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Abstract. The original Keller-Segel system proposed in [23] remains poorly
understood in many aspects due to the logarithmic singularity. As the chemical

consumption rate is linear, the singular Keller-Segel model can be converted,

via the Cole-Hopf transformation, into a system of viscous conservation laws
without singularity. However the chemical diffusion rate parameter ε now

plays a dual role in the transformed system by acting as the coefficients of

both diffusion and nonlinear convection. In this paper, we first consider the
dynamics of the transformed Keller-Segel system in a bounded interval with

time-dependent Dirichlet boundary conditions. By imposing appropriate con-

ditions on the boundary data, we show that boundary layer profiles are present
as ε → 0 and large-time profiles of solutions are determined by the boundary

data. We employ weighted energy estimates with the “effective viscous flux”
technique to establish the uniform-in-ε estimates to show the emergence of
boundary layer profiles. For asymptotic dynamics of solutions, we develop a

new idea by exploring the convexity of an entropy expansion to get the basic L1-
estimate. We the obtain the corresponding results for the original Keller-Segel

system by reversing the Cole-Hopf transformation. Numerical simulations are

performed to interpret our analytical results and their implications.
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1. Introduction. The oriented movement of species up/down to the chemical con-
centration gradient is termed as chemotaxis which has been a significant mechanism
to interpret abundant pattern formation and biological processes such as bacteria
band formation and aggregation [38, 48], slime mould formation [16], fish pigmen-
tation patterning [41], angiogenesis in tumor progression [6, 7, 8], primitive streak
formation [42], blood vessel formation [14], wound healing [44], and so on. Pro-
posed by Keller-Segel in 1971, the chemotaxis model has two prototypes according
to the chemotactic sensitivity function. One was the linear sensitivity and the other
was the logarithmic sensitivity. The former was derived in [25] to model the self-
aggregation of Dictyostelium discoideum in response to cyclic adenosine monophos-
phate (cAMP), and the latter in [23] to model the wave propagation of bacterial
chemotaxis. Compared to massive results on the Keller-Segel (KS) model with lin-
ear sensitivity, much less is known on the KS model with logarithmic sensitivity due
to its singularity nature. However logarithmic sensitivity complies with the Webber-
Fecher law and has many prominent applications in biology (cf. [2, 3, 10, 22, 23]) in
addition to its indispensable role to reproducing the bacterial traveling bands (cf.
[49]). This paper is concerned with the original KS model proposed in [23]{

ut = [Dux − χu(lnw)x]x,
wt = εwxx − uwm,

(1)

where u(x, t) and w(x, t) denote the bacterial density and concentration of nutrient
(chemical), respectively, at position x and time t. The parameter D > 0 is the
diffusivity of bacterial, χ > 0 is referred to as the chemotactic coefficient measuring
the intensity of chemotaxis, ε ≥ 0 is the chemical diffusion rate and m ≥ 0 is the
consumption rate of nutrient.

It has been shown (cf. [24, 46, 49]) that the KS model (1) will produce traveling
bands (pulsating waves) if 0 ≤ m < 1, and fronts if m = 1 and no traveling waves
if m > 1, where the logarithmic sensitivity is indispensable to generate traveling
waves. In the case of 0 ≤ m < 1, the KS model (1) was employed by Keller and
Segel to interpret the bacterial traveling band formation observed in the experiment
by Adler [1]. When m = 1, (1) was first used by Nossal [40] to model the boundary
movement of bacterial and later by Levine et al [27] to model the dynamics between
vascular endothelial growth factor (VEGF) and vascular endothelial cells (VECs)
in the initiation of tumor angiogenesis. Except the existence of traveling waves, the
understanding of (1) with m 6= 1 is very poor due to the singularity of logarithm
lnw (at w = 0), where in particular the stability of traveling waves remains an
outstanding open question to date except some instability results [11, 39]. However
for the linear consumption case m = 1, the model can be understood to some extend
since the logarithmic singularity can be resolved by a Cole-Hopf type transformation
([26, 35])

v = −(lnw)x = −wx
w
, (2)

which converts the KS model(1) into a non-singular system of conservation laws as
follows {

ut − (χuv)x = Duxx,

vt + ε(v2)x − ux = εvxx.
(3)

Though the singularity no longer exists in (3), a quadratic nonlinear convection is
generated. In multi-dimensions, v is a gradient vector and the curl of v is intrinsic
required to be zero, namely curlv = ∇ × v = 0. A characteristic feature of the
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transformed system (3) distinct from other system of conservation laws (e.g. see
[4, 9, 47]) is that the parameter ε plays a dual role: coefficient of viscosity (diffusion)
and nonlinear convection. Hence it is hard to justify the parameter ε > 0 is “good”
or “bad” for analysis, and how to find a balance between the nonlinear convection
and viscosity with the curl-free condition becomes an art of analysis. Indeed the
transformed chemotaxis model (3) has been well understood in one-dimension for
both ε = 0 and ε > 0 from various aspects such as the traveling wave solutions (cf.
[5, 21, 30, 32, 33, 34, 35]), global dynamics of large-data solutions in R (cf. [28, 37])
or in the bounded interval subject to various boundary conditions (cf. [29, 50, 52]).
However it still remains poorly understood in multi-dimensions except few results
on the small-data solutions (cf. [12, 15, 43, 51]) or radial solutions (cf. [53]). In
addition to these works, there was another class of results by considering singular
limits of solutions to (3) as ε → 0. Such a topic is of particular interest since the
vanishing as ε → 0 occurs concurrently to both viscosity and quadratic nonlinear
convection in the transformed system (3). It is also of relevance since the chemical
diffusion rate ε > 0 was assumed to be zero in the analysis of many early works
(cf. [23, 24, 27]) on the grounds of simplicity and hence it is desirable to reveal the
role of ε. Next we shall first recall existing results connecting the limit problem of
ε→ 0 and then propose our new questions.

If the spatial domain is unbounded (i.e. x ∈ RN , N ≥ 1), it has been shown
in [43, 49, 51] that both traveling wave solutions (see [49]) and global solutions
of the Cauchy problem (see [43, 51]) are uniformly convergent in ε, namely the
solutions with ε > 0 converges to those with ε = 0 as ε → 0 in L∞-norm. If the
domain is an interval say (0, 1), and zero mixed Neumann-Dirichlet (ND) boundary
conditions are prescribed: ux|x=0,1 = 0, v|x=0,1 = 0, ε ≥ 0, it was shown in [52] that
the solution is still uniformly convergent in ε. However if the Dirichlet boundary
conditions are imposed, one cannot impose the boundary conditions for v with
ε = 0 since otherwise the problem may be over-determined. In this circumstance,
boundary layers may arise due to the possible mismatch of boundary conditions.
This was first observed and numerically verified in a recent work by Li and Zhao
in [29], and later was justified in [18]. Considering that the boundary conditions
are dynamic in vivo environment for tumor angiogenesis, in this paper we consider
the system (3) with time-dependent Dirichlet boundary values, and for simplicity
hereafter we assume χ = D = 1 since their specific values are not important for our
analysis. Hence precisely we shall consider the initial-boundary value problem (3)
for (x, t) ∈ [0, 1]× [0,∞) as follows:

ut − (uv)x = uxx, x ∈ (0, 1)

vt + ε(v2)x − ux = εvxx, x ∈ (0, 1)

(u, v)(x, 0) = (u0, v0)(x), u0 ≥ 0, x ∈ [0, 1]

u(0, t) = u(1, t) = α(t) ≥ 0, v(0, t) = v(1, t) = β(t),

(4)

where α(t) and β(t) are boundary data depending on t. In (4) we always assume
ε > 0. The non-diffusive initial-boundary value problem associated with (4) is

ut − χ(uv)x = Duxx, x ∈ (0, 1)

vt − ux = 0, x ∈ (0, 1)

(u, v)(x, 0) = (u0, v0)(x), u0 ≥ 0, x ∈ [0, 1],

u(0, t) = u(1, t) = α(t) ≥ 0.

(5)
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Since now the boundary conditions are time-dependent, the global existence and
asymptotic behavior of solutions may become elusive due to time-variable boundary
data. Whether the boundary layer profiles for constant Dirichlet boundary data
can be destructed by time-varying boundary data is also concerned. Hence we
set two goals to this paper. First we show that the global strong solutions of the
initial-boundary value problem (4) and (5) exists and boundary layer profile will
arise as ε → 0 under mild conditions on boundary data α(t) and β(t), where the
solution component u converges in L∞, v converges in L2 while diverges in L∞.
Second, we prove under certain constraints, the time-dependent boundary data
α(t) and β(t) will act as the asymptotic profiles of solutions to (4) approaching
some constant states. We remark that the approaches and estimates developed in
previous works [18, 29] for constant boundary conditions are not adequate for our
current problem with time-dependent boundary data and various delicate boundary
estimates and uniform-in-ε estimates are desired. In this paper we shall introduce
the so called “effective viscous flux” technique employed in the study of the Navier-
Stokes equations (see [17, 36]) to gain the desired estimates to achieve our first
goal. For the second goal, we develop a new entropy-like energy framework and
fully explore the convexity of the entropy expansion to establish a basic L1 energy
estimate, on which the results of the asymptotic behavior of solutions are built up.
We shall state our main results in the next section.

2. Statement of main results. To proceed, we first specify some notations for
clarity. In the sequel, Hk[0, 1] denotes the usual k-th order Sobolev space on [0, 1]

with norm ‖f‖Hk[0,1] :=
(∑k

j=0 ‖∂jxf‖2
)1/2

, where we simply denote ‖ · ‖ := ‖ ·
‖L2[0,1]. We also use ‖ ·‖L∞ to denote ‖ ·‖L∞[0,1]. Unless otherwise specified, we use
C to denote a generic positive constant and C(t) denotes a generic positive constant
which depends on t. The values of the constants may vary line by line according
to the context. The first result of this paper on the existence and uniform-in-ε
boundedness of global solutions to (4) is stated as follows.

Theorem 2.1. Assume that the initial and boundary data satisfy

(u0, v0) ∈ H2[0, 1], u0 ≥ 0, α(t) ≥ 0, (α, β)(t) ∈ C2([0,∞)), |α(t)| ≤ c0, (6)

where c0 is a positive constant. Then for any ε ≥ 0, the initial boundary value
problem (4) has a unique global solution (u, v), such that for any T > 0, there hold
that (u, v) ∈ L∞(0, T ;H2(0, 1)) ∩ L2(0, T ;H2(0, 1)), u ≥ 0 and

‖u‖2H1 + ‖ut‖2 + ‖ux‖2L∞ + ‖v‖2 + ‖v‖2L∞ + ‖vt‖2 + ε
1
2 ‖vx‖2

+

∫ T

0

(
ε

1
2 ‖uxx‖2 + ε

3
2 ‖vxx‖2 + ‖uxt‖2 + ε ‖vxt‖2

)
dτ ≤ C(T ),

where C(T ) is a positive constant dependent on T but independent of ε.

The second result is concerned with the zero chemical diffusion limit of solutions
of (4) and boundary layer emergence as ε → 0. Before stating the results, we first
define boundary layer solutions of the problem (4) (cf. [13, 20, 45, 54]).

Definition 2.2. Let (uε, vε) and (u0, v0) denote the solutions of the initial-boundary
value problems (4) and (5), respectively. If there exists a non-negative function δ(ε)
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satisfying δ(ε)→ 0 as ε→ 0 such that

lim
ε→0
‖(uε − u0, vε − v0)‖L∞([0,T );C[δ,1−δ]) = 0,

lim inf
ε→0

‖(uε − u0, vε − v0)‖L∞([0,T );C[0,1]) > 0,

then the initial-boundary value problem (4) is said to have a boundary layer solution
as ε → 0 and δ(ε) is called a BL-thickness, where ‖(f, g)‖X = ‖f‖X + ‖g‖X ,
X = L∞ ([0, T ); C[0, 1]).

Remark 1. As mentioned in [13], the definition 2.1 does not determine the BL-
thickness uniquely since any function δ∗(ε) satisfying δ∗(ε) > δ(ε) for 0 < ε� 1 is
also a BL-thickness.

Then our second main result is the following.

Theorem 2.3. Let the assumptions in Theorem 2.1 hold. Let (uε, vε) and (u0, v0)
be the solutions of the initial boundary value problems (4) and (5) respectively. Then

(i) As ε→ 0, the following convergence holds:{
(uε, uεx, v

ε, εvεx)→ (u0, u0x, v
0, 0) strongly in L∞

(
[0, T );L2(0, 1)

)
,

(uεt , v
ε
t )→ (u0t , v

0
t ) strongly in L2

(
[0, T );L2(0, 1)

)
.

(ii) There exists a function δ(ε) satisfying

δ(ε)→ 0 and
ε

1
2

δ(ε)
→ 0, as ε→ 0, (7)

such that the initial-boundary value problem (4) has a boundary layer solution sat-
isfying

lim
ε→0
‖vε − v0‖L∞([0,T );C[δ,1−δ]) = 0, (8)

lim inf
ε→0

‖vε − v0‖L∞([0,T );C[0,1]) > 0, (9)

provided that β(t) 6=
∫ t
0
u0x(0, s)ds+ v0(0).

The result in Theorem 2.3 (i) yields that limε→0 ‖uε − u0‖L∞([0,T );C[0,1]) = 0.
This implies that uε does not have boundary layer profile, and only vε has as given
in Theorem 2.3 (ii).

Next we shall state the result on the asymptotic behavior of solutions to (4).

Theorem 2.4. Consider the initial-boundary value problem (4). Suppose that the
initial data (u0, v0) ∈ H1[0, 1] are compatible with the boundary conditions. Assume
that

• there exist constants α, α, β, such that 0 < α = inf α(t) ≤ supα(t) = α < ∞
and sup |β(t)| = β <∞, for all t ≥ 0,

• (αt, βt) ∈ L1(0,∞) ∩ L2(0,∞).

Then for any ε > 0 there exists a unique global-in-time solution (u, v) to (4), such
that (u− α(t), v − β(t)) ∈ L∞(0,∞;H1(0, 1)) ∩ L2(0,∞;H2(0, 1)) and satisfies

lim
t→∞

(
‖u(·, t)− α(t)‖2H1 + ‖v(·, t)− β(t)‖2H1

)
= 0.

We have the following remark regarding Theorem 2.4.
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Remark 2. The conditions on the time-dependent boundary data admit a family
of functions approaching constant states with certain decaying/growth rates, such
as algebraic or exponential, as time goes to infinity. Since the temporal integrability
of the boundary data is not required, boundary functions which approach constant
states with slow decaying/growth rates, such as α(t) = 2 ± 1

(1+t)ε for 0 < ε � 1,

are permitted. The long-time behavior result indicates that the solution decays
asymptotically and its decay profile is determined by the boundary data. In addi-
tion, we require α(t) to be bounded from below and above away from zero, which is
consistent with and generalizes the previous result [29] wherein the boundary data
are constants.

Finally we reverse the results of the transformed system to the pre-transformed
chemotaxis model (1) with m = 1. The counterpart of the initial-boundary value
problem of (1) with m = 1 corresponding to (3) reads as

ut = [Dux − χu(lnw)x]x,

wt = εwxx − uw,
(u,w)(x, 0) = (u0, w0)(x), x ∈ [0, 1],

u(0, t) = u(1, t) = α(t) ≥ 0, (lnw)x|x=0 = (lnw)x|x=1 = −β(t), if ε > 0,

u(0, t) = u(1, t) = α(t) ≥ 0, if ε = 0.

(10)

Then we have following results for (10).

Theorem 2.5. Consider the problem (10).
(i) Assume that the initial and boundary data satisfy

u0 ∈ H2, (lnw0)x ∈ H2, u0(x) ≥ 0, w0(x) > 0, (α(t), β(t)) ∈ C2([0,∞)), |α(t)| ≤ c0.

Then for any ε ≥ 0, the IBVP (10) has a unique global solution (u,w), such that
u ≥ 0 and for any T > 0,{

u ∈ L∞([0, T );H2(0, 1)) ∩ L2([0, T );H2(0, 1)),

w ∈ L∞([0, T );H3(0, 1)) ∩ L2([0, T );H3(0, 1)).
(11)

Let (uε, wε) and (u0, w0) be the solutions to (10) with ε > 0 and ε = 0, respectively.
Then for any t > 0, as the chemical diffusion coefficient ε tends to zero, there is a
positive constant C(t) independent of ε such that∥∥(uε − u0)(·, t)

∥∥2
C[0,1]

+
∥∥(wε − w0)(·, t)

∥∥2
C[0,1]

≤ C(t)ε
1
2 . (12)

Moreover, there is a function δ(ε) satisfying δ(ε) → 0 and ε
1
2

δ(ε) → 0, as ε → 0,

such that

lim
ε→0
‖wεx − w0

x‖L∞([0,T );C[δ,1−δ]) = 0, (13)

lim inf
ε→0

‖wεx − w0
x‖L∞([0,T );C[0,1]) > 0. (14)

(ii) Let the initial data satisfy (u0, (lnw0)x) ∈ H1(0, 1), and let the boundary data
α(t) and β(t) satisfy the conditions in Theorem 2.4. Then for any ε > 0 there exists
a unique global-in-time solution (u,w) to (10), such that (u− α(t), (lnw)x + β(t)) ∈
L∞(0,∞;H1(0, 1)) ∩ L2(0,∞;H2(0, 1)) and

lim
t→∞

‖u(·, t)− α(t)‖L∞ = 0, ‖w(·, t)‖L∞ ≤ Ce
− 1

2 (α−εβ
2
)t.
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Remark 3. Although the result (12) shows that the solutions of the original Keller-
Segel model (1) with m = 1 do not have boundary layer profiles, the results (13)
and (14) indicate that the derivative of w will have boundary layer profiles.

Remark 4. The result in Theorem 2.5 (ii) means that when α > εβ
2

(this condition
is satisfied naturally in the case of β(t) = 0), the L∞-norm of w will exponentially

decay to zero as time goes to infinity. However the result for the case α < εβ
2

is unclear. But our result implies that if the solutions diverge in this case, the
divergence rate is not faster than an exponential rate.

The rest of this paper is organized as follows. In section 3, we shall establish
the global existence of solutions of (4) and prove Theorem 2.1. In section 4, we
explore the vanishing limits as ε → 0 of solutions (boundary layer solutions) and
prove Theorem 2.3. The results on the asymptotic behavior of solutions (Theorem
2.4) will be shown in section 5, and the proof of Theorem 2.5 will be given in section
6. Finally we show the numerical simulations to illustrate boundary layer profiles
and interpret our analytical results in section 7.

3. Proof of Theorem 2.1. In this section, we will prove Theorem 2.1. First,
using the standard arguments (e.g. see [50]), one can show the local existence of
solutions to (4).

Lemma 3.1 (Local existence). Suppose that the assumptions in Theorem 2.1 hold.
For any ε ≥ 0, there exists a positive constant T0 such that (4) has a unique
solution (u, v) ∈ L∞

(
[0, T0);H2(0, 1)

)
∩ L2

(
[0, T0);H2(0, 1)

)
satisfying u ≥ 0 in

(x, t) ∈ [0, 1]× [0, T0).

Next we derive some a priori uniform-in-ε estimates of solutions, which not
only extend the local solutions to global ones, but also play important parts in
investigating the vanishing diffusion limit. We depart from the following boundary
estimates on (ux, vx).

Lemma 3.2. Let the assumptions in Theorem 2.1 hold. Then it holds that

ux(0, t) =− d

dt

(∫ 1

0

∫ x

0

u(ξ, t)dξdx

)
+

∫ 1

0

uvdx− α(t)β(t),

εvx(0, t) =− d

dt

(∫ 1

0

∫ x

0

v(ξ, t)dξdx

)
+

∫ 1

0

udx− α(t)

− ε
∫ 1

0

(v2 − β2(t))dx,

(15)

and 

ux(1, t) =
d

dt

(∫ 1

0

∫ 1

x

u(ξ, t)dξdx

)
+

∫ 1

0

uvdx− α(t)β(t),

εvx(1, t) =
d

dt

(∫ 1

0

∫ 1

x

v(ξ, t)dξdx

)
+

∫ 1

0

udx− α(t)

− ε
∫ 1

0

(v2 − β2(t))dx.

(16)
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Proof. By integrating (3) over (0, x) and using the boundary condition in (4), we
have 

ux(0, t) =ux −
d

dt

(∫ x

0

udx

)
+ uv − α(t)β(t),

εvx(0, t) =εvx −
d

dt

(∫ x

0

vdx

)
+ u− α(t)− ε(v2 − β2(t)).

(17)

Then, integrating (17) with respect to x over (0, 1), yields (15). Similarly, (16) is
obtained.

Lemma 3.3. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, there
exists a positive constant C(t) which is dependent on t but independent of ε, such
that ∫ 1

0

u(x, t)dx+ ‖v(·, t)‖2 +

∫ t

0

(∫ 1

0

(ux)2

u+ 1
dx+ ε ‖vx‖2

)
dτ ≤ C(t). (18)

Proof. To resolve the logarithmic singularity in the following estimates, inspired by
[29], we make a technical treatment by introducing a change of variable ũ = u+ 1.
Thus, problem (4) turns into

ũt − ũxx = (ũv)x − vx,
vt − εvxx = (ũ− εv2)x,

(ũ, v)(x, 0) = (ũ0, v0)(x) = (u0 + 1, v0)(x), ũ0(x) ≥ 1, x ∈ [0, 1],

ũ(0, t) = ũ(1, t) = α(t) + 1 ≥ 1, v(0, t) = v(1, t) = β(t).

(19)

Multiplying the first equation of (19) by ln ũ and integrating the result by parts
over [0, 1], we have

d

dt

∫ 1

0

ηdx+

∫ 1

0

(ũx)2

ũ
dx+

∫ 1

0

ũxvdx =(ũx ln ũ+ uv ln ũ)
∣∣∣x=1

x=0
+

∫ 1

0

v
ũx
ũ
dx

=ũx ln ũ
∣∣∣x=1

x=0
+

∫ 1

0

v
ũx
ũ
dx,

(20)

where η = ũ ln ũ − ũ + 1 + R and R is a positive constant to be determined later.
Multiplying the second equation of (19) by v and integrating the result by parts
over [0, 1], we have

1

2

d

dt

∫ 1

0

v2dx−
∫ 1

0

ũxvdx+ ε ‖vx‖2 = εvxv
∣∣∣x=1

x=0
. (21)

Adding (20) to (21) and integrating the result over (0, t) yield that∫ 1

0

ηdx+
1

2
‖v‖2 +

∫ t

0

(∫ 1

0

(ũx)2

ũ
dx+ ε ‖vx‖2

)
dτ

≤
∫ 1

0

η0dx+
1

2
‖v0‖2 + ε

∫ t

0

vxv
∣∣∣x=1

x=0
dτ

+

∫ t

0

ũx ln ũ
∣∣∣x=1

x=0
dτ +

∫ t

0

∫ 1

0

v
ũx
ũ
dxdτ.

(22)
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Using the fact ũ ≥ 1 and Cauchy-Schwarz inequality, we get∫ t

0

∫ 1

0

v
ũx
ũ
dxdτ ≤1

2

∫ t

0

∫ 1

0

(ũx)2

ũ
dxdτ +

1

2

∫ t

0

∫ 1

0

v2

ũ
dxdτ

≤1

2

∫ t

0

∫ 1

0

(ũx)2

ũ
dxdτ +

1

2

∫ t

0

∫ 1

0

v2dxdτ,

and ∫ 1

0

η0dx =

∫ 1

0

(ũ0 ln ũ0 − ũ0 + 1 +R)dx

≤
∫ 1

0

ũ20dx−
∫ 1

0

u0dx+

∫ 1

0

Rdx ≤ 2 ‖u0‖2 + 2 +R.

On the other hand, from the boundary conditions in (6), for any t > 0 there is a
constant c1(t) which may depend on t such that

‖(α, β)(·)‖C2[0,t) ≤ c1(t). (23)

Thus, using Lemma 3.2, (23), integration by parts and Cauchy-Schwarz inequality,
we can estimate the third term on the right-hand side of (22) as follows:

ε

∫ t

0

vxv
∣∣∣x=1

x=0
dτ =ε

∫ t

0

β(τ) (vx(1, τ)− vx(0, τ)) dτ

=

∫ t

0

d

dτ

(∫ 1

0

v(x, τ)dx

)
β(τ)dτ

=

∫ 1

0

v(x, t)β(t)dx−
∫ 1

0

v(x, 0)β(0)dx

−
∫ t

0

(∫ 1

0

v(x, τ)dx

)
β′(τ)dτ

≤c1(t)

∫ 1

0

|v|dx+ c1(t)

∫ t

0

∫ 1

0

|v|dxdτ + C

≤1

4
‖v‖2 + C(t)

∫ t

0

‖v‖2 dτ + C(t).

(24)

Noting that ũx = ux, for the fourth term on the right-hand side of (22), we use
Lemma 3.2, (6) and the integration by parts to get∫ t

0

ũx ln ũ
∣∣∣x=1

x=0
dτ =

∫ t

0

ln(α(τ) + 1) (ũx(1, τ)− ũx(0, τ)) dτ

=

∫ t

0

ln(α(τ) + 1)
d

dτ

(∫ 1

0

u(x, τ)dx

)
dτ

=

(∫ 1

0

u(x, t)dx

)
ln(α(t) + 1)−

(∫ 1

0

u(x, 0)dx

)
ln(α(0) + 1)

−
∫ t

0

(∫ 1

0

u(x, τ)α′(τ)

α(τ) + 1
dx

)
dτ

≤ ln(α(t) + 1)

∫ 1

0

udx+ C(t)

∫ t

0

∫ 1

0

udxdτ + C(t)

≤d1
∫ 1

0

udx+ C(t)

∫ t

0

∫ 1

0

udxdτ + C(t),
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where we have used the fact that α(t) ≥ 0, (23) and ln(α(t) + 1) ≤ ln(c0 + 1) ≤
d1,where d1 ≥ 1 is a constant. If we choose R = 2d1e

2d1+2, then it holds that

0 ≤ u ≤ d1u ≤ d1ũ ≤
1

2
(ũ ln ũ− ũ+ 1 + 2d1e

2d1+2) =
1

2
η.

Inserting the above estimates into (22) yields∫ 1

0

udx+
1

4
‖v‖2 +

1

2

∫ t

0

∫ 1

0

(ũx)2

ũ
dxdτ + ε

∫ t

0

‖vx‖2 dτ

≤C(t) + C(t)

∫ t

0

∫ 1

0

udxdτ + C(t)

∫ t

0

‖v‖2 dτ

≤C(t) + C(t)

∫ t

0

(∫ 1

0

udxdτ + ‖v‖2
)
dτ,

which results in (18) by the Gronwall’s inequality.

Lemma 3.4. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, there
exists a constant C(t) > 0 which is dependent on t but independent of ε, such that

‖u(·, t)‖2 + ‖v(·, t)‖2 +

∫ t

0

(‖ux‖2 + ε ‖vx‖2)dτ ≤ C(t). (25)

Proof. Multiplying the first equation of (4) by u, integrating the result by parts
over [0, 1], and adding the resultant equality to (21), we have

1

2

d

dt
(‖u‖2 + ‖v‖2) + ‖ux‖2 + ε ‖vx‖2

=−
∫ 1

0

uvuxdx+

∫ 1

0

uxvdx+ u2v
∣∣∣x=1

x=0
+ uxu

∣∣∣x=1

x=0
− 2ε

3
v3
∣∣∣x=1

x=0
+ εvxv

∣∣∣x=1

x=0
.

(26)

Integrating (26) with respect to t and using the boundary conditions in (4), we have

1

2
(‖u‖2 + ‖v‖2) +

∫ t

0

(‖ux‖2 + ε ‖vx‖2)dτ

=
1

2
(‖u0‖2 + ‖v0‖2)−

∫ t

0

∫ 1

0

uvuxdxdτ +

∫ t

0

∫ 1

0

uxvdxdτ

+

∫ t

0

uxu
∣∣∣x=1

x=0
dτ + ε

∫ t

0

vxv
∣∣∣x=1

x=0
dτ.

(27)

For the second and third terms on the right-hand side of (27), by the Gagliardo-
Nirenberg and Cauchy-Schwarz inequalities, we have∫ t

0

∫ 1

0

uvuxdxdτ +

∫ t

0

∫ 1

0

uxvdxdτ

≤1

4

∫ t

0

‖ux‖2 dτ +

∫ t

0

‖u‖2L∞ ‖v‖
2
dτ +

∫ t

0

‖v‖2 dτ

≤1

4

∫ t

0

‖ux‖2 dτ + C(t)

∫ t

0

(‖u‖2 + ‖u‖ ‖ux‖)dτ + C(t)

≤1

2

∫ t

0

‖ux‖2 dτ + C(t)

∫ t

0

‖u‖2 dτ + C(t),

where in the second inequality we have used (18). The last term on the right-hand
side of (27) has been well estimated in (24). Therefore, we get from (18) and (24)
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that

ε

∫ t

0

vxv
∣∣∣x=1

x=0
dτ ≤ 1

4
‖v‖2 + C(t)

∫ t

0

‖v‖2 dτ + C(t) ≤ C(t).

For the fourth term on the right-hand side of (27), by Lemma 3.2 and integration
by parts, we have∫ t

0

uxu
∣∣∣x=1

x=0
dτ =

∫ t

0

d

dτ

(∫ 1

0

u(x, τ)dx

)
α(τ)dτ

=α(t)

∫ 1

0

u(x, t)dx− α(0)

∫ 1

0

u(x, 0)dx−
∫ t

0

∫ 1

0

u(x, τ)α′(τ)dxdτ

≤C(t),

where we have used (18) and (23). Substituting these estimates into (27), we obtain

1

2
(‖u‖2 + ‖v‖2) +

1

2

∫ t

0

(‖ux‖2 + ε ‖vx‖2)dτ ≤ C(t)

∫ t

0

‖u‖2 dτ + C(t),

which, together with Gronwall’s inequality, yields (25).

Lemma 3.5. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, it
holds that

‖(ut, vt, ux)(·, t)‖2 +

∫ t

0

(
‖ut‖2 + ‖uxt‖2 + ε ‖vxt‖2

)
dτ ≤ C(t), (28)

where the constant C(t) is independent of ε but dependent on t.

Proof. We first multiply the first equation of (4) by ut and integrate the resulting
equation over [0, 1]× [0, t] to get

1

2
‖ux‖2 +

∫ t

0

‖ut‖2 dτ

=
1

2
‖u0x‖2 +

∫ t

0

∫ 1

0

(uv)xutdxdτ +

∫ t

0

uxut

∣∣∣x=1

x=0
dτ

=
1

2
‖u0x‖2 −

∫ t

0

∫ 1

0

uvuxtdxdτ +

∫ t

0

uvut

∣∣∣x=1

x=0
dτ +

∫ t

0

uxut

∣∣∣x=1

x=0
dτ

=
1

2
‖u0x‖2 −

∫ t

0

∫ 1

0

uvuxtdxdτ +

∫ t

0

uxut

∣∣∣x=1

x=0
dτ,

(29)

where in the last equality we have used the boundary conditions in (4). For the
second term on the right-hand side of (29), by the Gagliardo-Nirenberg and Cauchy-
Schwarz inequalities, (18) and (25), we have

−
∫ t

0

∫ 1

0

uvuxtdxdτ ≤
1

8

∫ t

0

‖uxt‖2 dτ + 2

∫ t

0

‖u‖2L∞ ‖v‖
2
dτ

≤1

8

∫ t

0

‖uxt‖2 dτ + C

∫ t

0

(‖u‖2 + ‖ux‖2) ‖v‖2 dτ

≤C(t) +
1

8

∫ t

0

‖uxt‖2 dτ.

(30)
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From Lemma 3.2 and integration by parts, the last term on the right-hand side of
(29) can be estimated as follows:∫ t

0

uxut

∣∣∣x=1

x=0
dτ =

∫ t

0

(ux(1, τ)− ux(0, τ))α′(τ)dτ

=

∫ t

0

d

dτ

(∫ 1

0

u(x, τ)dx

)
α′(τ)dτ

=α′(t)

∫ 1

0

u(x, t)dx− α′(0)

∫ 1

0

u(x, 0)dx

−
∫ t

0

∫ 1

0

u(x, τ)α′′(τ)dxdτ

≤C(t),

(31)

where (18) and (23) have been used. Substituting (30) and (31) into (29), we have

1

2
‖ux‖2 +

∫ t

0

‖ut‖2 ≤
1

8

∫ t

0

‖uxt‖2 dτ + C(t). (32)

Next, in order to obtain the estimate of

∫ t

0

‖uxt‖2 dτ , differentiating (3) with respect

time t, we get {
utt − uxxt = (uv)xt,

vtt − εvxxt = (u− εv2)xt.
(33)

Multiplying the first equation of (33) by ut and the second by vt, adding the results
and integrating it over [0, 1]× [0, t], we have

1

2
‖ut‖2 +

1

2
‖vt‖2

=
1

2

(
‖ut(0, x)‖2 + ‖vt(0, x)‖2

)
+

∫ t

0

∫ 1

0

(uxxt + (uv)xt)utdxdτ

+

∫ t

0

∫ 1

0

uxtvtdxdτ + ε

∫ t

0

∫ 1

0

vxxtvtdxdτ − ε
∫ t

0

∫ 1

0

(v2)xtvtdxdτ

=
1

2

(
‖ut(0, x)‖2 + ‖vt(0, x)‖2

)
+

4∑
i=1

Ii.

(34)

For I1, integrating by parts and using the boundary conditions in (4), we obtain

I1 =−
∫ t

0

‖uxt‖2 dτ −
∫ t

0

∫ 1

0

(uv)tuxtdxdτ

+

∫ t

0

uxtut

∣∣∣x=1

x=0
dτ +

∫ t

0

(uv)tut

∣∣∣x=1

x=0
dτ

=−
∫ t

0

‖uxt‖2 dτ −
∫ t

0

∫ 1

0

(uvt + utv)uxtdxdτ +

∫ t

0

uxtut

∣∣∣x=1

x=0
dτ.

(35)

Using (25), Gagliardo-Nirenberg and Cauchy-Schwarz inequalities, we can estimate
the second term on the right-hand side of (35) as

−
∫ t

0

∫ 1

0

(uvt + utv)uxtdxdτ



SINGULAR KELLER-SEGEL SYSTEM 1097

≤1

8

∫ t

0

‖uxt‖2 dτ + C

∫ t

0

(‖utv‖2 + ‖uvt‖2)dτ

≤1

8

∫ t

0

‖uxt‖2 dτ + C

∫ t

0

‖ut‖2L∞ ‖v‖
2
dτ + C

∫ t

0

‖u‖2L∞ ‖vt‖
2
dτ

≤1

8

∫ t

0

‖uxt‖2 dτ + C(t)

∫ t

0

(‖ut‖2 + ‖ut‖ ‖uxt‖)dτ

+ C(t)

∫ t

0

(‖u‖2 + ‖u‖ ‖ux‖) ‖vt‖2 dτ

≤1

4

∫ t

0

‖uxt‖2 dτ + C(t)

∫ t

0

‖ut‖2 dτ + C(t)

∫ t

0

(1 + ‖ux‖2) ‖vt‖2 ,

which updates (35) as

I1 ≤−
3

4

∫ t

0

‖uxt‖2 dτ + C(t)

∫ t

0

‖ut‖2 dτ

+ C(t)

∫ t

0

(1 + ‖ux‖2) ‖vt‖2 +

∫ t

0

uxtut

∣∣∣x=1

x=0
dτ.

By Cauchy-Schwarz inequality, we have

I2 ≤
1

4

∫ t

0

‖uxt‖2 dτ +

∫ t

0

‖vt‖2 dτ.

Integration by parts implies

I3 =ε

∫ t

0

∫ 1

0

vxxtvtdxdτ = −ε
∫ t

0

‖vxt‖2 dτ + ε

∫ t

0

vxtvt

∣∣∣x=1

x=0
dτ. (36)

In order to estimate the boundary terms in (35) and (36), we follow the same
procedure as in Lemma 3.2 and get

uxt(1, t)− uxt(0, t) =
d

dt

(∫ 1

0

ut(x, t)dx

)
(37)

and

vxt(1, t)− εvxt(0, t) =
d

dt

(∫ 1

0

vt(x, t)dx

)
. (38)

Using (23) and (37), integration by parts and Cauchy-Schwarz inequality, we can
estimate the last term on the right-hand side of (35) as follows:∫ t

0

uxtut

∣∣∣x=1

x=0
dτ =

∫ t

0

(uxt(1, τ)− uxt(0, τ))α′(τ)dτ

=

∫ t

0

d

dτ

(∫ 1

0

uτ (x, τ)dx

)
α′(τ)dτ

=α′(t)

∫ 1

0

ut(x, t)dx− α′(0)

∫ 1

0

ut(x, 0)dx

−
∫ t

0

∫ 1

0

ut(x, τ)α′′(τ)dxdτ

≤1

4
‖ut‖2 +

∫ t

0

‖ut‖2 dτ + C(t).
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Similar to (24), we can estimate the last term on the right-hand side of (36) as

ε

∫ t

0

vxtvt

∣∣∣x=1

x=0
dτ =

∫ t

0

d

dτ

(∫ 1

0

∫ 1

x

vt(ξ, τ)dξdx

)
β′(τ)dτ

≤
∫ 1

0

|vt||β′(τ)|dx+

∫ 1

0

|vt(0, t)||β′(0)|dx

+

∫ t

0

∫ 1

0

|vt||β′′(τ)|dxdτ

≤1

4
‖vt‖2 +

∫ t

0

‖vt‖2 dτ + C(t),

where we have used (38). Next, we need to estimate I4. Integrating by parts,
using the boundary conditions in (4), Gagliardo-Nirenberg and Cauchy-Schwarz
inequalities, we obtain

I4 =− ε
∫ t

0

∫ 1

0

(v2)xtvtdxdτ

=ε

∫ t

0

∫ 1

0

(v2)tvxtdxdτ − ε
∫ t

0

(v2)tvt

∣∣∣x=1

x=0
dτ

≤ε
2

∫ t

0

‖vxt‖2 dτ + 2ε

∫ t

0

‖v‖2L∞ ‖vt‖
2
dτ

≤ε
2

∫ t

0

‖vxt‖2 dτ + C

∫ t

0

(ε ‖v‖2 + ε ‖vx‖2) ‖vt‖2 dτ

≤ε
2

∫ t

0

‖vxt‖2 dτ + C(t)

∫ t

0

(1 + ε ‖vx‖2) ‖vt‖2 dτ.

Substituting the estimates of Ii (i = 1, 2, 3, 4) into (34), we get

1

4
‖ut‖2 +

1

4
‖vt‖2 +

1

2

∫ t

0

(‖uxt‖2 + ε ‖vxt‖2)dτ

≤C(t) + C(t)

∫ t

0

(1 + ‖ux‖2 + ε ‖vx‖2)(‖ut‖2 + ‖vt‖2)dτ.

Using Gronwall’s inequality and (25), we obtain

‖ut‖2 + ‖vt‖2 +

∫ t

0

(‖uxt‖2 + ε ‖vxt‖2)dτ ≤ C(t), (39)

which together with (32) leads to ‖ux‖2 +

∫ t

0

‖ut‖2 dτ ≤ C(t). This, along with

(39), leads immediately to (28).

The next lemma gives the estimate of L∞-norm of (ux, v). It turns out it is not
easy to gain them by the routine procedure like the iteration method. Motivated
by the studies for the Navier-Stokes equations (cf. [17, 19, 36]), we here introduce
the following so-called “effective viscous flux G(x, t)”:

G = ux + uv. (40)

From the first equation of (3), it is easy to see that

Gx = ut. (41)
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The quantity effective viscous flux G will play an important role deriving the L∞-
norm of (ux, v).

Lemma 3.6. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, there
exists a constant C(t) > 0 which is independent of ε, such that

‖ux(·, t)‖L∞ + ‖v(·, t)‖L∞ ≤ C(t). (42)

Proof. Multiplying the second equation of (4) by 2nv2n−1(n ≥ 1 is an integer),
integrating the result by parts over (0, 1), we obtain

d

dt

∫ 1

0

v2ndx+ 2n(2n− 1)ε

∫ 1

0

v2n−2v2xdx

=2n

∫ 1

0

v2n−1uxdx−
4nε

2n+ 1

∫ 1

0

(v2n+1)xdx

+ 2nε
[
β(t)2n−1vx(1, t)− β(t)2n−1vx(0, t)

]︸ ︷︷ ︸
R1

≤2n

∫ 1

0

v2n−1Gdx− 2n

∫ 1

0

v2nudx+R1

≤2n

∫ 1

0

(v2n + 1)|G|dx+R1

≤2n‖G‖L∞
∫ 1

0

v2ndx+ 2n‖G‖L∞ +R1,

(43)

where we have used the boundary conditions in (4) and the non-negativity of u
and v2n. Now, we need to control ‖G‖L∞ . Using Gagliardo-Nirenberg inequality,
(40)-(41), (25) and (28), we get

‖G‖2 ≤ C(‖ux‖2 + ‖uv‖2) ≤ C(‖ux‖2 + ‖u‖2L∞ ‖v‖
2
) ≤ C(t)

and

‖G‖2L∞ ≤ C(‖G‖2 + ‖G‖ ‖Gx‖) ≤ C(t)(1 + ‖ut‖2) ≤ C(t). (44)

Using Lemma 3.2 and integration by parts, we have∫ t

0

R1dτ =2nε

∫ t

0

β2n−1(τ) (vx(1, τ)− vx(0, τ)) dτ

=2n

∫ t

0

β2n−1(τ)
d

dτ

(∫ 1

0

v(x, τ)dx

)
dτ

≤2n

∫ 1

0

|v||β2n−1(t)|dx+ 2n

∫ 1

0

|v0||β2n−1(0)|dx

+ 2n(2n− 1)

∫ t

0

∫ 1

0

|v||β2n−2(τ)||β′(τ)|dxdτ

≤2nC2n(t) + 2nC2n(t)

∫ 1

0

|v|dx+ 2n(2n− 1)C2n(t)

∫ t

0

∫ 1

0

|v|dxdτ

≤Cn2C2n(t),

(45)
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where we have used (23) and (25). Then it follows from (43)-(45) and Gronwall’s
inequality that∫ 1

0

v2ndx ≤ Cn2C2n(t) exp

{
2n

∫ t

0

‖G‖L∞dτ
}
≤ Cn2C2n(t) exp{C(t)n}. (46)

Then, raising the power 1
2n to both sides of (46) and letting n→∞, we obtain that

‖v‖L∞ ≤ C(t). (47)

From (40), (25), (28), (44) and (47), we conclude that

‖ux‖L∞ ≤ ‖G‖L∞ + ‖u‖L∞ ‖v‖L∞ ≤ C(t).

Thus, the proof of (42) is completed.

The following refined estimates of (u, v) will play an important role in the study
of vanishing diffusion limit.

Lemma 3.7. Let the assumptions in Theorem 2.1 hold. Then for any t > 0, it
holds that

ε
1
2 ‖vx(·, t)‖2 +

∫ t

0

(
ε

1
2 ‖uxx‖2 + ε

3
2 ‖vxx‖2

)
dτ ≤ C(t), (48)

where the constant C(t) is independent of ε but depends on t.

Proof. Multiplying the first equation of (4) by −2εuxx in L2, using Cauchy-Schwarz
inequality, (23) and Lemmas 3.4-3.6, we have

ε
d

dt
‖ux‖2 + 2ε ‖uxx‖2

=− 2ε

∫ 1

0

(uv)xuxxdx+ 2εuxut

∣∣∣x=1

x=0

≤ε
4
‖uxx‖2 + 4ε(‖u‖2L∞ ‖vx‖

2
+ ‖ux‖2L∞ ‖v‖

2
) + 4εc1(t) ‖ux‖L∞

≤ε
4
‖uxx‖2 + C(t)ε ‖vx‖2 + C(t)ε.

(49)

Next, we differentiate the second equation of (3) with respect to x, and subtract
the resulting equation from the first equation of (3), to get

vxt − εvxxx = ut − (uv)x − ε(v2)xx. (50)

Multiplying (50) by 2εvx and integrating the result over (0, 1) yield

ε
d

dt
‖vx‖2 + 2ε2 ‖vxx‖2

=2ε

∫ 1

0

(vxut − (uv)xvx) dx− 2ε2
∫ 1

0

vx(v2)xxdx+ 2ε2vxvxx

∣∣∣x=1

x=0

=I5 + I6 + I7.

(51)

I5 can be estimated by Cauchy-Schwarz inequality and Lemmas 3.4-3.6 as

I5 ≤ ε ‖vx‖2 + 2ε(‖ut‖2 + ‖uvx‖2 + ‖uxv‖2) ≤ C(t)ε ‖vx‖2 + C(t)ε.
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For I6, we use integration by parts, Cauchy-Schwarz inequality, Sobolev embedding
theorem and Lemmas 3.4-3.6, to get

I6 =− 2ε2
∫ 1

0

vx(v2)xxdx

=2ε2
∫ 1

0

vxx(v2)xdx− 2ε2vx(v2)x

∣∣∣x=1

x=0

≤ε
2

4
‖vxx‖2 + 16ε2 ‖v‖2L∞ ‖vx‖

2
+ 4ε2 ‖v‖L∞ ‖vx‖

2
L∞

≤ε
2

4
‖vxx‖2 + C(t)ε2 ‖vx‖2 + C(t)ε2

(
‖vx‖2 + ‖vx‖ ‖vxx‖

)
≤ε

2

2
‖vxx‖2 + C(t)ε ‖vx‖2 .

Noting that εvxx = vt − ux + ε(v2)x, using (23), (42), the Gagliardo-Nirenberg and
Cauchy-Schwarz inequalities, we have

I7 =2ε2vxvxx

∣∣∣x=1

x=0
= 2εvx

(
vt − ux + ε(v2)x

) ∣∣∣x=1

x=0

=2εvxvt

∣∣∣x=1

x=0
− 2εvxux

∣∣∣x=1

x=0
+ 2ε2vx(v2)x

∣∣∣x=1

x=0

≤2β′(t)ε ‖vx‖L∞ + 2ε ‖ux‖L∞ ‖vx‖L∞ + 4ε2 ‖v‖L∞ ‖vx‖
2
L∞

≤C(t)ε ‖vx‖L∞ + C(t)ε2(‖vx‖2 + ‖vx‖ ‖vxx‖)

≤C(t)ε ‖vx‖2 +
1

8
ε2 ‖vxx‖2 + C(t)ε

1
2 + C(t)ε2 ‖vx‖2 +

1

8
ε2 ‖vxx‖2

≤C(t)ε ‖vx‖2 +
1

4
ε2 ‖vxx‖2 ,

where we have used the following inequality derived from Gagliardo-Nirenberg in-
equality and Young inequality

C(t)ε ‖vx‖L∞ ≤C(t)ε(‖vx‖+ ‖vx‖
1
2 ‖vxx‖

1
2 )

≤C(t)ε ‖vx‖2 +
1

8
ε2 ‖vxx‖2 + C(t)ε

1
2 .

Substituting the estimates of Ii (i = 5, 6, 7) into (51) and adding the resulting
inequality to (49) yield

ε
d

dt
(‖ux‖2 + ‖vx‖2) + ε ‖uxx‖2 + ε2 ‖vxx‖2 ≤ C(t)ε ‖vx‖2 + C(t)ε

1
2 .

Then the Gronwall’s inequality leads to

ε(‖ux‖2 + ‖vx‖2) +

∫ t

0

(
ε ‖uxx‖2 + ε2 ‖vxx‖2

)
dτ ≤ C(t)ε

1
2 ,

which immediately gives (48) and completes the proof of Lemma 3.7.

Finally, Theorem 2.1 results from Lemmas 3.1-3.7.

4. Vanishing diffusion limit and boundary layer solutions. This section is
concerned with the vanishing diffusion limit and boundary layer solutions. We first
give the global existence of solutions to the non-diffusion problem (5).
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Lemma 4.1. Assume that the initial and boundary data satisfy

(u0, v0) ∈ H2, u0 ≥ 0, u(0, t) = u(1, t) = α(t) ≥ 0, α(t) ∈ C2([0,∞)), |α(t)| ≤ c0.

Then for any 0 < T < ∞, there exists a unique strong solution (u, v) to (5) in
[0, 1]× [0, T ) satisfying (u, v) ∈ L∞

(
[0, T );H2(0, 1)

)
∩ L2

(
[0, T );H2(0, 1)

)
.

Proof. Noting that the energy estimates established in Theorem 2.1 still hold true
for ε = 0, i.e., for any t > 0, there is a constant C(t) > 0, such that

‖u(·, t)‖2H1 + ‖ut(·, t)‖2 + ‖ux(·, t)‖2L∞
+ ‖v(·, t)‖2 + ‖v(·, t)‖2L∞ + ‖vt(·, t)‖2

+

∫ t

0

(
‖ut‖2 + ‖vt‖2 + ‖uxt‖2

)
dτ ≤ C(t).

(52)

Next, we will give the estimate of ‖vx‖. Differentiating the second equation of (5)
with respect to x, then subtracting the resulting equation from the first equation
of (5), we have

vxt = ut − (uv)x. (53)

Multiplying (53) by 2vx, integrating by parts over (0, 1) and using Cauchy-Schwarz
inequality and (52), we deduce

d

dt
‖vx‖2 =2

∫ 1

0

vxutdx− 2

∫ 1

0

(uv)xvxdx

≤‖vx‖2 + 2 ‖ut‖2 + 4 ‖uvx‖2 + 4 ‖uxv‖2

≤C(t) ‖vx‖2 + C(t).

Applying Gronwall’s inequality, we have

‖vx‖2 ≤ C(t). (54)

This together with the first equation of (5) and (52) means

‖uxx‖ ≤ ‖ut‖+ ‖uvx‖+ ‖uxv‖ ≤ C(t). (55)

Next differentiating (53) with respect to x, we have

vxxt = utx − (uv)xx. (56)

Multiplying (56) by 2vxx, integrating by parts over (0, 1), using Cauchy-Schwarz
inequality, (52) and (54), we deduce

d

dt
‖vxx‖2 =2

∫ 1

0

vxxuxtdx− 2

∫ 1

0

(uv)xxvxxdx

≤‖vxx‖2 + 2 ‖uxt‖2 + 6 ‖uvxx‖2 + 24 ‖uxvx‖2 + 6 ‖uxxv‖2

≤C(t) ‖vxx‖2 + 2 ‖uxt‖2 + C(t).

Applying Gronwall’s inequality and (52), we have

‖vxx‖2 ≤ C(t).

This together with (52), (54)-(55) and the local existence of solutions to (5) (see
Lemma 3.1) completes the proof of Lemma 4.1.
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4.1. Proof of Theorem 2.3 (i). Let (uε, vε) and (u0, v0) be the solutions to the
initial boundary value problems (4) and (5), respectively. Let us set

ϕε = uε − u0, θε = vε − v0.

Then, by a straightforward calculation, we find that (ϕε, θε) satisfies the following
the initial boundary value problem:{

ϕεt −
(
uεθε + v0ϕε

)
x

= ϕεxx,

θεt − (ϕε − ε (vε)
2
)x = εvεxx,

(57)

with initial data

(ϕε, θε) (x, 0) = (0, 0), (58)

and boundary condition:

ϕε(0, t) = ϕε(1, t) = 0. (59)

Lemma 4.2. Assume that the assumptions listed in Theorem 2.1 and Lemma 4.1
are satisfied. Then for any t > 0, there exists a positive constant C(t) which is
independent of ε, such that∥∥(uε − u0)(·, t)

∥∥2 +
∥∥(vε − v0)(·, t)

∥∥2
+

∫ t

0

(∥∥(uε − u0)x
∥∥2 + ε ‖vεx‖

2
)
dτ ≤ C(t)ε

1
2

(60)

and ∥∥(uε − u0)x(·, t)
∥∥2 + ε ‖vεx(·, t)‖2

+

∫ t

0

(∥∥(uε − u0)t
∥∥2 +

∥∥(vε − v0)t
∥∥2) dτ ≤ C(t)ε

1
2 .

(61)

Proof. Multiplying the first and second equations of (57) by 2ϕε and 2θε respec-
tively, integrating the result by parts on [0, 1], using the boundary condition (59),
we have

d

dt
(‖ϕε‖2 + ‖θε‖2) + 2 ‖ϕεx‖

2

=− 2

∫ 1

0

(
uεθε + v0ϕε

)
ϕεxdx+ 2

∫ 1

0

(ϕε − ε (vε)
2
)xθ

εdx+ 2ε

∫ 1

0

vεxxθ
εdx

=J1 + J2 + J3.

(62)

By Cauchy-Schwarz inequality and Theorem 2.1, we have

J1 ≤
1

2
‖ϕεx‖

2
+ C ‖uε‖2L∞ ‖θ

ε‖2 + C
∥∥v0∥∥2

L∞
‖ϕε‖2

≤1

2
‖ϕεx‖

2
+ C(t)(‖θε‖2 + ‖ϕε‖2),

J2 ≤
1

2
‖ϕεx‖

2
+ C ‖θε‖2 + Cε2 ‖vε‖2L∞ ‖v

ε
x‖

2

≤1

2
‖ϕεx‖

2
+ C ‖θε‖2 + C(t)ε

3
2 ,

J3 ≤‖θε‖2 + ε2 ‖vεxx‖
2
.
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Substituting the estimates of Ji (i = 1, 2, 3) into (62), we get

d

dt
(‖ϕε‖2 + ‖θε‖2) + ‖ϕεx‖

2
+ ε ‖vεx‖

2

≤C(t)(‖ϕε‖2 + ‖θε‖2) + ε2 ‖vεxx‖
2

+ C(t)ε
3
2 ,

which, along with Gronwall’s inequality, (58) and (48), leads to

‖ϕε‖2 + ‖θε‖2 +

∫ t

0

(‖ϕεx‖
2

+ ε ‖vεx‖
2
)dτ

≤C(t)ε2
∫ t

0

‖vεxx‖
2
dτ + C(t)ε

3
2 ≤ C(t)ε

1
2 .

(63)

Then (60) follows from (63).
Next, we derive the estimates for (ϕεx, θ

ε
x). To this end, multiplying the first

and second equations of (57) by 2ϕεt and 2θεt , respectively, and then integrating the
results over [0, 1], we have

d

dt
‖ϕεx‖

2
+ 2 ‖ϕεt‖

2
+ 2 ‖θεt ‖

2

=2

∫ 1

0

(
uεθε + v0ϕε

)
x
ϕεtdx+ 2

∫ 1

0

(ϕε − ε (vε)
2
)xθ

ε
tdx+ 2ε

∫ 1

0

vεxxθ
ε
tdx

=J4 + J5 + J6.

(64)

Next, we estimate Ji (i = 4, 5, 6). First, we write J4 as follows:

J4 =2

∫ 1

0

(
uεxθ

εϕεt + v0xϕ
εϕεt + v0ϕεxϕ

ε
t

)
dx+ 2

∫ 1

0

uεθεxϕ
ε
tdx = H1 +H2.

It follows from Cauchy-Schwarz inequality, Lemma 4.1, Theorem 2.1 and (60) that

H1 ≤
1

2
‖ϕεt‖

2
+ C ‖uεx‖

2
L∞ ‖θ

ε‖2 + C
∥∥v0x∥∥2L∞ ‖ϕε‖2 + C

∥∥v0∥∥2
L∞
‖ϕεx‖

2

≤1

2
‖ϕεt‖

2
+ C(t) ‖ϕεx‖

2
+ C(t)ε

1
2 .

For H2, integrating by parts and using Cauchy-Schwarz inequality, Gagliardo-
Nirenberg inequality, Theorem 2.1 and (60), we have

H2 =− 2

∫ 1

0

uεθεϕεxtdx− 2

∫ 1

0

uεxθ
εϕεtdx

=− 2
d

dt

∫ 1

0

uεθεϕεxdx+ 2

∫ 1

0

uεtθ
εϕεxdx

+ 2

∫ 1

0

uεθεtϕ
ε
xdx− 2

∫ 1

0

uεxθ
εϕεtdx

≤− 2
d

dt

∫ 1

0

uεθεϕεxdx+ ‖θε‖2 + C ‖uεt‖
2
L∞ ‖ϕ

ε
x‖

2
+

1

2
‖θεt ‖

2

+ C ‖uε‖2L∞ ‖ϕ
ε
x‖

2
+

1

2
‖ϕεt‖

2
+ C ‖uεx‖

2
L∞ ‖θ

ε‖2

≤− 2
d

dt

∫ 1

0

uεθεϕεxdx+
1

2
(‖θεt ‖

2
+ ‖ϕεt‖

2
)

+ C(t)(1 + ‖uεt‖
2

+ ‖uεxt‖
2
) ‖ϕεx‖

2
+ C(t)ε

1
2
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≤− 2
d

dt

∫ 1

0

uεθεϕεxdx+
1

2
(‖θεt ‖

2
+ ‖ϕεt‖

2
)

+ C(1 + ‖uεxt‖
2
) ‖ϕεx‖

2
+ C(t)ε

1
2 .

Next, using Cauchy-Schwarz inequality and Theorem 2.1, we obtain

J5 =2

∫ 1

0

ϕεxθ
ε
tdx− 4ε

∫ 1

0

vεvεxθ
ε
tdx

≤1

4
‖θεt ‖

2
+ C ‖ϕεx‖

2
+ Cε2 ‖vε‖2L∞ ‖v

ε
x‖

2

≤1

4
‖θεt ‖

2
+ C ‖ϕεx‖

2
+ C(t)ε

3
2

and

J6 ≤
1

4
‖θεt ‖

2
+ 4ε2‖vεxx‖2.

Substituting above estimates of Ji (i = 4, 5, 6) into (64), integrating the resulting
inequality over [0, t] and using Theorem 2.1 and (60), we get

‖ϕεx‖
2

+ ε ‖vεx‖
2

+

∫ t

0

(‖ϕεt‖
2

+ ‖θεt ‖
2
)dτ

≤− 2

∫ 1

0

uεθεϕεxdx+ C(t)

∫ t

0

(1 + ‖uεxt‖
2
) ‖ϕεx‖

2
dτ

+ Cε2
∫ t

0

‖vεxx‖
2
dτ + C(t)ε

1
2

≤1

2
‖ϕεx‖

2
+ 2 ‖uε‖2L∞ ‖θ

ε‖2 + C(t)

∫ t

0

(1 + ‖uεxt‖
2
) ‖ϕεx‖

2
dτ + C(t)ε

1
2

≤1

2
‖ϕεx‖

2
+ C(t)

∫ t

0

(1 + ‖uεxt‖
2
) ‖ϕεx‖

2
dτ + C(t)ε

1
2 .

It follows from Gronwall’s inequality and Theorem 2.1 that

‖ϕεx‖
2

+ ε ‖vεx‖
2

+

∫ t

0

(‖ϕεt‖
2

+ ‖θεt ‖
2
)dτ ≤ C(t)ε

1
2 ,

which gives (61) and the proof of Lemma 4.2 is completed.

Finally, Theorem 2.3 is a consequence of Lemma 4.2.

4.2. Proof of Theorem 2.3 (ii). Inspired by a recent work [19], we first establish
the following lemma by the weighted L2-method dedicating to the boundary layer
solutions.

Lemma 4.3. Assume that the assumptions listed in Theorem 2.1 and Lemma 4.1
are satisfied. Then for any t > 0, there exists a positive constant C(t) which is
independent of ε, such that ∫ 1

0

ξ(x)|θεx|2dx ≤ C(t)ε
1
2 , (65)

where the weight function ξ(x) is defined as ξ(x) = x2(1− x)2, x ∈ [0, 1].
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Proof. We differentiate the second equation of (57) with respect to x to get

θεxt − (ϕε − ε (vε)
2
)xx = εθεxxx + εv0xxx. (66)

Multiplying (66) by ξ(x)θεx and integrating by parts over [0, 1]× [0, T ), one gets

1

2

∫ 1

0

ξ(x)|θεx|2dx+ ε

∫ t

0

∫ 1

0

ξ(x)|θεxx|2dxdτ

=
ε

2

∫ t

0

∫ 1

0

ξ′′(x)|θεx|2dxdτ +

∫ t

0

∫ 1

0

ϕεxxξ(x)θεxdxdτ

+ ε

∫ t

0

∫ 1

0

(
(vε)

2
+ v0x

)
xx
ξ(x)θεxdxdτ

=K1 +K2 +K3.

(67)

First, by Lemma 4.1 and Theorem 2.1, we have

K1 ≤Cε
∫ t

0

‖θεx‖
2
dτ ≤ Cε

∫ t

0

(
‖vεx‖

2
+
∥∥v0x∥∥2) dτ ≤ C(t)ε

1
2 . (68)

For K2, using the second equation of (57), Cauchy-Schwarz inequality, Lemma 4.1,
Theorem 2.1 and (60)-(61), we obtain

K2 =

∫ t

0

∫ 1

0

ξ(x)θεx
(
ϕεt −

(
uεθε + v0ϕε

)
x

)
dxdτ

=

∫ t

0

∫ 1

0

ξ(x)θεx
(
ϕεt − uεxθε − uεθεx − v0ϕεx − v0xϕε

)
dxdτ

≤C
∫ t

0

(
1 + ‖uεx‖

2
L∞ + ‖uε‖2L∞ +

∥∥v0∥∥2
L∞

+
∥∥v0x∥∥2L∞)∫ 1

0

ξ(x)|θεx|2dxdτ

+

∫ t

0

(
‖ϕεt‖

2
+ ‖θε‖2 + ‖ϕεx‖

2
+ ‖ϕε‖2

)
dτ

≤C(t)

∫ t

0

∫ 1

0

ξ(x)|θεx|2dxdτ + C(t)ε
1
2 .

For K3, integrating by parts, using Cauchy-Schwarz inequality, Lemma 4.1, Theo-
rem 2.1 and (68), we obtain

K3 =− ε
∫ t

0

∫ 1

0

(
(vε)

2
+ v0x

)
x
ξ(x)θεxxdxdτ

− ε
∫ t

0

∫ 1

0

(
(vε)

2
+ v0x

)
x
ξ′(x)θεxdxdτ

≤ε
2

∫ t

0

∫ 1

0

ξ(x)|θεxx|2dxdτ + Cε

∫ t

0

(
‖vε‖2L∞ ‖v

ε
x‖

2
+
∥∥v0xx∥∥2) dτ

+ Cε

∫ t

0

‖θεx‖
2
dτ

≤ε
2

∫ t

0

∫ 1

0

ξ(x)|θεxx|2dxdτ + C(t)ε
1
2 .
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Substituting above estimates for Ki (i = 1, 2, 3) into (67), we get∫ 1

0

ξ(x)|θεx|2dx+ ε

∫ t

0

∫ 1

0

ξ(x)|θεxx|2dxdτ

≤C(t)

∫ t

0

∫ 1

0

ξ(x)|θεx|2dxdτ + C(t)ε
1
2 ,

which, together with Gronwall’s inequality, leads to (65) and completes the proof
of Lemma 4.3.

Next, we show Theorem 2.3 (ii). For any δ ∈ (0, 12 ), by (65), we have

δ2
∫ 1−δ

δ

|θεx|2dx =δ2
∫ 1

2

δ

|θεx|2dx+ δ2
∫ 1−δ

1
2

|θεx|2dx

≤
∫ 1

2

δ

x2|θεx|2dx+

∫ 1−δ

1
2

(1− x)2|θεx|2dx

≤4

∫ 1
2

δ

x2(1− x)2|θεx|2dx+ 4

∫ 1−δ

1
2

x2(1− x)2|θεx|2dx

≤4

∫ 1−δ

δ

x2(1− x)2|θεx|2dx ≤ C(t)ε
1
2 .

This gives for any δ ∈ (0, 12 ) that

‖(vε − v0)x‖L2[δ,1−δ] ≤ C(t)δ−1ε
1
4 . (69)

Then, using the Morrey’s inequality and Gagliardo-Nirenberg inequality, (60) and
(69), we end up with

‖vε − v0‖2C[δ,1−δ]

≤C‖vε − v0‖2L2[δ,1−δ] + C‖vε − v0‖L2[δ,1−δ]‖(vε − v0)x‖L2[δ,1−δ]

≤C‖vε − v0‖2L2[0,1] + C‖vε − v0‖L2[0,1]‖(vε − v0)x‖L2[δ,1−δ]

≤C(t)δ−1ε
1
2 → 0, as ε→ 0,

for any function δ = δ(ε) satisfying (7). Thus (8) is proved. We proceed to prove
(9). To this end, integrating the second equation of (5) over [0, t] and then setting
x = 0, we have

v0(0, t) =

∫ t

0

u0x(0, t)ds+ v0(0, 0).

Thus, if we choose the appropriate boundary value vε(0, t) such that

vε(0, t) 6= v0(0, t), namely β(t) 6=
∫ t

0

u0x(0, s)ds+ v0(0),

then we arrive at (9). Thus we complete the proof of Theorem 2.3 (ii). �
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5. Large-time behavior. In this section, we prove Theorem 2.4. For the reader’s
convenience, we restate the initial-boundary value problem, which reads as

ut − (uv)x = uxx, x ∈ (0, 1), t > 0,

vt − ux = εvxx − ε(v2)x,

(u, v)(x, 0) = (u0, v0)(x), x ∈ [0, 1],

u|x=0,x=1 = α(t), v|x=0,x=1 = β(t), t ≥ 0.

(70)

The proof of Theorem 2.4 is divided into four steps contained in a series of subsec-
tions. First of all, we note that, due to the conditions of Theorem 2.4 and maximum
principle, it holds that u(x, t) ≥ 0, provided that the solution exists. We depart
with a basic estimate involving the logarithmic expansion of u.

5.1. Entropy estimates.

Lemma 5.1. Let the assumptions in Theorem 2.4 hold. Then there exists a constant
C > 0 which is independent on t and ε, such that

E(u(·, t), α(t)) + ‖v(·, t)− β(t)‖2 +

∫ t

0

∫ 1

0

(ux)2

u
dxdτ + ε

∫ t

0

‖vx‖2dτ ≤ C,

where

E(u, α) ≡
∫ 1

0

{
(u lnu− u)− (α lnα− α)− (u− α) lnα

}
dx ≥ 0

denotes the entropy expansion.

Proof. We divide the proof into three steps.

Step 1. By a direct calculation, we can show that

(u lnu− u)t − (α lnα− α)t − [(u− α) lnα]t

=ut lnu − αt lnα− (u− α)t lnα− (u− α)
αt
α

=(lnu− lnα)ut − (u− α)
αt
α
.

(71)

By using the first equation of (70) and noting α depends only on t, we deduce that

(lnu− lnα)ut = (lnu− lnα)[(uv)x + uxx]

= [(lnu− lnα)uv]x + [(lnu− lnα)ux]x − v ux −
(ux)2

u
.

(72)

Then plugging (72) into (71), we find

(u lnu− u)t − (α lnα− α)t − [(u− α) lnα]t

=[(lnu− lnα)uv]x + [(lnu− lnα)ux]x − v ux −
(ux)2

u
− (u− α)

αt
α
.

(73)

After integrating (73) over [0, 1], and using the boundary conditions we have

d

dt

(∫ 1

0

[(u lnu− u)− (α lnα− α)− (u− α) lnα] dx

)
+

∫ 1

0

(ux)2

u
dx

=−
∫ 1

0

v ux dx−
∫ 1

0

(u− α)
αt
α
dx.

(74)
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Since β is independent of x, we derive from the second equation of (70) that

(v − β)t − ux = ε(v − β)xx − 2ε v (v − β)x − βt
= ε(v − β)xx − 2ε (v − β) (v − β)x − 2ε β (v − β)x − βt.

(75)

Taking the L2 inner product of (75) with v − β, we have

1

2

d

dt
‖v − β‖2 + ε‖vx‖2 =

∫ 1

0

(v − β)ux dx−
∫ 1

0

(v − β)βt dx. (76)

Note that ∫ 1

0

(v − β)ux dx =

∫ 1

0

v ux dx−
∫ 1

0

β ux dx

=

∫ 1

0

v ux dx− β(α− α)

=

∫ 1

0

v ux dx.

So we update (76) as

1

2

d

dt
‖v − β‖2 + ε‖vx‖2 =

∫ 1

0

v ux dx−
∫ 1

0

(v − β)βt dx. (77)

By adding (77) to (74), we get that

d

dt

(
E(u, α) +

1

2
‖v − β‖2

)
+

∫ 1

0

(ux)2

u
dx+ ε‖vx‖2

=−
∫ 1

0

(u− α)
αt
α
dx−

∫ 1

0

(v − β)βt dx

≤|αt|
α

∫ 1

0

|u− α|dx+ |βt|
∫ 1

0

|v − β|dx,

(78)

where

E(u, α) ≡
∫ 1

0

[(u lnu− u)− (α lnα− α)− (u− α) lnα] dx ≥ 0. (79)

We remark that in [29] the two terms on the right hand side of (78) vanish, due to
the constant boundary conditions. The treatment of these non-constant terms is
one of the major differences between this paper and [29].

Step 2. In this step, we derive an energy bound for the L1 norm of u in terms of
the entropy expansion defined by (79). We remark that under the Dirichlet type
boundary conditions, the L1 norm of u is not a conserved quantity. Hence, the
energy method established in [31] for the mixed Neumann-Dirichlet boundary value
problem can not be utilized for the Dirichlet boundary conditions. Luckily, such
an issue was previously resolved in [29] for constant Dirichlet boundary data by
developing a new approach through higher order nonlinear cancellation. Though
such a technique also works for the time-dependent Dirichlet boundary conditions
and can produce a uniform-in-time energy estimate for the low frequency part of
the solution, the proof is lengthy and one needs more constraints on the boundary
data to close the energy estimate. In this paper, we develop a very new approach
(which has never appeared in any related work) to settle down the energy estimate
for the low frequency part of the solution. The idea is to fully explore the convexity
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of the entropy expansion E(u, α) and compare it with a linear function. For this
purpose, we set

Fα(u) ≡ (u lnu− u)− (α lnα− α)− (u− α) lnα+ (e− 1)α− u.

Then it can be readily checked that

Fα(0) = eα > 0,

F ′α(u) = lnu− lnα− 1,

F ′′α (u) =
1

u
≥ 0,

F ′α(eα) = 0,

Fα(eα) = 0,

which imply that Fα(u) ≥ 0 for any u ≥ 0. This leads to

0 ≤ u ≤ (u lnu− u)− (α lnα− α)− (u− α) lnα+ (e− 1)α,

and therefore,

0 ≤
∫ 1

0

u(x, t) dx ≤ E(u, α) + (e− 1)α. (80)

Step 3. By plugging (80) into (78), we see that

d

dt

(
E(u, α) +

1

2
‖v − β‖2

)
+

∫ 1

0

(ux)2

u
dx+ ε‖vx‖2

≤ |αt|
α
E(u, α) + e|αt|+

|βt|
2

+
|βt|
2
‖v − β‖2,

(81)

where we used the first assumption of Theorem 2.4 and the Cauchy-Schwarz in-
equality. By applying the Gronwall’s inequality to (81), we have

E(u(·, t), α(t)) +
1

2
‖v(·, t)− β(t)‖2

≤ exp

{∫ t

0

(
|ατ |
α

+ |βτ |
)
dτ

}
×
[ ∫ t

0

(
e|ατ |+

|βτ |
2

)
dτ

+ E(u0, α0) +
1

2
‖v0 − β0‖2

]
.

(82)

By using the second assumption of Theorem 2.4, we deduce from (82) that

E(u(·, t), α(t)) +
1

2
‖v(·, t)− β(t)‖2 ≤ C, ∀ t > 0, ∀ ε ≥ 0, (83)

where the constant C is independent of time and ε. By plugging (83) into (81),
then integrating the resulting inequality with respect to time, we have in particular,∫ t

0

∫ 1

0

(ux)2

u
dxdτ + ε

∫ t

0

‖vx‖2dτ ≤ C, ∀ t > 0, ∀ ε ≥ 0, (84)

where the constant C is independent of time and ε. This together with (83) com-
pletes the entropy estimate and hence the proof of Lemma 5.1.
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5.2. L2 estimates. To perform further energy estimates, we let

ũ ≡ u− α, ṽ ≡ v − β,
where (u, v) satisfies (4). Then (ũ, ṽ) satisfies

ũt − (ũṽ)x − αṽx − βũx = ũxx − αt,
ṽt − ũx = εṽxx − 2εṽṽx − 2εβṽx − βt,
(ũ, ṽ)(x, 0) = (u0 − α, v0 − β)(x),

ũ|x=0,x=1 = 0, ṽ|x=0,x=1 = 0.

(85)

Lemma 5.2. Let the assumptions in Theorem 2.4 hold. Then there exists a constant
C > 0 which is independent on t and ε, such that

‖ũ(·, t)‖2 + α(t)‖ṽ(·, t)‖2 +

∫ t

0

‖ũx‖2dτ ≤ C.

Proof. Taking the L2 inner product of the first equation of (85) with ũ, we have

1

2

d

dt
‖ũ‖2 + ‖ũx‖2 = −

∫ 1

0

ũ ṽ ũx dx+ α

∫ 1

0

ũ ṽx dx− αt
∫ 1

0

ũ dx. (86)

Taking the L2 inner product of the second equation of (85) with ṽ yields

1

2

d

dt
‖ṽ‖2 + ε‖ṽx‖2 =

∫ 1

0

ṽ ũx dx− βt
∫ 1

0

ṽ dx. (87)

Multiplying (87) by α, we have

1

2

d

dt

(
α‖ṽ‖2

)
+ εα‖ṽx‖2 = α

∫ 1

0

ṽ ũx dx− αβt
∫ 1

0

ṽ dx+
αt
2
‖ṽ‖2

= −α
∫ 1

0

ũ ṽx dx− αβt
∫ 1

0

ṽ dx+
αt
2
‖ṽ‖2,

(88)

where we have applied integration by parts to the first term on the right hand side
of (88). Adding (88) to (86), we have

1

2

d

dt

(
‖ũ‖2 + α‖ṽ‖2

)
+ ‖ũx‖2 + εα‖ṽx‖2

=−
∫ 1

0

ũ ṽ ũx dx− αt
∫ 1

0

ũ dx− αβt
∫ 1

0

ṽ dx+
αt
2
‖ṽ‖2.

(89)

Now, we estimate the first term on the right hand side of (89) by using the L1

estimate obtained from the previous subsection. To this end, we observe that∣∣∣∣−∫ 1

0

ũ ṽ ũx dx

∣∣∣∣ ≤ 1

2
‖ũ‖2L∞‖ṽ‖2 +

1

2
‖ũx‖2, (90)

where ‖ũ‖2L∞ can be estimated through the following procedure:

Step 1. Note that for any x ∈ [0, 1] and t > 0,

ũ(x, t) =

∫ x

0

ũy dy,

which implies

‖ũ‖2L∞ ≤
(∫ 1

0

|ũx| dx
)2

.
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Step 2. Since ũ = u − α and α is independent of x, it holds that ũx = ux. Then
by Hölder’s inequality and the positivity of u, we have

‖ũ‖2L∞ ≤
(∫ 1

0

u dx

)(∫ 1

0

(ux)2

u
dx

)
. (91)

Step 3. By applying (83) to (80) and using the first assumption of Theorem 2.4,
we obtain ∫ 1

0

u(x, t) dx ≤ C, ∀ t > 0. (92)

Step 4. By applying (92) to the first term on the right hand side of (91), we obtain

‖ũ‖2L∞ ≤ C
∫ 1

0

(ux)2

u
dx. (93)

By plugging the preceding estimate into (90), we find∣∣∣∣−∫ 1

0

ũ ṽ ũx dx

∣∣∣∣ ≤ C

2

(∫ 1

0

(ux)2

u
dx

)
‖ṽ‖2 +

1

2
‖ũx‖2,

which updates (89) as

1

2

d

dt

(
‖ũ‖2 + α‖ṽ‖2

)
+

1

2
‖ũx‖2 + εα‖ṽx‖2

≤1

2

(
C

∫ 1

0

(ux)2

u
dx+ |αt|

)
‖ṽ‖2 + |αt|

∫ 1

0

|ũ| dx+ α |βt|
∫ 1

0

|ṽ| dx.
(94)

Note that

|αt|
∫ 1

0

|ũ| dx ≤ |αt|
2

+
|αt|
2
‖ũ‖2,

and

α|βt|
∫ 1

0

|ṽ|dx ≤ α|βt|
2

+
α|βt|

2
‖ṽ‖2.

So we update (94) as

d

dt

(
‖ũ‖2 + α‖ṽ‖2

)
+ ‖ũx‖2 + 2εα‖ṽx‖2

≤
(
C

α

∫ 1

0

(ux)2

u
dx+

|αt|
α

+ |αt|+ |βt|
)(
‖ũ‖2 + α‖ṽ‖2

)
+ |αt|+ α |βt|,

(95)

where we have used the first assumption of Theorem 2.4. Applying the Gronwall’s
inequality to (95) and using (84) and the second assumption of Theorem 2.4, we
find that

‖ũ(·, t)‖2 + α‖ṽ(·, t)‖2 ≤ C, ∀ t > 0, (96)

for some constant C which is independent of t and ε. Plugging (96) back into (95),
then integrating the resulting inequality with respect to time, we conclude that∫ t

0

‖ũx‖2dτ ≤ C, ∀ t > 0, (97)

where the constant C is independent of t and ε. This completes the energy estimate
for the low frequency part of the solution.

Next, we shall move on to the estimation of the first order derivatives of the
solution.
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5.3. H1 estimates.

Lemma 5.3. Let the assumptions in Theorem 2.4 hold. Then it follows that

‖ũx(·, t)‖2 + ‖ṽx(·, t)‖2 +

∫ t

0

(
‖ũxx‖2 + ε‖ṽxx‖2

)
dτ ≤ C,

where the constant C is independent of t, but is inversely proportional to ε.

Proof. Taking the L2 inner products of the first equation of (85) with −ũxx, and
the second with −ṽxx, respectively, then adding the results, we have

1

2

d

dt

(
‖ũx‖2 + ‖ṽx‖2

)
+ ‖ũxx‖2 + ε‖ṽxx‖2

=−
∫ 1

0

(ṽũx + ũṽx + αṽx + βũx) ũxx dx+ αt

∫ 1

0

ũxx dx

+ 2ε

∫ 1

0

ṽṽxṽxx dx+ 2εβ

∫ 1

0

ṽxṽxx dx−
∫ 1

0

ũxṽxx dx+ βt

∫ 1

0

ṽxx dx

=

6∑
i=1

Ii.

(98)

For the right hand side of (98), we first apply the basic Cauchy-Schwarz inequality
to deduce

I1 ≤
1

4
‖ũxx‖2 + 4

(
‖ṽ‖2L∞‖ũx‖2 + ‖ũ‖2L∞‖ṽx‖2 + α2‖ṽx‖2 + β2‖ũx‖2

)
;

I2 ≤
1

4
‖ũxx‖2 + |αt|2;

I3 ≤
ε

8
‖ṽxx‖2 + 8ε ‖ṽ‖2L∞‖ṽx‖2;

I4 ≤
ε

8
‖ṽxx‖2 + 8ε β2‖ṽx‖2;

I5 ≤
ε

8
‖ṽxx‖2 +

2

ε
‖ũx‖2;

I6 ≤
ε

8
‖ṽxx‖2 +

2

ε
|βt|2.

For the L∞ norms appearing in the above estimates, we note that since both the
functions ũ and ṽ equal zero on the boundary, it holds that

ũ(x, t) =

∫ x

0

ũy dy =⇒ ‖ũ‖2L∞ ≤
(∫ 1

0

|ũx| dx
)2

≤ ‖ũx‖2, (99)

and the same is true for ṽ. Hence, we can update I1 and I3 as

I1 ≤
1

4
‖ũxx‖2 + 8‖ṽx‖2‖ũx‖2 + 4α2‖ṽx‖2 + 4β2‖ũx‖2;

I3 ≤
ε

8
‖ṽxx‖2 + 8ε ‖ṽx‖2‖ṽx‖2.
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Plugging these estimates and preceding estimates for I2, I4, I5 and I6 into (98),
we obtain

1

2

d

dt

(
‖ũx‖2 + ‖ṽx‖2

)
+

1

2
‖ũxx‖2 +

ε

2
‖ṽxx‖2

≤ 8‖ṽx‖2‖ũx‖2 + 4α2‖ṽx‖2 + 4β
2‖ũx‖2 + |αt|2

+ 8ε ‖ṽx‖2‖ṽx‖2 + 8ε β
2‖ṽx‖2 +

2

ε
‖ũx‖2 +

2

ε
|βt|2

≤ 8
(
‖ũx‖2 + ε‖ṽx‖2

) (
‖ũx‖2 + ‖ṽx‖2

)
+

(
4α2

ε
+ 8β

2
)
ε‖ṽx‖2 +

(
4β

2
+

2

ε

)
‖ũx‖2 + |αt|2 +

2

ε
|βt|2,

(100)

where we have used the first assumption of Theorem 2.4. Applying the Gronwall’s
inequality to (100), we have

‖ũx(·, t)‖2 + ‖ṽx(·, t)‖2

≤ exp

{
16

∫ t

0

(
‖ũx‖2 + ε‖ṽx‖2

)
dτ

}
×{(

8α2

ε
+ 16β

2
)
ε

∫ t

0

‖ṽx‖2dτ +

(
8β

2
+

4

ε

)∫ t

0

‖ũx‖2dτ

+ 2

∫ t

0

|αt|2dτ +
4

ε

∫ t

0

|βt|2dτ + ‖ũ0x‖2 + ‖ṽ0x‖2
}
.

By using (84), (97) and the second assumption of Theorem 2.4, we obtain

‖ũx(·, t)‖2 + ‖ṽx(·, t)‖2 ≤ C, ∀ t > 0, (101)

where the constant C is independent of t, but depends reciprocally on ε. Further
applying (101) to (100), then integrating the result with respect to time, we conclude∫ t

0

(
‖ũxx‖2 + ε‖ṽxx‖2

)
dτ ≤ C, ∀ t > 0,

for some constant C which is independent of t, but depends reciprocally on ε. This
completes the estimate of the first order spatial derivatives of the solution, and
therefore the desired energy estimates stated in Theorem 2.4.

Next, we prove the decay property recorded in Theorem 2.4.

5.4. Decay estimate. First, we would like to remark that a function of t, belonging
to W 1,1(0,∞), converges to zero as time goes to infinity. In what follows, we use
such a fact, together with the energy estimates obtained in the previous subsections,
to establish the decay estimate stated in Theorem 2.4.

Recalling (84) and (97), we see that

‖ũx(·, t)‖2 + ε‖ṽx(·, t)‖2 ∈ L1(0,∞).

Hence, for any fixed value of ε, due to the Poincaré’s inequality and the first as-
sumption of Theorem 2.4, it holds that

‖ũ(·, t)‖2 + α‖ṽ(·, t)‖2 ∈ L1(0,∞). (102)
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Next, we note that (89) can be written as

d

dt

(
‖ũ‖2 + α‖ṽ‖2

)
=− 2‖ũx‖2 − 2εα‖ṽx‖2 − 2

∫ 1

0

ũ ṽ ũx dx

− 2αt

∫ 1

0

ũ dx− 2αβt

∫ 1

0

ṽ dx+ αt‖ṽ‖2,
(103)

from which we can deduce∣∣∣∣ ddt (‖ũ‖2 + α‖ṽ‖2
)∣∣∣∣ ≤ 2‖ũx‖2 + 2εα‖ṽx‖2 + ‖ũ‖L∞

(
‖ṽ‖2 + ‖ũx‖2

)
+ |αt|2 + ‖ũ‖2 + α

(
|βt|2 + ‖ṽ‖2

)
+ |αt|‖ṽ‖2.

(104)

According to (99), we have

‖ũ‖L∞ ≤ ‖ũx‖, ‖ũ‖2 ≤ ‖ũx‖2, ‖ṽ‖2 ≤ ‖ṽx‖2.

Hence, we can update (104) as∣∣∣∣ ddt (‖ũ‖2 + α‖ṽ‖2
)∣∣∣∣ ≤ C (‖ũx‖2 + ‖ṽx‖2 + |αt|2 + |βt|2 + |αt|

)
, (105)

where the constant C is independent of t, and we have applied (101) for the uniform
estimate of ‖ũx‖ and (83) to the last term on the right hand side of (104). From
(84), (97) and the third assumption of Theorem 2.4 we see that the right hand side
of (105) is uniformly integrable with respect to time. Therefore,

d

dt

(
‖ũ(·, t)‖2 + α‖ṽ(·, t)‖2

)
∈ L1(0,∞). (106)

The combination of (102) and (106) implies that

‖ũ(·, t)‖2 + α‖ṽ(·, t)‖2 ∈W 1,1(0,∞).

Thus,
lim
t→∞

(
‖ũ(·, t)‖2 + α‖ṽ(·, t)‖2

)
= 0.

Since α(t) ≥ α > 0, we conclude that

lim
t→∞

(
‖ũ(·, t)‖2 + ‖ṽ(·, t)‖2

)
= 0.

In a completely similar fashion by using the estimates in Section 5.4, we can show
that

lim
t→∞

(
‖ũx(·, t)‖2 + ‖ṽx(·, t)‖2

)
= 0.

This completes the proof of the decay estimate, and thus of Theorem 2.4. �

6. Proof of Theorem 2.5. In this section, we pass the results of the transformed
chemotaxis model (3) to the original chemotaxis system (1) with m = 1. Noticing
that the transformed and pre-transformed systems have the same quantity u, we are
left to prove the results for w only. We start with the proof of (11). Let x0 ∈ [0, 1])
be such that w0(x0) > 0. Using (lnw0(x))x ∈ H2[0, 1] and Sobolev embedding
theorem, we get (lnw0(x))x ∈ C1[0, 1]. Thus,

lnw0(x)− lnw0(x0) =

∫ x

x0

(lnw0(y))ydy, x ∈ [0, 1],

which leads to

w0(x) = w0(x0) exp

{∫ x

x0

(lnw0(y))ydy

}
, x ∈ [0, 1].
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This along with (lnw0(x))x ∈ C1[0, 1] yields w0(x) ∈ C2[0, 1]. Hence there exist
two positive constants w and w such that 0 < w ≤ w0(x) ≤ w <∞.

From the second equation of (1) with m = 1 and the Cole-Hopf transformation
(2), we have

(lnw)t = −u− εvx + ε(v)2.

Integrating the above equality with respect to t to get

w(x, t) = w0(x) exp
{∫ t

0

[−u− εvx + ε(v)2]dτ
}
. (107)

Using Gagliardo-Nirenberg inequality and Theorem 2.1, we have∫ t

0

(
‖u‖L∞ + ε‖vx‖L∞ + ε‖v‖2L∞

)
dτ ≤ C(t),

which implies

e−C(t) ≤ exp
{∫ t

0

[−u− εvx + ε(v)2]dτ
}
≤ eC(t).

This along with (107) and 0 < w ≤ w0(x) ≤ w <∞ gives

c2(t) ≤ w(x, t) ≤ c3(t), (108)

where c2(t) = we−C(t) and c3(t) = weC(t). Noting that
wx = w(lnw)x,

wxx = wx(lnw)x + w(lnw)xx,

wxxx = wxx(lnw)x + 2wx(lnw)xx + w(lnw)xxx.

(109)

By using the Cole-Hopf transformation (2), Theorem 2.1, (108) and (109), we com-
plete the proof of (11).

Next, we prove (12). Let (uε, wε) and (u0, w0) be the solutions to (10) with
ε > 0 and ε = 0, respectively. From the second equation of (1) with m = 1 and the
Cole-Hopf transformation (2), we have

(lnwε)t = −uε − εvεx + ε(vε)2

and

(lnw0)t = −u0. (110)

Then, the difference of the above two equations yields

(lnwε − lnw0)t = (u0 − uε)− εvεx + ε(vε)2. (111)

Integrating (111) with respect to t, we get

wε(x, t)

w0(x, t)
= exp

{∫ t

0

[(u0 − uε)− εvεx + ε(vε)2]dτ

}
,

where we have used wε(x, 0) = w0(x, 0). Subtracting 1 from both sides of above
equation, we obtain

|wε(x, t)− w0(x, t)|

≤|w0(x, t)| ·
∣∣∣∣ exp

{∫ t

0

[(u0 − uε)− εvεx + ε(vε)2]dτ
}
− 1

∣∣∣∣. (112)



SINGULAR KELLER-SEGEL SYSTEM 1117

Note that Gagliardo-Nirenberg inequality and Young inequality, Theorem 2.1 and
Lemma 4.2 give us that∫ t

0

[(u0 − uε)− εvεx + ε(vε)2]dτ

≤C
∫ t

0

(
‖uε − u0‖L∞ + ε‖vεx‖L∞ + ε‖vε‖2L∞

)
dτ

≤C
∫ t

0

[∥∥uε − u0∥∥
H1 + C(t)(ε ‖vx‖2 + ε2 ‖vxx‖2 + ε

1
2 ) + C(t)ε

]
dτ

≤C(t)ε
1
4 .

(113)

On the other hand, we need to estimate |w0(x, t)|. Integrating (110) with respect
to t and using Lemma 4.1, we get

w0(x, t) = w0(x) exp

{
−
∫ t

0

u0dτ

}
≤ w0(x)et‖u

0‖L∞ ≤ C(t),

which, along with (112) and (113), gives∥∥wε(·, t)− w0(·, t)
∥∥
C[0,1]

≤ C(t)|eκ − 1| ≤ C(t)(|κ|+ o(|κ|)) ≤ C(t)ε
1
4 , (114)

where the Taylor expansion has been used and κ denotes the argument of the
exponential function in (112). This together with Lemma 4.2 completes the proof
of (12).

Next, we proceed to prove (13) and (14). Note first that

wεx − w0
x = wε

(
wεx
wε
− w0

x

w0

)
+
w0
x(wε − w0)

w0

= wε
(
(lnwε)x − (lnw0)x

)
+ (lnw0)x(wε − w0),

(115)

which subject to (2), (52) and (108), yields∥∥(wεx − w0
x)(·, t)

∥∥
C[δ,1−δ] ≤ ‖w

ε‖C[δ,1−δ]
∥∥vε − v0∥∥

C[δ,1−δ]

+
∥∥v0x∥∥C[δ,1−δ]

∥∥wε − w0
∥∥
C[δ,1−δ]

≤ C(t)
∥∥vε − v0∥∥

C[δ,1−δ] + C(t)ε
1
4 .

This, combined with Theorem 2.3, leads to (13).
Now, we turn to prove (14). We argue by contradiction. Suppose that

lim inf
ε→0

‖wεx − w0
x‖L∞([0,T );C[0,1]) = 0. (116)

It follows from (2) and (115) that

v0 − vε =
(wεx − w0

x) + (wε − w0)v0

wε
,

which, together with (108), implies that

‖(v0 − vε)(·, t)‖C[0,1]

≤ 1

c2(t)

(
‖wεx − w0

x‖C[0,1] + ‖wε − w0‖C[0,1]‖v0‖C[0,1]

)
.

By using (52) and (114), we can show that

‖(v0 − vε)(·, t)‖C[0,1] ≤ C(t)
(
‖wεx − w0

x‖C[0,1] + C(t)ε
1
4

)
,
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which, along with (116), leads to

lim inf
ε→0

‖v0 − vε‖L∞([0,T );C[0,1]) = 0.

Apparently, the above result contradicts (9). Therefore, Theorem 2.5 (i) is proved.
Finally, we prove Theorem 2.5 (ii). Let (u,w) be the solution to (70). We rewrite

(107) as

w(x, t) =w0(x) exp

{
−
∫ t

0

(α− εβ2)dτ

}
× exp

{∫ t

0

[−(u− α)− εvx + ε(v − β)2 + 2εβ(v − β)]dτ
}
.

(117)

By the first assumption of Theorem 2.4, we have

exp

{
−
∫ t

0

(α− εβ2)dτ

}
≤ e−(α−εβ

2
)t.

Using Cauchy-Schwarz inequality, (93) and Lemma 5.1 yields∫ t

0

‖u− α‖L∞ dτ ≤
ζ0t

3
+ C

∫ t

0

‖u− α‖2L∞ dτ

≤ζ0t
3

+ C

∫ t

0

∫ 1

0

(ux)2

u
dτ

≤ζ0t
3

+ C,

where ζ0 is a positive constant to be determined later. From Theorem 2.4, Gagliardo-
Nirenberg and Cauchy-Schwarz inequalities, we get

ε

∫ t

0

‖vx‖L∞ dτ ≤
ζ0t

3
+ Cε2

∫ t

0

‖vx‖2L∞ dτ

≤ζ0t
3

+ Cε2
∫ t

0

(‖vx‖2 + ‖vxx‖2)dτ

≤ζ0t
3

+ C.

Using Gagliardo-Nirenberg inequality, Poincaré’s inequality and Theorem 2.4, we
have

ε

∫ t

0

‖v − β‖2L∞ dτ ≤ Cε
∫ t

0

(‖v − β‖2 + ‖vx‖2)dτ ≤ Cε
∫ t

0

‖vx‖2 dτ ≤ C.

In a similar way, we may readily derive that

2ε

∫ t

0

β ‖v − β‖L∞ dτ ≤
ζ0t

3
+ Cε2β

2
∫ t

0

‖v − β‖2L∞ dτ

≤ζ0t
3

+ C.

Substituting the above estimates into (117) and choosing ζ0 = α−εβ2

2 yield

‖w(x, t)‖L∞ ≤ Ce
−α−εβ

2

2 t.

This completes the proof of the second part of Theorem 2.5, and thus of Theorem
2.5. �
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7. Simulations and implications. In this section, we numerically solve system
(4) to illustrate the boundary layer profile (uε, vε), verify our analytical results and
discuss boundary effects. The model is solved in the interval [0, 1] with MATLAB
based on the finite difference scheme with mesh size ∆x = 0.001,∆t = 0.01.
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Figure 1. Numerical simulation of the evolution of solution pro-
files of the system (4) as ε→ 0 in the interval [0, 1], where u|x=0,1 =
1 + 0.1 sin(t), v|x=0,1 = 1 + 0.1 sin(t), u0(x) = 1 − sin(πx), v0(x) =
1+x(1−x). The solution (u(x, t), v(x, t) is plotted at time t = 0.2.
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Figure 2. Numerical simulation of the time evolution of boundary
layer solutions of (4) with ε = 0.0001 in the interval [0, 1], where
the initial and boundary date are same as those chosen in Fig. 1.

We first choose the initial and boundary data satisfying the requirements in (6)
and implement numerical computations to the system (4). The solution profile
(u, v)(x, t) at time t = 0.2 as ε→ 0 is plotted in Fig.1. For the sake of comparison,
we also numerically solve the non-diffusive problem (5) in the absence of boundary
conditions for v and plot the numerical solution at t = 0.2 in Fig.1. We find from the
simulations that the solution profile u(x, t) is convergent with respect to ε in [0, 1],
whereas the solution profile v(x, t) becomes increasingly sharp near the boundary
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as ε→ 0 and boundary layers arise. Outside the boundary layer (i.e. in the interior
of [0, 1]) the solution profiles v(x, t) for small ε > 0 and ε = 0 match well.

In Fig.2, we proceed to plot the time evolution of the same solution solved in
Fig.1 to observe the asymptotic profiles, where we find that large-time profiles of
the solution is elusive. This is because the boundary data chosen in Fig.1 vary (os-
cillate) in time. But the simulations show that the boundary layer profiles (sharp
transition near boundaries) persist in time given small ε > 0. However if we im-
pose some decay properties to the boundary data, the results of Theorem 2.4 show
that the asymptotic behavior of solutions may become tractable and converge to
some constant states, where the decay profiles of solutions are determined by the
boundary data. Here we numerically explore this analytical finding. For this, we
choose the initial and boundary data (see the caption of Fig. 3) such that the decay
of boundary data for u is exponential and for v is algebraic, as well as the initial
data satisfying the compatibility conditions at the end points x = 0, 1, as required
by Theorem 2.4. We plot the numerical solution profiles in Fig.3 at different times
showing that the solution (u, v) will approach constant states as time evolves. In
particular, we find that the convergence of u is much faster than that of v. This
complies with our analytical results in Theorem 2.4 that the decay rates of u and
v are same as the boundary data α(t) and β(t), respectively, where the former
(exponential decay) is much fast than the latter (algebraic decay).
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Figure 3. Numerical simulation of the time evolution of solu-
tions to (4) in the interval [0, 1] with decay boundary data, where
u|x=0,1 = 1 + exp(−t), v|x=0,1 = 1/(1 + t), u0(x) = 2 + x(1 −
x), v0(x) = 1 + x(1− x), and χ = D = 1, ε = 0.0001.

Finally we shall discuss some biological insights gained from our analytical and
numerical results. In view of model (1) with m = 1 and the transformation (2),
we see that the quantity v represents the velocity of chemotactic flux crossing the
boundary. Therefore the results in Theorem 2.5 imply that if the chemical diffusion
is small, although both cell density and chemical concentration have no boundary
layers, the chemotactic flux (i.e. the term u(lnw)x = uv) may change drastically
near the boundary since v has boundary layers. If the boundary data have oscillating
properties, this phenomenon will persist in time. However if the boundary data have
some decay properties, the boundary layer may vanish as time evolves. Therefore
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the nature of boundary date play an essential role in determining the solution
behaviour near the boundary and large-time dynamics.
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