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Abstract

The global dynamics and regularity of parabolic-hyperbolic systems is an interesting topic in PDEs due 
to the coupling of competing dissipation and hyperbolic effects. This paper is concerned with the Cauchy 
problem of a parabolic-hyperbolic system derived from a chemotaxis model describing the dynamics of 
the initiation of tumor angiogenesis. It is shown that, as time tends to infinity, the Cauchy problem with 
large-amplitude discontinuous data admit global weak solutions which converge to a constant state (resp. 
a viscous shock wave) if the asymptotic states of initial values at far field are equal (resp. unequal). Our 
results improve the previous results where initial value was required to be continuous and have small ampli-
tude. Numerical simulations are performed to verify our analytical results, illustrate the possible regularity 
of solutions and speculate the minimal regularity of initial data required to obtain the smooth (classical) 
solutions of the concerned parabolic-hyperbolic system.
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1. Introduction

The parabolic-hyperbolic coupled system of partial differential equations may arise from 
physics, mechanics and material science such as the compressible Navier-Stokes equations, 
thermo(visco)elastic systems and elastic systems. The properties of solutions to nonlinear 
parabolic-hyperbolic coupled systems are very different from those of parabolic or hyperbolic 
equations. There are many mathematical researches for various parabolic-hyperbolic coupled 
systems on the well-posedness (local and global) and asymptotical behavior of solutions since 
1970s (cf. [28,39]). It is well-known that the diffusion (parabolic) dissipation can smoothen solu-
tions from the crude initial data, while on the contrary the hyperbolic effect can coarsen solutions 
from the smooth initial data (e.g. see [30]). Therefore the relation between the regularity of so-
lutions and the initial values of parabolic-hyperbolic systems has been an interesting topic and 
attracted many studies (e.g. see [4,7,28]). This paper is concerned with the Cauchy problem of 
the following parabolic-hyperbolic system in R:

{
ut − χ(uv)x = Duxx,

vt − ux = 0,
(1.1)

with the initial value

(u, v)(x,0) = (u0, v0)(x), x ∈R (1.2)

and the far-field behavior (i.e., asymptotic state at ±∞):

(u, v)(±∞, t) = (u±, v±), (1.3)

where u± ≥ 0, χ and D are positive constants. The system (1.1) is transformed from the fol-
lowing PDE-ODE singular chemotaxis model proposed in [17] (see [16,26] for mathematical 
derivation) to describe the interaction between signaling molecules vascular endothelial growth 
factor (VEGF) and vascular endothelial cells during the initiation of tumor angiogenesis,

{
ut = (Dux − ξu(ln c)x)x,

ct = −μuc,
(1.4)

via a Cole-Hopf type transformation

v = − 1

μ
(ln c)x = − 1

μ

cx

c
, χ = μξ > 0,

where u(x, t) and c(x, t) denote the density of vascular endothelial cells and concentration of 
VEGF, respectively; D > 0 is the diffusivity of endothelial cells, ξ > 0 is referred to as the 
chemotactic coefficient measuring the intensity of chemotaxis and μ denotes the degradation rate 
of the chemical c. Due to the challenge of logarithmic singularity in (1.4), most of mathematical 
studies in the literature focus attention on the non-singular transformed system (1.1).

The Cauchy problem (1.1)-(1.3) has received a lot attention in the literature. When the left 
and right asymptotic states are identical (u− = u+, v− = v+), the global existence and long-time 
behavior of (strong) solutions of (1.1) in R have been obtained in [5,20,34,38]. When the left and 
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right asymptotic states are different (u− �= u+, v− �= v+), the existence of traveling wavefront 
solutions of (1.1) was obtained first in [32] and nonlinear stability of traveling wave solutions 
was subsequently established in a series of works [15,23,24]. The stability of composite waves 
of (1.1) in R was proved in [21]. All these works have assumed initial values have H 1 or higher 
regularity and show that the strong solutions may have the same regularity as initial values, where 
in particular smooth solutions can be obtained if the initial values have H 2(R)-regularity (cf. [5,
34,38]). Then an interesting question is whether global strong solutions of (1.1) can be obtained 
if the initial value has lower regularity such as Lp-regularity (1 ≤ p ≤ ∞). The answer seems 
unclear due to the coupling of parabolic and hyperbolic equations.

In this paper, we shall prove if the initial value (u0, v0) has only Lp-regularity, global exis-
tence and stability of weak solutions can be established. We show our results in two cases with 
initial data in Lp-space which essentially include discontinuous functions. First if the left and 
right asymptotic states are identical, we prove that the Cauchy problem (1.1)-(1.3) admits global 
weak solutions which converge to the asymptotic states in some sense as time tend to infinity (see 
Theorem 2.1). Second if the left and right asymptotic states are different, we show that (1.1)-(1.3)
also admits global weak solutions which asymptotically converge to a (shifted) traveling wave so-
lution in appropriate functional space (Theorem 2.3). In both cases, the initial values are allowed 
to have large amplitudes and we show that the solution component u is spatially continuous for 
any t > 0 which has higher regularity than initial values but the solution component v only has 
the same regularity as initial values. However we are unable to prove whether the discontinuity 
of solution component v persists in time if initial values are discontinuous or (u, v) can have 
higher regularity. To speculate possible outcomes, we use numerical simulations to illustrate that 
if the initial value (u0, v0) ∈ Lp(R) is discontinuous, classical solutions is impossible but H 1 (or 
continuous) solutions appear to be attainable for the solution component v. Furthermore we nu-
merically find that the solution (u, v) of (1.1) will be smooth as long as the initial value (u0, v0)

has H 1-regularity. These numerical evidences indicate that the coupled parabolic-hyperbolic sys-
tem (1.1) can not smoothen solutions from the discontinuous initial data due to the hyperbolic 
effect, but can slightly improve the regularity due to the parabolic dissipation. We also see from 
numerical simulations that the minimal regularity of initial values to obtain classical (smooth) 
solutions for (1.1) seems to be H 1(R). However all these speculations lack of justification and 
leave us interesting questions to pursue in the future. Since the initial value (u0, v0) considered 
in the current work has only Lp(R)-regularity, the energy estimate framework in previous works 
(cf. [15,20,23,24,38]) relying on the higher regularity of initial values no longer applies. We have 
employed a few new approaches, such as mollifying technique, time-weight function and effec-
tive viscous flux, to obtain desired results (see details in Remark 2.2). We should remark that the 
global dynamics of PDEs with discontinuous data is an important topic arising from fluid me-
chanics and gas dynamics to understand that how the discontinuities evolve in the fluid. Hoff has 
contributed a series of important results to this direction (cf. [8–12]) with further development in 
[13,36,37], which have essentially inspired our current work.

Before concluding the introduction, we briefly recall some other results related to the system 
(1.1). First in the one dimensional bounded interval, when the Neumann-Dirichlet mixed bound-
ary conditions are imposed, the global existence of solutions of (1.1) was first established in [35]
for small initial data and later in [19,22] for large initial data, where the Dirichlet problem was 
also considered in [19]. For the multidimensional whole space Rd (d ≥ 2), when the initial datum 
is close to a constant ground state (ū, 0), numerous results have been obtained. First a blowup 
criterion of solutions was established in [3,18] and long-time behavior of solutions was obtained 
in [18] if (u0 − ū, v0) ∈ Hs(Rd) for s > d + 1 and ‖(u0 − ū,v0)‖Hs×Hs is small. Later, Hao 
2
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[6] established the global existence of mild solutions in the critical Besov space Ḃ
− 1

2
2,1 × (Ḃ

1
2

2,1)
d

with minimal regularity in the Chemin-Lerner space framework. The global well-posedness of 
strong solutions of (1.1) in R3 was established in [2] if ‖(u0 − ū,v0)‖L2×H 1 is small. If the ini-
tial datum has a higher regularity such that ‖(u0 − ū,v0)‖H 2×H 1 is small, the algebraic decay of 
solutions was further derived in [2]. Recently, Wang, Xiang and Yu [33] established the global 
existence and time decay rates of solutions of (1.1) in Rd for d = 2, 3 if (u0 − ū, v0) ∈ H 2(Rd)

and ‖(u0 − ū,v0)‖H 1×H 1 is small. In the multidimensional bounded domain � ⊂Rd(d = 2, 3), 
global existence and exponential decay rates of solutions under Neumann boundary conditions 
were obtained in [22] for small data, and local existence of solutions in two dimensions with 
Dirichlet boundary conditions was given in [14].

The rest of paper is organized as follows. In section 2, we state our main results. In section 3, 
we collect some elementary facts and inequalities which will be needed in later analysis. In sec-
tion 4, we prove the large-time behavior of solutions with constant states. The proof of nonlinear 
stability of viscous shock waves is given in section 5. In section 6, we perform numerical simu-
lations to verify our analytical results and speculate the possible regularity of solutions.

2. Statement of main results

We first explain some conventions used throughout the paper. C denotes a generic positive 
constant which can change from one line to another. Hk(R) denotes the usual k-th order Sobolev 

space on R with norm ‖f ‖Hk(R) :=
(∑k

j=0

∫
R |∂j

x f |2dx
)1/2

. For simplicity, we denote ‖ · ‖ :=
‖ · ‖L2(R) and ‖ · ‖k := ‖ · ‖Hk(R).

Next, we shall present our main results concerning the asymptotic behavior of solutions of the 
Cauchy problem (1.1)-(1.3).

2.1. Constant states

We first consider the case where the end states (u−, v−) and (u+, v+) are connected by a 
constant, say (u−, v−) = (u+, v+) = (ū, v̄) = (1, 0). To state our results on the global stability 
of the constant steady state (1, 0), we first present the definition of weak solutions of (1.1)-(1.3).

Definition 2.1. We say that (u, v) is a weak solution of (1.1)-(1.3), if (u, v) is suitably integrable, 
and for all test functions � ∈ C∞

0 (R × [0, ∞)) satisfy that

∫
R

u0�0(x)dx +
∞∫

0

∫
R

(u�t − Dux�x)dxdt = χ

∞∫
0

∫
R

uv�xdxdt

and

∫
R

v0�0(x)dx +
∞∫

0

∫
R

(v�t − ux�)dxdt = 0.

Then our first main result is encompassed in the following theorem.
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Theorem 2.1. Suppose that the initial data satisfy

u0 − 1 ∈ L2(R) ∩ L4(R), v0 ∈ L2(R) ∩ L∞(R), u0 > 0. (2.1)

Then the Cauchy problem (1.1)-(1.3) has a global weak solution (u, v)(x, t) satisfying

{
u − 1 ∈ L∞([0,∞);L2(R)) ∩ C((0,∞);C(R)), ux ∈ L2([0,∞);L2(R)),

v ∈ L∞([0,∞);L2(R) ∩ L∞(R)) ∩ L6([0,∞);L6(R)).
(2.2)

Furthermore, the following convergence holds:

sup
x∈R

|u(x, t) − 1| → 0 as t → ∞,

‖v‖Lp(R) → 0 as t → ∞, 2 < p < ∞.

(2.3)

Remark 2.1. The above results hold true regardless of the amplitude of the initial data. The initial 
conditions (2.1) imply that (u0, v0) could be discontinuous, which will bring various difficulties 
in the analysis. An example of the initial data is the piecewise constant function with arbitrarily 
large jump discontinuities.

Remark 2.2. Theorem 2.1 will be proved by constructing weak solutions as limits of smooth 
solutions. Specifically, we first mollify (smoothen) the initial data to obtain the global smooth 
solutions (uδ, vδ) and then pass to the limit as δ → 0. Compared to the previous works [20,
38] for continuous initial data, the main difficulty in the proof is to derive the global a priori
estimates independent of the mollifying parameter δ. In this paper, we shall employ the brilliant 
idea of Hoff [11,12], to introduce a time weight function σ = σ(t) = min{1, t} and the “effective 
viscous flux” technique to obtain the desired uniform-in-δ estimates. The second main difficulty 
is to obtain the large-time behavior of v. Due to the hyperbolicity of the second equation and low 
regularity of initial value v0, the regularity of v is hard to attain and the routine energy estimates 
cannot give the L2-bound of vx . As a compromise, we succeed in deriving a new estimate for 
v in the space v ∈ L∞([0, ∞); L6(R)) ∩ L6([0, ∞); L6(R)) (see Lemma 4.6) and obtain the 
long-time behavior of v as asserted in (2.3) by making use of the peculiar structure of (1.1). 
This seems the optimal convergence result we can have for v though the L∞-convergence is not 
obtained.

2.2. Stability of viscous shock waves

If u− �= u+, v− �= v+, the existence of (viscous) shock wave can be established (see [15]). 
The traveling wave solution of (1.1) on R is a non-constant special solution (U, V ) ∈ C∞(R) in 
the form of

(u, v)(x, t) = (U,V )(z), z = x − st, s > 0,

which satisfies {
−sU ′ − χ(UV )′ = DU ′′,
−sV ′ − U ′ = 0,

(2.4)
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with boundary condition

U(±∞) = u±, V (±∞) = v±,

where ′ = d
dz

and s is the wave speed. Here we require u± > 0 due to the biological interest. 
Integrating (2.4) in z over R yields the Rankine-Hugoniot condition as follows

{
−s(u+ − u−) − χ(u+v+ − u−v−) = 0,

−s(v+ − v−) − (u+ − u−) = 0,
(2.5)

which gives

s2 + χv+s − χu− = 0. (2.6)

Solving (2.6) for s yields that

s = −χv+ + √
(χv+)2 + 4χu−

2
. (2.7)

The traveling wave solution (U, V ) can be explicitly solved from (2.4) and enjoys the follow-
ing properties (see details in [15]).

Proposition 2.2. Assume that u± and v± satisfy (2.5). Then the system (2.4) admits a unique (up 
to a translation) monotone traveling wave solution (U, V )(x − st) with the wave speed s given 
by (2.7), which satisfies U ′ < 0, V ′ > 0 and

|U ′| ≤ λ(u− − u+), |V ′| ≤ λ(u− − u+)

s
,

where λ = χ(u−−u+)
Ds

> 0.

Theorem 2.3. Let u+ > 0 and (U, V )(x − st) be a traveling wave solution of (2.4) obtained in 
Proposition 2.2. Assume that there exists a constant x0 such that the initial perturbation from 
the spatially shifted traveling waves with shift x0 of integral zero, namely φ0(∞) = ψ0(∞) = 0. 
Then there exists a constant ε > 0, such that if

‖φ0‖2 + ‖ψ0‖2 + ‖u0 − U‖2 + ‖v0 − V ‖2 ≤ ε, v0 − V0 ∈ L∞, u0 > 0,

where

(φ0,ψ0)(x) = −
∞∫

x

(u0(y) − U(y + x0), v0(y) − V (y + x0))dy,
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the Cauchy problem (1.1)-(1.3) has a global weak solution (u, v)(x, t) satisfying

u − U ∈L∞([0,∞);L2(R)) ∩ C((0,∞);C(R)), u − U ∈ L2([0,∞);H 1(R)),

v − V ∈L∞([0,∞);L2 ∩ L∞) ∩ L2([0,∞);L2).

Furthermore, the solution has the following asymptotic stability:

sup
x∈R

|u(x, t) − U(x + x0 − st)| → 0 as t → ∞,

sup
x∈R

‖v(x, t) − V (x + x0 − st)‖Lp → 0 for all 2 ≤ p < ∞ as t → ∞.

Remark 2.3. The above nonlinear stability results hold true regardless of the size of the wave 
strength (i.e., |u+ − u−| + |v+ − v−| could be arbitrarily large), and the amplitude of initial 
perturbations ‖u0 − U0‖L∞ and ‖v0 − V0‖L∞ can be arbitrarily large, which is an significant 
improvement of previous works (cf. [15,21,23]) where ‖u0 − U0‖L∞ and ‖v0 − V0‖L∞ are re-
quired to be small.

3. Some preliminaries

We first derive a Gronwall-type inequality which will be essentially used in this paper.

Lemma 3.1. Let the function y ∈ W 1,1(0, T ), α(t) ≥ 0 for t ≥ 0 and α(t) ≥ β > 0 for t ≥ T1 > 0
satisfy

y′(t) + α(t)y(t) ≤ g(t) on [0,∞), y(0) = y0, (3.1)

where β is a positive constant and g ∈ L1(0, T1) ∩ Lp(T1, T ) for some p ≥ 1, and T1 ∈ [0, T ]. 
Then

sup
0≤t≤T

y(t) ≤ |y0| + (1 + β−1)(‖g‖L1(0,T1)
+ ‖g‖Lp(T1,T )).

Proof. Let p′ denote the conjugate number of p. Multiplying (3.1) by e
∫ t

0 α(τ)dτ and integrating 
the resulting inequality over (0, t) yield that

e
∫ t

0 α(τ)dτ y(t) =y0 +
t∫

0

e
∫ s

0 α(τ)dτ g(s)ds,

which gives
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y(t) =y0e
− ∫ t

0 α(τ)dτ + e− ∫ t
0 α(τ)dτ

t∫
0

e
∫ s

0 α(τ)dτ g(s)ds

≤|y0| + e− ∫ t
0 α(τ)dτ

⎛
⎜⎝

min{T1,t}∫
0

e
∫ s

0 α(τ)dτ g(s)ds +
t∫

min{T1,t}
e
∫ s

0 α(τ)dτ g(s)ds

⎞
⎟⎠

≤|y0| +
min{T1,t}∫

0

e− ∫ t
s α(τ)dτ |g(s)|ds +

t∫
min{T1,t}

e− ∫ t
s α(τ)dτ |g(s)|ds

≤|y0| +
min{T1,t}∫

0

|g(s)|ds +
t∫

min{T1,t}
e−β(t−s)|g(s)|ds

≤|y0| +
min{T1,t}∫

0

|g(s)|ds + ‖g‖Lp(min{T1,t},t)
∥∥∥e−β(t−s)

∥∥∥
Lp′

(T1,t)

≤|y0| + (1 + β−1)(‖g‖L1(0,T1)
+ ‖g‖Lp(T1,T )),

where in the last inequality we have used the following fact:

∥∥∥e−β(t−s)
∥∥∥

Lr(0,t)
=

⎛
⎝ t∫

0

|e−β(t−s)|rds

⎞
⎠

1
r

≤ e−βt (
1

βr
eβrt − 1

βr
)

1
r

≤e−βt (
1

βr
eβrt − 1

βr
)

1
r ≤ β−1,

for all r ∈ [1, ∞]. Thus, the proof of Lemma 3.1 is completed. �
The well-known Aubin-Lions-Simon Lemma (cf. [29]) will be used later. For convenience, 

we state it below.

Lemma 3.2 (Aubin-Lions-Simon lemma). Let X0, X and X1 be three Banach spaces with X0 ⊆
X ⊆ X1. Suppose that X0 is compactly embedded in X and that X is continuously embedded in 
X1. For 1 ≤ p, q ≤ ∞, let

W = {f ∈ Lp([0, T ];X0)|∂tf ∈ Lq([0, T ];X1)}.

(i) If p < ∞, then the embedding of W into Lp([0, T ]; X) is compact (that is W is relatively 
compact in Lp([0, T ]; X));

(ii) If p = ∞ and q > 1, then the embedding of W into C([0, T ]; X) is compact.
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4. Proof of Theorem 2.1

In this section, we are interested in the dynamics of (1.1) for fixed values of D and χ . Hence, 
for simplicity, we take D = χ = 1. Now, we begin the proof of Theorem 2.1, by constructing 
approximate solutions based upon the mollified initial data. First, we mollify the (coarse) initial 
data (u0, v0) as follows:

uδ
0 = jδ ∗ u0, vδ

0 = jδ ∗ v0,

where jδ is the standard mollifying kernel of width δ (e.g. see [1]). Then we consider the follow-
ing approximate system

{
uδ

t − (uδvδ)x = uδ
xx,

vδ
t − uδ

x = 0,
(4.1)

with smooth initial data (uδ
0, v

δ
0) which satisfies

(uδ
0 − 1,vδ

0) ∈ H 3. (4.2)

Using standard arguments, we can obtain the local existence of solutions to the approximate 
system (4.1) with initial data (uδ

0, v
δ
0) satisfying (4.2). Next, we shall show in a sequence of 

lemmas that these approximate solutions satisfy some global a priori estimates, independently of 
the mollifying parameter δ. This will allow us to take the δ-limit of the sequence of approximate 
solutions in order to obtain the solutions of Theorem 2.1.

4.1. A priori estimates for (4.1)

For the sake of simplicity, in this subsection, we still use (u, v) to represent the approximate 
solution (uδ, vδ). We start with the entropy estimate of (u, v).

Lemma 4.1. Let (u, v) be a smooth solution of (1.1)-(1.3) under the conditions of Theorem 2.1. 
Then there exists a positive constant C independent of t and δ, such that

∫
R

(u lnu − u + 1)dx + ‖v‖2 +
T∫

0

∫
R

(ux)
2

u
dxdt ≤ C. (4.3)

Proof. Multiplying the first equation of (1.1) by lnu and the second equation of (1.1) by v, 
adding the results and integrating the result by parts over [0, t] ×R, we have

∫
R

(u lnu − u + 1)dx +
T∫

0

∫
R

(ux)
2

u
dxdt

=
∫

(u0 lnu0 − u0 + 1)dx ≤ C

∫
(u0 − 1)2dx ≤ C,
R R
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which leads to (4.3). Then, the proof of Lemma 4.1 is completed. �
To carry out further energy estimates, we introduce a change of ũ = u − 1. Thus, problem 

(4.1) turns into

⎧⎪⎨
⎪⎩

ũt − ũxx = (ũv)x + vx,

vt − ũx = 0,

(ũ, v)(x,0) = (u0 − 1, v0)(x).

(4.4)

Next, we will derive the L2 estimate for (ũ, v). Since our goal is to prove the convergence of 
the solution to the positive constant ground state, uniform-in-time estimation of the solution is 
necessary. Thus, we need a uniform-in-time estimation for (ũ, v). It turns out that the standard 
procedure (L2-type energy estimate) is not sufficient to achieve our goal, and we need to employ 
higher-order estimates.

Lemma 4.2. Let (ũ, v) be a smooth solution of (4.4) under the conditions of Theorem 2.1. Then 
there exists a positive constant C independent of t and δ, such that

‖ũ‖2 + ‖ũ‖4
L4 + ‖v‖2 +

T∫
0

‖ũx‖2 + ‖ ˜uux‖2 dt ≤ C. (4.5)

Proof. The proof of (4.5) is due to Li, Li and Zhao [20]. Multiplying the first equation of (4.4)
by ũ and the second equation of (4.4) by v, adding the results and integrating by parts over R, 
we have

1

2

d

dt

(
‖ũ‖2 + ‖v‖2

)
+ ‖ũx‖2 =

∫
R

(ũv)xũdx = −
∫
R

ũvũxdx. (4.6)

Multiplying the first equation of (4.4) by ũ2 and integrating the result by parts over R, we have

1

3

d

dt

(
‖ũ‖3

L3

)
+ 2

∫
R

ũ|ũx |2dx = −2
∫
R

ũ2vũxdx − 2
∫
R

ũvũxdx. (4.7)

Multiplying the first equation of (4.4) by ũ3 and integrating the result by parts over R, we have

1

4

d

dt

(
‖ũ‖4

L4

)
+ 3‖ũ|ũx |‖2 = −3

∫
R

ũ3vũxdx − 3
∫
R

ũ2vũxdx. (4.8)

It follows from 2 × (4.6) − (4.7) that

d

dt

(
‖ũ‖2 + ‖v‖2 − 1

3
‖ũ‖3

)
+ 2‖ũx‖2 − 2

∫
ũ|ũx |2dx = 2

∫
ũ2vũxdx. (4.9)
R R
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The operation (4.8) + 3

2
× (4.9) leads to

d

dt
A(t) + 3B(t) = −3

∫
R

ũ3vũxdx. (4.10)

Noticing that

A(t) = 3

2
‖ũ‖2 + 3

2
‖v‖2 − 1

2
‖ũ‖3

L3 + 1

4
‖ũ‖4

L4 = ‖ũ‖2 + 1

8

∥∥∥2ũ − ũ2
∥∥∥2 + 1

8
‖ũ‖4

L4 + 3

2
‖v‖2 ,

B(t) = ‖ũx‖2 −
∫
R

ũ|ũx |2dx + ‖ũ|ũx |‖2 = 1

2
‖ũx‖2 + 1

2
‖ũx − |ũ|ũx‖2 + 1

2
‖ũ|ũx |‖2 .

(4.11)

For the term on right-hand side of (4.10), by Cauchy-Schwarz inequality, we get

−3
∫
R

ũ3vũxdx ≤9

2

∥∥∥ũ2v

∥∥∥2 + 1

2
‖ũ|ũx |‖2

≤C ‖ũ‖4
L∞ ‖v‖2

L2 + 1

2
‖ũ|ũx |‖2 ≤ C ‖ũ‖4

L∞ + 1

2
‖ũ|ũx |‖2 ,

which together with (4.10) and (4.11) gives

d

dt

(
‖ũ‖2 + 1

8

∥∥∥2ũ − ũ2
∥∥∥2 + 1

8
‖ũ‖4

L4 + 3

2
‖v‖2

)

+ 3

2
‖ũx‖2 + 3

2
‖ũx − |ũ|ũx‖2 + ‖ũ|ũx |‖2 ≤ C ‖ũ‖4

L∞ .

(4.12)

Noticing that

ũ4 =4

x∫
−∞

ũ3ũxdx ≤ 4

⎛
⎝∫
R

ũ6(ũ + 1)dx

⎞
⎠

1
2
⎛
⎝∫
R

ũ2
x

ũ + 1
dx

⎞
⎠

1
2

≤4‖ũ‖2
L∞

⎛
⎝∫
R

ũ2(ũ + 1)dx

⎞
⎠

1
2
⎛
⎝∫
R

ũ2
x

u
dx

⎞
⎠

1
2

,

which gives
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‖ũ‖4
L∞ ≤4‖ũ‖2

L∞

⎛
⎝∫
R

ũ2(ũ + 1)dx

⎞
⎠

1
2
⎛
⎝∫
R

ũ2
x

u
dx

⎞
⎠

1
2

≤1

2
‖ũ‖4

L∞ + 8

⎛
⎝∫
R

ũ2(ũ + 1)dx

⎞
⎠

⎛
⎝∫
R

ũ2
x

u
dx

⎞
⎠

≤1

2
‖ũ‖4

L∞ + C

⎛
⎝∫
R

(
ũ4 + ũ2

)
dx

⎞
⎠

⎛
⎝∫
R

ũ2
x

u
dx

⎞
⎠ .

Thus,

‖ũ‖4
L∞ ≤C

⎛
⎝∫
R

(
ũ4 + ũ2

)
dx

⎞
⎠

⎛
⎝∫
R

ũ2
x

u
dx

⎞
⎠ .

Substituting the above inequality into (4.12) and applying Gronwall’s inequality, we obtain 
(4.5). �

Next, we want to derive the appropriate estimates for the first order derivative of (u, v). Since 
we plan to use the limit of the mollified function (uδ, vδ) as δ → 0 to obtain the solution of our 
target system (1.1)-(1.3), the estimates of the first order derivative of (uδ, vδ) need to be inde-
pendent of δ. If we employ the method for H 1-estimates used in [5,20,38], we shall encounter 
the term 

∫
R(|uδ

0x |2 + |vδ
0x |2)dx which is out of control since the initial assumption of (u0, v0) is 

not yet up to H 1(R), see (5.13). Indeed in general the bound of 
∫
R(|uδ

0x |2 +|vδ
0x |2)dx is of order 

1
δ

given that L2(R)-norm is bounded (see [27, Lemma 1.2]). Hence we have to find an idea to 
avoid the estimates of first-order derivative of (uδ

0, v
δ
0) to attain the uniform boundedness of first-

order estimates in δ. Inspired by the brilliant idea of Hoff [10,11] of treating discontinuous data, 
we introduce a weight function σ = σ(t) = min{1, t} to resolve this obstacle. Unfortunately, this 
method is not valid to vδ . Since, in this framework, to avoid the estimate of 

∫
R |vδ

0x |2dx, the 

uniform-in-δ bound of 
∫ T

0

∫
R |vδ

x |2dxdt is necessary. It turns out that it is nearly impossible to 

get the uniform-in-δ of 
∫ T

0

∫
R |vδ

x |2dxdt when the second equation of (1.1) is hyperbolic (no dif-
fusion term with respect to v) and v has only lower-regularity initial data (v0 ∈ L2(R) ∩L∞(R)). 
Thus, we can only get the first order derivative of uδ in the following.

Lemma 4.3. Let the conditions of Theorem 2.1 hold and (ũ, v) be a smooth solution of (4.4). 
Then there exists a positive constant C independent of t and δ, such that

σ ‖ũx‖2 + σ 2 ‖ũt‖2 + σ 2 ‖vt‖2 +
T∫

0

σ ‖ũt‖2 dt +
T∫

0

σ 2 ‖ũxt‖2 dt ≤ C, (4.13)

where σ = σ(t) = min{1, t}.
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Proof. We first multiply the first equation of (4.4) by σ ũt and integrate the resulting equation 
over R × [0, T ] to get

1

2
σ ‖ũx‖2 +

T∫
0

σ ‖ũt‖2 dt

=1

2

σ(t)∫
0

‖ũx‖2 dt −
T∫

0

σ

∫
R

(ũv)ũxt dxdt −
T∫

0

σ

∫
R

vũxtdxdt.

(4.14)

For the first term on the right-hand side of (4.14), we have from (4.5)

1

2

σ(t)∫
0

‖ũx‖2 dt ≤ 1

2

T∫
0

‖ũx‖2 dt ≤ C. (4.15)

For the second term on the right-hand side of (4.14), we have

−
T∫

0

σ

∫
R

(ũv)ũxt dxdt = −
T∫

0

⎛
⎝σ

∫
R

ũvũxdx

⎞
⎠

t

dt +
σ(t)∫
0

∫
R

ũvũxdxdt

+
T∫

0

σ

∫
R

ũt vũxdxdt +
T∫

0

σ

∫
R

ũvt ũxdxdt

=H1 + H2 + H3 + H4.

(4.16)

By the Sobolev inequality ‖f ‖2
L∞ ≤ 2 ‖f ‖‖fx‖, Cauchy-Schwarz inequality and (4.5), we have

H1 = − σ

∫
R

ũvũxdx ≤ σ

8
‖ũx‖2 + 2σ ‖ũv‖2

≤σ

8
‖ũx‖2 + 2σ ‖ũ‖2

L∞ ‖v‖2

≤σ

8
‖ũx‖2 + Cσ ‖ũ‖‖ũx‖

≤σ

4
‖ũx‖2 + Cσ ‖ũ‖2

≤σ

4
‖ũx‖2 + C.

Employing Cauchy-Schwarz inequality and (4.5) again, we can estimate H2 as
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H2 =
σ(t)∫
0

∫
R

ũvũxdxdt ≤ 1

4

σ(t)∫
0

‖ũx‖2 dt + C

σ(t)∫
0

‖ũ‖2 dt

≤1

4

t∫
0

‖ũx‖2 dt + C ‖ũ‖2 ≤ C,

where σ(t) = min{1, t} has been used. By the Sobolev inequality, Cauchy-Schwarz inequality 
and (4.5), we have

H3 =
T∫

0

σ

∫
R

ũt vũxdxdt

≤C

t∫
0

‖ũx‖2 dt + η

t∫
0

σ 2 ‖ũt v‖2 dt

≤C

t∫
0

‖ũx‖2 dt + η

t∫
0

σ 2 ‖ũt‖2
L∞ ‖v‖2 dt

≤C

t∫
0

‖ũx‖2 dt + η

t∫
0

σ 2 ‖ũt‖‖ũxt‖‖v‖2 dt

≤C + Cη

t∫
0

σ 2 ‖ũt‖‖ũxt‖dt

≤C + 1

2

t∫
0

σ 2 ‖ũt‖2 + Cη

t∫
0

σ 2 ‖ũxt‖2 dt,

where η > 0 is a positive constant which will be determined later. For H4, we have from the fact 
vt = ũx and Cauchy-Schwarz inequality that

H4 =
T∫

0

σ

∫
R

ũvt ũxdxdt =
T∫

0

σ

∫
R

ũ|ũx |2dxdt

≤
t∫

0

‖ũx‖2 dt +
t∫

0

‖ũũx‖2 dt ≤ C,

where we have used (4.5). Substituting the estimates of H1 − H4 into (4.16) to get
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−
T∫

0

σ

∫
R

(ũv)ũxt dxdt ≤ σ

4
‖ũx‖2 + 1

2

t∫
0

σ 2 ‖ũt‖2 + Cη

t∫
0

σ 2 ‖ũxt‖2 dt + C. (4.17)

For the last term on the right-hand side of (4.14), we have

−
T∫

0

σ

∫
R

vũxtdxdt = −
T∫

0

⎛
⎝σ

∫
R

vũxdx

⎞
⎠

t

dt +
σ(t)∫
0

∫
R

vũxdxdt

+
T∫

0

σ

∫
R

vt ũxdxdt

=I1 + I2 + I3.

(4.18)

By Cauchy-Schwarz inequality and (4.5), we can estimate I1 − I3 as

I1 = − σ

∫
R

vũxdx ≤ σ

8
‖ũx‖2 + 2σ ‖v‖2 ≤ σ

8
‖ũx‖2 + C,

I2 =
σ(t)∫
0

∫
R

vũxdxdt ≤
σ(t)∫
0

‖ũx‖2 dt + C

σ(t)∫
0

‖ũ‖2 dt

≤
t∫

0

‖ũx‖2 dt + C ≤ C

and

I3 =
T∫

0

σ

∫
R

vt ũxdxdt =
T∫

0

σ

∫
R

|ũx |2dxdt ≤ C.

Substituting the estimates of I1 − I3 into (4.18), we have

−
T∫

0

σ

∫
R

vũxtdxdt ≤ σ

8
‖ũx‖2 + C. (4.19)

Putting (4.15), (4.17) and (4.19) into (4.14), we conclude that

σ ‖ũx‖2 +
T∫

σ ‖ũt‖2 dt ≤ C + Cη

t∫
σ 2 ‖ũxt‖2 dt. (4.20)
0 0
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Next, in order to obtain the estimate of 

T∫
0

σ 2 ‖uxt‖2 dt , differentiating (4.4) with respect time 

t , we get

{
ũt t − ũxxt = (ũv)xt + vxt ,

vtt − ũxt = 0.
(4.21)

Multiplying the first equation of (4.21) by σ 2ũt and the second by σ 2vt , adding the results and 
integrating it over R × [0, T ], we have

σ 2

2
‖ũt‖2 + σ 2

2
‖vt‖2 +

T∫
0

σ 2 ‖ũxt‖2 dt

≤
T∫

0

σ ‖ũt‖2 dt +
T∫

0

σ ‖vt‖2 dt −
T∫

0

σ 2
∫
R

(ũv)t ũxt dxdt

≤
T∫

0

σ ‖ũt‖2 dt +
T∫

0

σ ‖ṽt‖2 dt −
T∫

0

σ 2
∫
R

ũvt ũxt dxdt −
T∫

0

σ 2
∫
R

ũt vũxt dxdt

≤
T∫

0

σ ‖ũt‖2 dt +
T∫

0

σ ‖ũx‖2 dt −
T∫

0

σ 2
∫
R

ũũx ũxt dxdt −
T∫

0

σ 2
∫
R

ũt vũxt dxdt

=J1 + J2 + J3 + J4,

(4.22)

where we have used the integration by parts and vt = ũx . From (4.5) and (4.20), we have

J1 + J2 ≤ C + Cη

t∫
0

σ 2 ‖ũxt‖2 dt.

For the J3, one has from Cauchy-Schwarz inequality and (4.5) that

J3 ≤ 1

4

T∫
0

σ 2 ‖ũxt‖2 dt +
T∫

0

σ 2 ‖ũũx‖2 dt ≤ C + 1

4

T∫
0

σ 2 ‖ũxt‖2 dt.

For J4, by the Sobolev inequality, Cauchy-Schwarz inequality and (4.5), we have
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J4 ≤1

4

T∫
0

σ 2 ‖ũxt‖2 dt +
T∫

0

σ 2 ‖ũt v‖2 dt

≤1

4

T∫
0

σ 2 ‖ũxt‖2 dt + C

T∫
0

σ 2 ‖ũt‖2
L∞ ‖v‖2 dt

≤1

4

T∫
0

σ 2 ‖ũxt‖2 dt + C

T∫
0

σ 2 ‖ũt‖‖ũxt‖‖v‖2 dt

≤1

2

T∫
0

σ 2 ‖ũxt‖2 dt + C

T∫
0

σ 2 ‖ũt‖2 dt.

Substituting the estimates of J1 − J4 into (4.22), we get

σ 2 ‖ũt‖2 + σ 2 ‖vt‖2 +
T∫

0

σ 2 ‖ũxt‖2 dt ≤ C + C

T∫
0

σ ‖ũt‖2 dt, (4.23)

which updates (4.20) as

σ ‖ũx‖2 +
T∫

0

σ ‖ũt‖2 dt ≤ C + Cη

T∫
0

σ ‖ũt‖2 dt.

By choosing η sufficiently small, we get from the above inequality that

σ ‖ũx‖2 +
T∫

0

σ ‖ũt‖2 dt ≤ C, (4.24)

which together with (4.23) yields

σ 2 ‖ũt‖2 + σ 2 ‖vt‖2 +
T∫

0

σ 2 ‖ũxt‖2 dt ≤ C.

This, along with (4.24), leads immediately to (4.13). Thus, the proof of Lemma 4.3 is com-
pleted. �

Now, we can deduce the large-time behavior of ũ.

Lemma 4.4. Let the conditions of Theorem 2.1 hold and let (ũ, v) be a smooth solution of (4.4). 
Then it follows that
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sup
x∈R

|ũ(x, t)| → 0 as t → ∞.

Proof. From (4.5) and (4.13), by the fact σ = 1 for t ≥ 1, we have

∞∫
1

‖ũx‖2 dt +
∞∫

1

‖ũxt‖2 dt ≤ C,

which implies that

‖ũx(·, t)‖2 → 0 as t → ∞.

Hence,

ũ2
x(x, t) = 2

∣∣∣∣∣∣
∞∫

x

ũũx(y, t)dy

∣∣∣∣∣∣
≤ 2

⎛
⎝ ∞∫

−∞
ũ2dy

⎞
⎠

1/2 ⎛
⎝ ∞∫

−∞
|ũx |2dy

⎞
⎠

1/2

≤ C ‖ũx(·, t)‖ → 0 as t → ∞,

which completes the proof. �
Remark 4.1. It follows from Lemma 4.4 that there exists a positive constant T̂ > 1, such that 
|ũ(x, t)| < 1

2 for any t ≥ T̂ .

We now proceed to derive a uniform (in time) upper bound for v. Motivated by the studies for 
the Navier-Stokes equations (cf. [10–12]), we here introduce the following so-called “effective 
viscous flux F(x, t)”:

F = ũx + (ũ + 1)v. (4.25)

From the first equation of (4.4), it is easy to see that

Fx = ũt . (4.26)

Lemma 4.5. Assume the conditions of Theorem 2.1 hold. Let (ũ, v) be a smooth solution of (4.4). 
Then there exists a positive constant C independent of t and δ, such that

‖v‖L∞ ≤ C. (4.27)

Proof. It follows from vt = ũ that

vt + (ũ + 1)v = F. (4.28)
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Taking

y = v, α(t) = ũ + 1, T1 = T̂ > 1, β = 1

2
, g(t) = F, p = 4

in Lemma 3.1, we have

v ≤ ‖v0‖L∞ + 3(‖g‖
L1(0,T̂ )

+ ‖g‖
L4(T̂ ,t)

). (4.29)

For 0 ≤ t ≤ T̂ , we have from the Hölder and Sobolev inequalities

T̂∫
0

‖F‖L∞ dt ≤√
2

T̂∫
0

‖F‖ 1
2 ‖Fx‖ 1

2 dt

≤√
2

⎛
⎜⎝

T̂∫
0

‖F‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
0

σ ‖Fx‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
0

σ− 1
2 dt

⎞
⎟⎠

1
2

≤C

⎛
⎜⎝

T̂∫
0

‖F‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
0

σ ‖Fx‖2 dt

⎞
⎟⎠

1
4 ⎛
⎝ 1∫

0

t−
1
2 dt + T̂ − 1

⎞
⎠

1
2

≤C

⎛
⎜⎝

T̂∫
0

‖F‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
0

σ ‖Fx‖2 dt

⎞
⎟⎠

1
4

.

(4.30)

Using (4.25), (4.5), Sobolev and Cauchy-Schwarz inequalities, we have

T̂∫
0

‖F‖2 dt ≤C

T̂∫
0

(
‖ũx‖2 + ‖ũv‖2 + ‖v‖2

)
dt

≤C

T̂∫
0

(
‖ũx‖2 + ‖ũ‖‖ũx‖‖v‖2 + ‖v‖2

)
dt

≤C

T̂∫
0

(
‖ũx‖2 + 1

)
dt ≤ C.

By (4.26) and (4.13), we get

T̂∫
σ ‖Fx‖2 dt ≤

T̂∫
σ ‖ũt‖2 dt ≤ C.
0 0
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The above two inequalities update (4.30) as

T̂∫
0

‖F‖L∞ dt ≤ C. (4.31)

For T̂ ≤ t ≤ T , one deduces from Sobolev inequality and (4.26) that

t∫
T̂

‖F‖4
L∞ dt ≤C

t∫
T̂

‖F‖2 ‖Fx‖2 dt

≤C

(
sup
t≥T̂

‖F‖2

) t∫
T̂

‖Fx‖2 dt ≤ C

(
sup
t≥T̂

‖F‖2

) t∫
T̂

σ ‖ũt‖2 dt

≤C

(
sup
t≥T̂

‖F‖2

)
,

(4.32)

where we have used the fact that σ(t) = 1 for t ≥ T̂ > 1. Using (4.25), Sobolev and Cauchy-
Schwarz inequalities, (4.5) and (4.13), we have

sup
t≥T̂

‖F‖2 ≤C sup
t≥T̂

(
‖ũx‖2 + ‖ũv‖2 + ‖v‖2

)

≤C sup
t≥T̂

(
‖ũx‖2 + ‖ũ‖‖ũx‖‖v‖2 + ‖v‖2

)

≤C sup
t≥T̂

(
σ ‖ũx‖2 + 1

)
≤ C,

(4.33)

where in the last inequality we have used σ(t) = 1 for t ≥ T̂ again. This together with (4.32)
gives 

∫ t

T̂
‖F‖4

L∞ dt ≤ C, which along with (4.29) and (4.31) gives (4.27). �
Lemma 4.6. Let the assumptions in Theorem 2.1 hold. Then there exists a positive constant C
independent of t and δ, such that

sup
t∈[0,T ]

∫
R

v6dx +
t∫

0

∫
R

v6dxdt ≤ C. (4.34)

Proof. Multiplying (4.28) by v5 and integrating the resulting equality over R, one has

1

6

⎛
⎝∫

v6dx

⎞
⎠ +

∫
(ũ + 1)v6dx =

∫
Fv5dx. (4.35)
R t R R
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Integrating the above equality over [T̂ , t), we have

1

6

∫
R

v6dx + 1

2

t∫
T̂

∫
R

v6dxdt ≤ sup
t∈[0,T̂ ]

⎛
⎝1

6

∫
R

v6dx

⎞
⎠ +

t∫
T̂

∫
R

|F ||v|5dxdt, (4.36)

where we have used Remark 4.1. We need to further estimate the last term in (4.36). By the 
Young inequality, we have that

t∫
T̂

∫
R

|F ||v|5dxdt ≤ 1

4

t∫
T̂

∫
R

v6dxdt + C

t∫
T̂

∫
R

|F |6dxdt, (4.37)

which updates (4.36) as

1

6

∫
R

v6dx + 1

4

t∫
T̂

∫
R

v6dxdt ≤ sup
t∈[0,T̂ ]

⎛
⎝1

6

∫
R

v6dx

⎞
⎠ + C

t∫
T̂

∫
R

|F |6dxdt. (4.38)

For the first term on the right hand side of (4.38), we have from (4.5) and (4.27) that

sup
t∈[0,T̂ ]

⎛
⎝1

6

∫
R

v6dx

⎞
⎠ ≤ C ‖v‖4

L∞ ‖v‖2 ≤ C.

It follows from Gagliardo-Nirenberg inequality, (4.26) and (4.33) that

t∫
T̂

‖F‖6
L6 dt ≤

t∫
T̂

‖F‖4 ‖Fx‖2 dt ≤
(

sup
t≥T̂

‖F‖4

) t∫
T̂

‖Fx‖2 dt

≤
(

sup
t≥T̂

‖F‖4

) t∫
T̂

σ ‖ũt‖2 dt ≤ C,

(4.39)

where we have used the fact that σ(t) = 1 for t ≥ T̂ > 1. Substituting the above two inequalities 
into (4.38), we obtain

sup
t∈[T̂ ,∞]

∫
R

v6dx +
t∫

T̂

∫
R

v6dxdt ≤ C.

For 0 ≤ t ≤ T̂ , we have from (4.5) and (4.27) that
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sup
t∈[0,T̂ ]

∫
R

v6dx +
T̂∫

0

∫
R

v6dxdt

≤ sup
t∈[0,T̂ ]

‖v‖4
L∞

∫
R

v2dx + T̂ sup
t∈[0,T̂ ]

‖v‖4
L∞

∫
R

v2dx ≤ C.

By coupling the above two inequalities together yields (4.34) and completes the proof. �
4.2. Proof of Theorem 2.1

We now prove Theorem 5.1. It first follows from Lemmas 4.2-4.6 that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥uδ − 1
∥∥2 + ∥∥uδ − 1

∥∥4
L4 + ∥∥vδ

∥∥2 +
T∫

0

∥∥uδ
x

∥∥2 + ∥∥(uδ − 1)uδ
x

∥∥2
dt ≤ C,

σ
∥∥uδ

x

∥∥2 + σ 2
∥∥uδ

t

∥∥2 + σ 2
∥∥vδ

t

∥∥2 +
T∫

0

σ
∥∥uδ

t

∥∥2
dt +

T∫
0

σ 2
∥∥uδ

xt

∥∥2
dt ≤ C,

‖vδ‖L∞ + ‖vδ‖6
L6 +

t∫
0

‖vδ‖6
L6dt ≤ C,

(4.40)

which gives

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uδ − 1 ∈ L∞([0,∞),L2(R)), (vδ
t ,∇uδ) ∈ L2([0,∞),L2(R)),

uδ − 1 ∈ L∞((0,∞),W 1,2(R)), uδ
t ∈ L2((0,∞),H 1(R)),

vδ ∈ L∞([0,∞);L2(R) ∩ L∞(R)) ∩ L6([0,∞);L6(R)).

(4.41)

By (4.41) and the Aubin-Lions-Simon lemma, we can extract a subsequence, still denoted by 
(uδ, vδ), such that the following convergence holds as δ → 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vδ(·, t) → v strongly in C([0,∞),H−1(R)),

uδ(·, t) → u(·, t) strongly in C((0,∞),C(R)),

uδ
x(·, t) → ux(·, t) weakly in L2([0,∞),L2(R)).

Thus, it is easy to show that the limit function (u, v) is indeed a weak solution of the system 
(1.1)-(1.3) and inherits all the bounds of (4.40). Thus, (2.2) is proved.

To complete the proof of Theorem 2.1, we only need to prove (2.3). On the other hand, by 
(4.35), we have
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t∫
T̂

∣∣∣(‖v‖6
L6

)
t

∣∣∣dt ≤C

t∫
T̂

∫
R

(ũ + 1)v6dxdt + C

t∫
T̂

∫
R

Fv5dxdt

≤C

t∫
T̂

∫
R

v6dxdt + C

t∫
T̂

∫
R

|F ||v|5dxdt,

where the boundedness of ũ for t > T̂ has been used (see Remark 4.1). This together with (4.37), 
(4.39) and (4.34) implies

t∫
T̂

∣∣∣(‖v‖6
L6

)
t

∣∣∣dt ≤ C. (4.42)

Combining (4.34) with (4.42) leads to ‖v‖L6 → 0 as t → ∞, which together with the interpo-
lation inequality, (4.5) and (4.27) implies

‖v‖Lp → 0 as t → ∞, 2 < p < ∞.

This along with Lemma 4.4 gives (2.3) and hence completes the proof of Theorem 2.1.

5. Proof of Theorem 2.3

In this section, we prove the nonlinear stability of the traveling wave solution of (1.1)-(1.3)
with discontinuous initial data having large oscillations. The main result is that the solution of 
(1.1)-(1.3) approaches the traveling wave solution (U, V )(x − st), properly translated by an 
amount x0, i.e.,

sup
x∈R

|(u, v)(x, t) − (U,V )(x + x0 − st)| → 0, as t → +∞,

where x0 satisfies the following identity derived from the “conservation of mass” principle

+∞∫
−∞

(
u0(x) − U(x)

v0(x) − V (x)

)
dx = x0

(
u+ − u−
v+ − v−

)
+ βr1(u−, v−),

where r1(u−, v−) denotes the first right eigenvector of the Jacobian matrix of (1.1) with in the 
absence of viscous terms evaluated at (u−, v−), see details in [30]. The coefficient β yields the 
diffusion wave in general. Both β and x0 will be uniquely determined by the initial data (u0, v0). 
For the stability of small-amplitude shock waves of conservation laws with diffusion wave, i.e.
β �= 0, we refer to [25,31]. In the present paper, we will neglect the diffusion wave by assuming 
β = 0 and we consider the stability of large-amplitude waves with large discontinuous data. Then 
by the conservation laws (1.1), we obtain that
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+∞∫
−∞

(
u(x, t) − U(x + x0 − st)
v(x, t) − V (x + x0 − st)

)
dx =

+∞∫
−∞

(
u0(x) − U(x + x0)
v0(x) − V (x + x0)

)
dx

=
+∞∫

−∞

(
u0(x) − U(x)
v0(x) − V (x)

)
dx +

+∞∫
−∞

(
U(x) − U(x + x0)
V (x) − V (x + x0)

)
dx

=
+∞∫

−∞

(
u0(x) − U(x)
v0(x) − V (x)

)
dx − x0

(
u+ − u−
v+ − v−

)
.

(5.1)

This together with β = 0 implies the zero integral of the initial perturbation

+∞∫
−∞

(
u0(x) − U(x + x0)

v0(x) − V (x + x0)

)
dx =

(
0
0

)
. (5.2)

Then we employ the technique of taking anti-derivative to decompose the solution as

(u, v)(x, t) = (U,V )(x + x0 − st) + (φx,ψx)(x, t). (5.3)

That is

(φ(x, t),ψ(x, t)) =
x∫

−∞
(u(y, t) − U(y + x0 − st), v(y, t) − V (y + x0 − st))dy

for (x, t) ∈ R ×R+. It then follows from (5.1) that

φ(±∞, t) = ψ(±∞, t) = 0, for all t > 0.

The initial perturbation (φ0, ψ0)(x) = (φ(x, 0), ψ(x, 0)) is thus given by

(φ0,ψ0)(x) = −
∞∫

x

(u0(y) − U(y + x0), v0(y) − V (y + x0))dy,

which satisfies (φ0, ψ0)(±∞) = 0 by the assumption (5.2).
Substituting (5.3) into (1.1), using (2.4) and integrating the system with respect to x, we obtain 

that (φ, ψ)(x, t) satisfies

{
φt = Dφxx + χV φx + χUψx + χφxψx, t > 0, x ∈R,

ψt = φx,
(5.4)

with initial perturbation
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(φ0,ψ0)(x) = −
∞∫

x

(u0(y) − U(y + x0), v0(y) − V (y + x0))dy,

and

(φ0(x),ψ0(x)) ∈ H 1(R), ψ0x(x) ∈ L∞(R). (5.5)

We denote

X[0, T ] := {(φ(x, t),ψ(x, t))
∣∣φ ∈ L∞([0, T ];H 1),φx ∈ L∞([0, T ];L2) ∩ L2([0, T ];H 1),

ψ ∈ L∞([0, T ];H 1),ψx ∈ L∞([0, T ];L2 ∩ L∞) ∩ L2([0, T ];L2)

and

C0 := ‖ψ0‖2
1 + ‖φ0‖2

1. (5.6)

Definition 5.1. We say that (φ, ψ) is a weak solution of (5.4)-(5.5), if (φ, ψ) ∈ X[0, ∞), and for 
all test functions � ∈ C∞

0 (R × [0, ∞)) satisfy that

∫
R

φ0�0(x)dx +
∞∫

0

∫
R

(φ�t + Dφx�x)dxdt = χ

∞∫
0

∫
R

(V φx + Uψx + φxψx)�dxdt (5.7)

and

∫
R

ψ0�0(x)dx +
∞∫

0

∫
R

(ψ�t − φx�)dxdt = 0. (5.8)

For the problem (5.4)-(5.5), we have the following results.

Theorem 5.1. Let u+ > 0 and the initial data satisfy (5.5). There exists a constant ε > 0, such 
that if C0 ≤ ε, then the problem (5.4)-(5.5) has a global weak solution in the sense of (5.7)-(5.8)
satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖φ‖2
1 + ‖ψ‖2

1 +
T∫

0

(
‖φx(t)‖2

1 + ‖ψx(t)‖2
)

dt ≤ CC0,

σ

∫
R

(φ2
t + φ2

xx)dx +
T∫

0

∫
R

σφ2
xt dxdt ≤ CC0,

sup
t∈[0,∞)

‖ψ(·, t)x‖L∞ ≤ C,

(5.9)

where σ = σ(t) = min{1, t}. Moreover, it follows that
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sup
x∈R

|φx(x, t)| → 0 as t → ∞,

sup
x∈R

‖ψx(x, t)‖Lp → 0 for all 2 ≤ p < ∞ as t → ∞.
(5.10)

In view of (5.3), Theorem 2.3 is a consequence of Theorem 5.1. Hence next we are devoted 
to proving Theorem 5.1. Similarly as before, we first mollify the (coarse) initial data (φ0, ψ0) as 
follows:

φδ
0 = jδ ∗ φ0, ψδ

0 = jδ ∗ ψ0,

where jδ is the standard mollifying kernel of width δ (e.g. see [1]). Then we consider the follow-
ing augmented system

{
φδ

t = Dφδ
xx + χV φδ

x + χUψδ
x + χφδ

xψ
δ
x , t > 0, x ∈R,

ψδ
t = φδ

x,
(5.11)

with smooth initial perturbation functions (φδ
0, ψ

δ
0 ) which satisfies

(ψδ
0 (x),φδ

0(x)) ∈ H 3(R), (5.12)

and

‖φδ
0‖2

1 + ‖ψδ
0‖2

1 ≤ ‖φ0‖2
1 + ‖ψ0‖2

1 = C0, (5.13)

where we have used (5.6) and the following properties:

∥∥∂kφ
δ
0

∥∥
w

≤ ‖∂kφ0‖w ,
∥∥∂kψ

δ
0

∥∥
w

≤ ‖∂kψ0‖w for every k = 0,1, δ > 0.

Next, by standard approaches, we prove the local existence of solutions to the system (5.11)
with initial data (φδ

0, ψ
δ
0 ) satisfying (5.12). Then, we shall show in a sequence of lemmas that 

these approximate solutions satisfy some global a priori estimates, independently of the molli-
fying parameter δ. By the continuation argument, we can get the global existence of (φδ, ψδ). 
Finally, we show that the limit of (φδ, ψδ) as δ → 0 is a global weak solution of the Cauchy 
problem (5.11)-(5.12), and thus Theorem 5.1 is proved.

5.1. A priori estimates for (5.11)

For simplicity, in this subsection, we still use (φ, ψ) to represent the approximate solution 
(φδ, ψδ) and employ the technique of a priori assumption to derive the a priori estimates for the 
smooth solutions of (5.11)-(5.12). To this end, we first assume that the solution (φ, ψ) satisfies 
for any t ∈ [0, T ] that

‖φ‖2 + ‖ψ‖2 ≤ 2κ0, (5.14)
1 1



4400 H. Peng, Z. Wang / J. Differential Equations 268 (2020) 4374–4415
where κ0 is a positive constant. Then we derive the a priori estimates to obtain global solutions. 
Finally, we show the obtained global solutions in turn satisfy the above a priori assumption and 
close our argument.

We first give the L2-estimate of (φ, ψ).

Lemma 5.2. With the conditions of Theorem 5.1, we let (φ, ψ) be a smooth solution of (5.11)
satisfying (5.14). Then there exists a positive constant C independent of t and δ, such that

‖φ‖2 + ‖ψ‖2 +
T∫

0

‖φx‖2 dt ≤ CC0 + Cκ0

T∫
0

∫
R

ψ2
x dxdt. (5.15)

Proof. Multiplying the first equation of (5.11) by φ/U and the second by χψ and adding these 
equalities, we obtain

1

2

(
φ2

U

)
t

− φ2

2

(
1

U

)
t

+
(

χψ2

2

)
t

= Dφφxx

U
+ χ (φψ)x + χV φφx

U
+ χφφxψx

U
.

Noting that

φ2

2

(
1

U

)
t

= − sφ2

2

(
1

U

)
x

,

φφxx

U
=

(
φφx

U

)
x

− φ2
x

U
− φφx

(
1

U

)
x

=
(

φφx

U

)
x

− φ2
x

U
−

(
φ2

2

(
1

U

)
x

)
x

+ φ2

2

(
1

U

)
xx

,

V φφx

U
= 1

2

(
V φ2

U

)
x

− φ2

2

(
V

U

)
x

,

we get

1

2

(
φ2

U
+ χψ2

)
t

+ Dφ2
x

U
=

(
χφψ + Dφφx

U
+ DUxφ

2

2U2 + χV φ2

2U

)
x

+ φ2

2

[(
D

U

)
xx

−
(

s + χV

U

)
x

]
+ χφφxψx

U
.

(5.16)

By using (2.4) and the fact that Ux < 0 and 0 < u+ ≤ U ≤ u−, it can be checked that

(
D

U

)
xx

−
(

s + χV

U

)
x

= 2u+
U3 (s + χv+) · Ux < 0. (5.17)

Substituting (5.17) into (5.16) and integrating the equation over R × [0, T ], we derive
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1

2

∫
R

(
φ2

U
+ χψ2

)
dx + D

T∫
0

∫
R

φ2
x

U
dxdt

≤1

2

∫
R

(
φ2

0

U
+ χψ2

0

)
dx + χ

T∫
0

∫
R

φxψxφ

U
dxdt

≤χ

2
‖ψ0‖2 + C‖φ0‖2 + D

2

T∫
0

∫
R

φ2
x

U
dxdt + Cκ0

T∫
0

∫
R

ψ2
x

U
dxdt,

where we have used the Sobolev inequality ‖f ‖2
L∞ ≤ 2 ‖f ‖‖fx‖ and (5.14). Then, using 0 <

u+ ≤ U ≤ u− and (5.13), we obtain

∫
R

(
φ2 + χψ2

)
dx + D

T∫
0

∫
R

φ2
xdxdt ≤ C(‖ψ0‖2 + ‖φ0‖2) + Cκ0

T∫
0

∫
R

ψ2
x dxdt,

which implies (5.15) and the proof of Lemma 5.2 is completed. �
The next lemma gives the estimate of the first order derivatives of (φ, ψ).

Lemma 5.3. Let (φ, ψ) be a smooth solution of (5.11) satisfying (5.14) under the conditions of 
Theorem 5.1. Then there exists a positive constant C independent of t and δ, such that

‖φ‖2
1 + ‖ψ‖2

1 +
T∫

0

(
‖φx‖2

1 + ‖ψx‖2
)

dt ≤ CC0. (5.18)

Proof. Multiplying the first equation of (5.11) by −φxx/U and the second by −χψxx and adding 
these equalities, we obtain

−φtφxx

U
− χψtψxx = −Dφ2

xx

U
− χ (φxψx)x − χV φxφxx

U
− χφxψxφxx

U
.

Simple calculations give us that

−φtφxx

U
= −

(
φtφx

U

)
x

+
(

φt

U

)
x

φx

= −
(

φtφx

U

)
x

+ φxtφx

U
+

(
1

U

)
x

φtφx

= −
(

φtφx

)
+

(
φ2

x

)
+

(
1

)
sφ2

x +
(

1
)

φtφx,

U x 2U t U x 2 U x
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(
1

U

)
x

φtφx =
(

1

U

)
x

φx (Dφxx + χV φx + χUψx + χφxψx)

=
(

Dφ2
x

2

(
1

U

)
x

)
x

− Dφ2
x

2

(
1

U

)
xx

+ χV

(
1

U

)
x

φ2
x

+ χU

(
1

U

)
x

ψxφx + χ

(
1

U

)
x

φ2
xψx,

−ψtψxx = − (ψtψx)x +
(

ψ2
x

2

)
t

,

−V φxφxx

U
= − 1

2

(
V φ2

x

U

)
x

+ φ2
x

2

(
V

U

)
x

.

Thus we get from above inequalities that

1

2

(
φ2

x

U
+ χψ2

x

)
t

+ Dφ2
xx

U
=

(
φtφx

U
+ χψtψx + DUxφ

2
x

2U2 − χφxψx − χV φ2
x

2U

)
x

+ φ2
x

2

[(
D

U

)
xx

−
(

s + χV

U

)
x

]
+ χVxφ

2
x

U

− χU

(
1

U

)
x

ψxφx − χ

(
1

U

)
x

φ2
xψx − χφxψxφxx

U
.

(5.19)

Integrating (5.19) over R × [0, T ] and using (5.17), we obtain

1

2

∫
R

(
φ2

x

U
+ χψ2

x

)
dx + D

T∫
0

∫
R

φ2
xx

U
dxdt

≤1

2

∫ (
φ2

0x

U
+ χψ2

0x

)
dx + χ

T∫
0

∫
R

Vxφ
2
x

U
dxdt + χ

T∫
0

∫
R

Uxψxφx

U
dxdt

+ χ

T∫
0

∫
R

Uxφ
2
xψx

U2 dxdt − χ

T∫
0

∫
R

φxxφxψx

U
dxdt.

Using the Cauchy-Schwarz inequality, we have

∫ (
φ2

x

U
+ χψ2

x

)
dx + 2D

T∫ ∫
φ2

xx

U
dxdt
R 0 R
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≤
∫
R

(
φ2

0x

U
+ χψ2

0x

)
dx + C

T∫
0

∫
R

φ2
xdxdt + C

T∫
0

∫
R

ψ2
x dxdt

+D

2

T∫
0

∫
R

φ2
xx

U
dxdt + C

T∫
0

∫
R

φ2
xψ2

x dxdt,

where we have used the fact 0 < u+ ≤ U ≤ u−, |Ux | ≤ C, |Vx | ≤ C due to Proposition 2.2. For 
the last term on the right-hand side of the above inequality, by the Sobolev inequality ‖f ‖2

L∞ ≤
2 ‖f ‖‖fx‖ and (5.14), we have

T∫
0

∫
R

φ2
xψ2

x dxdt ≤
T∫

0

‖φx‖2
L∞ ‖ψx‖2 dt ≤ Cκ0

T∫
0

‖φx‖‖φxx‖dt

≤Cκ0

T∫
0

(
‖φx‖2 + ‖φxx‖2

)
dt.

(5.20)

The above two inequalities and the fact 0 < u+ ≤ U ≤ u− yield that

∫
R

(
φ2

x + ψ2
x

)
dx +

T∫
0

∫
R

φ2
xxdxdt

≤CC0 + C

T∫
0

∫
R

ψ2
x dxdt + Cκ0

T∫
0

(
‖φx‖2 + ‖φxx‖2

)
dt

≤CC0 + C

T∫
0

∫
R

ψ2
x dxdt + Cκ0

T∫
0

∫
R

ψ2
x dxdt + Cκ0

T∫
0

‖φxx‖2 dt

≤CC0 + C

T∫
0

∫
R

ψ2
x dxdt + Cκ0

T∫
0

‖φxx‖2 dt,

(5.21)

where (5.15) has been used.
Next, we claim

T∫
0

∫
R

ψ2
x dxdt ≤ C

⎛
⎝C0 + κ0

T∫
0

‖φxx‖2 dt

⎞
⎠ . (5.22)

Indeed multiplying the first equation of (5.11) by ψx , we get
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χUψ2
x = φtψx − Dφxxψx − χV φxψx − χφxψ

2
x . (5.23)

Integrating (5.23) over R × [0, T ], using the fact ψxt = φxx and following results

φtψx = (φψx)t − φψxt = (φψx)t − φφxx = (φψx)t − (φφx)x + φ2
x,

φxxψx = ψxtψx = 1

2
(ψ2

x )t ,

we obtain

D

2

∫
R

ψ2
x dx + χ

T∫
0

∫
R

Uψ2
x dxdt

= D

2

∞∫
0

ψ2
0xdx +

∫
R

φψxdx −
∫
R

φ0ψ0xdx

+
T∫

0

∫
R

φ2
xdxdt − χ

T∫
0

∫
R

V φxψxdxdt − χ

T∫
0

∫
R

φxψ
2
x dxdt

≤ D + 1

2

∫
R

ψ2
0xdx + 1

2

∫
φ2

0dx + 1

D

∫
R

φ2dx + D

4

∫
R

ψ2
x dx

+ C

T∫
0

∫
R

φ2
xdxdt + χ

2

T∫
0

∫
R

Uψ2
x dxdt + C

T∫
0

∫
R

φ2
xψ2

x dxdt,

where we have used the Cauchy-Schwarz inequality and the fact 0 < u+ ≤ U ≤ u−, |V | ≤ C. 
From this inequality and the fact 0 < u+ ≤ U ≤ u−, (5.15) and (5.20), we have that

∫
R

ψ2
x dx +

T∫
0

∫
R

ψ2
x dxdt ≤C

⎛
⎝∫
R

ψ2
0xdx +

∫
R

φ2
0xdx

⎞
⎠ + C

∫
R

φ2dx

+ C

T∫
0

∫
R

φ2
xdxdt + Cκ0

T∫
0

‖φxx‖2 dt + Cκ0

T∫
0

‖φx‖2 dt

≤CC0 + Cκ0

T∫
0

∫
R

ψ2
x dxdt + Cκ0

T∫
0

‖φxx‖2 dt.

Setting κ0 suitably small such that Cκ0 ≤ 1
2 , we get (5.22). Then substituting (5.22) into (5.21)

and choosing κ0 suitably small, we have
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∫
R

(
φ2

x + ψ2
x

)
dx +

T∫
0

∫
R

φ2
xxdxdt ≤ CC0,

which together with (5.15) and (5.22) gives (5.18). �
Now, taking C0 sufficiently small such that CC0 ≤ κ0, we immediately get from (5.18) that

‖φ‖2
1 + ‖ψ‖2

1 +
T∫

0

(
‖φx‖2

1 + ‖ψx‖2
)

dt ≤ κ0,

which closes the a priori assumption (5.14).
Next, we derive the appropriate estimates for the second order derivative of φ.

Lemma 5.4. Let the conditions of Theorem 5.1 hold and (φ, ψ) be a smooth solution of (5.11)
satisfying (5.14). Then there exists a positive constant C independent of t and δ, such that

σ

∫
R

(φ2
t + φ2

xx)dx + D

T∫
0

∫
R

σφ2
xt dxdt ≤ CC0, (5.24)

where σ = σ(t) = min{1, t} and C is positive constant independent of t .

Proof. We differentiate the first equation of (5.11) with respect to t to get

φtt = Dφxxt − χsVxφx + χV φxt − χsUxψx + χUψxt + χφxtψx + χφxψxt .

Multiplying the above equality by σφt , one gets

σφttφt =Dσφxxtφt + χσUψxtφt

+ χσφt (−sVxφx + V φxt − sUxψx + φxtψx + φxψxt ).
(5.25)

Integrating (5.25) over R × [0, T ] and rearranging the resulting equation, we get

1

2

∫
R

σφ2
t dx + D

T∫
0

∫
R

σφ2
xt dxdt

= 1

2

σ(t)∫
0

∫
R

φ2
t dxdt + χ

T∫
0

∫
R

σUφxxφtdxdt + χ

T∫
0

∫
R

σφxtψxφtdxdt

+ χ

t∫
0

∫
R

σφt (−sUxψx − sVxφx + V φxt )dxdt + χ

T∫
0

∫
R

σφtφxφxxdxdt

= I + I + I + I + I ,

(5.26)
1 2 3 4 5
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where we have used the integration by parts and the fact ψxt = φxx due to the second equation 
of (5.11). Because |V | and |U | are all bounded, we get by the first equation of (5.11), (5.20) and 
(5.18) that

T∫
0

∫
R

φ2
t dxdt ≤C

T∫
0

∫
R

(φ2
xx + V 2φ2

x + U2ψ2
x )dxdt + C

T∫
0

∫
R

φ2
xψ2

x dxdt

≤C

T∫
0

∫
R

(φ2
xx + φ2

x + ψ2
x )dxdt + CC0

T∫
0

∫
R

(φ2
xx + φ2

x)dxdt

≤CC0.

(5.27)

Then, I1 can be bounded as I1 ≤ ∫ 1
0

∫
R φ2

t dxdt ≤ CC0. For I2, by the Cauchy-Schwartz in-

equality, (5.18) and (5.27), we have I2 ≤ C
∫ T

0

∫
R σ(φ2

xx + φ2
t )dxdt ≤ CC0. For I3, using the 

Cauchy-Schwartz and Sobolev inequalities, (5.18) and (5.27), we have

I3 ≤D

8

T∫
0

∫
R

σφ2
xt dxdt + C

T∫
0

σ ‖φt‖2
L∞ ‖ψx‖2 dt

≤D

8

T∫
0

∫
R

σφ2
xt dxdt + CC0

T∫
0

σ ‖φt‖‖φxt‖dt

≤D

4

T∫
0

∫
R

σφ2
xt dxdt + CC0

T∫
0

σ ‖φt‖2 dt

≤D

4

T∫
0

∫
R

σφ2
xt dxdt + CC0.

Since |V |, |Ux | and |Vx | are all bounded, we get by the Cauchy-Schwartz inequality and (5.18)
that

I4 ≤D

4

T∫
0

∫
R

σφ2
xt dxdt + C

T∫
0

∫
R

σ(φ2
t + φ2

x + ψ2
x )dxdt

≤D

4

T∫
0

∫
R

σφ2
xt dxdt + CC0.

Using the integration by parts, the Cauchy-Schwartz and Sobolev inequalities and (5.18), we 
have
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I5 = − χ

2

T∫
0

∫
R

σφxtφ
2
xdxdt

≤D

4

T∫
0

∫
R

σφ2
xt dxdt + C

T∫
0

σ ‖φx‖2
L∞ ‖φx‖2 dxdt

≤D

4

T∫
0

∫
R

σφ2
xt dxdt + CC0

T∫
0

σ ‖φx‖2
1 dxdt

≤D

4

T∫
0

∫
R

σφ2
xt dxdt + CC0.

Substituting the estimates of I1 − I5 into (5.26), one has

∫
R

σφ2
t dx + D

T∫
0

∫
R

σφ2
xt dxdt ≤ CC0, (5.28)

which, combined with (5.11), the Cauchy-Schwartz and Sobolev inequalities and (5.18) gives

σ

∫
R

φ2
xxdx ≤Cσ

∫
R

(φ2
t + V 2φ2

x + U2ψ2
x )dx + Cσ

∫
R

φ2
xψ2

x dx

≤Cσ

∫
R

(φ2
t + φ2

x + ψ2
x )dx + CC0σ

∫
R

(φ2
xx + φ2

x)dx

≤CC0 + CC0σ

∫
R

φ2
xxdx.

(5.29)

By choosing C0 sufficiently small, we get from (5.29) that σ
∫
R φ2

xxdx ≤ CC0, which together 
with (5.28) leads to (5.24). Thus, the proof of Lemma 5.4 is completed. �
Lemma 5.5. Let the conditions of Theorem 5.1 hold and (φ, ψ) be a smooth solution of (5.11). 
Then it holds that

sup
x∈R

|u(x, t) − U | → 0 as t → ∞.

Furthermore there exists a positive constant T̂ > 1, such that u ≥ u+
2 > 0 for any t ≥ T̂ .
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Proof. From σ = 1 for t ≥ 1, ψxt = φxx and (5.9), we have

∞∫
1

(
‖φx‖2 + ‖φxt‖2 + ‖ψx‖2 + ‖ψxt‖2

)
dt ≤ C,

which implies that

‖φx(·, t),ψx(·, t)‖ → 0 as t → ∞. (5.30)

Hence, for all x ∈R, t > 1,

φ2
x(x, t) = 2

∣∣∣∣∣∣
∞∫

x

φxφxx(y, t)dy

∣∣∣∣∣∣
≤ 2

⎛
⎝∫
R

φ2
xdy

⎞
⎠

1/2 ⎛
⎝∫
R

φ2
xxdy

⎞
⎠

1/2

= 2

⎛
⎝∫
R

φ2
xdy

⎞
⎠

1/2 ⎛
⎝∫
R

σφ2
xxdy

⎞
⎠

1/2

≤ C ‖φx(·, t)‖ → 0 as t → ∞,

where we have used σ(t) = 1 for t > 1, (5.24) and (5.30). Thus, sup
x∈R

|φx(x, t)| → 0 as t → ∞, 

which together with (5.3) leads to sup
x∈R

|u(x, t) − U | → 0 as t → ∞. This implies that there 

exists a positive constant T̂ > 1, such that for any t ≥ T̂ , sup
x∈[T̂ ,∞)

|u(x, t) − U | ≤ u+
2 , which, 

along with U > u+ > 0 gives u ≥ u+
2 > 0, for t ≥ T̂ and hence completes the proof. �

We now proceed to derive a uniform (in time) upper bound for ψx .

Lemma 5.6. Assume the conditions of Theorem 5.1 hold. Let (φ, ψ) be a smooth solution of 
(5.11). Then there exists a positive constant C independent of t and δ, such that

‖ψx‖L∞ ≤ C. (5.31)

Proof. It follows from (5.11) that

ψxt = φxx = 1

D
(φt − χV φx − χUψx − χφxψx),

which together with (5.3) gives

ψxt + χ
uψx = 1

(φt − χV φx) ≤ C ‖φt‖L∞ + C ‖φx‖L∞ .

D D
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Taking

{
y = ψx, α(t) = χ

D
u, β = χu+

2D
, T1 = T̂ > 1, p = 2,

g(t) = C ‖φt‖L∞ + C ‖φx‖L∞
(5.32)

in Lemma 3.1, we have

ψx ≤ ‖ψ0x‖L∞ +
(

1 + 2D

χu+

)
(‖g‖

L1(0,T̂ )
+ ‖g‖

L2(T̂ ,T )
). (5.33)

For 0 ≤ t ≤ T̂ , we have from the Hölder and Sobolev inequalities, (5.24) and (5.27) that

T̂∫
0

‖φt‖L∞ dt

≤ √
2

T̂∫
0

‖φt‖ 1
2 ‖φxt‖ 1

2 dt

≤ √
2

⎛
⎜⎝

T̂∫
0

‖φt‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
0

σ(t)‖φxt‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
0

σ(t)−
1
2 dt

⎞
⎟⎠

1
2

≤ CC
1
2
0

⎛
⎜⎝

1∫
0

σ(t)−
1
2 dt +

T̂∫
1

σ(t)−
1
2 dt

⎞
⎟⎠

1
2

≤ CC
1
2
0

⎛
⎜⎝

T̂∫
0

t−
1
2 dt + T̂ − 1

⎞
⎟⎠

1
2

≤ C.

Using the Hölder and Sobolev inequalities again, we have from (5.18) that

T̂∫
0

‖φx‖L∞ dt ≤√
2

T̂∫
0

‖φx‖ 1
2 ‖φxx‖ 1

2 dt

≤√
2

⎛
⎜⎝

T̂∫
‖φx‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
‖φxx‖2 dt

⎞
⎟⎠

1
4
⎛
⎜⎝

T̂∫
1dt

⎞
⎟⎠

1
2

≤ C.
0 0 0
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The above inequalities in combination with (5.32) give

2D

χu+
‖g‖

L1(0,T̂ )
≤ C. (5.34)

For T̂ ≤ t ≤ T , one deduces from the Hölder and Sobolev inequalities, (5.24) and (5.27) that

T∫
T̂

‖φt‖2
L∞ dt ≤2

T∫
T̂

‖φt‖‖φxt‖dt

≤2

⎛
⎜⎝

T∫
T̂

‖φt‖2 dt

⎞
⎟⎠

1
2
⎛
⎜⎝

T∫
T̂

‖φxt‖2 dt

⎞
⎟⎠

1
2

≤2

⎛
⎜⎝

T∫
T̂

‖φt‖2 dt

⎞
⎟⎠

1
2
⎛
⎜⎝

T∫
T̂

σ (t)‖φxt‖2 dt

⎞
⎟⎠

1
2

≤ C,

where we have used the fact that σ(t) = 1 for T̂ ≤ t ≤ T . In a similar way, we have

T∫
T̂

‖φx‖2
L∞ dt ≤2

T∫
T̂

‖φx‖‖φxx‖dt

≤2

⎛
⎜⎝

T∫
T̂

‖φx‖2 dt

⎞
⎟⎠

1
2
⎛
⎜⎝

T∫
T̂

‖φxx‖2 dt

⎞
⎟⎠

1
2

≤ C.

The above two inequalities yield that 2D
χu+ ‖g‖

L2(T̂ ,T )
≤ C. This along with (5.34) and (5.33)

completes the proof of Lemma 5.6. �
5.2. Proof of Theorem 5.1

Now we turn to prove Theorem 5.1. It first follows from (5.18), (5.24) and (5.31) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖φδ‖2
1 + ‖ψδ‖2

1 +
T∫

0

(
‖φδ

x‖2
1 + ‖ψδ

x‖2
)

dt ≤ CC0,

σ (‖φδ
t ‖2 + ‖φδ

xx‖2) + D

T∫
0

σ‖φδ
xt‖2dt ≤ CC0,

∥∥ψδ
∥∥ ≤ C,

(5.35)
x L∞
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which together with (5.27) leads to

⎧⎪⎪⎨
⎪⎪⎩

(φδ,ψδ) ∈ L∞([0,∞),H 1(R)), (φδ
t ,ψ

δ
t ) ∈ L2([0,∞),L2(R)),

(φδ
x,ψ

δ
x ) ∈ L2([0,∞),L2(R)), φδ

x ∈ L∞((0,∞),L2(R)),

φδ
xx ∈ L2([0,∞),L2(R)) ∩ L∞((0,∞),L2(R)), φδ

xt ∈ L2((0,∞),L2(R)).

By the Aubin-Lions-Simon lemma, we can extract a subsequence, still denoted by (φδ, ψδ), 
such that the following convergence holds as δ → 0⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(φδ,ψδ)(·, t) → (φ,ψ)(·, t) strongly in C([0,∞),C(R)),

φδ
x(·, t) → φx(·, t) strongly in C((0,∞),C(R)),

φδ
xx(·, t) → φxx(·, t) weakly in L2([0,∞),L2(R)),

ψδ
x (·, t) → ψx(·, t) weakly in L2([0,∞),L2(R)).

Thus, it is easy to show that the limit function (φ, ψ) is indeed a weak solution of the system 
(5.4)-(5.5) and inherits all the bounds of (5.35). Thus, (5.9) is proved.

To complete the proof of Theorem 5.1, we only need to prove (5.10). For all 2 ≤ p < ∞, we 
have from (5.9) and (5.30) that

‖ψx(x, t)‖Lp ≤ ‖ψx(x, t)‖
p−2
p

L∞ ‖ψx(x, t)‖
2
p

L2 ≤ C ‖ψx(·, t)‖
2
p → 0 as t → ∞.

Hence (5.10) is proved and the proof of Theorem 5.1 is completed.

6. Numerical verifications and predictions

In this section, we shall numerically verify our results and further exploit the impact of the 
regularity of initial data on the regularity of solutions. For brevity, we shall take the case consid-
ered in Theorem 2.3 as a target for simulations only, but similar conclusions apply to the case 
considered in Theorem 2.1. We have shown in Theorem 2.3 that if the initial data satisfy (2.1), 
then the system (1.1) has a global weak solution (u, v) where u converges to a shifted traveling 
wave profile uniformly as time tends to infinity and v converges to a shifted traveling wave pro-
file in Lp-norm for 2 ≤ p < ∞. However, it is unknown whether or not the regularity of weak 
solutions shown Theorem 2.3 can be improved. It has been shown in the existing literature (cf. 
[15,23,33]) that the initial data has Hs-regularity (s ≥ 1), then strong solutions in Hs can be 
obtained. In this paper, we focus on the initial data with lower regularity in Lp-space which in 
particular allows the discontinuous data. In our simulations, we shall first numerically illustrate 
the convergence of traveling wave profiles to verify our results. Second, we shall check if the 
regularity of (weak) solutions can be improved further to some extent. We perform the simu-
lations in the interval [0, 400] with Dirichlet boundary condition to mimic the whole space R. 
We assume the asymptotic states are u− = 2, u+ = 1, v− = 3−√

3
2 , v+ = 1 satisfying the relation 

(2.5) and set the initial value (u0, v0) as

u0(x) =
{

2, 0 ≤ x ≤ 50

1, 50 < x ≤ 400
, v0(x) =

{
3−√

3
2 , 0 ≤ x ≤ 50

2, 50 < x ≤ 400
(6.1)
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Fig. 1. Numerical illustration of stabilization of smooth wave profile formation for solution component u and non-smooth 
wave profile formation for solution component v to system (1.1) with discontinuous initial data given by (6.1) in an 
interval [0, 400], where we choose χ = 1. Each curve represents the solution (wave) profile at a certain time starting at 
t = 0 (red dashed curve) and spaced by t = 20. The arrow indicates that the wave propagates from the left to the right. 
The amplified visualization of the fuzzy part of v-profile near the discontinuous point x = 50 is plotted in Fig. 2. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The amplified visualization of the fuzzy part for v-profile near the discontinuous point x = 50 plotted in Fig. 1, 
where we see that traveling wave profile v is not differentiable near the initial discontinuous point x = 50 and the size of 
non-differentiability is expanding in space as time evolves.
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Fig. 3. Stabilization of smooth traveling waves for (1.1) with continuous initial data given by (6.2), where χ = 1.

as plotted in Fig. 1 (see red color dashed line).
Then we prescribe Dirichlet boundary conditions compatible with the asymptotic states u±

and v± and solve the parabolic-hyperbolic system (1.1) with Matlab PDE solver based on the 
finite-difference method. The numerical solution profiles at progressive time steps are plotted in 
Fig. 1 where we observe that solution component u is smooth for any t > 0 and converges to 
a shifted traveling wave profile as t → ∞ but v is non-smooth for any t > 0 and converge to a 
shifted traveling wave profile which is non-smooth around the initial discontinuous point x = 50. 
This is well consistent with our analytical results of Theorem 2.3. By an amplified view of the 
non-smoothness near the discontinuous point x = 50 shown in Fig. 2, one can find that the solu-
tion component v is still continuous but not differentiable and furthermore the non-smoothness is 
expanding in space as time evolves. Our simulations imply that although the parabolic-hyperbolic 
system (1.1) has a dissipative (parabolic) effect, the classical solutions of (1.1) seem to be impos-
sible due to the hyperbolic effect and only weak solutions can be established if initial data have 
only Lp-regularity. But the regularity of solution component u can be slightly improved from 
discontinuity to continuity (see Theorem 2.3). The results in [15,23] have shown that if the initial 
value has H 1-regularity, then the solution (u, v) may have the same regularity as initial data. 
However it is unknown if the regularity of solutions can be improved further. Here we exploit the 
possibility through numerical simulations. To this end, we choose initial value (u0, v0) as

u0(x) =

⎧⎪⎨
⎪⎩

2, 0 ≤ x ≤ 20

− x
20 + 3, 20 < x < 40

1, 50 < x ≤ 300

, v0(x) =

⎧⎪⎨
⎪⎩

3−√
3

2 , 0 ≤ x ≤ 20
1+√

3
40 x + 1 − √

3, 20 < x < 40

2, 20 < x ≤ 300

(6.2)
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which is continuous and has H 1-regularity as plotted in the first panel of Fig. 3. It turns out 
from numerical results shown in Fig. 3 that smooth solutions can be obtained for (u0, v0) defined 
in (6.2). This finding indicates that the parabolic effect in the system (1.1) can dominate over 
hyperbolic effect to smoothen solutions if the initial value has H 1-regularity. However, this is 
no longer the case once the regularity of initial values is reduced to be discontinuity, as shown 
in Fig. 1. Hence these numerical simulations allow us to speculate that the minimal regularity 
of initial data leading to classical (smooth) solutions of (1.1) is perhaps H 1 and the hyperbolic 
effect of system (1.1) will play an important role when the initial value has regularity lower than 
H 1(R). In this paper we are unable to prove these regularity properties of solutions found in 
numerical simulations and our speculations may launch interesting questions to pursue in the 
future.
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