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Abstract. This article surveys the mathematical aspects of traveling waves
of a class of chemotaxis models with logarithmic sensitivity, which describe

a variety of biological or medical phenomena including bacterial chemotactic

motion, initiation of angiogenesis and reinforced random walks. The survey
is focused on the existence, wave speed, asymptotic decay rates, stability and

chemical diffusion limits of traveling wave solutions. The main approaches are
reviewed and related analytical results are given with sketchy proofs. We also

develop some new results with detailed proofs to fill the gap existing in the

literature. The numerical simulations of steadily propagating waves will be
presented along the study. Open problems are proposed for interested readers

to pursue.
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1. Introduction. In the development of living system, there is continual inter-
changes or relaying of information between members of species at both the inter-
cellular and intracellular levels. Such information is often conveyed by a coherent
pattern or waveform that moves in space from a key element to a sequential de-
velopment. Some practical examples include the calcium waves propagating on the
surface of the egg of the fish Medaka, the propagation of an advantageous gene in a
population, the multicellular propagating waves of myxobacteria in the early stages
of fruiting body development, the depolarisation waves propagating along nerve ax-
ons, coherent swarms of motile micro-organisms advancing steadily through their
environment toward a fresh supply of diffusing nutrient which they consume and
seek chemotactically, and so on. These examples have been already transposed into
theoretical mathematical models, cf. [58, Chapter 1]. The investigation of traveling
waves always plays an crucial role in understanding the mechanisms behind various
propagating wave patterns.

The prototypical reaction-diffusion model of admitting traveling wavefront solu-
tions is the Fisher equation [20, 38], which reveals that the combination of reaction
and diffusion greatly enhances the efficiency of information transferral via travel-
ing waves of concentration changes in contrast to the diffusion alone. Although the
Fisher equation was originally derived as a deterministic version of stochastic model
for the propagation of a favored gene in a population, it has vigorous applications in
physics and biology ranging from bacteria growth to combustion as well as animal
dispersal. It is also a fundamental model from which numerous standard techniques
were developed to analyze single species model with diffusive dispersal.

In spite of wide applicability of the Fisher equation, there are various wave prop-
agating phenomena which can not be explained by simple reaction-diffusion mech-
anism. Instead they can be interpreted by chemotaxis, which, unlike diffusion,
directs the motion of species up or down a chemical concentration gradient. There
is a wealth of examples of traveling wave patterns driven by chemotaxis, such as
the propagation of traveling band of bacterial toward the oxygen [1, 2], the outward
propagation of concentric ring waves by E. coli [11, 12, 10], the spiral wave pat-
terns during the aggregation of Dictyostelium discoideum [43, 23] and the migration
of Myxococcus xanthus as traveling waves in the early stage of starvation-induced
fruiting body development [85].

The prototypical chemotaxis model was proposed by Keller and Segel in the 1970s
[33, 34] to describe the aggregation of cellular slime molds Dictyostelium discoideum
in response to the chemical cyclic adenosine monophosphate (cAMP). In its general
form, Keller-Segel model reads{

ut = ∇ · (d∇u− χu∇φ(v)),
vt = ε∆v + f(u, v)

(1.1)

where u and v denote the cell density and chemical concentration, respectively.
d > 0 and ε ≥ 0 are cell and chemical diffusion coefficients, respectively. χ > 0
is called the chemotactic coefficient measuring the strength of the chemical signal.
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Figure 1. (a) Photograph showing banded solitary waves of
motile E. coli propagating in a capillary tube containing the oxygen
and energy source. The figure is taken from article [1] for illustra-
tion. (b) An illustration of tumor angiogenesis adopted from the
website of National Cancer Institute. The initiation of angiogene-
sis involves the secretion of the signalling molecule (i.e. endothelial
angiogenesis growth factor) by tumor cells, which diffuse and in-
duce neighboring endothelial cells of the blood vessels to migrate
toward the tumor in order to build its own capillary network as
shown in the picture.

Here φ(v) is referred to as the chemosensitivity function describing the signal de-
tection mechanism and f(u, v) is a function characterizing the chemical growth and
degradation.

The typical examples of chemosensitivity function φ includes φ(v) = kv (linear
law), φ(v) = k log v (logarithmic law), or φ(v) = kvm/(1 + vm) (receptor law),
where k > 0 and m ∈ N. The system with linear law φ(v) = kv and f(u, v) = u− v
was called the minimum chemotaxis model following the nomenclature of [13], see
a review article [28] for the mathematical results of the minimum model. The
logarithmic sensitivity φ(v) = k log v follows from the Weber-Fechner law by which
cells response to the chemical, and has prominent specific applications [35, 17, 6, 4].
The steady states for the logarithmic sensitivity with f(u, v) = u−v was studied in
[52, 61] and existence of global solutions was recently obtained in [86]. The receptor
sensitivity law has been derived and applied in numerous models for chemotaxis,
e.g. see [77, 78, 80] and references therein.

In this survey, we shall review the main mathematical approaches and results on
the traveling wave solutions of chemotaxis model (1.1) with logarithmic chemosen-
sitivity, and sketch necessary proofs. Some new results with proofs will be given
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in the paper to fill the gap remaining in the current literature. Solving the trav-
eling wave problem of chemotaxis model (1.1) using the conventional approaches
such as shooting method (i.e. phase plane analysis), confronts great challenges in
general due to the high dimensionality of wave equations. Moreover the singular-
ity caused by the logarithmic law makes the analysis even worse. Therefore some
unconventional methods are demanded to overcome these difficulties. One of the
major approaches in the literature was to employ various clever transformations to
convert the traveling wave problem of chemotaxis models into equations/systems
that can be solved, such as the Fisher equation, system of conservation laws. This
article will review these transformation techniques and their consequences. Other
methods will be only mentioned along the study without giving details due to the
scope limit of present paper. We underline that there was another review paper [29]
on the existence of traveling wave solutions of chemotaxis models. But we focus on
different models and approaches. More importantly, we incorporate recent results
and discuss many other aspects of traveling wave solutions beside the existence, such
as wave speed, asymptotic decay rates, linear and nonlinear stability and chemical
diffusion limits.

The chemotaxis model to be discussed in the paper is of the following form{
ut = (dux − χu vxv )x,
vt = εvxx + βv − ug(v)

(1.2)

with (x, t) ∈ R×[0,∞), where u(x, t) denotes the cell density and v(x, t) the chemical
(e.g. oxygen) concentration. The model (1.2) is a special case of model (1.1) with
φ(v) = log v, f(u, v) = βv−ug(v), which describes the chemotactic dynamics where
cells move up the chemical concentration gradient and consume (or degrade) the
chemical along the path. The function g(v) is called the consumption rate function
in the form

g(v) = vm =


constant rate, m = 0,
sublinear rate, 0 < m < 1,
linear rate, m = 1,
superlinear rate, m > 1.

(1.3)

The constant β is to be determined to admit traveling wave solutions. A heuristic
interpretation for β is the growth rate if β > 0 and degradation rate if β < 0. But
we shall show that the traveling wave solutions do not exist for β < 0. The model
(1.2)-(1.3) can describe generic biological processes depending upon the parameter
values. When 0 ≤ m < 1 and β = 0, (1.2) becomes the exact model proposed by
Keller-Segel [35] to interpret the propagating traveling bands of bacterial chemotaxis
experimentally observed in [1, 2], see Fig. 1 (a). When m ≥ 1 and β = 0, the model
(1.2) becomes a simplified version of models describing the initiation of angiogenesis,
see Fig. 1 (b) for an illustration, whose mathematical analysis was intensively
performed, see, for example, [21, 16, 15, 81]. Particularly when m = 1 and β = 0,
(1.2) was also the exact system considered in [62, 72] to model the boundary motion
of chemotactic bacteria. When m = 1 and β 6= 0, the model (1.2) was derived
in [44, 65] as an example describing the reinforced random walks. Therefore the
model (1.2)-(1.3) integrates numerous biological processes. The present article will
be concentrated on the studies of traveling wave solutions. The research on other
perspectives, such as the incorporation of cell kinetics [36, 42, 22, 8, 40, 66, 5, 59]
and computations of traveling band formation [76, 41], will not be discussed though
they are interesting as well. The alternative modeling approaches for traveling
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waves of chemotaxis, such as the kinetic descriptions in [74, 89], is also beyond the
scope of our interest.

We complete this section by imposing the following initial conditions for the
model (1.2)-(1.3)

(u, v)(x, 0) = (u0, v0)(x)→
{

(u−, v−) as x→ −∞,
(u+, v+) as x→ +∞. (1.4)

Since u and v in (1.2) represent the biological particle densities, our attention will
be restricted to the biologically relevant regime in which u±, v± ≥ 0.

2. Overview of the main approaches.

2.1. Preliminary. First of all, we note that the cell mass is conserved, which is
obtained by integrating the first equation of (1.2)∫

R
u(x, t)dx =

∫
R
u0(x)dx =: N

where N denote the cell mass which can be either a finite or infinity number. A
traveling wave solution of (1.2) in (x, t) ∈ R × [0,∞) is a particular non-constant
solution in the form

u(x, t) = U(z), v(x, t) = V (z), z = x− ct (2.1)

with U, V ∈ C∞(R) satisfying boundary conditions

U(±∞) = u±, V (±∞) = v±, U
′(±∞) = V ′(±∞) = 0, (2.2)

where c is the wave speed assumed to be non-negative (c ≥ 0) without loss of
generality, z is called the wave variable, the prime ′ means the differentiation in z,
u−/u+ and v−/v+ are called left/right end states of u and v, respectively, describing
the asymptotic behavior of traveling wave solutions as t→ +∞/−∞.

To proceed, we give a definition below.

Definition 2.1. The traveling wave profile U is said to be a pulse if u− = u+ and
a front if u− 6= u+.

Hereafter we shall adopt the following convention: we define the type of a travel-
ing wave solution to (1.2) with a two word definition, e.g., a (pulse, front) solution
means that U is a pulse and V is a front, and so on (the order of the terms is im-
portant and distinguished). In principle, there are four families of traveling waves
solution as follows

(U, V ) =


(pulse, pulse),
(pulse, front),
(front, front),
(front, pulse).

(2.3)

In the paper, we shall show that the system (1.2) may possess each of these four
families of traveling wave solutions under suitable conditions on parameters.

Substituting the ansatz (2.1) into (1.2) and integrating the result yield{
dU ′ + cU − χV −1V ′U = C0,
εV ′′ + cV ′ − UV m + βV = 0

(2.4)



606 ZHI-AN WANG

where C0 is an integration constant that relies on the boundary conditions of U and
V such that

C0 = u±

[
c− χV

′(±∞)

V (±∞)

]
. (2.5)

Furthermore the evaluation of the second equation of (2.4) at z = ±∞ yields

u±v
m
± = βv±. (2.6)

It is of importance to remark that the second term V ′(±∞)
V (±∞) in the square bracket

of (2.5) is not necessarily zero since the traveling wave solution may exponentially
decay to zero at infinity. If the cell mass

∫∞
−∞ U(z)dz(= N) is finite, then C0 = 0.

However conversely, C0 = 0 does not exclude the possibility that cell mass is infinite
if the traveling wave profile U is a front as shown later (see Remark 1).

The conventional method of solving (2.4) with (2.2) was to convert (2.4) into a
system of first order ordinary differential equations (ODEs) and then perform the
phase plane analysis. However the analysis of the corresponding first order ODE
system of (2.4) faces two considerable challenges. The first one stems from ε > 0
since then one needs to set W = V ′ and (2.4) becomes a three dimensional nonlinear
ODE system (namely, there are three variable U, V and W in the system) for which
there is no general mathematical theory available. The second challenge lies in the
singularity of V −1 as V → 0, which makes classical approaches not applicable, such
as phase plane analysis. Hence the most fruitful approaches sought to over these
challenges should involve deriving a rigorous reduction to a low-dimensional system
and removing the singularity concurrently. The approaches discussed below are
distinguished between C0 = 0 and C0 6= 0.

2.2. Case of zero integration constant (C0 = 0). If C0 = 0, one can explicitly
solve U in terms of V from the first equation of (2.4)

U(z) = Ce−
c
d zV

χ
d (z), (2.7)

where C is a translation constant of traveling wave solutions. Substituting (2.7)
into the second equation of (2.4) leads to{

εV ′′ + cV ′ − Ce−kzV r + βV = 0,
V (−∞) = v−, V (∞) = v+

(2.8)

with

k = c/d, r = χ/d+m. (2.9)

Let V (z) be a solution of (2.8) and τ satisfies e
c
d τ = C. Then V (z + τ) is also a

solution of (2.8) corresponding to C = 1. Without loss of generality, we let C = 1
in (2.8) hereafter and the corresponding traveling wave is called the normalized
traveling wave. First we note that (2.8) does not have solutions for c = 0, namely,
there is no standing wave.

Proposition 1. If c = 0, then there is no traveling wave solution to (2.8) for any
v± ≥ 0 and ε ≥ 0.

Proof. If c = 0, then k = 0 and the first equation of (2.8) is reduced to

εV ′′ − V r + βV = 0.

Clearly there is no nontrivial solution if ε = 0. Assuming ε > 0, then V is convex on
R if β ≤ 0 and can not satisfy the boundary condition in (2.8). Hence we consider
β > 0. If r = 1, we can explicitly solve above equation and show that there is no
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nonnegative solution. If r 6= 1, we then write above equation as a system first-order
of ordinary differential equations{

V ′ = W,
W ′ = 1

ε (V r − βV )

which has two equilibria (0, 0) and (V∗, 0) where V∗ = β1/(r−1). If r < 1, the
right hand side of above system is not differentiable at origin (0, 0) and no bounded
solution exists. If r > 1, then the eigenvalue of the linearized matrices at (0, 0) and

(V∗, 0) are ±
√
−β/ε and ±

√
β(r − 1)/ε, respectively. It can be readily found that

(0, 0) is a center and (V∗, 0) is a saddle. Simple phase plane analysis will show there
is no trajectory connecting (V∗, 0) to (0, 0) or itself that lies entirely in the region
V > 0. The proof is then complete.

To obtain the traveling wave solution, hereafter we assume that c > 0. Then
evaluating the first equation of (2.8) at z = ±∞ yields

v− = 0 for β ∈ R and v+ = 0 if β 6= 0. (2.10)

Then we immediately have the following result.

Theorem 2.1. If β < 0, then (2.8) does not have a solution. In other words, there
is no traveling wave solution to the system (1.2)-(1.3) if β < 0.

Proof. Due to (2.10), v+ = 0 if β < 0. Assume (2.8) has a solution V . Then it
must be a pulse. But the equation (2.8) is not satisfied at the maximum point of
V (z), which is a contradiction. The proof is thus complete.

Therefore we assume β ≥ 0 throughout the paper in the case of C0 = 0 in order
to obtain a traveling wave solution.

2.2.1. Zero chemical diffusion ε = 0. Most of early studies, e.g. see [35, 62, 68, 32,
73, 70, 64, 41, 63, 25], considered only the case ε = 0 which reduced equation (2.8)
to a first order ODE which can be explicitly solved. In such circumstance, the basic
knowledge of ordinary differential equations is adequate. The results will be given
in section 3.1.

2.2.2. Nonzero chemical diffusion ε > 0. The biological significance of ε > 0 was
discussed in [27] and its analytical approximate solutions of the Cauchy problem
was investigated in [69], and the steady-state problem was examined in [71], where
β = 0,m = 1. When ε > 0, solving equation (2.8) is a little challenging due to the
presence of variable coefficient e−kz and analysis will be more involved than that
for ε = 0. The first rigorous result on traveling wave solutions for ε > 0 was derived
in [60] for β = m = 0, r > 1 by a change of dependent variable, and then in [18]
for β = m = 0, r = 1 by a change of independent variable. The similar result was
subsequently extended to β = 0, 0 ≤ m < 1, r > 1 in [51] by the same method of
[60]. The same idea was applied in [54] further to study the traveling wave solutions
of a microscopic chemotactic random walk model. The paper [75] announced some
existence results without proof for m ≥ 0, β ≥ 0 and r ≥ 1. In this paper, we
shall further develop the idea of [60, 18] to establish numerous results of traveling
wave solutions for ε > 0, which not only supply the rigorous proofs to [75], but
also derive many new results not obtained before, such as wave speed, asymptotic
behavior and chemical diffusion limits. We shall outline the main ideas below and
present the related results in section 3.



608 ZHI-AN WANG

Change of dependent variable: With r 6= 1, we define

µ = − k

r − 1
= − c

χ+ d(m− 1)
(2.11)

and introduce a new variable W (z) such that

V (z) = W (z)e−µz. (2.12)

Then substituting (2.12) into (2.8) and canceling e−µz yield that

εW ′′ + sW ′ + f(W ) = 0 (2.13)

where
f(W ) = ηW −W r (2.14)

and

s = c− 2εµ = c
[
1 +

2ε

χ+ d(m− 1)

]
,

η = εµ2 − cµ+ β =
c2

[χ+ d(m− 1)]2

(
ε+ χ+ d(m− 1)

)
+ β.

(2.15)

It is easy to see that equation (2.13) resembles the traveling wave equation (9.3)
of the Fisher equation. Hence the approaches for the Fisher wave equation can
be applied to obtain W first, and then V and U by (2.12) and (2.7). The idea of
introducing the change of dependent variable (2.12) was developed first in [60] for
β = 0,m = 0 and then in [51] for β = 0, 0 ≤ m < 1. Recently this approach was
employed in [82] for m = 1, β = 0and in [54] for a microscopic chemotaxis model.
In this paper, we shall employ this approach to explore the case β ≥ 0. It turns out
that the idea of transformation (2.12) produces very fruitful results which will be
given in section 3.

Change of independent variable: If β = 0, we define a change of independent
variable [18]

τ = e−
c
ε z, (2.16)

namely d
dz = − cεe

− cε z d
dτ = − cετ

d
dτ , and τ ∈ [1,∞) with

τ =

{
1, if z = 0,
∞, if z = −∞. (2.17)

By defining w(τ) = V (−ε ln τ/c), we obtain from (2.8) that

w′′(τ)− ε

c2
e(

2c
ε −k)zw(τ)r = 0

which is
w′′(τ) = ατθw(τ)r (2.18)

where

α =
ε

c2
> 0, θ =

kε

c
− 2 =

ε

d
− 2. (2.19)

Now τ ∈ [0,∞). Furthermore z = −∞ corresponds to τ = ∞ and z = ∞ corre-
sponds to τ = 0. Hence the boundary conditions for w(τ) is

w(0) = v+, w(∞) = 0. (2.20)

Equation (2.18) is a type of linear Emden-Fowler equation [7]. The existence of
solutions to equations (2.18)-(2.20) is guaranteed by [37]. The idea of using (2.16)
to transform (2.8)-(2.10) into (2.18)-(2.20) was first given in [18] for the case m =
0, β = 0.
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Now we explore the advantage and disadvantage of aforementioned two ideas.
In relation to traveling wave solutions, the Fisher equation was studied more ex-
tensively than the Emden-Fowler equation. Hence the idea of making the change
of dependent variable (2.12) may provide us more direct results such as the wave
speed, stability and asymptotics. The defect of transformation (2.12) lies in the as-
sumption r 6= 1, which is, however, remedied by making the change of independent
variable (2.16). Unfortunately (2.16) only works for β = 0 that is not needed for
(2.12). In this sense, the above two approaches are supplementary and one can not
entirely cover the other. The scenario that both approaches can not solve is when
r = 1, β > 0. The traveling wave problem for such case still remains open.

2.3. Case of non-zero integration constant (C0 6= 0). If C0 6= 0, U can be
solved as an integral of V

U(z) =

(
C +

C0

d

∫
e
c
d zV −

χ
d (z)dz

)
e−

c
d zV

χ
d

which removes the singularity but introduces an integral into the problem. The
resulting integral-differential equation is even more difficult to solve. The result for
C0 6= 0 still largely remains open except for the case m = 1 which was solved in
[83, 47, 48, 49] for ε ≥ 0 and in [9] for ε = 0 by different methods, which will be
sketched below.

2.3.1. Change of dependent variables. The idea of [83, 47, 48, 49] was a Hopf-Cole
type transformation

h = −vx
v

= − ∂

∂x
ln v (2.21)

which upon the substitution into (1.2)-(1.4), after some algebra, yields a system of
conservation laws {

ut − χ(uh)x = duxx,
ht + (εh2 − u)x = εhxx

(2.22)

for x ∈ R and t ≥ 0 with the initial data

(u, h)(x, 0) = (u0, h0)(x)→
{

(u−, h−) as x→ −∞,
(u+, h+) as x→ +∞ (2.23)

where h± = −v0x(±∞)
v0(±∞) . The existence and nonlinear stability of traveling wave

solutions of the transformed system can be established by the theory of conserva-
tion laws and method of energy estimates. Then passing the results backward, we
may obtain the existence and nonlinear stability of traveling wave solutions for the
original system. This approach was very fruitful and particularly enabled us to
obtain the nonlinear stability of traveling wave solutions. The detailed results will
be presented in section 4.

2.3.2. Change of independent variables. When m = 1, we can write the chemical
kinetics g(u, v) = βv−uv = (β−u)v which is a separable function of u and v. Then
the idea of [9] for separable models can be applied when ε = 0. Specifically, by a
change of independent variable

dy =
dz

cV
(2.24)
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system (2.4) with ε = 0 becomes{
dU
dy = c

dV (C0 − cU) + χ
d (U − β)UV,

dV
dy = V 2(U − β)

(2.25)

which can be solved with classical method of phase plane analysis. The transfor-
mation (2.24) removes the singularity and obtain a solvable system simultaneously.
The limitation is that it works only for ε = 0. In addition, the transformation (2.24)
does not connect the solution of (2.25) to the original system (2.4) unless V can
be explicitly found. When ε > 0, a system of three ODEs will result from (2.24)
and the phase plane analysis is in general rather difficult. In contrast, the Hopf-
Cole transformation (2.21) works for ε ≥ 0, and more importantly it enables us to
derive the nonlinear stability of traveling wave solutions besides the existence, see
details in section 4. Hence for the particular case m = 1, the transformation (2.21)
is more powerful and accessible than (2.24) and we shall not discuss the details of
[9]. Of course, the transformation (2.24) can treat some other separable chemotaxis
systems different from (1.2)-(1.3), see [9] for more examples.

We would like to conclude this section by mentioning a constructive approach
introduced in [30] which investigated what kinds of chemotactic sensitivity, chemical
production and decay functions may collectively produce traveling wave solutions
for the chemotaxis models. Since the constructive approach in [30] did not address
other issues of traveling wave solutions except existence, such as wave speed and
stability, we shall not discuss this approach in detail in the paper.

3. Traveling wave solutions for C0 = 0. When C0 = 0, the problem (2.4)
subject to (2.2) becomes (2.8), see section 2.2. There are two separate cases to
consider: ε = 0 and ε > 0.

3.1. Zero chemical diffusion ε = 0. The existence of traveling wave solutions
for ε = 0 and β = 0 has been studied very early in a series of papers [35, 62, 68,
32, 73, 70, 64, 41, 63, 25] where the traveling wave solutions were explicitly found
for 0 ≤ m < 1. When m = 1, the existence and asymptotic behavior of traveling
wave solutions were established in [83, 47, 82]. When m > 1, the non-existence of
traveling wave solutions was shown in [75]. The case of β > 0 with 0 ≤ m < 1 will
be investigated in the present paper. The theorem below will lump all these results
with a complete proof.

Theorem 3.1. Let ε = 0, c > 0 and β ≥ 0 in (2.8). Then
(i) if χ/d+m < 1, there is no traveling wave solution.
(ii) if χ/d+m = 1, traveling wave solutions exist, where the traveling wave profile

(U, V ) is a (pulse, pulse) if β > 0 and a (pulse, front) if β = 0.
(iii) if χ/d+m > 1, traveling wave solutions exist if and only if 0 ≤ m ≤ 1, and

the traveling wave profile (U, V ) is a
(1) (pulse, front) if β = 0, 0 ≤ m < 1;
(2) (front, front) if β = 0,m = 1;
(3) (pulse, pulse) if β > 0, 0 ≤ m < 1;
(4) (front, pulse) if β > 0,m = 1.

Proof. When ε = 0, the equation (2.8) with (2.10) reduces to

cV ′ − e−kzV r + βV = 0, V (−∞) = 0, V (∞) = v+ ≥ 0. (3.1)

We have the following scenarios to consider.
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(1) If r = 1, (3.1) is linear and can be explicitly solved to yield that

V (z) = C∗ exp
(
− β

c
z − 1

kc
e−kz

)
and hence

U(z) = C
χ
d
∗ exp

(
−
( c
d

+
χβ

cd

)
z − χ

dkc
e−kz

)
where C∗ > 0 is a constant. When β ≥ 0, one can check that U(±∞) = 0, V (−∞) =
0. Furthermore V (∞) = 0 if β > 0 and V (∞) = C∗ if β = 0. This shows (ii).

(2) r 6= 1. Let b(z) = exp(−kz)/c. Then equation (3.1) becomes a Bernoulli
differential equation

V ′ +
β

c
V − b(z)V r = 0. (3.2)

With a change of variable, we can solve the above equation and obtain

V (z) =
[
C1e

−(1−r)βz/c + C2e
−kz
] 1

1−r
(3.3)

where C1 > 0 is a constant and

C2 =
r − 1

kc+ β(r − 1)
. (3.4)

Then we have two cases to proceed.
Case 1: r < 1. Then V (−∞) → ∞ due to β ≥ 0. Hence there is no traveling

wave solution and the assertion (i) is proved.
Case 2: r > 1. Then 1

1−r < 0. For m ≥ 0, we have two cases to consider.

(a) If β = 0, then C2 = r−1
kc . From (3.3), it has that

V (z) =
(
C1 + C2e

−kz
) 1

1−r →

{
C

1
1−r
1 , as z →∞,
0, as z → −∞.

By the boundary condition (2.2), one can determine that C1 = v1−r+ > 0. Hence V
is a traveling wavefront. By (2.7), one obtains

U(z) =
[
v1−r+ e(r−1)cz/χ +

r − 1

kc
e−(k+(1−r)c/χ)z

] χ
d(1−r)

. (3.5)

Note that k+ (1− r)c/χ > (<,=)0 is equivalent to m < (>,=)1. It is easy to check
that U(∞) = 0 for all m > 0 and

U(−∞) =


0, m < 1,
c2

χ , m = 1,

∞, m > 1.

Therefore we conclude that if β = 0, traveling (pulse, front) solutions exist if and
only if 0 ≤ m < 1 and traveling (front, front) solutions exist if and only if m = 1,
and no bounded traveling solutions exist if m > 1.

(b) If β > 0, it follows that −(1− r)β > 0. Then from (3.3), one has V (z) → 0
as z → ±∞ since C2 > 0. Furthermore, (2.7) yields that

U(z) =
[
C1e

(r−1)(c/χ+β/c)z + C2e
−(k+(1−r)c/χ)z

] χ
d(1−r)

. (3.6)

Similar reasoning to case (a) asserts that if β > 0, traveling (pulse, pulse) solutions
exist if and only if 0 ≤ m < 1 and traveling (front, pulse) solutions exist if and only
if m = 1, bounded traveling solutions do not exist if m > 1.

Then the proof is complete.
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Figure 2. An illustration of four distinct families of traveling
waves (U, V ) shown in Theorem 3.1. First panel: β = 0,m = 1/2;
second panel: β = 0,m = 1; third panel: β = 1,m = 1/2; fourth
panel: β = 1,m = 1. Other parameter values are all the same:
C1 = 3,= 1, d = 1, χ = 1, c = 1 where k and r are determined by
k = c/d, r = χ/d+m.

3.2. Non-zero chemical diffusion ε > 0. The main approaches ε > 0 have
already been introduced in section 2.2.2. In this section, we shall present the relevant
consequences of these approaches. We divide our analysis into cases r 6= 1 and r = 1.

3.2.1. Case of r 6= 1. For this case, the problem has been converted to a Fisher wave
like equation (2.13) with (2.14) by the transformation (2.12), as shown in section
2.2.2. However to use the results for the Fisher equation that are cited in Theorem
9.1 (see Appendix in section 9), we need to perform some preliminary analysis
to determine the parameter regime in which the conditions of Fisher problem are
fulfilled. Here we present the results and proofs, which not only cover those of
[60, 51, 54] for β = 0 but also give some new results such as minimum wave speed
and asymptotic decay rates.

Lemma 3.1. Let r 6= 1 and β ≥ 0. Then
(i) If 0 < r < 1, there is no traveling wave solution to (2.13).
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(ii) If r > 1, the nonnegative traveling wave solution W (z) of (2.13) exists if and
only if

s ≥ s∗ = 2
√
εη (3.7)

under which W (z) is a wavefront with W ′ < 0 and satisfies the boundary conditions

W (−∞) = η1/(r−1), W (∞) = 0,

as well as the following asymptotic behaviors:
(a) If s > s∗ = 2

√
εη, then

W (z) ∼ η1/(r−1) − Ceλ
+
2 z, as z → −∞,

W (z) ∼ Ceλ
+
1 z, as z →∞

(3.8)

where

λ±1 =
−s±

√
s2 − 4εη

2ε
=

(2εµ− c)±
√
c2 − 4εβ

2ε
(3.9)

and

λ±2 =
−s±

√
s2 + 4εη(r − 1)

2ε
=

(2εµ− c)±
√
c2 + 4ε(ηr − β)

2ε
. (3.10)

(b) If s = s∗ = 2
√
εη, then

W (z) ∼ η1/(r−1) − Ce−σz +O(e−2σz), as z → −∞,

W (z) ∼ (A−Bz)e−
s∗
2ε z +O(z2e−

s∗
ε z), as z →∞

(3.11)

where

σ =
s∗ −

√
s2∗ + 4εη(r − 1)

2ε
= (1−

√
r)

√
η

ε
(< 0).

Proof. First note that (2.13) has two equilibria: (W1, ξ1) = (0, 0) which always
exists, and (W2, ξ2) = (η1/(r−1), 0) which exists if η > 0. It can be shown that if
(W2, ξ2) does not exist, then there does not exist a homoclinic trajectory connecting
the unstable manifold to the stable manifold of the equilibrium (W1, ξ1). If (W2, ξ2)
exists and 0 < r < 1, then the kinetic function f(W ) defined in (2.14) is not
differentiable at the origin, which becomes a singular Fisher equation that does not
admit traveling wave solutions [56]. So we assume that r > 1 which implies that
µ < 0, η > 0 and hence s > 0 and (W2, ξ2) exists. For the sake of convenience, we
rewrite (2.13) as a system of ordinary differential equations{

W ′ = ξ,
ξ′ = − sεξ −

1
εf(W ).

(3.12)

Let J1 and J2 be the linearized matrices of system (3.12) at the equilibria (W1, ξ1)
and (W2, ξ2), respectively. Then the eigenvalues of matrix J1 and J2 can be readily
computed, as given by (3.9) and (3.10).

It is straightforward to check that λ−1 ≤ λ+1 < 0 if s2 ≥ 4εη. On the other
hand, if r > 1, β ≥ 0, the equation (2.13) is a Fisher wave equation (9.3) satisfying
condition (9.2) with % = η1/(r−1) and λ−2 < 0 < λ+2 . Then the results of Lemma 3.1
are direct consequences of Theorem 9.1 and Theorem 9.2, see section 9. The proof
is completed.
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Using (2.7) and (2.12), we can derive the non-existence and existence results
for the traveling wave solutions of the original chemotaxis model (1.2) based on
the results of W (z). First noticing that r = χ

d + m, the following nonexistence of
traveling wave solutions for χ

d +m < 1 follows from Lemma 3.1(i) directly.

Theorem 3.2. Let β ≥ 0. If χ
d + m < 1, there is no traveling wave solution to

(1.2)-(1.4).

If r = χ
d +m > 1, there are two cases (β > 0 and β = 0) to consider the existence

of traveling wave solutions. Employing Lemma 3.1 together with (2.7), (2.11) and
(2.12), we first obtain the following existence results for β > 0.

Theorem 3.3. Let β > 0 and χ
d +m > 1 with 0 ≤ m ≤ 1. Then the traveling wave

solution (U, V ) of (1.2)-(1.4) exists if and only if

c ≥ c∗ = 2
√
εβ. (3.13)

Moreover the solution (U, V ) has the following asymptotic behavior as |z| → ∞:
(a) If c > c∗ = 2

√
εβ, then

U(z) ∼


(
η1/(r−1) + Ceλ

+
2 z
)χ
d

eδ1z, as z → −∞,

Ceδ2z, as z →∞
(3.14)

and

V (z) ∼


(
η1/(r−1) + Ceλ

+
2 z
)
e−µz, as z → −∞,

Ce(λ
+
1 −µ)z, as z →∞

(3.15)

where

δ1 = −χµ+ c

d
=

c(1−m)

χ+ d(m− 1)
, δ2 =

χ(λ+1 − µ)− c
d

< 0. (3.16)

(b) If c = c∗ = 2
√
εβ, it has that

U(z) ∼


(
η1/(r−1) − Ce−σ∗z +O(e−2σ∗z)

)χ
d

eδ
∗
1z, as z → −∞(

(A−Bz)e−τ1z +O(z2e−τ2z)
)χ
d

e−
c∗
d z, as z →∞

(3.17)

and

V (z) ∼

{ (
η1/(r−1) − Ce−σ∗z +O(e−2σ∗z)

)
e−µ∗z, as z → −∞

(A−Bz)e−τ1z +O(z2e−τ2z), as z →∞
(3.18)

where

σ∗ = (1−
√
r)

√
η∗
ε
, η∗ =

4εβ

[χ+ d(m− 1)]2

(
ε+ χ+ d(m− 1)

)
+ β,

µ∗ = − c∗
χ+ d(1−m)

, δ∗1 = −χµ∗ + c∗
d

=
2
√
εβ(1−m)

χ+ d(m− 1)
,

τ1 =
s∗
2ε

+ µ∗ =
c∗
2ε

=

√
β

ε
(> 0),

τ2 =
s∗
ε

+ µ∗ =
c∗
ε
− µ∗ = 2

√
β

ε

(
1 +

ε

χ+ d(m− 1)

)
(> 0).

(3.19)
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Proof. By Theorem 9.1, the wave speed s for (2.13) is s ≥ s∗ = 2
√
εf ′(0) which

is equivalent to c ≥ c∗ = 2
√
εβ after simple calculation by using (2.15). Using

(2.12), we can translate the decay rates of W (z) obtained in Theorem 3.1 to V (z)
directly with trivial calculations, and hence derive the asymptotic decay rates of V
as announced in the Theorem. Furthermore combining (2.7) and (2.12), one has

U(z) = W
χ
d e−

χµ+c
d z.

Then applying (3.8) and (3.11) into above equation and (2.12), we can readily
derive the asymptotic decay rates for U as given in the Theorem. Now we proceed
to determine under what condition for m, the limits of (U, V ) as z → ±∞ exist.
First from (3.16), we have δ1 > 0, 1− χ

d ≤ m < 1,
δ1 = 0, m = 1,
δ1 < 0, m > 1.

Hence as z → −∞, it has that

U(z)→

 0, 1− χ
d ≤ m < 1,

η, m = 1,
∞, m > 1

(3.20)

which immediately shows that there does not exist a bounded traveling wave solu-
tion if m > 1. Hence it is required that 0 ≤ m ≤ 1 to guarantee the existence of U .
The proof is complete.

We should point out that the asymptotics (3.14)-(3.18) are also true for β = 0.
But when β = 0, we have c∗ = 0. If c = c∗ = 0 which implies σ∗ = µ∗ =
δ∗1 = τ1 = τ2 = 0. Then it is straightforward to check from (3.17)-(3.18) that
(U(z), V (z)) → (∞,∞) as z → ∞. So the traveling wave solution does not exist
when c = c∗ = 0 and we have the following results for β = 0 by using Lemma 3.1.

Theorem 3.4. Let β = 0 and χ
d +m > 1 with 0 ≤ m ≤ 1. Then the traveling wave

solution (U, V ) of (1.2)-(1.4) exists if and only if

c > c∗ = 0

and the solution (U, V ) has the following asymptotic behavior as |z| → ∞:

U(z) ∼


(
η1/(r−1) + Ceλ

+
2 z
)χ
d

eδ1z, as z → −∞,

Ce−
c
d z, as z →∞

(3.21)

and

V (z) ∼

{ (
η1/(r−1) + Ceλ

+
2 z
)
e−µz, as z → −∞,

v+ − Ce−
c
ε z, as z →∞.

(3.22)

Proof. Note that when β = 0, λ+1 −µ = 0 and hence (3.21) is a direct consequence of
(3.21). In addition, the asymptotics of V as z →∞ given in (3.22) can be obtained
from the first equation of (2.8) directly, see also [82].

The following Theorem addresses the type of traveling wave profiles and mono-
tonicity of traveling wave solutions.
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Theorem 3.5. Let β ≥ 0 and χ
d +m > 1 with 0 ≤ m ≤ 1. Let (3.13) hold. Then

(i) If 0 ≤ m < 1, the traveling wave solution profile (U, V ) is a (pulse, pulse) if
β > 0 and a (pulse, front) with V ′ > 0 if β = 0.

(ii) If m = 1, the traveling wave solution profile (U, V ) is a (front, pulse) with
U ′ < 0 if β > 0 and a (front, front) with U ′ < 0, V ′ > 0 if β = 0.

Proof. We first derive the types of traveling wave profiles for the case c > c∗ =
2
√
εβ, β ≥ 0. Using the definition of λ+1 in (3.9), we have

λ+1 − µ =
−c+

√
c2 − 4εβ

2ε

{
< 0, β > 0
= 0, β = 0

(3.23)

and hence

δ2 =
χ

d
(λ+1 − µ)− c

d
< 0.

Therefore for 1− χ
d ≤ m ≤ 1, it follows from (3.17) and (3.21) that

U(z)→ 0 as z →∞ for all β ≥ 0

which, along with (3.20), shows that U(∞) is bounded and U(z) is a pulse for
0 ≤ m < 1 and a front for m = 1.

Noticing that µ < 0, we have from (3.15) that

V (z)→ 0 as z → −∞

and

V (z)→
{

0, β > 0,
C, β = 0

as z→∞. (3.24)

So V (z) is a pulse for β > 0 and front for β = 0. We are left to derive the types
of traveling wave profiles for the case c = c∗ = 2

√
εβ, β > 0. In this case, we have

µ∗ < 0, τ2 > 0 when 1− χ
d < m ≤ 1, as well as δ∗1 > 0 if 1− χ

d < m < 1 and δ∗1 = 0 if
m = 1. Hence V (z)→ 0 as z → ±∞, U(z)→ 0 as z → +∞, U(z)→ 0 as z → −∞
if 1− χ

d < m < 1, and U(z)→ η1/(r−1) + constant as z → −∞ if m = 1.
Next we show the wave monotonicity. We first consider the case β = 0 where V

is a wavefront for both 0 ≤ m < 1 and m = 1. Indeed by the second equation of
(2.4) with β = 0 and (2.2), we can easily derive that

V ′ =
1

ε
e−

c
ε z

∫ z

−∞
e
c
ε ξUV mdξ.

It immediately follows that V ′ > 0 for any m ≥ 0 due to U, V > 0 for all z ∈
(−∞,∞).

Next we proceed to consider the case β > 0,m = 1 where U is a front. Since
W ′ < 0, we have from (2.12) that W ′ = eµz(V ′ + µV ) < 0. Hence V ′ + µV < 0.
Note that when m = 1, µ = − k

χ/d = − c
χ . Therefore V ′ − c

χV < 0, namely

c− χV ′V −1 > 0. Then by the first equation of (2.4), one has

U ′ =
U

d
(c− χV ′V −1) > 0.

The proof is finished.

Remark 1. From Theorem 3.5 we see that the wave profile U is a front when
m = 1, which corresponds to infinite cell mass. This shows the fact that cell mass
may still be infinite even if C0 = 0, as mentioned in section 2.1.
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Table 1. A summary for the non-existence and existence of trav-
eling wave solutions of model (1.2) in various parameter regimes,
and the wave profile, wave speed and wave monotonicity if traveling
wave solutions exist.

Parameter Regimes Wave Profile Wave Speed Wave

(U, V ) Monotonicity

χ
d +m < 1 or m > 1

None None None
or β < 0

χ
d +m > 1, 0 ≤ m < 1

(Pulse, Pulse) c ≥ c∗ = 2
√
εβ None

β > 0

χ
d +m ≥ 1, 0 ≤ m < 1

(Pulse, Front) c > c∗ = 0 V ′ > 0
β = 0

χ
d +m > 1, m = 1

(Front, Pulse) c = χ
(
u−−β
ε+χ

)1/2
U ′ < 0

β > 0

χ
d +m > 1, m = 1

(Front, Front) c = χ
(
u−
ε+χ

)1/2
U ′ < 0, V ′ > 0

β = 0

For convenience, we summarize the wave profiles, wave speed and the monotonic-
ity of traveling wave solutions in Table 1.

3.2.2. Case of r = 1. With r = χ/d+m = 1, the problem (2.8) becomes{
εV ′′(z) + cV ′(z)− e−kzV (z) + βV (z) = 0,
V (−∞) = 0, V (∞) = v+ ≥ 0.

(3.25)

Since the transformation (2.12) fails when r = 1, we ought to employ idea of making
the change of independent variable as shown in section 2.2.2. This method only
works for β = 0. Hence we assume β = 0 and consider the following problem{

w′′(τ) = ατθw(τ), 0 < τ <∞
w(0) = v+, w(∞) = 0

(3.26)

where α, θ are given in (2.19).
The the existence of unique solution to (3.26) with w′(τ) < 0 was guaranteed by

[37], see also [18], since θ > −2. Then using the results of [14, Chapter IV], we can
readily derive the asymptotic behavior of the solution to (3.25), as follows.

Theorem 3.6. Let β = 0. Then for every c > 0 there is a unique monotone solution
(up to a translation) to problem (3.25) with v+ > 0 and V ′ > 0. Furthermore the
solution has the following asymptotic behavior as z → ±∞:

V (z) ∼ e
c
4ε

(
ε
d−2
)
z− 2d

c
√
ε
e−

c
2d
z

, as z → −∞,
V (z)− v+ ∼ e−

c
ε z, as z →∞.
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Proof. Since V (z) = w(τ), the existence of V follows from the existence of w(τ)
which solves (3.26). Due to V ′(z) = − cεe

− cε zw′(τ) and w′(τ) < 0, it follows that
V ′ > 0 for all z ∈ R. Now we assume that V (0) = % > 0 and study the asymptotics
of V as z →∞ by considering the following problem{

εV ′′ + cV ′ − e−kzV = 0, z ∈ (0,∞)
V (0) = %, V (∞) = v+.

(3.27)

Let V ′ = ρ and X =

[
V
ρ

]
. Then we can write the equation (3.27) as

X ′ = (A+B(z))X (3.28)

where

A =

[
0 1
0 − cε

]
, B(z) =

[
0 0

e−kz

ε 0

]
.

It is straightforward to obtain the eigenvalues of A as

λ1 = − c
ε
, λ2 = 0 (3.29)

with corresponding eigenvectors

xi =

[
1
λi

]
, i = 1, 2.

Considering the fact that∫ ∞
0

|B(z)|dz =
1

ε

∫ ∞
0

e−kzdz =
1

εk
<∞,

then by [14, Chapter IV (Theorem 2)], the solution of system (3.28) satisfies

X ∼ c1eλ1zx1 + c2e
λ2zx2, as z →∞

and hence V (z) = c1e
− cε z + c2. Applying the boundary condition yields that c1 =

%− v+ and c2 = v+. Therefore it follows that

V − v+ ∼ e−
c
ε z, as z →∞.

Next we proceed to consider the asymptotics as z → −∞ and consider the problem{
εV ′′ + cV ′ − e−kzV = 0, z ∈ (−∞, 0)
V (−∞) = 0, V (0) = %.

(3.30)

Note that the coefficient e−kz is singular at z = −∞, it is very challenging to
solve the problem (3.30) directly. Instead we shall transform the problem to a
non-singular problem via the transformation (2.16). Hence we first consider the
following transformed problem{

w′′(τ) = ε
c2 τ

θw(τ), τ ∈ [1,∞)
w(1) = %, w(∞) = 0

(3.31)

where θ is define in (2.19). For convenience, we let f(τ) = ε
c2 τ

θ and apply the results
in [14] to derive the asymptotical behavior of solutions to (3.31). To this end, we
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need verify
∫∞
1
|f− 3

2 f ′′|dτ <∞. Indeed noticing that f ′′(τ) = ε
c2 θ(θ − 1)τθ−2 and

− θ2 − 2 = − εk2c − 1 < −1, we find∫ ∞
1

|f− 3
2 f ′′|dτ =

ε

c2
|θ(θ − 1)|

∫ ∞
1

|f− 3
2 τθ−2|dτ

≤ c√
ε
|θ(θ − 1)|

∫ ∞
1

τ−
θ
2−2dτ <∞.

Then the result of [14, Chapter IV (Theorem 14)] asserts that the system (3.31)
has a solution w(τ) for τ > 1 with the following asymptotic behavior as τ →∞:

w(τ) ∼ [f(τ)]−
1
4 e−

∫ τ
1
[f(ξ)]

1
2 dξ =

(c2
ε

) 1
4

τ−
θ
4 e−

√
ε
c

∫ τ
1
ξ
θ
2 dξ

=
(c2
ε

) 1
4

e
2
√
ε

c(θ+2) τ−
θ
4 e−

2
√
ε

c(θ+2)
τ
θ
2

+1

which along with (2.19) yields

w(τ) ∼ τ−
εk−2c

4c e
− 2
k
√
ε
τ
εk
2c
.

Thanks to (2.16) and (2.17), we have

V (z) = w(e−
c
ε z) ∼ e(

k
4−

c
2ε )z−

2
k
√
ε
e−

k
2
z

, as z → −∞.

Hence we obtain the asymptotic behavior of solutions as z → ±∞ by noticing that
k = c/d. Next we show the monotonicity of V . To this end, we integrate the first
equation of (3.30) over (−∞, z) and obtain

V ′ = e−
c
ε z

∫ z

−∞
e(
c
ε−k)ξV (ξ)dξ > 0

for all z ∈ (−∞,∞) since V (ξ) ≥ 0 for all ξ ∈ R.

Remark 2. The existence of traveling wave solutions discussed above require r ≥
1. Indeed for r < 1, it was shown in [64, 18] that there was so-called singular
traveling wave solution (U, V ) to the system (1.2) with m = 0 and β = 0, namely
U(z) = V (z) = 0 if z ≤ z0 and U(z) > 0, V (z) > 0 if z > z0 for some z0, where the
case ε = 0 and ε > 0 are treated in [64] and [18], respectively.

4. Traveling wave solutions for C0 6= 0. When C0 6= 0, U can be solved as an
integral of V which removes the singularity but concurrently introduces an integral
and hence does not virtually reduce the difficulty. New ideas should be sought to
attack such a problem. As far as we know, the only available result was developed
in [83, 47, 48, 49] for the case m = 1, where a Hopf-Cole transformation was
essentially employed to transform the original chemotaxis system (1.2) into a system
of conservation laws, see section 2.2. In this section, we will present more details
of this approach and corresponding results in [83, 47, 48, 49]. We first examine the
transformed problem (2.22)-(2.23) and then pass the results back to v by (2.21).
Here we only discuss the case ε > 0 and refer the readers to [47] for the case ε = 0.

Because the chemotaxis model (1.2) with m = 1 describes the directed movement
of cells toward the chemical which is consumed by cells when they encounter, the
wave is an “invasion” pattern. That is, the wave profile of u decreases from its tail to
front and that of v increases from its tail to the front, which means ux < 0, vx > 0.
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From the transformation (2.21), it follows that h ≤ 0. Hence the physical region of
(u, h) is

X = {(u, h) | u ≥ 0, h ≤ 0, u± ≥ 0, h± ≤ 0 }. (4.1)

Later we shall apply the theory of conservation laws to show the system (2.22)-(2.23)
admits viscous shock wave solutions which are nonlinearly stable if u+ > 0.

4.1. Traveling wave solutions of the transformed system. We first show that
the transformed system (2.22) without viscosity is a genuinely nonlinear hyperbolic
system under some conditions for ε. In the absence of the viscous terms, (2.22)
becomes {

ut − χ(uh)x = 0,
ht + (εh2 − u)x = 0.

(4.2)

By the standard procedure, we can show that if 0 < ε < 1, the hyperbolic sys-
tem (4.2) is genuinely nonlinear (see [49]). Hence the viscous shock waves can be
expected.

Now we substitute the traveling wave ansatz

(u, h)(x, t) = (U,H)(z), z = x− ct.
into (2.22), and obtain the traveling wave equations{

−cU ′ − χ(UH)′ = dU ′′,
−cH ′ + (εH2 − U)′ = εH ′′

(4.3)

with boundary conditions

(U,H)(z) → (u±, h±) as z → ±∞ (4.4)

where u± ≥ 0 and h± ≤ 0.
Integrating (4.3) once yields that{

dU ′ = −cU − χUH + %1 =: F (U,H),
εH ′ = −cH + εH2 − U + %2 =: G(U,H)

(4.5)

where %1 and %2 are constants satisfying

%1 = cu− + χu−h− = cu+ + χu+h+,

%2 = ch− − ε(h−)2 + u− = ch+ − ε(h+)2 + u+
(4.6)

which gives

c(u+ − u−) = χ(u−h− − u+h+),

c(h+ − h−) = ε(h+)2 − ε(h−)2 + u− − u+.
(4.7)

Eliminating c from (4.7) yields

u+ − u−
h+ − h−

=
χ(u−h− − u+h+)

ε(h+)2 − ε(h−)2 + u− − u+
. (4.8)

Now if u± and h± satisfy (4.8), we can drive an equation for c from (4.6)

c2 + χh−c+ χu+

(
ε(h2+ − h2−)

u+ − u−
− 1

)
= 0. (4.9)

Note that when ε is small such that
ε(h2

+−h
2
−)

u+−u− − 1 < 0, the discriminant of the

quadratic (4.9) is positive and hence (4.9) gives two solutions with opposite signs,
where the positive c corresponds to the wave speed of the second characteristic fam-
ily of system (2.22) and the negative c corresponds to that of the first characteristic
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family. Hereafter we only consider the case of c > 0 and the analysis extends to the
case c < 0. The positive wave speed c is given by

c = −χh−
2

+
1

2

√
χ2h2− + 4u+χ

(
1− ε

h2+ − h2−
u+ − u−

)
. (4.10)

Since h− < 0 and
ε(h2

+−h
2
−)

u+−u− − 1 < 0, then c ≥ χ|h−| = −χh−, which is equivalent
to

c+ χh− ≥ 0. (4.11)

We can calculate that entropy condition of the shock of second characteristic family
(cf. [49]) gives

0 ≤ u+ < u−, h− < h+ ≤ 0 (4.12)

which will be used later to prove the existence of traveling waves.
The first result concerning the existence of traveling wave solutions of (2.22)-

(2.23), namely, the existence of solutions to (4.3)-(4.4), is as follows.

Theorem 4.1 ([49]). Let (4.12) hold. If ε is small, then the system (4.2) admits
a monotone shock profile (U,H)(x − ct), which is unique up to a translation and
satisfies U ′ < 0, H ′ > 0, where the wave speed c is given by (4.10). Moreover the
solution profile (U,H) decays exponentially as z → ±∞(

U
H

)
∼
(
u±
h±

)
+

(
c1±
c2±

)
eλ±z, as z → ±∞

where c1± and c2± are positive constants and

λ± = −
(c+ χh±

2d
+
c− 2εh±

2ε

)
+

√(c+ χh±
2d

− c− 2εh±
2ε

)2
+
χu±
εd

.

Proof. We only outline the main steps of the proof and details were given in [49].
Step 1. It is easy to see that ODE system (4.5) has two and only two equilibria

(u−, h−) and (u+, h+). The Jacobian matrices of the linearized system of (4.5)
about equilibria (u±, v±) are

J(u±, v±) =

[
−c−χh±

d −χu±d
− 1
ε

−c+2εh±
ε

]
. (4.13)

By calculating the eigenvalue of J(u±, h±), one can show that the equilibrium
(u−, h−) is a saddle and (u+, h+) is a stable node if ε > 0 is suitably small.

Step 2. Denote the region enclosed by nullclines of system (4.5) in the fourth
quadrant by

G =

{
(U,H)

∣∣∣∣ %1
χH + c

≤ U ≤ εH2 − cH + %2

}
(4.14)

whose edges are denoted by

Γ1 = {(U,H) | F (U,H) = −U(χH + c) + %1 = 0, u+ < U < u−, h− < H < h+},
Γ2 = {(U,H) | G(U,H) = εH2 − cH − U + %2 = 0, u+ < U < u−, h− < H < h+}.
Then we can show that G is an invariant set of system (4.5), see an illustration in
Fig. 3.

Step 3. By computing the tangential direction of the edges Γ1 and Γ1 at (u−, h−),
we can find the direction of unstable manifold of system (4.5)at (u−, h−) is between
the tangent lines of Γ1 and Γ2 at (u−, h−) and points into the region G . Since the
manifold is trapped inside the invariant region G , this unstable manifold has go to
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Figure 3. A numerical plot of the phase portrait of system (4.5),
where the solid line (hyperbola) represents the nullcline U(χH +
c) = %1 and dashed line (parabola) represents the nullcline U =
εH2 − cH + %2. The parameter values are %1 = 1, %2 = 1/4, c =
2, ε = 1/2, χ = 1.

the stable equilibrium (u+, h+) by the Poincaré-Bendixson theorem, and generates a
trajectory connecting (u−, h−) and (u+, h+) which corresponds to a traveling wave
solution of (4.2). From (4.5) and (4.14), we see that U ′ < 0 and H ′ > 0.

Step 4. Finally the asymptotic decay rates of (U,H) as z → ±∞ can be derived
by calculating the eigenvalues of Jacobian matrix (4.13).

The proof is complete.

4.2. Passing results to the original system. In the preceding subsection, we
establish the existence of traveling wave solutions to the transformed system (2.22)-
(2.23). Now we are ready to transfer the results back to the original system (1.2)-
(1.4).

Theorem 4.2 ([50]). The model (1.2)-(1.4) with m = 1 has a unique (up to a
translation) monotone bounded traveling wave solution (U, V )(x − ct) with U ′ <
0, V ′ > 0 provided that ε ≥ 0 is small, such that v+ > v− = 0, u− > u+ = β ≥ 0,
where the wave speed c is given by

c = χ

[
u−

χ+ ε(1− u+/u−)

]1/2
=

 χ
√

u−
χ+ε , β = 0,

χ
√

u−
χ+ε(1−β/u−) , β > 0.

(4.15)

Moreover the traveling wave solution (U, V ) has the following asymptotic behavior

U(z) ∼
{
u− + Ceλ−z, as z → −∞,
β + Ceλ+z, as z →∞,
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and

V (z) ∼

{
Ce
−h−z− C

λ−
eλ−z

, as z → −∞,
Ce
− C
λ+

eλ+z

, as z →∞,
where C is a generic positive constant and

h− =
c(β − u−)

χu−
.

Proof. Note that u in the system (1.2) remains the same as that in (2.22) and so
does U . Hence we only need to translate the results from H to V . Recalling the
transformation (2.21), we have

H(z) = −(lnV )z

which yields that

V (z) = Ce−
∫ z
0
H(y)dy

where C = V (0) is a positive constant. Then the results for V can be readily derived
from H only if h+ = 0, see more details in [50]. The assertion u+ = β is obtained
from (2.6) by the fact m = 1 and v+ > 0. Finally when h+ = 0, we can solve from

the first equation of (4.6) that h− = c(β−u−)
χu−

. Then the asymptotic decay rates of

(U, V )(z) can be readily derived from the decay results in Theorem 4.1.

Remark 3. From (2.5), one has that

C0 = cβ

which validates the possibility C0 6= 0 when β > 0.

Remark 4. The smallness assumption of the chemical diffusion ε imposed in The-
orem 4.2 can be removed for the case u+ = β = 0 using a similar approach as in
section 3.2.1, see [82]. However such an approach does not apply to the case u+ > 0.
Hence the existence/nonexistence of traveling wave solutions with u+ > 0 for large
ε > 0 still remains open.

Remark 5. For the same parameter values m = 1, β = 0, when C0 = 0, the results
in Theorem 4.2 are consistent with those in Theorem 3.5 (ii), while for m = 1, β > 0,
the solution profile (front, front) for C0 = cβ > 0 (see Theorem 4.2) is different from
the profile (front, pulse) for C0 = 0 (see Theorem 3.5). This shows that C0 = 0 and
C0 6= 0 may generate different results and it is necessary to distinguish them.

If (1.2) is reviewed as a model to describe the initiation of angiogenesis as in
[16, 82], it is of importance to incorporate the cell growth, since angiogenesis ac-
tivator increases and prompts the division and growth of vascular endothelial cells
in order to form new blood vessels during the initiation of angiogenesis. Hence in
a recent paper [3], a logistic growth term is incorporated into the model (1.2) and
the existence of traveling wave profile (front, front) was established.

4.3. Numerical simulations of wave propagation. Due to the singular term
v−1, it is unfeasible to obtain the numerical solutions of the model (1.2) without
the approximation technique. The Hopf-Cole transformation (2.21) makes not only
analytical study possible but also numerical exploration achievable with standard
numerical schemes. In this section, we shall illustrate the numerical simulations of
propagating traveling waves, and discuss the biological implications.
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As the most interesting solution component, the cell density u in the model (1.2)
remains the same as the one in the transformed system (2.22). Hence we can find the
numerical solution u by numerically solving the transformed model (2.22) directly.
The traveling wave propagation will be simulated in a finite spatial domain with
Dirichlet conditions compatible with the initial data. The parameter values will be
chosen to meet the requirement (4.8). In the simulation, the initial data are set as

u0(x) = ũ(x) = ū+ 1/(1 + exp(2(x− 20))),

h0(x) = h̃(x) = h̄+ 1/(1 + exp(−2(x− 20)))
(4.16)

with end states ũ− = ū + 1, ũ+ = ū, h̃− = h̄, h̃+ = h̄ + 1. We consider two sets
of parameter values: (1) ε = 0 and β > 0; (2) ε > 0 and β = 0. The former may
describe the reinforced random walk and the latter may account for the directed
movement of endothelial cells during the initiation of angiogenesis, see section 1 for
details.
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Figure 4. A numerical simulation of wave propagation of cell den-
sity u to the model (2.22) in the spatial domain where ε = 0, d =
2, χ = 0.5 and initial data are given in (4.16). The arrow indicates
the propagating direction of traveling waves.

In Fig. 4, we simulate the wave propagation of the model (2.22) with ε = 0 and
β > 0, where the domain Ω = (0, 300) with mesh size 0.5. We choose d = 2, ū = 1,

h̄ = −1, and hence ũ− = 2, ũ+ = 1, h̃− = −1, h̃+ = 0. Fig. 4 (a) is a three
dimensional visualization of traveling waves propagating in the spatial field, and
Fig. 4 (b) plots the temporal-spatial wave pattern formation. From Fig. 4 (a),
we see that the solution from the initial data oscillates for a short time and then
quickly form a stable propagating wave. In relation to the biological motivation
of the model with ε = 0, β > 0, Fig. 4 illustrates a spatial movement pattern of
random walkers in response to the chemical signal. Here β > 0 is reflected by the
fact β = u+ = 1.

Fig. 5 plots the propagating waves generated by the model (2.22) with ε = 0.1 >
0 and β = 0, where ū = 0 and other parameter values are the same as those in Fig.
4. Here Fig. 5 (a) is a three dimensional visualization of traveling waves propagating
in the spatial field, and Fig. 5 (b) plots the evolution of solutions from the initial
profile to a monotone wavefront which fits our theoretical results. In this parameter
regime, the model (1.2) describes the directed migration of endothelial cells toward
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Figure 5. A numerical plot of traveling wavefronts of cell density
u to the model (2.22) propagating in the space as time evolves,
where ε = 0.1, d = 2, χ = 0.9 and initial data are u0 = 1/(1 +
exp(2(x − 20))), h0 = −1 + 1/(1 + exp(−2(x − 20))). The arrow
indicates the propagating direction of traveling waves.

the signal molecule VEGF. Such process is exactly shown by our simulations where
β = u+ = 0. One difference observed between Fig. 4 and Fig. 5 is that the transient
time taken from initial data to a steady wave in Fig. 4 is longer than that in Fig. 5.
This implies that the chemical diffusion ε may enhance the process of propagating
wave formation, which is not found in the theoretical results.

5. Stability of traveling wave solutions. In contrast to the existence results,
the stability result of traveling wave solutions was much less. The first stability
result was obtained in [73] for the case ε = β = 0, 0 ≤ m < 1 by the spectrum anal-
ysis and followed in [25] for ε = β = m = 0. An essential progress on the stability
of traveling wave solutions was made in [47, 49] where the nonlinear stability was
proved for the case m = 1, β ≥ 0 by the method of energy estimates. These results
will be presented in this section.

5.1. Linear stability/instability. Let us first recall the stability results from
[73, 60]. Let (u, v)(x, t) = (u, v)(z, t), where z = x − ct. Then the system with
β = 0 becomes {

ut = (duz − χuvzv )z + cuz,
vt = εvzz + cvz − uvm.

(5.17)

To derive the linearized stability of traveling wave solutions, we consider a small
perturbation of the traveling wave solution (U(z), V (z))[

u(z, t)
v(z, t)

]
=

[
U(z)
V (z)

]
+ ε

[
ũ(z, t)
ṽ(z, t)

]
, 0 < ε� 1.

Substituting this into (5.17) and keeping only the first-order terms in ε give the
equations for (ũ(z, t), ṽ(z, t)), which is also the linearized system of (5.17) about
(U, V ) and reads{

ut =
(
duz + cu− χ

(
U
V vz + U( 1

V )zv + V ′

V u
))

z
,

vt = εvzz + cvz − (V mu+mUV m−1v)
(5.18)
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where the tildes have been dropped for convenience.
Now we look for solutions to the linearized system (5.18) by setting[

u(z, t)
v(z, t)

]
=

[
ū(z)
v̄(z)

]
eλt

which on substituting into (5.18) gives upon canceling the exponentials{ (
dūz + cū− χ(UV v̄z + U( 1

V )z v̄ + V ′

V ū)
)
z

= λū,

εv̄zz + cv̄z − V mū−mUV m−1v̄ = λv̄
(5.19)

with ū and v̄ considered in the space

X =

{(
ū
v̄

) ∣∣∣∣ ū, v̄ ∈ L1(R) and

∫
R
ū(z)dz = 0

}
.

It was first shown in [73] that Re(λ) ≤ 0 when ε = 0, 0 ≤ m < 1, and the eigenmode
of the zero eigenvalue is a uniform small displacement of the steadily propagating
waves, which implies the linearized stability of traveling wave solutions. Later the
same linearized stability result was shown in [25] for ε = m = 0, which was indeed
covered by the results of [73]. We summarize these results in the following theorem.

Theorem 5.1 ([73]). If ε = 0 and 0 ≤ m < 1 in (5.19), then Re(λ) ≤ 0, where the
eigenmode (ū, v̄) associated with λ = 0 describes a uniform small displacement of
the steadily propagating waves. That is, the traveling wave solution to (1.2)-(1.4)
with β = ε = 0 and 0 ≤ m < 1 is linearly stable.

When ε > 0, Nagai and Ikeda [60] proved the instability of traveling wave solu-
tions to (1.2)-(1.4) for m = 0, β = 0 in both space X and exponentially weighted
space

Xω =

{(
ū
v̄

)
∈ X

∣∣∣∣ ωū, ωv̄ ∈ L1(R)

}
where

ω(z) =

{
e−ρ1z for z < −1,
eρ2z for z > 1

with ρ1 ≥ l1, ρ2 ≥ l2. Here constants l1 = c
χ−d , l2 = − c

d are such that el1z is the

decay rate of traveling wave solutions U(z) and V (z) as z → −∞, and el2z is the
decay rate of U(z) as z →∞. Then the instability result of [60] is as follows:

Theorem 5.2 ([60]). Let ε > 0, β = 0 and χ > d in (5.19). Then

σ(L ) ∩ {λ ∈ C | Re(λ) > 0} 6= ∅ and σ(L )ω ∩ {λ ∈ C | Re(λ) > 0} 6= ∅

where σ(L ) and σ(L )ω denote the spectrum of L in X and in Xω, respectively.

Theorem 5.2 immediately asserts that traveling wave solutions of the model (1.2)-
(1.4) with m = β = 0 are unstable in both space X and exponentially weighted
space Xω. Namely the chemical diffusion destabilize the traveling wave solutions,
which comes out counter-intuitively though the experiment favors the stability [35].
It is worthwhile to study the stability problem further in more appropriate solution
spaces.
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5.2. Nonlinear stability. The linearized stability/instability traveling wave solu-
tions of (1.2) was derived for the case 0 ≤ m < 1. When m = 1, the linearized
system of (1.2) about the traveling wave solution contains eigenvalues with zero
real part which cannot be removed with the exponential weight function as in [60].
Hence the stability of (1.2) with m = 1 becomes is a challenging problem. In
[47, 49], the nonlinear stability of traveling wave solutions of the transformed model
(2.22)-(2.23) with m = 1, β > 0 was established. The stability result for the original
system (1.2)-(1.4) based on the results of [47, 49] was given in [50]. These results
will be presented in this section.

5.2.1. Nonlinear stability of traveling wave solutions to the transformed system. To
study the nonlinear stability of traveling wave solutions for the transformed sys-
tem (2.22)-(2.23), the technique of taking anti-derivative will be used to define the
perturbations as

(u, h)(x, t) = (U,H)(x− ct+ x0) + (φx, ψx)(x, t) (5.20)

where x0 is a translation constant and assumed to be zero without loss of generality.
Hence

(φ(x, t), ψ(x, t)) =

∫ x

−∞
(u(y, t)− U(y − ct), h(y, t)−H(y − ct))dy (5.21)

for all x ∈ R and t ≥ 0, and

φ(±∞, t) = 0, ψ(±∞, t) = 0 for all t > 0.

We assume that the initial perturbation is made along the vector (u+−u−, h+−h−)
and hence ∫ +∞

−∞
(u0 − U, h0 −H)(x)dx = (0, 0). (5.22)

The initial condition of the perturbation (φ, ψ) is thus given by

(φ0, ψ0)(x) =

∫ x

−∞
(u0 − U, h0 −H)(y)dy. (5.23)

The asymptotic stability of traveling wave solutions of (2.22) means that (u−U, v−
H)(x, t) = (φx, ψx)(x, t)→ 0 as t→∞, which is given in [47] for ε = 0 and in [49]
for ε > 0, as follows:

Theorem 5.3 ([47, 49]). Let (U, V )(x − ct) be a viscous shock profile of (2.22)
obtained in Theorem 4.1. If ε ≥ 0 is small and u+ > 0, then there exists a constant
ε0 > 0 such that if ‖u0 − U‖W 1,2 + ‖h0 −H‖W 1,2 + ‖(φ0, ψ0)‖L2 ≤ ε0, the Cauchy
problem (2.22)-(2.23) has a unique global solution (u, h)(x, t) such that u(x, t) ≥
δ0 > 0 for some δ0 > 0 for all x ∈ R, t ≥ 0, and

(u− U, h−H) ∈ (C([0,∞);W 1,2) ∩ L2([0,∞);W 1,2))2

with
sup
x∈R
|(u, h)(x, t)− (U,H)(x− ct)| → 0 as t→∞. (5.24)

Proof. The proof of Theorem 5.3 is based on iterative L2 energy estimates. The
method of energy estimates for the nonlinear stability of viscous shock profiles of
conservation laws was first introduced independently by Matsumura and Nishihara
in [55] and by Goodman in [24] with further developments over the years, see [53].
Here we establish the stability results of traveling wave solutions without the small-
ness assumption on the wave strength. Since the proof is nontrivial and involves
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many technical treatments, we omit the details and refer the interested readers to
[47, 49].

5.2.2. Nonlinear stability of traveling wave solutions to the original system. Passing
the stability results of the transformed system (2.22)-(2.23) to the original system
(1.2)-(1.4), we have the following asymptotic nonlinear stability:

Theorem 5.4 ([50]). Let m = 1, β > 0 and (U, V )(x − ct) be a traveling wave
solution of (1.2)-(1.4) with u+ = β > 0 obtained in Theorem 4.2. Then there exists
a constant ε0 > 0 such that if ‖u0−U‖W 1,2+‖(ln v0)x−(lnV )x‖W 1,2+‖(φ0, ψ0)‖L2 ≤
ε0, where

φ0(x) =

∫ x

−∞
(u0 − U)(y)dy, ψ0(x) = − ln v0(x) + lnV (x),

then the Cauchy problem (1.2)-(1.4) has a unique global solution (u, v)(x, t) satis-
fying u(x, t) > δ0 for all x ∈ R, t ≥ 0 for some δ0 > 0, such that

(u− U, vx/v − Vx/V ) ∈ C([0,∞);W 1,2) ∩ L2([0,∞);W 1,2).

Moreover the solution (u, v) has the following asymptotic nonlinear stability

sup
x∈R
|(u, v)(x, t)− (U, V )(x− ct)| → 0, as t→∞.

Proof. The result for u has been given in Theorem 5.4. It remains to translate the
results from h to v. By the transformation (2.21) and (5.21), one has that

v(x, t)

V (x− ct)
= e

∫ x
−∞(H(ξ−ct)−h(ξ,t))dξ = eψ(x,t).

Next we show that ψ(x, t) → 0 as t → ∞. Indeed it has been shown in [49] (see
the Proposition 4.3 and the proof of Theorem 4.1 in [49]) that ‖ψ(·, t)‖L2 <∞ and
‖ψx(·, t)‖W 1,2 → 0 as t→∞. Then

ψ2(x, t) = 2

∫ x

−∞
ψψy(y, t)dy

≤ 2

(∫
R
ψ2dx

)1/2(∫
R
ψ2
xdx

)1/2

→ 0 as t→∞

which implies ψ(x, t)→ 0 as t→∞. Note that V (x−ct) is a traveling wave solution
which is uniformly bounded in x. Then

|v(x, t)− V (x− ct)| = V (x− ct)|1− eψ(x,t)| → 0 as t→∞
for all x ∈ R. The proof is complete.

5.3. Numerical simulations of stability of traveling wave solutions. As
mentioned in section 4.3, the Hopf-Cole transformation (2.21) enables us to compute
the transformed model (2.22) numerically. In this section, we continue to simulate
the stability of traveling wave solution component u. Since the numerical scheme
is restricted to a finite domain, we consider the perturbations that vanish outside
the finite domain to approximate the real situation. To this end, we set the initial
data (u0, h0) as

u0(x) = 1 +
1

1 + exp(2(x− 100))
+

0.5 sinx

((x− 100)/10)2 + 1
,

h0(x) = −1 +
1

1 + exp(−2(x− 100))
+

0.5 sinx

((x− 100)/10)2 + 1
,

(5.25)
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so that the initial perturbation belong to W 1,2(R) as required by Theorem 5.3.
Then the evolution of the numerical solution u for the case ε > 0 is plotted in Fig.
6 where we see that the solution gradually stabilizes to a traveling wavefront, as
proved by our theoretical results.
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Figure 6. Numerical illustration of the stability of traveling wave-
front u for ε = 0.1 > 0, where d = 2, χ = 0.45 and initial data are
given by (5.25).

Before concluding this section, it is worth mentioning a work [57] where the
existence and instability of traveling wave solutions to the same model (1.2) with
m = 1, β > 0 was established based on the spectral analysis. There are two principle
differences between [57] and the results in the present paper. First the paper [57]
proves the instability of traveling wave profile (front, pulse), and here the nonlinear
stability of different traveling wave profile (front, front) in Theorem 5.4 is estab-
lished. This difference is caused by the assumption that the integration constant
C0 in the first equation of (2.4) is zero in [57], and nonzero in the present paper.
When C0 = 0, the existence of traveling wave profile (front, pulse) was also given in
Theorem 3.5. The instability result of [57] indeed fill the gap of stability problem
for this case. Second, in the present paper, the unique wave speed is identified,
however in [57] only the minimum wave speed is found.

6. Wave speed. Wave speed is an important quantity in traveling wave solutions,
since it describes how fast one species spreads/disperses from one location to an-
other. For example, it may describe how fast a disease is transmitted or a tumor
spreads in the tissue. The wave speed of system (1.2)-(1.4) can be obtained either
explicitly or implicitly. For the sake of presentation, we denote the wave speed by
c0 for ε = 0 and by cε for ε > 0, and denote the traveling wave solutions by (U0, V0)
for ε = 0 and by (Uε, Vε) for ε > 0. The following results are distinguished by linear
consumption rate (m = 1) and nonlinear consumption rate (m 6= 1).

6.1. Wave speed for m = 1. When m = 1 and C0 6= 0, the wave speed has been
given in (4.15). When m = 1 and C0 = 0 the traveling wave solution (U, V ) is
(front, front) if β = 0 and (front, pulse) if β > 0. The wave speed can be explicitly
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found in terms of system parameters by matching the asymptotics of solutions at
z = ±∞. The result is:

Theorem 6.1. Let m = 1 and C0 = 0. Assume that u− > β, then
(i) If ε = 0, then the wave speed is unique and given by

c0 =
√
χ(u− − β).

(ii) If ε > 0, then the wave speed is uniquely given by

cε = χ

√
u− − β
ε+ χ

.

(iii) |cε − c0| = O(ε)→ 0 as ε→ 0.

Proof. (i) First notice that when ε = 0, β ≥ 0, the solution U is given by (3.6).
Moreover when m = 1, µ = − cεχ , χ

(r−1)d = 1, and the constant C2 can be calculated
as

C2 =
r − 1

kc+ β(r − 1)
=

1

c2/χ+ β
.

Then the traveling wave solution U(z) is further expressed by

U(z) =

(
C1e

(r−1)(c/χ+β/c)z +
1

c2/χ+ β

)−1
Hence

u− = U(−∞) =

(
1

c2/χ+ β

)−1
which yields the wave speed

c =
√
χ(u− − β).

(ii) When m = 1, η = ε
c2ε
χ2 +

c2ε
χ + β. Then from (3.14), we have

U(−∞) = u− = η
χ

(r−1)d = η

which gives

c2ε

(
ε

χ2
+

1

χ

)
= u− − β.

If u− ≥ β, the wave speed is given by cε = χ
√

u−−β
ε+χ , as required.

(iii) From (i) and (ii), we can easily find

|cε − c0| ≤

√
u− − β
χ

ε

which yields the assertion.

From the above results we see that the wave speed decreases with respect to the
chemical growth rate β, which seems counter-intuitive. The reason is the chemo-
tactic saturation effect caused by the singular term v−1 which indicates that cells
indeed might become less sensitive for higher concentration v. Hence fast growth of
v will decease the chemotactic speed due to this saturation effect. Another expected
observation from our results is that the wave speed is a decreasing function of the
chemical diffusion coefficient ε because the fast dispersal of the chemical may dimin-
ish the gradient of the chemical concentration. On the other hand, intuitively the
wave speed should be a increasing function of chemosensitivity coefficient χ, which
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is exactly indicated by the formulas in Theorem 6.1. In other words, the wave speed
formulas given in the Theorem 6.1 is consistent with all rational perceptions and
connected to all necessary parameters in the model.

6.2. Wave speed for 0 ≤ m < 1. For the case of 0 ≤ m < 1, the existence
of traveling wave solutions was established only for C0 = 0. Since traveling wave
solutions do not exist when m > 1, we consider the case 0 ≤ m < 1 under which the
traveling wave solution (U, V ) is (pulse, front) if β = 0 and (pulse, pulse) if β > 0.
In this case, U is always a pulse.

Theorem 6.2. Let 0 ≤ m < 1 such that χ/d+m > 1. Then
(i) If ε = 0, then the wave speed is given by

c0 = (1−m)vm−1+

[
N − β

∫ ∞
−∞

V 1−m
0 dz

]
.

(ii) If ε > 0, the wave speed is

cε = (1−m)vm−1+

[
N + β

∫ ∞
−∞

V 1−m
ε dz

]
− (1−m)vm−1+ ε

∫ ∞
−∞

V
′′

ε

V mε
dz.

Proof. (i) From the second equation of (2.4), we obtain for ε = 0

cV ′

V m
= U − βV 1−m.

The integration of above equation gives the wave speed c0.
(ii) The proof is similar to the proof of (i). So we omit the details.

Corollary 1. (i) If β = 0 and 0 < m < 1, then the wave speed c0 is given by

c0 = (1−m)vm−1+ N.

(ii) If m = β = 0, then the wave speeds cε and c0 are equal and given by

cε = c0 =
N

v+
.

The wave speeds in Corollary 1 were initially obtained in [68, 73], which can be
viewed as a special case of Theorem 6.2. It is worthwhile to note that the wave
speed for m = 1 is unique and that for 0 ≤ m < 1 is not except for m = β = 0 as
given in Corollary 1. Indeed, for 0 < m < 1, we have shown that the wave speed
has a minimum speed c∗ = 2

√
εβ, and the traveling wave solution exists for any

wave speed greater than the minimum speed. This implies that there are infinite
many wave speeds for each ε > 0.

Remark 6. Except the special cases in Corollary 1, Theorem 6.2 does not give
a precise wave speed due to the unknown integrals which are however finite. But
it provides a structure of wave speed which allows us to speculate the impact of
parameters on the wave speed.

7. Chemical diffusion limits. The parameter ε represents the chemical diffusion,
which is larger than the cell diffusion d in general. However in applications, ε might
be small compared to cell diffusion. For example, in bacterial chemotaxis shown
in Fig. 1 (a), the chemical (i.e. oxygen) is carried by large water molecules which
diffuse slowly. In angiogenesis, the chemical is often the substrate or network tissue
which is almost static. Most of past studies considered ε = 0 and ε > 0 separately.
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In contrast the chemical diffusion limit as ε→ 0 was much less studied, and was first
studied in [60] for the case m = β = 0 with an extension in [82] to β = 0,m = 1.

When ε varies, both the traveling wave speed and traveling wave solution will
change. Hence to prove the convergence of traveling wave solutions as ε → 0, the
convergence of wave speed needs to be established first. As shown in the previous
section, cε → c0 as ε → 0 when m = 1 (see Theorem 6.1) or m = β = 0 (see
Corollary 1 (ii)). Hereafter we denote the traveling wave solutions of (1.2) for ε > 0
by (Uε, Vε), and for ε = 0 by (U0, V0). We have the following results.

Theorem 7.1 ([60]). Let m = β = 0 and χ/d > 1. Then

‖Uε − U0‖L∞ = O(
√
ε), ‖Vε − V0‖L∞ = O(ε).

The similar result can be obtained to the case of β = 0 and 0 ≤ m < 1.

Theorem 7.2 ([82]). Let β = 0 and 0 ≤ m ≤ 1 such that r = χ/d+m ≥ 1. Then

‖Uε − U0‖L∞ = O(ε) +O(|cε − c0|), ‖Vε − V0‖L∞ = O(ε) +O(|cε − c0|).

Particularly when m = 1, then

‖Uε − U0‖L∞ = O(ε), ‖Vε − V0‖L∞ = O(ε).

Proof. The proof is a generalization of [82]. When β = 0, (2.8) becomes

εV ′′ε − cεV ′ε − e−kzVε = 0.

Define V = Vε − V0. Then

εV′′ + c0V
′ + (cε − c0)V ′ε + εV ′′0 = g(z, Vε)− g(z, V0) (7.1)

where g(z, V ) = e−kzV r. Then multiplying (7.1) by V and using the mean value
theorem, we have

εVV′′ + c0VV′ + (cε − c0)V ′εV + εV ′′0 V = re−kzξr−1V2 ≥ 0 (7.2)

since re−kzξr−1 ≥ 0, where ξ is between V0 and Vε. Then integrating (7.2) on both
sides and using the fact V(∞) = V′(∞) = 0, we derive that

ε

2
(V2)′ +

c0
2

V2 ≤ ε
∫ ∞
z

VV ′′0 dz + (cε − c0)

∫ ∞
z

V ′εVdy. (7.3)

Let z0 be a point at which |V(z)| attains its maximum on R. Then (V2)′(z0) =
2V′(z0)V(z0) = 0 and hence

V(z) ≤ V(z0) ≤ 2

c0

(
ε‖V ′′0 ‖L1(R) + |cε − c0| · ‖V ′ε‖L1(R)

)
. (7.4)

From the proof of Theorem 3.1, we know that when ε = 0, β = 0 and r = χ/d+m >
1, the traveling wave solution component V0 is

V0 =
(
v1−r+ +

r − 1

kc
e−kz

) 1
1−r

,

which yields that

V ′′0 ∼
(
v1−r+ e

k(r−1)
r z +

r − 1

kc
e−

k
r z
) r

1−r
.

This implies that V ′′0 decays exponentially as |z| → ∞ and hence ‖V ′′0 ‖L1(R) < ∞.
Moreover since V ′ε > 0 when β = 0 (see Theorem 3.5), we have ‖V ′ε‖L1(R) = v+−v−.
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Therefore (7.4) yields the estimate for ‖Vε − V0‖L∞ (=|V(z)|) as announced in the
theorem. With (2.7) and the mean value theorem, we deduce that

Uε − U0 = e−
cε
d zV

χ
d
ε − e−

c0
d zV

χ
d

0

= e−
cε
d z(V

χ
d
ε − V

χ
d

0 ) + V
χ
d

0 (e−
cε
d z − e−

c0
d z)

=
χ

d
e−

cε
d zζ

χ
d−1
1 (Vε − V0)− z

d
e−

z
d ζ2(cε − c0)

where ζ1 is between V0 and Vε and ζ2 is between cε and c0. This implies the
announced estimate for ‖Uε − U0‖L∞ . Noticing that when m = 1, |cε − c0| = O(ε)
from Theorem 6.1(iii). Then the proof is complete.

Remark 7. The above chemical diffusion limits were derived for the case C0 = 0.
For the case C0 6= 0, the analogous result was derived in [50] for the case m = 1 by
the method of geometric singular perturbation.

In the remaining part of this section, we shall prove the ε-convergence of traveling
wave solutions by the geometric singular perturbation approach which does not
require the priori convergence of wave speed. This result applies to all parameter
regimes where C0 = 0 and r = χ/d+m 6= 1.

Theorem 7.3. Let (Uε, Vε) be the traveling wave solution of system (1.2) with
ε ≥ 0. Then it holds that

|(Uε, Vε)− (U0, V0)| → 0, as ε→ 0.

Proof. We rewrite (2.13) as a form of slow system{
Wz = ρ = φ(W,ρ),
ερz = −(c− 2εµ)ρ− (εµ2 − cµ+ β)W +W r =: ϕ(W,ρ, ε).

(7.5)

By introducing a fast variable τ = z/ε, we convert the slow system (7.5) into a fast
system as follows {

Wτ = εφ(W,ρ),
ρτ = ϕ(W,ρ, ε).

(7.6)

Setting ε = 0 in slow system (7.5), we obtain an invariant manifold M0 defined by

M0 =

{
(W,ρ) | ρ = h0(W ) =

1

c
[(cµ− β)W +W r]

}
where W (z) satisfies

Wz =
1

c
[(cµ− β)W +W r]. (7.7)

Now we verify that the solution V (z) = W (z)e−µz is the solution of system (1.2)

with ε = 0. Indeed substituting this into (7.7) yields the equation V ′ + β
c V −

1
c e

(r−1)µzV r = 0 which is the same as equation (3.2) by noticing that k = −(r−1)µ.
We can solve (7.7) and obtain a solution

W (z) =
[
C1e

(1−r)(β/c−µ)z + C2

] 1
1−r (7.8)

where C1, C2 are the same as those in (3.3). If r > 1, then W (z) is a traveling

wave solution, denoted by W0, of (7.7) satisfying W0(z) → C
1

1−r
2 as z → −∞ and

W0(z)→ 0 as z → +∞.
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Note that at any point of M0, ∂ϕ(W,ρ,0)
∂ρ = −c 6= 0. Hence M0 is normally hy-

perbolic for fast system (7.6) with ε = 0. By Fenichel’s invariant manifold theorem
[31], for ε > 0 sufficiently small, there is a slow manifold Mε that lies within O(ε)
neighborhood of M0 and is diffeomorphic to M0. Moreover it is locally invariant
under the flow of (7.6) and can be written as

Mε = {(W,ρ) | ρ = hε(W ) = h0(W ) +O(ε)}. (7.9)

Therefore the slow system (7.5) on the manifold M0 can be written as

Wz = φ(W,hε(W )) =
1

c
[(cµ− β)W +W r] +O(ε)

which is indeed a regular perturbation of (7.7). It is straightforward to check that
the differential equation (7.8) has an one-dimensional unstable manifold near w−
and an one-dimensional stable manifold near w+ = 0. The transversal intersection
of these two manifolds gives the heteroclinic orbit W0(z). By the geometric sin-
gular perturbation theory (see [19] or [31]), for sufficiently small ε > 0, there is a
heteroclinic orbit Wε(z) of (7.5) on Mε, which is a small perturbation of W0(z)
with

|Wε(z)−W0(z)| = O(ε)→ 0 as ε→ 0. (7.10)

By the transformation (2.12), we have for each z ∈ R
|Vε(z)− V0(z)| = |Wε(z)−W0(z)|e−µz = O(ε)e−µz → 0 as ε→ 0. (7.11)

Furthermore by the transformation (2.7), it follows that for z ∈ R

|Uε(z)− U0(z)| = |Vε(z)− V0(z)|
χ
d e−

c
d z = O(ε

χ
d )e−(µ+c/d)z → 0 as ε→ 0. (7.12)

The proof is thus complete.

8. Open problem. The chemotaxis model (1.2) has very prominent applications
in biomedical or biological sciences, and its mathematical richness is partially demon-
strated in this paper via traveling wave solutions whose studies involve numerous
mathematical methods and techniques. The peculiar feature of model (1.2) differ-
ent from other chemotaxis models lies in the logarithmic chemotactic sensitivity,
i.e. φ(v) = ln v, which has been successfully applied to interpret the propagation
of traveling bands of bacterial chemotaxis [1, 2]. It is also mathematically nec-
essary to reproduce the experimentally observed traveling bands [54]. Hence the
study of chemotaxis models with logarithmic chemotactic sensitivity has its genuine
application-driven motivation. Of course the mathematical studies of such model
should not be restricted to the traveling wave solutions. When m = 1, there have
been a few studies for the model (1.2) on other aspects, such as self-similar solutions
and collapse behavior [67], the global existence and large time behavior of solutions
[90, 26, 46, 84, 79], and Cauchy problem [45].

Though the study of traveling wave solutions to (1.2) has received extensive
attentions since it was born, there are still numerous interesting questions remaining
open. We outline below and hope to arouse readers’s interests.

The first question is the stability/instability of traveling wave solutions to the
model (1.2). Although there is some stability theory for the cross diffusion models
(e.g., see [87]), the logarithmic sensitivity in the chemotaxis model (1.2) brings the
fundamental difficulties to the study of stability of traveling wave solutions. The
stability and instability results shown in section 5 are limited to particular cases.
For example, the linear stability in [73] was derived for ε = β = 0, 0 ≤ m < 1, and
the instability of [60] was shown only for m = β = 0, ε > 0, where traveling wave
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Figure 7. Numerical simulations of the stability of traveling wave-
fronts u for u+ > 0 with a large initial perturbation, where
ε = 0.1, d = 2. Other parameter and initial data are: u0 =
1 + 1

1+exp(2(x−100)) + sin x
((x−100)/10)2+1 , v0 = −1 + 1

1+exp(−2(x−100)) +
sin x

((x−100)/10)2+1 , χ = 0.45. The arrow indicates the propagating

direction of traveling waves.

solutions (U, V ) are (pulse, front). The nonlinear stability of [47, 49] was proved
only for m = 1 and u+ = β > 0, where traveling wave solutions (U, V ) are (front,
front). The paper [57] shows the instability of traveling wave profile (front, pulse)
for the case m = 1, β > 0. The model (1.2) admits four families of traveling wave
solutions (see Theorem 3.1 and Theorem 3.5). Basically the stability problem of
traveling wave profiles (pulse, pulse) entirely remains open. Hence we could address
many questions concerning the stability of traveling wave solutions, as follows:

1. Though the paper [60] has shown the linear instability of traveling wave solu-
tions for m = β = 0, this result does not favor the experimental observation
shown in Fig. 1 where the stability of traveling bands was observed. Note
that when ε = β = 0, 0 ≤ m < 1, it was shown in [73] that the traveling
profile (pulse, front) of (1.2) is linearly stable. Hence the incorporation of the
chemical diffusion (i.e. ε > 0) is not expected to destabilize the system. It is
worthwhile to reexamine the stability of traveling wave solutions of (1.2) for
ε > 0, 0 < m < 1 to support the experiment.

2. The nonlinear stability of wave profile (front, front) for m = 1 was established
in [47, 49] for u+ = β > 0. But the stability for u+ = 0 remains open. Noting
that approaches used in [47, 49] fail when u+ = 0, new ideas are needed
to tackle this case. Moreover the numerical simulation Fig. 7 shows the
traveling wave solution is also stable for a large perturbation, which however
leaves another open problem for the future.
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3. Nonlinear stability of traveling wave solutions was established for m = 1, β >
0. A nature question is how about the nonlinear stability for m 6= 1. Partic-
ularly when 0 ≤ m < 1 and β > 0, the wave profile (U, V ) is a (pulse, pulse).
The stability of such a wave profile has not been studied previously and leads
to a very interesting question to be explored.

4. When C0 = 0, the parameter β plays a crucial role in determining the wave
profile V , where V is a front if β = 0 and a pulse if β > 0, see Theorem 3.5.
The stability results mentioned above were only for β > 0. The stability of
traveling wave solutions for β = 0 entirely remains open.

The last but not least question we want to stress is the study of traveling wave
solutions in two dimensions. As we show, all available results of traveling wave
solutions of the model (1.2) are restricted to one dimension. The study of two-
dimensional traveling waves (e.g., planar waves) largely remains open and is very
deserved to be attempted in the future.

9. Appendix: Revisit of Fisher wave problem. One of the cornerstones of
modern mathematical biology is the Fisher equation [20] whose traveling wave solu-
tion was first extensively discussed in the pioneer work by Kolmogorov-Petrovskii-
Piskunov [38]. In its general form, the Fisher equation considered in [20, 38] for a
scalar function u(x, t) is as follows:

ut = εuxx + f(u), x ∈ R, t ≥ 0 (9.1)

where f(u) is a nonlinear function accounting for the kinetics of u(x, t). Of partic-
ular interest was the study of the existence and stability of traveling wave of (9.1)
where f(u) satisfies the following conditions

(1) f(u), f ′(u) ∈ C[0,∞),

(2) f(0) = f(%) = 0 for some % > 0,

(3) f(u) > 0 for all u ∈ (0, %) and f(u) < 0 for u ∈ (%,∞),

(4) f ′(0) > 0 and f ′(%) < 0.

(9.2)

A prototypical form of f(u) satisfying condition (9.2) is f(u) = u(1−u/%) where % is
called the carrying capacity. Due to the physical/biological interest (for example u
denotes the population density in animal dispersal), u is assumed to be nonnegative
usually.

The traveling wave solutions of (9.1)-(9.2) is a particular solution u(x, t) = U(x−
ct) = U(z) which satisfies a second order ordinary differential equation

εU ′′ + cU ′ + f(U) = 0 (9.3)

with boundary condition
U(−∞) = %, U(∞) = 0 (9.4)

where z = x− ct is referred to as the wave variable and c is called the wave speed.
Multiplying both sides of (9.3) by U ′ and integrating the result over z ∈ R yields

c =

∫ %
0
f(U)dU∫
R U
′2dz

> 0. (9.5)

Writing (9.3) as a system of first order ordinary differential equations{
U ′ = V,
V ′ = − cεV −

1
εf(U)

(9.6)
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then the existence of solutions to (9.3)-(9.4) is equivalent to finding a trajectory
for (9.6) in the U − V phase plane that emanates from the unstable equilibrium
(%, 0) to the stable equilibrium (0, 0), cf. [58]. The existence and asymptotic decay
of solutions to (9.6) are well-known and summarized in the following theorem (cf.
[58, 88, 39, 38]).

Theorem 9.1. Let (9.2) hold. Then (9.1) has a unique (up to a translation)
bounded nonnegative traveling wave solution U(z) = U(x − ct) with U ′ < 0 for all
z ∈ R if and only if

c ≥ c̄ = 2
√
εf ′(0). (9.7)

Under the condition (9.7), if we define

λ±(ξ) =
−c±

√
c2 − 4εf ′(ξ)

2ε
, (9.8)

then U(z) = U(x− ct) has the following asymptotic behavior as |z| → ∞:

(1) If c > c̄ = 2
√
εf ′(0), then

U(z) =

{
%− Ceλ+(%)z, z → −∞
Ceλ+(0)z, z →∞.

(2) If c = c̄ = 2
√
εf ′(0), then

U(z) =

{
%− Ce−βz +O(e−2βz), z → −∞
(A−Bz)e− c̄

2ε z +O(z2e−
c̄
ε z), z →∞

where A,B,C are positive constants and

β =
c̄−

√
c̄2 − 4εf ′(%)

2ε
.

The Fisher equation (9.1) satisfying condition (9.2) is often referred to as the
classical (or regular) Fisher problem, which is mostly frequently studied. But there
is a scenario where the kinetic function f(u) is singular at u = 0 satisfying

(1) f(u) ∈ C[0,∞), f ′(u) ∈ C(0,∞),

(2) f(0) = f(%) = 0 for some % > 0,

(3) f(u) > 0 for all u ∈ (0, %) and f(u) < 0 for u ∈ (%,∞),

(4) lim
u→0

f ′(u) =∞ and f(u) = O(uσ) as u→ 0 with 0 < σ < 1,

(5) f ′(%) < 0.

(9.9)

Equation (9.1) subject to (9.9) is called the singular Fisher equation. The typical
example of f(u) satisfying (9.9) is f(u) = uσ(1 − u) with 0 < σ < 1. In this case,
we have the following results [56].

Theorem 9.2. The Fisher equation (9.1) with condition (9.9) does not have a
traveling wave solution satisfying boundary condition (9.4).
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