
Classical solutions and steady states of an

attraction-repulsion chemotaxis in one dimension

Jia Liu
Department of Mathematics and Statistics

University of West Florida
Pensacola, FL 32514

jliu@uwf.edu

Zhi-An Wang∗

Department of Applied Mathematics
Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

mawza@polyu.edu.hk

Abstract: We establish the existence of global classical solutions and non-trivial
steady states of an one-dimensional attraction-repulsion chemotaxis model subject
to Neumann boundary conditions. The results are derived based on the method
of energy estimates and the phase plane analysis.

Key words: Chemotaxis, attraction-repulsion, classical solutions, steady states

AMS subject classification: 35K20, 35K40, 35K45, 92C17

1 Introduction

Chemotaxis describes the directed migration of cells along the concentration gradient of the
chemical which is produced by cells. It is a leading mechanism to account for the morphogen-
esis and self-organization of many biological system. The prototype of the population-based
chemotaxis model, known as the Keller-Segel model, was first proposed by Keller and Segel
in the 1970s [5] to describe the aggregation of cellular slime molds Dictyostelium discoideum.
The rudimental structure of the Keller-Segel model is a system of parabolic partial differential
equations as follows

𝑢𝑡 = 𝐷𝑢Δ𝑢−∇(𝜒𝑢∇𝑣),
𝑣𝑡 = 𝐷𝑣Δ𝑣 + 𝑓(𝑢, 𝑣),

(1.1)

where 𝑢(𝑥, 𝑡) denotes the cell density and 𝑣(𝑥, 𝑡) is the chemical concentration, 𝐷𝑢 and 𝐷𝑣

are positive diffusion coefficients and 𝜒 > 0 is called the chemotactic coefficient measuring
the strength of influence of the chemical on cells. The Keller-Segel model (1.1) describes
the cell chemotactic movement toward a single chemical (i.e. chemoattractant) and has
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been extensively studied in the past four decades from various perspectives ([8, 14, 15]).
However in many biological processes, the cells may interact with a combination of repulsive
and attractive signalling chemicals to produce various interesting biological patterns, such
as the formation of nigrostriatal circuits during development [7], the chick primitive streak
formation [3], and many others (e.g., see [4]). In this paper, we shall consider the following
attraction-repulsion chemotaxis model

𝑢𝑡 = 𝐷𝑢Δ𝑢−∇(𝜒𝑣𝑢∇𝑣) +∇(𝜒𝑤𝑢∇𝑤),
𝑣𝑡 = 𝐷𝑣Δ𝑣 + 𝛼𝑢− 𝛽𝑣,

𝑤𝑡 = 𝐷𝑤Δ𝑤 + 𝛾𝑢− 𝛿𝑤,

(1.2)

where 𝐷𝑢, 𝐷𝑣, 𝐷𝑤 > 0 are diffusion coefficients, 𝜒𝑣 > 0, 𝜒𝑤 > 0 are chemotactic coefficients,
𝛼, 𝛾 > 0 and 𝛽, 𝛿 ≥ 0. The model (1.2) was proposed in [10] to describe the aggregation
of microglia observed in Alzheimer’s disease and in [12] to describe the quorum effect in the
chemotactic process. In their approaches, it is assumed that there exists a secondary chemical,
denoted by 𝑤, which behaves as a chemo-repellent to mediate the chemotactic response to
the chemoattractant 𝑣 accordingly. To the best of our knowledge, there is rigorous result
by now on the chemotaxis model with two opposite chemicals (i.e. chemo-attractant and
chemo-repellent). The purpose of this paper is to establish the global existence of classical
solutions and steady states of (1.2) in one dimension with Neumann boundary conditions.
The results for higher dimensions still remains open.

In one dimension, the system (1.2) reads

𝑢𝑡 = 𝐷𝑢𝑢𝑥𝑥 − (𝜒𝑣𝑢𝑣𝑥)𝑥 + (𝜒𝑤𝑢𝑤𝑥)𝑥,

𝑣𝑡 = 𝐷𝑣𝑣𝑥𝑥 + 𝛼𝑢− 𝛽𝑣,

𝑤𝑡 = 𝐷𝑤𝑤𝑥𝑥 + 𝛾𝑢− 𝛿𝑤.

(1.3)

With the following scalings

𝑡 = 𝐷𝑢𝑡, 𝑣 =
𝜒𝑣

𝐷𝑢
𝑣, �̃� =

𝜒𝑤

𝐷𝑢
𝑤, �̃� =

𝜒𝑣

𝐷2
𝑢

𝑢, 𝛾 =
𝛾𝜒𝑤

𝛼𝜒𝑣
, (�̃�𝑣, �̃�𝑤, 𝛽, 𝛿) =

1

𝐷𝑢
(𝐷𝑣, 𝐷𝑤, 𝛽, 𝛿),

system (1.3) can be reduced to the following system

𝑢𝑡 = 𝑢𝑥𝑥 − (𝑢𝑣𝑥)𝑥 + (𝑢𝑤𝑥)𝑥,

𝑣𝑡 = 𝐷𝑣𝑣𝑥𝑥 + 𝑢− 𝛽𝑣,

𝑤𝑡 = 𝐷𝑤𝑤𝑥𝑥 + 𝛾𝑢− 𝛿𝑤,

(1.4)

where the tilde superscripts have been suppressed for readability.
Letting Ω be a bounded open interval in ℝ = (−∞,∞), we prescribe the initial conditions

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑤(𝑥, 0) = 𝑤0(𝑥), (1.5)

and Neumann boundary conditions

∂𝑢

∂𝜈
=
∂𝑣

∂𝜈
=
∂𝑤

∂𝜈
= 0, 𝑥 ∈ ∂Ω, (1.6)

where 𝜈 denotes the unit outward normal vector to the boundary ∂Ω.
In the present paper, we shall prove the existence of global classical solutions to the model

(1.4), (1.5) and (1.6) based on Amann’s theory and the method of energy estimates. We also
show the existence of non-trivial steady states of (1.4) subject to the Neumann boundary
conditions (1.6) for the case 𝛽𝐷𝑤 = 𝛿𝐷𝑣 by the phase plane analysis.
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Notations. Throughout the paper, Ω denotes a bounded open interval in ℝ unless
otherwise specified and 𝐶 denotes a generic constant which can change from one line to
another. 𝐿𝑝 = 𝐿𝑝(Ω)(1 ≤ 𝑝 ≤ ∞) denotes the usual Lebesgue space in a bounded open

interval Ω ⊂ ℝ = (−∞,∞) with norm ∥𝑓∥𝐿𝑝 =
( ∫

Ω ∣𝑓(𝑥)∣𝑝𝑑𝑥
)1/𝑝

for 1 ≤ 𝑝 < ∞ and

∥𝑓∥𝐿∞ = ess sup
𝑥∈Ω

∣𝑓(𝑥)∣. When 𝑝 = 2, we write ∥𝑓∥𝐿2 = ∥𝑓∥ for notational convenience. 𝐻 𝑙

denotes the 𝑙-th order Sobolev space 𝑊 𝑙,2 with norm ∥𝑓∥𝐻𝑙 = ∥𝑓∥𝑙 =
(∑𝑙

𝑖=0 ∥∂𝑖𝑥𝑓∥2
)1/2

.

For simplicity, ∥𝑓(⋅, 𝑡)∥𝐿𝑝 and ∥𝑓(⋅, 𝑡)∥𝑙 will be denoted by ∥𝑓(𝑡)∥𝐿𝑝 and ∥𝑓(𝑡)∥𝑙, respectively.
Moreover, we denote ∥(𝑓, 𝑔)∥𝐿𝑝 = ∥𝑓∥𝐿𝑝 + ∥𝑔∥𝐿𝑝 for 1 ≤ 𝑝 ≤ ∞ and ∥(𝑓, 𝑔)∥𝐻𝑙 = ∥𝑓∥𝐻𝑙 +
∥𝑔∥𝐻𝑙 for 𝑙 = 1, 2, 3, ⋅ ⋅ ⋅ .

2 Preliminaries

In this section, we present some inequalities which will be used to derive the required esti-
mates. First we recall the Gagliardo-Nirenberg inequality for functions that do not vanish at
the boundary of Ω (see Theorem 1 in [11]).

Lemma 2.1. Let Ω be a open bounded domain in ℝ𝑛 with smooth boundary. Then for
any 𝑞 ≥ 1, there exists a positive constant 𝐶𝑞, which depends on 𝑛, 𝑞,Ω, such that for all
𝑓 ∈𝑊 1,2(Ω),

∥𝑓∥𝐿𝑞 ≤ 𝐶𝑞 (∥∇𝑓∥𝑎2 ∥𝑓∥1−𝑎
𝐿1 + ∥𝑓∥𝐿1) (2.1)

where 𝑎 = (1− 1
𝑞 )/(

1
𝑛 + 1

2) and 0 ≤ 𝑎 < 1.

Letting 𝑛 = 1, 𝑞 = 4, 𝛼 = 1/2 in (2.1) and using the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) for
any 𝑎, 𝑏 ∈ ℝ, we obtain the following inequality

∥𝑓∥2𝐿4 ≤ 𝐶(∥𝑓𝑥∥∥𝑓∥𝐿1 + ∥𝑓∥2𝐿1). (2.2)

The following Gronwall’s type inequality [16] will be used later.

Proposition 2.2. Let 𝜂(⋅) be a nonnegative differentiable function on [0,∞) satisfying the
differential inequality 𝜂′(𝑡) + 𝑙𝜂(𝑡) ≤ 𝜔(𝑡), where 𝑙 is a constant and 𝜔(𝑡) is a nonnegative
continuous functions on [0,∞). Then

𝜂(𝑡) ≤
(
𝜂(0) +

∫ 𝑡

0
𝑒𝑙𝜏𝜔(𝜏)𝑑𝜏

)
𝑒−𝑙𝑡. (2.3)

Alternatively, if for 𝑡 ≥ 0, 𝜙(𝑡) ≥ 0 and 𝜓(𝑡) ≥ 0 are continuous function such that the
inequality 𝜙(𝑡) ≤ 𝐶 exp(𝑟𝑡)+𝐿

∫ 𝑡
0 𝜓(𝑠)𝜙(𝑠)𝑑𝑠 holds on 𝑡 ≥ 0 with 𝐶 and 𝐿 positive constants,

then

𝜙(𝑡) ≤ 𝐶 exp(𝑟𝑡) exp

(
𝐿

∫ 𝑡

0
𝜓(𝑠)𝑑𝑠

)
. (2.4)

3 Global existence of classical solutions

In this section, we shall establish the global existence of classical solutions of the system (1.4),
(1.5) and (1.6). The main result is the following:
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Theorem 3.1. Let (𝑢0, 𝑣0, 𝑤0) ∈ 𝐻2(Ω). Then there exists a unique global solution (𝑢, 𝑣, 𝑤)
to the system (1.4), (1.5) and (1.6) such that (𝑢, 𝑣, 𝑤) ∈ [𝐶0(Ω × [0,∞);ℝ3)]3 ∩ [𝐶2,1(Ω ×
(0,∞);ℝ3)]3. Moreover 𝑢, 𝑣, 𝑤 ≥ 0 if 𝑢0, 𝑣0, 𝑤0 ≥ 0.

Remark 3.1. Theorem 3.1 does not exclude the possibility that the solution may blow up at
infinity time.

Theorem 3.1 will be proved by the local existence and the a priori estimates as given
below.

3.1 Local existence

In this section, we shall apply Amann’s theory [1] to establish the local existence of solutions.

Theorem 3.2. (local existence). Let Ω be a bounded open interval in ℝ. Then
(i) For any initial data (𝑢0, 𝑣0, 𝑤0) ∈ [𝐻1(Ω)]3, there exists a maximal existence time

constant 𝑇0 ∈ (0,∞] depending on the initial data (𝑢0, 𝑣0, 𝑤0), such that the problem (1.4),
(1.5) and (1.6) has a unique maximal solution (𝑢, 𝑣, 𝑤) defined on Ω× [0, 𝑇0) satisfying

(𝑢, 𝑣, 𝑤) ∈ [𝐶0(Ω× [0, 𝑇0);ℝ3)]3 ∩ [𝐶2,1(Ω× (0, 𝑇0);ℝ3)]3.

(ii) If sup
0<𝑡<𝑇0∩𝑇

∥(𝑢, 𝑣, 𝑤)(⋅, 𝑡)∥𝐿∞ <∞ for each 𝑇 > 0, then 𝑇0 = ∞, namely, (𝑢, 𝑣, 𝑤) is

a global classical solution of the system (1.4), (1.5) and (1.6). Moreover 𝑢 ≥ 0, 𝑣 ≥ 0, 𝑤 ≥ 0
if 𝑢0 ≥ 0, 𝑣0 ≥ 0, 𝑤0 ≥ 0.

Proof. Define 𝜂 = (𝑢, 𝑣, 𝑤) ∈ ℝ3. Then the system (1.4) with (1.5) and (1.6) can be
rewritten as

𝜂𝑡 −∇ ⋅ (𝑎(𝜂)∇𝜂) = ℱ(𝜂), in Ω× [0,+∞),
∂𝜂

∂𝜈
= 0, on ∂Ω× [0,+∞),

𝜂(⋅, 0) = (𝑢0, 𝑣0, 𝑤0), in Ω,

(3.1)

where

𝑎(𝜂) =

⎛⎝ 1 −𝑢 𝑢
0 𝐷𝑣 0
0 0 𝐷𝑤

⎞⎠ , ℱ(𝜂) =

⎛⎝ 0
𝑢− 𝛽𝑣
𝛾𝑢− 𝛿𝑤

⎞⎠ .

It is clear that the eigenvalues of 𝑎(𝜂) are all positive and hence system (1.4) is normally
elliptic. Then the local existence result of assertion (𝑖) follows from [1, Theorem 14.6], and
(𝑖𝑖) is a consequence of [1, Theorem 15.3]. Finally the positivity of solutions follows from [1,
Theorem 15.1].

3.2 A priori estimates

In this section, we are devoted to deriving the a priori estimates of solutions obtained in
Theorem 3.1 to establish the global existence of solutions. First of all, we notice that the
first equation of (1.4) is a conservation equation. If we denote∫

Ω
𝑢0(𝑥)𝑑𝑥 =: 𝑚 (3.1)
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then by integrating the first equation of (1.4) and using the Neumann boundary conditions
(1.6), we have

∥𝑢(𝑡)∥𝐿1 =

∫
Ω
𝑢(𝑥, 𝑡)𝑑𝑥 = 𝑚. (3.2)

Lemma 3.3. Let (𝑣0, 𝑤0) ∈ [𝐿2(Ω)]2 and (1.6) hold. Let (𝑢, 𝑣, 𝑤) be a solution of the problem
(1.4)-(1.6). Then for any 𝑇 > 0, there is a constant 𝐶 such that the following inequality holds
for any 0 < 𝑡 < 𝑇

∥(𝑣, 𝑤)(𝑡)∥2 ≤ 𝐶,

∫ 𝑡

0
∥(𝑣, 𝑤)(𝜏)∥2𝑑𝜏 +

∫ 𝑡

0
∥(𝑣𝑥, 𝑤𝑥)(𝜏)∥2𝑑𝜏 ≤ 𝐶(1 + 𝑡). (3.3)

Proof. Multiplying the second equation of (1.4) by 𝑣 and integrating the resulting equation
with respect to 𝑥 over Ω gives rise to

1

2

𝑑

𝑑𝑡

∫
Ω
𝑣2𝑑𝑥+ 𝛽

∫
Ω
𝑣2𝑑𝑥+𝐷𝑣

∫
Ω
𝑣2𝑥𝑑𝑥 =

∫
Ω
𝑢𝑣𝑑𝑥 ≤ 𝑚∥𝑣∥𝐿∞ .

Applying the Sobolev embedding 𝐻1 ↪→ 𝐿∞, one has that

1

2

𝑑

𝑑𝑡

∫
Ω
𝑣2𝑑𝑥+ 𝛽

∫
Ω
𝑣2𝑑𝑥+𝐷𝑣

∫
Ω
𝑣2𝑥𝑑𝑥 ≤ 𝐶𝑚(∥𝑣∥+ ∥𝑣𝑥∥) ≤ 𝐷𝑣

2
∥𝑣𝑥∥2 + 𝛽

2
∥𝑣∥2 + 𝐶,

where the Young inequality has been used. Then it follows that

𝑑

𝑑𝑡
∥𝑣∥2 + 𝛽∥𝑣∥2 +𝐷𝑣∥𝑣𝑥∥2 ≤ 𝐶. (3.4)

Applying Gronwall’s inequality (2.3) to (3.4) yields that

∥𝑣∥2 ≤
(
∥𝑣0∥2 + 𝐶

∫ 𝑡

0
𝑒𝛽𝜏𝑑𝜏

)
𝑒−𝛽𝑡

≤ (∥𝑣0∥2 − 𝐶/𝛽)𝑒−𝛽𝑡 + 𝐶/𝛽 ≤ 𝐶.

Furthermore the integration of (3.4) with respect to 𝑡 over [0, 𝑡] gives∫ 𝑡

0
∥𝑣(𝜏)∥2𝑑𝜏 +

∫ 𝑡

0
∥𝑣𝑥(𝜏)∥2𝑑𝜏 ≤ 𝐶(1 + 𝑡). (3.5)

Applying the same procedure to 𝑤, we finish the proof.

Lemma 3.4. Let 𝑢0 ∈ 𝐿2(Ω), (𝑣0, 𝑤0) ∈ [𝐻1(Ω)]2 and (𝑢, 𝑣, 𝑤) be a solution of the problem
(1.4)-(1.6). Then for any 𝑇 > 0, there is a positive constant 𝐶 such that for any 0 < 𝑡 < 𝑇
it follows that

∥𝑢(𝑡)∥2 +
∫ 𝑡

0
∥𝑢𝑥(𝜏)∥2𝑑𝜏 + ∥(𝑣, 𝑤)(𝑡)∥21 +

∫ 𝑡

0
∥(𝑣, 𝑤)(𝜏)∥22𝑑𝜏 ≤ 𝐶

(
1 + 𝑒𝐶𝑡

)
. (3.6)
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Proof. We multiply the first equation of (1.4) by 𝑢 and integrate the resulting equation
by parts. Then by (2.2), the Hölder inequality and the Young inequality, we derive that

1

2

𝑑

𝑑𝑡

∫
Ω
𝑢2𝑑𝑥+

∫
Ω
𝑢2𝑥𝑑𝑥 = −1

2

∫
Ω
𝑢2𝑣𝑥𝑥𝑑𝑥+

1

2

∫
Ω
𝑢2𝑤𝑥𝑥𝑑𝑥

≤ 1

2
∥𝑢∥2𝐿4(∥𝑣𝑥𝑥∥+ ∥𝑤𝑥𝑥∥)

≤ 𝐶(𝑚∥𝑢𝑥∥+𝑚2)(∥𝑣𝑥𝑥∥+ ∥𝑤𝑥𝑥∥)

≤ 1

2
∥𝑢𝑥∥2 + 𝐶(∥𝑣𝑥𝑥∥+ ∥𝑤𝑥𝑥∥+ ∥𝑣𝑥𝑥∥2 + ∥𝑤𝑥𝑥∥2),

where the Young inequality has been used. Using the Cauchy-Schwarz inequality to derive
𝐶(∥𝑣𝑥𝑥∥+ ∥𝑤𝑥𝑥∥) ≤ 2𝐶2 + ∥𝑣𝑥𝑥∥2 + ∥𝑤𝑥𝑥∥2, we have

𝑑

𝑑𝑡

∫
Ω
𝑢2𝑑𝑥+

∫
Ω
𝑢2𝑥𝑑𝑥 ≤ 𝐶(1 + ∥𝑣𝑥𝑥∥2 + ∥𝑤𝑥𝑥∥2). (3.7)

Next we estimate the right hand side of (3.7). To this end, we multiply the second equation
of (1.4) by −𝑣𝑥𝑥 and integrate the resulting equation to obtain that

𝑑

𝑑𝑡

∫
Ω
𝑣2𝑥𝑑𝑥+

∫
Ω
𝑣2𝑥𝑑𝑥+

∫
Ω
𝑣2𝑥𝑥𝑑𝑥 ≤ 𝐶

∫
Ω
𝑢2𝑑𝑥. (3.8)

Similar procedure applied to the third equation of (1.4) leads to

𝑑

𝑑𝑡

∫
Ω
𝑤2
𝑥𝑑𝑥+

∫
Ω
𝑤2
𝑥𝑑𝑥+

∫
Ω
𝑤2
𝑥𝑥𝑑𝑥 ≤ 𝐶

∫
Ω
𝑢2𝑑𝑥. (3.9)

Combining (3.8) and (3.9) we have

𝑑

𝑑𝑡

∫
Ω
(𝑣2𝑥 + 𝑤2

𝑥)𝑑𝑥+

∫
Ω
(𝑣2𝑥 + 𝑤2

𝑥)𝑑𝑥+

∫
Ω
(𝑣2𝑥𝑥 + 𝑤2

𝑥𝑥)𝑑𝑥 ≤ 𝐶

∫
Ω
𝑢2𝑑𝑥. (3.10)

Then integrating (3.10) with respect to 𝑡 yields that

∥(𝑣𝑥, 𝑤𝑥)∥2 +
∫ 𝑡

0
∥(𝑣𝑥, 𝑤𝑥)(𝜏)∥2𝑑𝜏 +

∫ 𝑡

0
∥(𝑣𝑥𝑥, 𝑤𝑥𝑥)(𝜏)∥2𝑑𝜏

≤ 𝐶

(
1 +

∫ 𝑡

0
∥𝑢(𝜏)∥2𝑑𝜏

)
.

(3.11)

Now we integrate (3.7) with respect to 𝑡 and obtain that

∥𝑢(𝑡)∥2 +
∫ 𝑡

0
∥𝑢𝑥(𝜏)∥2𝑑𝜏 ≤ 𝐶(1 + 𝑡) + 𝐶

∫ 𝑡

0
∥(𝑣𝑥𝑥, 𝑤𝑥𝑥(𝜏)∥2𝑑𝜏. (3.12)

By using the Gronwall’s inequality (2.4) to (3.12), one has that

∥𝑢(𝑡)∥2 ≤ 𝐶(1 + 𝑡)𝑒𝐶𝑡. (3.13)
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Therefore substituting (3.13) back to (3.11) gives

∥(𝑣𝑥, 𝑤𝑥)∥2 +
∫ 𝑡

0
∥(𝑣𝑥, 𝑤𝑥)(𝜏)∥2𝑑𝜏 +

∫ 𝑡

0
∥(𝑣𝑥𝑥, 𝑤𝑥𝑥)(𝜏)∥2𝑑𝜏

≤ 𝐶(1 + 𝑡)𝑒𝐶𝑡 ≤ 𝐶𝑒𝐶𝑡

(3.14)

where we have used the fact that 0 < 𝑡 ≤ 𝑒𝐶𝑡 for 𝐶 ≥ 1.
Then the combination of (3.13) and (3.14) with (3.5) gives (3.6).

With Lemma 3.4, we can derive the following estimates.

Lemma 3.5. If (𝑣0, 𝑤0) ∈ [𝐻2(Ω)]2. Let (𝑢, 𝑣, 𝑤) be a solution of the problem (1.4)-(1.6).
Then for any 𝑇 > 0, there is a positive constant 𝐶 such that for any 0 < 𝑡 < 𝑇 it holds that

∥(𝑣𝑥𝑥, 𝑤𝑥𝑥)(𝑡)∥2 +
∫ 𝑡

0
∥(𝑣𝑥𝑥, 𝑤𝑥𝑥)(𝜏)∥2𝑑𝜏 +

∫ 𝑡

0
∥(𝑣𝑥𝑥𝑥, 𝑤𝑥𝑥𝑥)(𝜏)∥2𝑑𝜏 ≤ 𝐶(1 + 𝑒𝐶𝑡).

Proof. Differentiating the second question of (1.4) with respect to 𝑥 twice and then multi-
plying the result by 𝑣𝑥𝑥, we obtain

1

2

𝑑

𝑑𝑡

∫
Ω
𝑣2𝑥𝑥𝑑𝑥+ 𝛽

∫
Ω
𝑣2𝑥𝑥𝑑𝑥+𝐷𝑣

∫
Ω
𝑣2𝑥𝑥𝑥𝑑𝑥 =

∫
Ω
𝑢𝑥𝑥𝑣𝑥𝑥𝑑𝑥 = −

∫
Ω
𝑢𝑥𝑣𝑥𝑥𝑥𝑑𝑥.

By the Cauchy-Schwarz inequality, we have −𝑢𝑥𝑣𝑥𝑥𝑥 ≤ 𝐷𝑣
2 𝑣

2
𝑥𝑥𝑥 + 2

𝐷𝑣
𝑢2𝑥, which is applied to

the above identity yields

∥𝑣𝑥𝑥∥2 +
∫ 𝑡

0
∥𝑣𝑥𝑥(𝜏)∥2𝑑𝜏 +

∫ 𝑡

0
∥𝑣𝑥𝑥𝑥(𝜏)∥2𝑑𝜏 ≤ 𝐶

∫ 𝑡

0
∥𝑢𝑥(𝜏)∥2𝑑𝜏.

Then the application of Lemma 3.4 to the above inequality gives the estimate for 𝑣. By the
same procedure, we can derive the similar estimates for 𝑤 and complete the proof.

Combining Lemma 3.5 and Lemma 3.4 and using the Sobolev embedding 𝐻1 ↪→ 𝐿∞, we
derive that

∥𝑣𝑥∥𝐿∞ + ∥𝑤𝑥∥𝐿∞ ≤ 𝐶(1 + 𝑒𝐶𝑡). (3.15)

Then we can derive the 𝐻1-estimates for 𝑢.

Lemma 3.6. Let 𝑢0 ∈ 𝐻1(Ω). Assume that (𝑢, 𝑣, 𝑤) is a solution of the problem (1.4)-(1.6).
Then for any 𝑇 > 0, there is a positive constant 𝐶 such that for any 0 < 𝑡 < 𝑇 it has

∥𝑢𝑥∥2 +
∫ 𝑡

0
∥𝑢𝑥𝑥(𝜏)∥2𝑑𝜏 ≤ 𝐶(1 + 𝑒𝐶𝑡).

Proof. Multiplying the first equation of (1.4) by (−𝑢𝑥𝑥) and integrating the result yields

1

2

𝑑

𝑑𝑡

∫
Ω
𝑢2𝑥𝑑𝑥+

∫
Ω
𝑢2𝑥𝑥𝑑𝑥 =

∫
Ω
𝑢𝑥𝑥(𝑢𝑣𝑥)𝑥𝑑𝑥−

∫
Ω
𝑢𝑥𝑥(𝑢𝑤𝑥)𝑥𝑑𝑥 (3.16)

Next we estimates the terms on the right hand side terms of (3.16). To this end, we first
differentiate the second equation of (1.4) thrice and then multiply the resulting equation by
𝑣𝑥𝑥𝑥. After integrating the result with respect to 𝑥 and 𝑡, we have

∥𝑣𝑥𝑥𝑥∥2 +
∫ 𝑡

0
∥𝑣𝑥𝑥𝑥(𝜏)∥2𝑑𝜏 +

∫ 𝑡

0
∥𝑣𝑥𝑥𝑥𝑥(𝜏)∥2𝑑𝜏 ≤ 𝐶0

∫ 𝑡

0
∥𝑢𝑥𝑥(𝜏)∥2𝑑𝜏 (3.17)
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where we have used the Cauchy-Schwarz inequality and 𝐶0 is a constant. In virtue of the
integration by parts, we deduce that∫

Ω
𝑢𝑥𝑥(𝑢𝑣𝑥)𝑥𝑑𝑥 =

1

2

∫
Ω
𝑢2𝑣𝑥𝑥𝑥𝑥𝑑𝑥+ 3

∫
Ω
𝑣𝑥𝑢𝑥𝑢𝑥𝑥𝑑𝑥

≤ ∥𝑢∥2𝐿4∥𝑣𝑥𝑥𝑥𝑥∥+ 3∥𝑣𝑥∥𝐿∞

∫
Ω
∣𝑢𝑥𝑢𝑥𝑥∣𝑑𝑥

where the Hölder inequality has been used. Then by the Cauchy-Schwarz inequality and
using (3.17), (3.6), (2.2) and (3.15), one has∫ 𝑡

0

∫
Ω
𝑢𝑥𝑥(𝑢𝑣𝑥)𝑥𝑑𝑥 ≤ 𝐶

∫ 𝑡

0
(∥𝑢(𝜏)∥2𝐿4)

2𝑑𝜏 +
1

8𝐶0

∫ 𝑡

0
∥𝑣𝑥𝑥𝑥𝑥(𝜏)∥2𝑑𝜏

+ 𝐶

∫ 𝑡

0
(1 + 𝑒𝐶𝜏 )

∫
Ω
𝑢2𝑥𝑑𝑥𝑑𝜏 +

1

8

∫ 𝑡

0

∫
Ω
𝑢2𝑥𝑥𝑑𝑥𝑑𝜏

≤ 𝐶

∫ 𝑡

0
(1 + ∥𝑢𝑥(𝜏)∥)2𝑑𝜏 + 𝐶(1 + 𝑒𝐶𝑡)

∫ 𝑡

0
∥𝑢𝑥(𝜏)∥2𝑑𝜏

+
1

4

∫ 𝑡

0
∥𝑢𝑥𝑥(𝜏)∥2𝑑𝜏

≤ 𝐶(1 + 𝑒𝐶𝑡) +
1

4

∫ 𝑡

0
∥𝑢𝑥𝑥∥2𝑑𝜏.

(3.18)

The same argument as above applied to 𝑤 also gives rise to∫ 𝑡

0

∫
Ω
𝑢𝑥𝑥(𝑢𝑤𝑥)𝑥𝑑𝑥 ≤ 𝐶(1 + 𝑒𝐶𝑡) +

1

4

∫ 𝑡

0
∥𝑢𝑥𝑥∥2𝑑𝜏. (3.19)

Then integrating (3.16) with respect to 𝑡 and applying the inequalities (3.18) and (3.19), we
complete the proof.

3.3 Proof of Theorem 3.1

By Lemma 3.4 and Lemma 3.6 as well as Sobolev embedding 𝐻1 ↪→ 𝐿∞, we have

sup
0<𝑡<𝑇0∩𝑇

∥(𝑢, 𝑣, 𝑤)(𝑡)∥𝐿∞ ≤ 𝐶(1 + 𝑒𝐶𝑡)

for any 𝑇 > 0. That is for any finite time 𝑡 with 0 < 𝑡 < 𝑇0 ∩𝑇 , ∥(𝑢, 𝑣, 𝑤)(𝑡)∥𝐿∞ is bounded.
By the statement (ii) of Theorem 3.2, the maximal existence time constant 𝑇0 of the classical
solution obtained in Theorem 3.2 must be infinite. The non-negativity of the solution follows
from (ii) of Theorem 3.2 directly. Then the proof of theorem 3.1 is finished.

4 Steady States

In this section, we study the non-trivial steady states of (1.4) with homogeneous boundary
conditions (1.6). Steady states of (1.4) satisfies the system

𝑢𝑥𝑥 − (𝑢𝑣𝑥)𝑥 + (𝑢𝑤𝑥)𝑥 = 0,

𝐷𝑣𝑣𝑥𝑥 + 𝑢− 𝛽𝑣 = 0,

𝐷𝑤𝑤𝑥𝑥 + 𝛾𝑢− 𝛿𝑤 = 0.

(4.1)
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The non-trivial steady state of (1.4) is defined as the solution of (4.1) where none of 𝑢, 𝑣 and
𝑤 is a constant. In this paper, we only consider the simple case 𝛽

𝐷𝑣
= 𝛿

𝐷𝑤
= 𝜇 which indicates

that both the chemoattractant and chemo-repellent have the same death rate relative to their
diffusions, respectively. The result of the non-trivial steady state for the general system (4.1)
still remains open. By defining 𝜙 = 𝑣 − 𝑤, the system (4.1) can be transformed as

𝑢𝑥𝑥 − (𝑢𝜙𝑥)𝑥 = 0

𝜙𝑥𝑥 + 𝜆𝑢− 𝜇𝜙 = 0
(4.2)

where 𝜆 = 1
𝐷𝑣

− 𝛾
𝐷𝑤

. Then integrating the first equation of (4.2) and using the homogeneous
boundary conditions (1.6), we have

𝑢 = 𝜂𝑒𝜙

where 𝜂 is a positive constant.
We substitute the expression for 𝑢 into the second equation of (4.2) and obtain an elliptic

equation for the steady states:
𝜙𝑥𝑥 = 𝜇𝜙− 𝜆𝜂𝑒𝜙. (4.3)

This equation of steady states has been extensively investigated when 𝜙 ≥ 0 and 𝜆 > 0. e.g.,
see [13, 8]. However in our model both the variable 𝜙 and the constant 𝜆 can be non-positive.
We write (4.3) as a first order Hamiltonian system

𝜙𝑥 = 𝑦,

𝑦𝑥 = 𝜇𝜙− 𝜆𝜂𝑒𝜙.
(4.4)

Without loss of generality we assume Ω = (0, 𝐿) with 𝐿 > 0. Then the Neumann boundary
conditions (1.6) becomes

𝑦(0) = 𝑦(𝐿) = 0. (4.5)

Let (𝜙∗, 𝑦∗) be an equilibrium point of (4.4). Then the coefficient matrix of the linearized
system of (4.4) about (𝜙∗, 𝑦∗) is

𝑀 =

[
0 1

𝜇− 𝜆𝜂𝑒𝜙
∗

0

]
.

It is straightforward to see that the equilibria of (4.4) satisfies 𝑦 = 0 and

𝜇𝜙 = 𝜆𝜂𝑒𝜙. (4.6)

Then there are two cases to consider:
(1) When 𝜆 ≤ 0, namely 𝐷𝑤 ≤ 𝛾𝐷𝑣, the equation (4.6) always has a unique solution

𝜙∗ < 0. The equilibrium (𝜙∗, 0) is a saddle point for the linearized system due to det𝑀 =
−𝜇+ 𝜆𝜂𝑒𝜙

∗
< 0. It is also a saddle for the full nonlinear system (4.4) by Hartman-Grobman

theorem. Since the nonlinear system has the Hamiltonian functional 𝐻(𝜙, 𝑦) = 𝑦2

2 − 𝜇
2𝜙

2 +
𝜆𝜂𝑒𝜙, there are no non-trivial steady state solutions satisfying the boundary condition (4.5)
by simple phase plane analysis.

(2) When 𝜆 > 0, namely 𝐷𝑤 > 𝛾𝐷𝑣, the equation (4.6) can have zero, one or two solutions
depending on the parameters. It is straightforward to check that only the case of two solutions
yields the non-trivial steady states. The equation (4.6) has two solutions 0 < 𝜙∗1 < 𝜙∗2 if and
only if 𝜇 > 𝜆𝜂𝑒, where 𝜙∗1 satisfies 𝜇 > 𝜆𝜂𝑒𝜙

∗
1 and 𝜙∗2 satisfies 𝜇 < 𝜆𝜂𝑒𝜙

∗
2 . It is trivial to check
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that the equilibrium (𝜙∗1, 0) is a saddle and the equilibrium (𝜙∗2, 0) is a center. Since the
interval [0, 𝐿] is bounded and the system (4.4) is Hamiltonian, by the standard phase plane
analysis, we can readily show that for each 𝐿, there is a non-trivial solution of (4.4)-(4.5)
which is a closed orbit. The non-trivial steady states are nested around the center (𝜙∗2, 0).

0  1
φ

1
* φ

2
*

φ

y=µφ

y=ληeφ

Figure 1: An illustration of the two solutions of the equation (4.6).

Therefore when 𝐷𝑤 > 𝛾𝐷𝑣, there is a non-trivial smooth solution to the equation (4.3)
which satisfies the Neumann boundary condition ∂𝜙

∂𝜈 = 0 at 𝑥 = 0, 𝐿. Hence the steady state
solution 𝑢 = 𝜂𝑒𝜙 exists. Substituting it into the second equation of (4.1) yields with (1.6)

−𝑣𝑥𝑥 + 𝜇𝑣 =
𝜂

𝐷𝑣
𝑒𝜙(𝑥), 0 < 𝑥 < 𝐿

∂𝑣

∂𝜈
= 0, 𝑥 = 0 or 𝐿

(4.7)

which is a linear elliptic equation with Neumann boundary condition. Since the non-homogeneous
term 𝑒𝜙 is smooth for 𝑥 ∈ (0, 𝐿), the smooth solution of (4.7) exists (e.g. see [2]). By the
same argument, the solution 𝑤 of the third equation of (4.1) with Neumann boundary con-
dition can be obtained. In summary, we have the following theorem about the steady states
of system (1.4) subject to the boundary condition (1.6).

Theorem 4.1. Let Ω = (0, 𝐿). Assume 𝛽
𝐷𝑣

= 𝛿
𝐷𝑤

. If 𝐷𝑤 ≤ 𝛾𝐷𝑣, the system (1.4) with
Neumann boundary conditions (1.6) has no non-trivial steady states. If 𝐷𝑤 > 𝛾𝐷𝑣, then a
non-trivial steady state of the system (1.4) subject to (1.6) exists for each 𝐿 > 0.

From the above analysis and results, we see that the existence of non-trivial steady states
of (1.4) depends on the sign of parameter 𝜆 which relates the diffusion coefficients 𝐷𝑣 and
𝐷𝑤. Hence if other parameters are fixed, the relative diffusivity of the chemo-attractant to
chemo-repellent play a prominent role in determining the nature of the steady states.

5 Summary

In this paper, we establish the existence of global classical solutions and steady states to an
attraction-repulsion chemotaxis model in one dimension. Our result does not exclude the
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possibility that the solution may blow up at infinity time. From the analysis of steady state,
we find that the existence of non-trivial steady states depends on the ratio of the chemo-
attractant diffusion to the chemo-repellent diffusion. The existence of global solutions of
the attraction-repulsion chemotaxis model in multi-dimensional spaces still remains open al-
though it is more interesting to investigate. The pattern formation of the attraction-repulsion
chemotaxis mode is also an interesting issue worthwhile to be studied in the future. In par-
ticular, the difference of the solution behavior between the classical Keller-Segel model (i.e.
attraction chemotaxis model) and attraction-repulsion chemotaxis model needs to investi-
gated both analytically and numerically.

Acknowledgement: The authors are very grateful to the anonymous referees for the
careful reading and various corrections which greatly improve the exposition of the manuscript.
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