches, as t → ∞, the rarefaction
wave wR(x/t) determined by (2.1). We summarize this observation in the following
Theorem.

Theorem 4.5. Let u− < u+ and u0 − wR
0 ∈ H1(R) and wR

0 given in (2.1). Then
the Cauchy problem (1.1)-(1.2) has a global weak solution u = u(t, x) satisfying

lim
t→+∞

|u(t, x) − wR(x/t)| = 0, for all x ∈ R.
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