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Traveling wave (band) behavior driven by chemotaxis was observed experimentally by Adler1,2

and was modeled by Keller and Segel.15 For a quasilinear hyperbolic�parabolic system that

arises as a non-di®usive limit of the Keller�Segel model with nonlinear kinetics, we establish

the existence and nonlinear stability of traveling wave solutions with large amplitudes. The
numerical simulations are performed to show the stability of the traveling waves under various

perturbations.
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1. Introduction

Chemotaxis is a process in which cells change their states of movement reacting to the

presence of a chemical substance, approaching chemically favorable environment and

avoiding unfavorable ones. It is a fundamental cellular process which plays essential

roles in embryonic development, immune response, progression of diseases, tissue

homeostasis, wound healing, as well as in ¯nding food, repellent action and forming
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the multicellular body of protozoa.37 The chemotaxis is called attractive (positive) if

the chemotactic movement is toward higher chemical concentration, and repulsive

(negative) if the movement direction is opposite.

The mathematical modeling of chemotaxis dates to Keller and Segel13 from the

macroscopic perspective, and to Patlak28 based on the microscopic (or statistical)

description. The original model in Ref. 13 comprised four strongly coupled partial

di®erential equations and was proposed to describe the aggregation of cellular slime

molds Dictyostelium discoideum. A simpli¯ed formulation, however, also most

extensively studied in the literature,8 is the following two strongly coupled parabolic

equations

ut ¼ r � ðDru� �ur�ðcÞÞ;
�ct ¼ d�cþ gðu; cÞ; ð1:1Þ

where uðt;xÞ; cðt;xÞ denote the cell density and the chemical concentration, res-

pectively. D is the di®usivity of cells and d is the di®usion rate of the chemical

substance. � � 0 is a relaxation timescale such that 1=� is the rate towards equili-

brium. The function �ðcÞ is called the chemotactic potential function describing the

mechanism of signal detection. The function gðu; cÞ describes the chemical kinetics.

The constant �, often referred to as chemosensitivity, is a measure of the strength of

chemical signals, and � > 0 ð< 0Þ corresponds to attractive (repulsive) chemotaxis.

There are two major limiting cases of the Keller�Segel model (1.1). The ¯rst one is

when the chemical substance v relaxes so fast that it reaches its equilibrium instan-

taneously. This means � ! 0 and gives rise to the following so-called parabolic�elliptic

system

ut ¼ r � ðDru� �ur�ðcÞÞ;
0 ¼ d�cþ gðu; cÞ: ð1:2Þ

There were vast results to the model (1.2) on the global existence, blowup behavior

and the stationary solutions. The most relevant results are summarized in a review

article8 and textbook.29

The other limiting case is when the di®usion of the chemical substance is so small

that it is negligible. Then the model becomes a partial di®erential equation coupled

with an ordinary di®erential equation (PDE�ODE)

ut ¼ r � ðDru� �ur�ðcÞÞ;
ct ¼ gðu; cÞ; ð1:3Þ

where we have assumed � ¼ 1 without loss of generality. The model (1.3) is

also called the parabolic-degenerate chemotaxis model.5 This model had already

been used to study the chemotactic traveling bands of bacteria in Ref. 15 whereby

gðu; cÞ ¼ �kucm ðm � 1Þ and has received increasing attention recently (see Ref. 33).

A direct application of the above PDE�ODE coupled system (1.3) is the modeling of

haptotaxis where cells move towards immobilized, substratum-bound such as laminin

and ¯bronectin. It has essential applications in the modeling of cancer invasion,3 as
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well as the gliding movement of myxobacteria27 towards slime trails which means a

non-di®usive chemical substance.

The objective of this paper is to study the existence and nonlinear stability of

traveling wave solutions of the chemotaxis model of type (1.3). The experimental

study of traveling wave (band) behavior driven by chemotaxis dates to Adler's

works.1,2 The mathematical modeling and analysis of the traveling waves was ¯rst

presented by Keller and Segel15 and a °urry of works then followed (see Refs. 9, 23

and references therein). However, the results on stability of traveling wave solutions

of chemotaxis models are much less and there are only few results on linear stab-

ility,30,7 linear instability25 and nonlinear stability.20

To proceed, we need to specify the potential function �ðvÞ and kinetic function

gðu; cÞ in (1.3). For the potential function, we consider a logarithmic representation

�ðcÞ ¼ log c: ð1:4Þ
Although the form of the potential function �ðcÞ can be generic in principle, it has

been shown early in Refs. 15, 14 and 31 that the singularity at small chemical

concentration c is necessary to reproduce the biologically relevant traveling bands.

Hence a natural choice is (1.4) which has been used throughout most of the studies of

traveling waves of chemotaxis in the literature.9,35,23 The logarithmic potential

function (1.4) was ¯rst used successfully by Keller and Segel15 to interpret the tra-

veling band behavior of bacteria. It was shown in Ref. 23 that the logarithmic

function (1.4) is also appropriate from the mathematical viewpoint23 although it is

singular at c ¼ 0. Depending on the speci¯c modeling goals, the kinetic function

gðu; cÞ has a wide variability. When gðu; cÞ is linear with respect to u and c, the

existence of traveling waves of both microscopic and macroscopic Keller�Segel

chemotaxis models has been discussed in Ref. 23. For other possible forms of the

kinetic function, we refer the readers to Refs. 9 and 10 and references therein. Here we

consider a class of nonlinear kinetic function gðu; cÞ
gðu; cÞ ¼ �fðuÞc; ð1:5Þ

where � 2 R is a constant and f is a smooth function.

The motivation of considering the kinetic function (1.5) follows from speci¯c

applications. In a chemotactic�haptotactic model of cancer invasion,3 and in models

of formation of capillary networks of blood vessels,17,5,4 the basic kinetics for the

extracellular matrix is gðu; cÞ ¼ �uc, which corresponds to fðuÞ ¼ u; � ¼ �1 in (1.5).

In the modeling of self-organization of myxobacteria27 and angiogenesis,18 gðu; cÞ ¼
�uc� �c where � > 0 and � � 0 which is equivalent to fðuÞ ¼ �u� � with � ¼ 1

in (1.5). In these examples, fðuÞ is linear. When � < 0; � > 0 and when fðuÞ is linear,
the existence and the nonlinear stability of traveling wave solutions of (1.3) have

been recently established in Refs. 36 and 20, respectively.

In this paper, we will consider more general kinetic function g as de¯ned in (1.5)

where f satis¯es

fðuÞ � 0; f 0ðuÞ > 0; f 00ðuÞ � �� ð1:6Þ
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for all u under considerations, with � being a positive constant which will be given in

Sec. 5, and will extend the parameter space to

�� < 0:

In summary, we consider the following one-dimensional chemotaxis model

ut ¼ Duxx � ð�u�ðcÞcxÞx;
ct ¼ �fðuÞc; ð1:7Þ

where �ðcÞ ¼ 1=c, f satis¯es (1.6) and �� < 0. The kinetic function considered here is

more applicable than that in Refs. 36 and 20. We need to point out that (1.7) with

fðuÞ ¼ �u� � was the model considered in Refs. 18 and 27 which is now a special

case of (1.7) with (1.6).

To establish the existence and nonlinear stability of traveling wave solutions to

the system (1.7), we convert (1.7), through the transformation

v ¼ � cx
c
; ð1:8Þ

into an equivalent quasilinear hyperbolic�parabolic system as follows:

ut � �ðuvÞx ¼ Duxx;

vt þ �fðuÞx ¼ 0:
ð1:9Þ

Making the following scalings

� ¼ ���; ~t ¼ �t; ~x ¼
ffiffiffi
�

p
x; ~v ¼

ffiffiffi
�

p

�
v; ð1:10Þ

(1.9) becomes the following system of nonlinear conservation laws

ut � ðuvÞx ¼ Duxx;

vt � fðuÞx ¼ 0;
ð1:11Þ

where the tilde has been dropped for convenience. System (1.11) is usually called a

hyperbolic�parabolic system whereby the viscosity matrix is nonnegative-de¯nite.

We prescribe the initial condition for system (1.11) as follows:

ðu; vÞðx; 0Þ ¼ ðu0; v0ÞðxÞ !
ðu�; v�Þ as x ! �1
ðuþ; vþÞ as x ! þ1
�

ð1:12Þ

with u0ðxÞ > 0 for all x and u� > 0 in the region of biological interest.

The nonlinear stability theory of viscous shock pro¯les in systems of conservation

laws is important and has been developed in the literature, see Refs. 6, 12, 19, 21, 22,

24 and 34. The small wave strength is generally an assumption for the nonlinear

stability of the wave in the literature. We are able to prove the nonlinear stability of

traveling waves for (1.11) without the smallness condition on wave strengths. More

precisely, we show that, if the initial data (1.12) is a small perturbation of a traveling

wave such that � ¼ 0 in (3.1), then the solution to the Cauchy problem (1.11), (1.12)

exists globally and converges to a shifted traveling wave as t ! þ1. We need to
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point out that when f is linear, the nonlinear stability of traveling waves (1.11),

(1.12) has been established by Li and Wang in Ref. 20. In this paper we consider

nonlinear function fðuÞ. As will be seen in the L2-estimates (see Lemma 5.2 and its

proof ), the sign and magnitude of f 00ðuÞ are critical. However, when fðuÞ is linear,
f 00ðuÞ ¼ 0 and the estimates will be signi¯cantly simpli¯ed and there is not any issue

with f 00ðuÞ. So some techniques and e®orts are made here to determine the number �

in condition (1.6).

The rest of the paper is organized as follows. In Sec. 2, we shall ¯rst present some

preliminary results, and then state and prove the existence theorem of viscous shock

waves of system (1.11)�(1.12). In Sec. 3, we state the stability theorem of the viscous

shock waves. In Secs. 4 and 5, we derive the energy estimates and prove the stability

theorem. In Sec. 6, we show numerical simulations to verify our theoretical results.

Finally, we give a brief summary in Sec. 7.

2. Existence of Viscous Shock Pro¯le

In this section, we devote ourselves to establishing the existence of viscous shock

waves of (1.11)�(1.12). It can be veri¯ed that system (1.11) ful¯lls the Shizuta�
Kawashima condition32 which says that any vector in the kernel of viscosity matrix

B ¼ D 0

0 0

� �

is not an eigenvector of the Jacobian matrix

J ¼ �v �u

�f 0ðuÞ 0

� �
:

Since waves of (1.11)�(1.12) propagate along the characteristics which are dis-

sipative, the stability of viscous shock waves can then be expected.

System (1.11) is hyperbolic when D ¼ 0. Indeed, the eigenvalues of the Jacobian

matrix of (1.11) are

�1ðu; vÞ ¼ � v

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4uf 0ðuÞ

p
; �2ðu; vÞ ¼ � v

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4uf 0ðuÞ

p
ð2:1Þ

with the corresponding eigenvectors

r1ðu; vÞ ¼ ð��1ðu; vÞ; f 0ðuÞÞ; r2ðu; vÞ ¼ ð��2ðu; vÞ; f 0ðuÞÞ: ð2:2Þ
Clearly �1 < 0 < �2 if u > 0. Hence the system (1.11) is strictly hyperbolic if u > 0.

The fact that u remains positive if u0 > 0 will be established in Sec. 4. Furthermore, it

can be veri¯ed that the characteristic families ð�1; r1Þ and ð�2; r2Þ satisfy

r�1 � r1 ¼
�v� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4uf 0ðuÞp
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4uf 0ðuÞp ð2f 0ðuÞ þ uf 00ðuÞÞ < 0;

r�2 � r2 ¼
v� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4uf 0ðuÞp
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4uf 0ðuÞp ð2f 0ðuÞ þ uf 00ðuÞÞ < 0

ð2:3Þ
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if

f 00ðuÞ > �max
u2I

2f 0ðuÞ
u

:¼ ��1; ð2:4Þ

where �1 > 0 and I is a bounded interval containing ½minfuþ;u�g;maxfuþ;u�g�
such that u0 2 I and 0 62 I which will be determined in Sec. 4. Under condition (2.4),

system (1.11) is a genuinely nonlinear hyperbolic system for u 2 I. We hereafter

assume 0 < � � �1 in (1.6), see (5.20).

To study the traveling wave solutions for (1.11), we de¯ne the traveling wave

ansatz

ðu; vÞðx; tÞ ¼ ðU ;V ÞðzÞ; z ¼ x� st

where s denotes the traveling wave speed and z is the traveling wave variable.

Substituting the above ansatz into (1.11), one obtains the following system of

di®erential equations

�sUz � ðU V Þz ¼ DUzz;

�sVz � fðUÞz ¼ 0

�
ð2:5Þ

with boundary conditions

ðU ;V ÞðzÞ! ðu�; v�Þ as z ! �1; ð2:6Þ
where we require u� > 0 due to the biological interest.

Integrating system (2.5) with respect to z over ð�1;1Þ and using the fact Uz ! 0

as z ! �1, we have

sðuþ � u�Þ ¼ �uþvþ þ u�v�;
sðvþ � v�Þ ¼ �fðuþÞ þ fðu�Þ
�

ð2:7Þ

which corresponds to the Rankine�Hugonoit jump condition of the following shock

wave

ðu; vÞ ¼ ðu�; v�Þ; x� st < 0

ðuþ; vþÞ; x� st > 0

�
ð2:8Þ

for hyperbolic system (1.11) withD ¼ 0. Canceling vþ in (2.7), we obtain a quadratic

equation for shock speed s

s2 þ v�s� uþ fðuþÞ � fðu�Þ
uþ � u� ¼ 0:

Note that the condition f 0ðuÞ > 0 in (1.6) ensures that fðuþÞ�fðu�Þ
uþ�u� > 0. Hence the

above equation gives two solutions for s with opposite signs, where s > 0 corresponds

to the second characteristic ¯eld of shocks whereas s < 0 corresponds to the ¯rst

characteristic ¯eld. In this paper, we restrict our attention to the case of s > 0 and

the analysis can be extended to the case s < 0 without changes. That is, we consider
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the second characteristic family of shock waves with speed

s ¼ � v�

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�Þ2 þ 4uþ fðuþÞ � fðu�Þ

uþ � u�

r
: ð2:9Þ

It is easy to check that the shock speed s de¯ned in (2.9) satis¯es the entropy

condition16

�2ðuþ; vþÞ < s < �2ðu�; v�Þ: ð2:10Þ
Thus shock wave (2.8) for hyperbolic system (1.11) with D ¼ 0 is an admissible

shock.

Our ¯rst result concerning the existence of traveling wave solutions of (1.11),

namely, the existence of solutions to (2.5)�(2.6), is as follows.

Theorem 2.1. Let (1.6) hold. Then there exists a monotone shock pro¯le

ðU ;V Þðx� stÞ to system (2.5)�(2.6) with s de¯ned in (2.9), which is unique up to a

translation and satis¯es Uz < 0 and Vz > 0. Moreover, the following relations hold

sDUz ¼ UfðUÞ � ðs2 þ %1ÞU þ %2;

sV ¼ %1 � fðUÞ;
�

ð2:11Þ

where %1 and %2 are constants de¯ned by

%1 ¼ svþ þ fðuþÞ ¼ sv� þ fðu�Þ; %2 ¼ ðs2 þ svþÞuþ ¼ ðs2 þ sv�Þu�: ð2:12Þ
Proof. From the second equation of (2.5) and (2.6), it follows that

sV þ fðUÞ ¼ %1 ð2:13Þ
with %1 being de¯ned in (2.12), which immediately implies the second equation

of (2.11). Then from the ¯rst equation of (2.5), one obtains

sDUzz ¼ ð�s2 � %1 þ fðUÞ þ Uf 0ðUÞÞUz: ð2:14Þ
Introducing Uz ¼ W , (2.14) can be written as a ¯rst-order ODE system as follows:

Uz ¼ W ;

sDWz ¼ W ð�s2 � %1 þ fðUÞ þ Uf 0ðUÞÞ;
�

ð2:15Þ

from which, one derives that

sD
dW

dU
¼ fðUÞ þ Uf 0ðUÞ � s2 � %1: ð2:16Þ

Integrating (2.16) with respect to U, using (2.6) and W ðu�Þ ¼ Uzðu�Þ ¼ 0 yield

sDW ¼ sDUz ¼ UfðUÞ � ðs2 þ %1ÞU þ %2; ð2:17Þ
where %2 is a constant as given in (2.12). Equation (2.17) immediately gives the ¯rst

equation of (2.11).

We now show that there is a trajectory connecting u� and uþ with the claimed

monotonicity property: Uz < 0. Indeed, we de¯ne the right-hand side of (2.17) as a
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new function

hðUÞ ¼ UfðUÞ � ðs2 þ %1ÞU þ %2:

Then

hðu�Þ ¼ hðuþÞ ¼ 0 ð2:18Þ
and

h 00ðUÞ ¼ 2f 0ðUÞ þ Uf 00ðUÞ > 0 ð2:19Þ
provided that assumption (2.4) holds. Thus for U between u� and uþ;hðUÞ < 0.

Therefore Uz ¼ 1
sD hðUÞ < 0 for all U between u� and uþ. Hence uþ < u�. By (2.13),

it is straightforward to verify that Vz > 0 and hence v� < vþ. Since h 00ðUÞ > 0,

Eq. (2.17) only has two equilibria uþ and u�. Due to the fact that Eq. (2.17) is a ¯rst-

order scalar ordinary di®erential equation of U, the trajectory of (2.17) satisfying

boundary condition (2.6) necessarily connects equilibria u� and uþ by the standard

argument (see e.g. Refs. 12 and 16). Indeed the trajectory on the U-W phase plane

has been given by (2.13). The proof is then complete.

Remark 2.1. Due to Uz < 0 and Vz > 0, it follows that 0 < uþ � U � u� and

v� � V � vþ. Thus (2.11) implies that jUzj and jVzj are bounded for any given

di®usion rate D > 0, and hence 1
U and all of its derivatives are bounded. Moreover,

1
f 0ðUÞ is bounded under assumption (1.6).

3. Asymptotic Stability of Viscous Shock Waves

The second main result of our paper is the nonlinear stability of traveling wave

solutions obtained in Theorem 2.1. We ¯rst de¯ne the appropriate initial pertur-

bations. As in Refs. 12, 21, 22 and 34, we write the initial perturbation of traveling

waves of the system (1.11) asZ þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � V ðxÞ

� �
dx ¼ x0

uþ � u�

vþ � v�

� �
þ �r1ðu�; v�Þ; ð3:1Þ

where r1ðu�; v�Þ is the ¯rst eigenvector in (2.2) evaluated at ðu�; v�Þ. The coe±-

cients x0 and � are uniquely determined by the initial data ðu0ðxÞ; v0ðxÞÞ. For

stability results of small amplitude waves corresponding to the case � 6¼ 0, the reader

is referred to Refs. 22 and 34 and references therein. In this paper, we assume that

� ¼ 0 as in Refs. 6 and 12. Now by the conservation laws in (1.11) and (2.5), one

readily derives thatZ þ1

�1

uðx; tÞ � Uðxþ x0 � stÞ
vðx; tÞ � V ðxþ x0 � stÞ

� �
dx

¼
Z þ1

�1

u0ðxÞ � Uðxþ x0Þ
v0ðxÞ � V ðxþ x0Þ

� �
dx
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�
Z þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � V ðxÞ

� �
dxþ

Z þ1

�1

UðxÞ � Uðxþ x0Þ
V ðxÞ � V ðxþ x0Þ

� �
dx

¼
Z þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � V ðxÞ

� �
dx� x0

uþ � u�

vþ � v�

� �
¼ 0:

We decompose the solution ðu; vÞ of (1.11) as
ðu; vÞðx; tÞ ¼ ðU ;V Þðx� stþ x0Þ þ ð�x;  xÞðx; tÞ; ð3:2Þ

where

�ðx; tÞ ¼
Z x

�1
ðuðy; tÞ � Uðyþ x0 � stÞÞdy;

 ðx; tÞ ¼
Z x

�1
ðvðy; tÞ � V ðyþ x0 � stÞÞdy

for all x 2 R and t � 0.

It then holds that

�ð�1; tÞ ¼ 0;  ð�1; tÞ ¼ 0 for all t > 0:

We further assume without loss of generality that the translation x0 ¼ 0, namely,Z þ1

�1

u0ðxÞ � UðxÞ
v0ðxÞ � V ðxÞ

� �
dx ¼ 0

0

� �
: ð3:3Þ

The initial condition of the perturbation ð�;  Þ is then given by

ð�0;  0ÞðxÞ ¼
Z x

�1
ðu0 � U ; v0 � V ÞðyÞdy: ð3:4Þ

The asymptotic stability of the traveling wave solutions means that

ð�x;  xÞðx; tÞ ! 0 as t ! 1. Before stating our result, we introduce a notation L2
w

which denotes the weighted space of measurable function f so that for weight function

w � 0;
ffiffiffiffi
w

p
f 2 L2 with norm

jjfjjL 2
w
¼

Z
wðxÞjfðxÞj2dx

� �1=2

:

Then the main result of the asymptotic stability is the following.

Theorem 3.1. Suppose that (1.6) holds. Let ðU ;V Þðx� stÞ be a viscous shock pro¯le

of (1.11) obtained in Theorem 2.1. Then there exists a constant "0 > 0 such that if

jju0 � U jj1 þ jjv0 � V jj1 þ jjð�0;  0Þjj � "0 and that � ¼ 0 in (3.1), then the Cauchy

problem (1.11)�(1.12) has a unique global solution ðu; vÞðx; tÞ satisfying uðx; tÞ �
�0 > 0 for all x 2 R, t � 0 for some �0 > 0, and

ðu� U ; v� V Þ 2 Cð½0;1Þ;H 1Þ \ L2ð½0;1Þ;H 1Þ:
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Furthermore, the solution has the following asymptotic nonlinear stability

sup
x2R

jðu; vÞðx; tÞ � ðU ;V Þðx� stÞj ! 0 as t ! þ1: ð3:5Þ

Remark 3.1. The above nonlinear stability results hold true regardless of the

strengths of the waves, i.e. the wave amplitude juþ � u�j þ jvþ � v�j can be large, in

contrast to the previous results related to the nonlinear stability of traveling waves to

hyperbolic�parabolic systems, where various smallness conditions on wave strengths

were imposed (see e.g. Refs. 6, 19, 24, 11, 21, 22 and 38).

Remark 3.2. When the system (1.11) is not genuinely nonlinear hyperbolic, i.e.

when (2.4) does not hold, the nonlinear stability of the traveling waves can be

established by weighted energy methods as in Ref. 19.

4. Reformulation of the Stability Problem

The proof of Theorem 3.1 is based on iterative L2 energy estimates due to partial

di®usion in the hyperbolic�parabolic system (1.11). The energy estimate approach

for the nonlinear stability viscous shock pro¯les was ¯rst introduced independently

by Matsumura and Nishihara in Ref. 24 and by Goodman in Ref. 6. It has been

further developed over the years, see Refs. 12, 19, 21, 22 and 34.

In view of (3.2), we seek a solution of the following form

ðu; vÞðx; tÞ ¼ ðU ;V Þðx� stÞ þ ð�x;  xÞðx; tÞ ¼ ðU ;V ÞðzÞ þ ð ��z; � zÞðz; tÞ ð4:1Þ

with ð ��; � Þ in some functional space which will be de¯ned below. For simplicity of

notation, we will omit the bars in ð ��; � Þ in the rest of the paper.

Substituting (4.1) into (1.11), using (2.5), and integrating the resulting equations

with respect to z, we derive that the perturbation ð�;  Þ satis¯es
�t ¼ D�zz þ s�z þ U z þ V �z þ �z z;

 t ¼ s z þ f 0ðUÞ�z þ F ðU ; �zÞ
�

ð4:2Þ

with initial data given by

ð�;  Þðz; 0Þ ¼ ð�0;  0ÞðzÞ; z 2 R ð4:3Þ

where ð�0;  0Þ is de¯ned as in (3.4), and F ðU ; �zÞ ¼ fðU þ �zÞ � fðUÞ � f 0ðUÞ�z.
We seek solutions of the reformulated problem (4.2)�(4.3) in the following sol-

ution space

Xð0;T Þ ¼ fð�ðz; tÞ;  ðz; tÞÞ : � 2 Cð½0;T Þ;H 2Þ;  2 Cð½0;T Þ;H 2Þ \ C 1ðð0;T Þ;H 1Þ;
�z 2 L2ðð0;T Þ;H 2Þ;  z 2 L2ðð0;T Þ;H 1Þg

with 0 � T < þ1.
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Let

NðtÞ ¼ sup
0���t

fjj�ð�; �Þjj2 þ jj ð�; �Þjj2g; ð4:4Þ

where jj � jjp denotes the Hp norm for p > 0 and for t � 0.

By the Sobolev embedding theorem, we have

sup
z2R

fj�j; j�zj; j j; j zjg � NðtÞ ð4:5Þ

for t � 0.

Thus Theorem 3.1 is a consequence of the following theorem.

Theorem 4.1. Let the assumptions of Theorem 3.1 hold. Then there exists a

constant �1 > 0 such that if

Nð0Þ � �1; ð4:6Þ
then the Cauchy problem (4.2)�(4.3) has a unique global solution ð�;  Þ 2 Xð0;þ1Þ
such that for any t 2 ½0;þ1Þ, it holds that for some constant C > 0

jj�ð�; tÞjj22 þ jj ð�; tÞjj22 þ
Z t

0

jjð�ð�; �Þ;  ð�; �ÞÞjj2L 2
w
d�

þ
Z t

0

jj�zð�; �Þjj22d� þ
Z t

0

jj zð�; �Þjj21d�

� CN 2ð0Þ; ð4:7Þ
where w ¼ jUzj. Moreover, the following asymptotic stability holds

sup
z2R

jð�z;  zÞðz; tÞj ! 0 as t ! þ1: ð4:8Þ

With Theorem 4.1, we can immediately show the positivity of u claimed in

Theorem 3.1. In fact, if the initial perturbation (4.3) satis¯es (4.6), then by (4.7)

there is a constant C > 0 such that

j�zðz; tÞj �
ffiffiffi
2

p
NðtÞ � CNð0Þ � C�1:

Thus for all x 2 R and t � 0, it follows from (4.1) that

uðx; tÞ ¼ ðuðx; tÞ � UðzÞÞ þ UðzÞ
¼ �zðz; tÞ þ UðzÞ � �CNð0Þ þ uþ

� �C�1 þ uþ ¼ �0 > 0

provided that �1 is suitably small and uþ is positive. Moreover, the bounded interval I

in condition (2.4) can be chosen as ½�0;u� þ C�1� so that uðx; tÞ 2 I for all x 2 R and

t � 0.

The global existence of ð�;  Þ announced in Theorem 4.1 follows from the local

existence theorem and from the a priori estimates which are given below.

Proposition 4.2. (Local existence) For any �2 > 0, there exists a positive constant

T depending on �2 such that if ð�0;  0Þ 2 H 2 with Nð0Þ � �2=2, then the
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problem (4.2)�(4.3) has a unique solution ð�;  Þ 2 Xð0;T Þ satisfying
NðtÞ < 2Nð0Þ ð4:9Þ

for any 0 � t � T .

Proposition 4.3. (A priori estimates) Assume that ð�;  Þ 2 Xð0;T Þ is a solution

obtained in Proposition 4.2 for a positive constant T. Then there is a positive constant

�3 > 0, independent of T, such that if

NðtÞ < �3

for any 0 � t � T , then the solution ð�;  Þ of (4.2)�(4.3) satis¯es (4.7) for any

0 � t � T .

With the solution ð�;  Þ obtained in Theorem 4.1 and traveling wave solution

ðU ;V Þ in Lemma 2.1, we have the desired solution of the problem (1.11)�(1.12)

through relation (4.1).

The local existence in Proposition 4.2 can be shown in a standard way (cf. Ref. 26)

and we omit the proof. Theorem 4.1 is a consequence of Propositions 4.2 and 4.3 by

the continuation argument. So it remains to prove Proposition 4.3. The following

section is devoted to the proof of Proposition 4.3 based on iterative L2 energy esti-

mates.

5. Energy Estimates

In this section, we derive the a priori estimates for the solutions of system (4.2)�(4.3)

and prove Proposition 4.3. In what follows, we use C to denote a generic constant

which changes from one line to another. An integral lacking limits of integration

means an integral over the whole real line R. For simplicity, we use jj � jj to denote the
L2 norm.We take advantage of the explicit formula (2.11) for Uz and Vz and avoid the

smallness assumptions on the wave strengths as imposed for hyperbolic�parabolic

systems in the literature (e.g. Refs. 11, 19, 24 and 38). The stability result is a

consequence of the following a priori estimates.

Lemma 5.1. Let f satisfy (1.6) and w ¼ jUzj. Assume ð�0;  0Þ 2 H 2 and let ð�;  Þ be
a solution of (4.2)�(4.3). Then there exists a constant C > 0 such that

jj�ð�; tÞjj22 þ jj ð�; tÞjj 22 þ
Z t

0

jjð�ð�; �Þ;  ð�; �ÞÞjj2L 2
w
d�

þ
Z t

0

jj�zð�; �Þjj22d� þ
Z t

0

jj zð�; �Þjj21d�

� Cðjj�0jj22 þ jj 0jj22Þ þ C

Z t

0

Z
ðj�j þ j�zj þ j zj þ j�zzjÞj�z zjdzd�

þ C

Z t

0

Z
ðj�zzj þ j zzj þ j�zzzjÞjð�z zÞzjdzd�
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þ C

Z t

0

Z
jF jðj j þ j zj þ j zzjÞdzd� þ C

Z t

0

Z
ðjF j þ jFzzjÞj�zjdzd�

þ C

Z t

0

Z
ðjFzj þ jFzzjÞj zzjdzd�: ð5:1Þ

The proof of Lemma 5.1 consists of a series of energy estimates which are given in

the following subsections.

5.1. L2-estimate

In this subsection, we shall derive the L2 estimates for ð�;  Þ.
Lemma 5.2. Let the assumptions in Lemma 5.1 hold. Then there exist constants

	0 > 0 and C > 0 such that the solution ð�;  Þ of (4.2)�(4.3) satis¯es

jj�ð�; tÞjj2 þ jj ð�; tÞjj2 þ 	0

Z t

0

jjð�ð�; �Þ;  ð�; �ÞÞjj 2L 2
w
d� þ

Z t

0

jj�zð�; �Þjj2d�

� C jj�0jj2 þ jj 0jj2 þ
Z t

0

Z
j��z zjdzd� þ C

Z t

0

Z
jF jdzd�

� �
: ð5:2Þ

Proof. Multiplying the ¯rst equation of (4.2) by �=U and the second by  =f 0ðUÞ,
and adding them, we end up with the following equation after integrating the result

w.r.t. z

1

2

d

dt

Z
�2

U
þ  2

f 0ðUÞ
� �

dzþD

Z
�2
z

U
dzþ 1

2

Z
�ðzÞ�2dz

¼ � s

2

Z
1

f 0ðUÞ
� �

z

 2dzþ
Z
��z z

U
dzþ

Z
F 

f 0ðUÞ dz ð5:3Þ

where

�ðzÞ ¼ � D

U

� �
zz

þ sþ V

U

� �
z

:

From (2.5), (2.11), (2.12) and noticing that Uz < 0, we derive that

�ðzÞ ¼ �	ðzÞUz ¼ 	ðzÞjUzj;
where

	ðzÞ ¼ 2

U 3
sþ %1 � fðUÞ

s

� �
U þDUz

� �
: ð5:4Þ

Substituting s in (2.9), Uz in (2.11) and (2.12) into (5.4), one derives that

	ðzÞ ¼ 2u�

U 3
ðsþ v�Þ � 1

ðu�Þ2 v� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv�Þ2 þ 4uþ fðuþÞ � fðu�Þ

uþ � u�

r !
¼ 	0 > 0;

where the assumption f 0ðuÞ > 0 in (1.6) has been used. Hence

�ðzÞ � 	0jUzj: ð5:5Þ
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Substituting (5.5) into (5.3), one has that

1

2

d

dt

Z
�2

U
þ  2

f 0ðUÞ
� �

dzþD

Z
�2
z

U
dzþ 1

2
	0

Z
jUzj�2dz

� � s

2

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2dzþ

Z
��z z

U
dzþ

Z
F 

f 0ðUÞ dz: ð5:6Þ

Observe that under assumption (1.6), f 00ðUÞ
f 0ðUÞ 2 is bounded but may change sign. Thus

the ¯rst term on the right-hand side of (5.6) needs to be estimated. To this end, one

needs to estimate
R jUzj 2dx. We multiply the ¯rst equation of (4.2) by � and the

second equation by  U=f 0ðUÞ, add them, integrate the result w.r.t. z and notice that

Uz < 0, to obtain

1

2

d

dt

Z
�2 þ U

f 0ðUÞ  
2

� �
dzþD

Z
�2
zdzþ

1

2

Z
Vz�

2dz

¼
Z

jUzj� dzþ
s

2

Z
f 0ðUÞ � Uf 00ðUÞ

f 0ðUÞ2 jUzj 2dzþ
Z
��z zdz

þ
Z

U

f 0ðUÞ F dz: ð5:7Þ

Multiplying (5.6) by u� and noting U 2 ½uþ;u��, we derive that

1

2

d

dt

Z
�2 þ U 2

f 0ðUÞ
� �

dzþD

Z
�2
zdzþ

1

2
	0u

�
Z

jUzj�2dz

� � su�

2

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2dzþ u�

Z
��z z

U
dzþ u�

Z
F 

f 0ðUÞ dz: ð5:8Þ

Since f 0ðUÞ > 0 and f is smooth, f 0ðUÞ is bounded away from 0 due to the fact

that 0 < uþ � U � u�. Then one has from (5.7) and (5.8) that

s

2

Z
f 0ðUÞ � Uf 00ðUÞ

f 0ðUÞ2 jUzj 2dz

¼ 1

2

d

dt

Z
�2 þ U

f 0ðUÞ  
2

� �
dz

þD

Z
�2
zdzþ

1

2

Z
Vz�

2dz�
Z

jUzj� dz�
Z
��z zdz

� � su�

2

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2dzþ 1

2

Z
Vz�

2dz

�
Z

jUzj� dzþ
u�

uþ þ 1
� �Z

j��z zjdzþ C

Z
jF jdz ð5:9Þ

1980 T. Li & Z.-A. Wang



which leads to

s

2

Z
f 0ðUÞ þ ðu� � UÞf 00ðUÞ

f 0ðUÞ2 jUzj 2dz

� 1

2s

Z
f 0ðUÞjUzj�2dzþ

Z
jUz� jdzþ

u�

uþ þ 1
� �Z

j��z zjdzþ C

Z
jF jdz;

ð5:10Þ
where we have used the second equation of (2.5)

Vz ¼
�f 0ðUÞUz

s
¼ jUzj

f 0ðUÞ
s

and the fact that s > 0, see (2.9).

Next we use the Cauchy�Schwarz inequality to estimateZ
jUz� jdz �

s

4

Z
f 0ðUÞ þ ðuþ � UÞf 00ðUÞ

f 0ðUÞ2 jUzj 2dz

þ 1

s

Z
f 0ðUÞ2

f 0ðUÞ þ ðuþ � UÞf 00ðUÞjUzj�2dz: ð5:11Þ

Substituting (5.11) into (5.10), we have that

s

4

Z
f 0ðUÞ þ ðu� � UÞf 00ðUÞ

f 0ðUÞ2 jUzj 2dz

� 1

s

Z
f 0ðUÞ2

f 0ðUÞ þ ðuþ � UÞf 00ðUÞ þ
1

2
f 0ðUÞ

� �
jUzj�2dz

þ u�

uþ þ 1
� �Z

j��z zjdz

� 1

s

Z
m2

1

m2 þ ðu� � uþÞf 00ðUÞ þ
1

2
m1

� �
jUzj�2dz

þ u�

uþ þ 1
� �Z

j��z zjdz

� 1

s

Z
m2

1

m2 � ðu� � uþÞ� þ 1

2
m1

� �
jUzj�2dz

þ u�

uþ þ 1
� �Z

j��z zjdzþ C

Z
jF jdz; ð5:12Þ

where

m1 ¼ max
uþ�U�u�

f 0ðUÞ; m2 ¼ min
uþ�U�u�

f 0ðUÞ

with m1 � m2 > 0; 0 < uþ � U � u� and � > 0 is de¯ned in (1.6).
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We denote

M ¼ m2
1

m2 � ðu� � uþÞ� þ 1

2
m1:

Then

M � 2m2
1

m2

þ m1

2
ð5:13Þ

provided that � > 0 in (1.6) satis¯es

0 < � � m2

2ðu� � uþÞ :¼ �2: ð5:14Þ

On the other hand, we derive from (5.6) that

M

s

Z t

0

Z
jUzj�2dxd� � M

	0s

Z
�2
0

U
þ  2

0

f 0ðUÞ
� �

dz

� M

	0

Z t

0

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2dzd�

þ 2M

uþ	0s

Z t

0

Z
j��z zjdzd� þ C

Z t

0

Z
jF jdzd�: ð5:15Þ

Substituting (5.15) into (5.12), one has

1

4

Z t

0

Z sðf 0ðUÞ þ ðu� � UÞf 00ðUÞÞ þ 4M
	0

f 00ðUÞ
f 0ðUÞ2 jUzj 2dzd�

� Cðjj�0jj2 þ jj 0jj2Þ þ C

Z t

0

Z
j��z zjdzd� þ C

Z t

0

Z
jF jdzd�: ð5:16Þ

Note that (5.13), (5.14) and (1.6) imply that

sðf 0ðUÞ þ ðu� � UÞf 00ðUÞÞ þ 4M

	0
f 00ðUÞ

> sm2 � sðu� � uþÞ� � 4

	0

2m2
1

m2

þ m1

2

� �
�

� ~�0 > 0 ð5:17Þ

provided that � > 0 in (1.6) satis¯es

0 < � � sm2 � ~�0

sðu� � uþÞ þ 2m 2
1

m2
þ m1

2

� �
4
	0

:¼ �3 ð5:18Þ

for some 0 < ~�0 < sm2.
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Now assuming that (5.14) and (5.18) hold, then it follows from (5.16) and (5.17)

thatZ t

0

Z
jUzj 2dzd� � C jj�0jj2 þ jj 0jj2 þ

Z t

0

Z
j��z zjdzd�

� �
þ C

Z t

0

Z
jF jdzd�:

ð5:19Þ

Substituting (5.19) back into (5.8), we obtain the desired inequality (5.2).

This completes the proof of Lemma 5.2.

Regarding the value of parameter � > 0 in assumption (1.6), we can now choose

� > 0 as follows

� ¼ minf�1; �2; �3g > 0; ð5:20Þ
where �1 > 0; �2 > 0 and �3 > 0 are given in (2.4), (5.14) and (5.18), respectively.

5.2. H 1-estimates

In this subsection, we shall derive the L2 estimates for the ¯rst-order derivatives of

the solution ð�;  Þ.
Lemma 5.3. Let f satisfy (1.6) and the assumptions in Theorem 3.1 hold. Then there

exists a constant C > 0 such that the solution ð�;  Þ of (4.2)�(4.3) satis¯es

jj�zð�; tÞjj2 þ jj zð�; tÞjj2 þ
Z t

0

jj�zzð�; �Þjj2d� þ
Z t

0

jj zð�; �Þjj2d�

� C jj�0jj21 þ jj 0jj21 þ
Z t

0

Z
j�z zjðj�j þ j�zj þ j�zzj þ j zjÞdzd�

� �

þ C

Z t

0

Z
jF jðj j þ j zj þ j zzj þ j�zjÞdzd�: ð5:21Þ

Proof. Multiplying the ¯rst equation of (4.2) by ��zz=U and the second equation by

� zz=f
0ðUÞ, and adding them, using (2.11), we obtain the following equation after

integrating the result w.r.t. z

1

2

d

dt

Z
�2
z

U
þ  2

z

f 0ðUÞ
� �

dzþD

Z
� 2
zz

U
dz

¼ s

2

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2

zdz�
Z

1

f 0ðUÞ
� �

z

 t zdz�
Z

1

U

� �
z

�t�zdz

� 1

2

Z
sþ %1 þ Uf 0ðUÞ � fðUÞ

s

� �
Uz

U 2
� 2
zdz

þ
Z
�z�zz z

U
dz�

Z
F zz

f 0ðUÞ dz: ð5:22Þ
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Next we estimate the ¯rst three terms on the right-hand side of (5.22). For

convenience we denote these terms by

I1 ¼
s

2

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2

zdz; I2 ¼ �
Z

1

f 0ðUÞ
� �

z

 t zdz; I3 ¼ �
Z

1

U

� �
z

�t�zdz:

We ¯rst look at I2. In fact, by using the second equation of (4.2) and the Young's

inequality, one has

� 1

f 0ðUÞ
� �

z

 t z ¼ �s
f 00ðUÞ
f 0ðUÞ2 jUzj 2

z þ
f 00ðUÞ
f 0ðUÞ Uz�z z þ

f 00ðUÞ
f 0ðUÞ2 FUz z

� � 3s

4

f 00ðUÞ
f 0ðUÞ2 jUzj 2

z þ
4

s
f 00ðUÞjUzj� 2

z þ
f 00ðUÞ
f 0ðUÞ2 FUz z: ð5:23Þ

Then by (5.23), we have that

I1 þ I2 � � s

4

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2

zdzþ
4

s

Z
f 00ðUÞjUzj�2

zdzþ
f 00ðUÞ
f 0ðUÞ2 FUz z: ð5:24Þ

Next we estimate the term I3. To this end we use the ¯rst equation of (4.2) to have

that

� 1

U

� �
z

�t�z ¼ �D

2

1

U

� �
z

�2
z

� �
z

þ D

2

1

U

� �
zz

� ðsþ V Þ 1

U

� �
z

� �
�2
z

�U
1

U

� �
z

�z z �
1

U

� �
z

� 2
z z:

From Remark 2.1, we know that U 2 ½uþ;u�� and jUzj is bounded. Thus

condition (1.6) implies that f 0ðUÞ and f 00ðUÞ are bounded. Then using (2.14) and

the Young's inequality, we derive that

�U
1

U

� �
z

�z z ¼ � U
1

U

� �
z

�z 

� �
z

� Uz

U
�zz 

þ 1

D
sþ %1 � fðUÞ � Uf 0ðUÞ

s

� �
þ Uz

U

� �
Uz

U
�z 

� � U
1

U

� �
z

�z 

� �
z

þ D

2

�2
zz

U
þ CðjUzj 2 þ �2

zÞ

for some C > 0.

Using the boundedness of V, ð 1U Þz; ð 1UÞzz and Young's inequality, we infer that

I3 �
D

2

Z
�2
zz

U
dzþ C

Z
ðjUzj 2 þ �2

zÞdzþ C

Z
�2
zj zjdz: ð5:25Þ
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Now we substitute (5.24) and (5.25) into (5.22) to have

1

2

d

dt

Z
�2
z

U
þ  2

z

f 0ðUÞ
� �

dzþ D

2

Z
�2
zz

U
dz

� � s

4

Z
f 00ðUÞ
f 0ðUÞ2 jUzj 2

zdzþ C

Z
ðjUzj 2 þ �2

z Þdz

þ C

Z
�2
z j zjdzþ C

Z
j�z�zz zjdzþ C

Z
jF jðj zj þ j zzjÞdz; ð5:26Þ

where we have used the boundedness of U ; f 0ðUÞ; f 00ðUÞ; jUzj, see Remark 2.1.

Next integrating (5.26) and using (5.2), we have

jj�zð�; tÞjj2 þ �jj zð�; tÞjj2 þD

Z t

0

jj�zzð�; �Þjj2d�

� �M

Z t

0

jj zð�; �Þjj2d�

þ C jj�0jj 21 þ jj 0jj21 þ
Z t

0

Z
ðj�j þ j�zj þ j�zzjÞj�z zjdzd�

� �

þ C

Z t

0

Z
jF jðj zj þ j zzjÞdzd�; ð5:27Þ

where

� ¼ 1

max
uþ�u�u�

f 0ðuÞ ; M ¼ su�
max
z2R

jUzj

min
uþ�u�u�

f 0ðuÞ
				

				2
:

Now we proceed to estimate
R t
0
jj zð�; �Þjj2d� . To this end, we multiply the ¯rst

equation of (4.2) by  z to obtain

�t z ¼ D�zz z þ s�z z þ U 2
z þ V �z z þ �z 

2
z: ð5:28Þ

On the other hand, from the second equation of (4.2), we can derive that

�t z ¼ ð� zÞt � sð� zÞz � ð��zf 0ðUÞÞz þ s�z z þ f 0ðUÞ�2
z: ð5:29Þ

Equating (5.29) with (5.28) yields

U 2
z ¼ ð� zÞt þ f 0ðUÞ� 2

z �D�zz z � V �z z � �z 
2
z � sð� zÞz � ð��zf 0ðUÞÞz:

ð5:30Þ
Since 0 < uþ � U � u�, v� � V � vþ, we apply the Young's inequality to deduce

that

j�D�zz zj �
uþ

4
 2

z þ
4D2

uþ �2
zz;

jV �z zj �
uþ

4
 2

z þ
4ðjv�j þ jvþjÞ2

uþ �2
z:

ð5:31Þ
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Inserting (5.31) into (5.30) and integrating the result w.r.t. z and t, one has

uþ

2

Z t

0

Z
 2
zdzd� � �

Z
�z dz�

Z
�0 z;0dz

þ C

Z t

0

Z
�2
zdzd� þ

4D2

uþ

Z t

0

Z
�2
zzdzd�

þ C

Z t

0

Z
j�zj 2

zdzd� þ C

Z t

0

Z
jF�zjdzd�: ð5:32Þ

Applying the Cauchy�Schwarz inequality to �R �z dz and employing (5.2), we

conclude thatZ t

0

Z
 2
zdzd� �C jj�0jj21 þ jj 0jj21 þ

Z t

0

Z
j�z zjðj�j þ j zjÞdzd�

� �

þ 8D2

juþj2
Z t

0

Z
�2
zzdzd� þ C

Z t

0

Z
jF jdzd�

þ C

Z t

0

Z
jF�zjdzd�: ð5:33Þ

Inserting (5.33) into (5.27), and choosing � such that � � �4 ¼ juþj 2
8MD , we have

jj�zð�; tÞjj2 þ jj zð�; tÞjj2 þ
Z t

0

Z
�2
zzdzd�

� C jj�0jj21 þ jj 0jj21 þ
Z t

0

Z
j�z zjðj�j þ j�zj þ j�zzj þ j zjÞdzd�

� �

þ C

Z t

0

Z
jF jðj j þ j zj þ j zzj þ j�zjÞdzd�: ð5:34Þ

The combination of (5.33) and (5.34) concludes the proof.

5.3. H 2-estimates

In this subsection, we shall use the similar arguments as used in the preceding sub-

sections to estimate the second-order derivatives of ð�;  Þ.
Lemma 5.4. Let f satisfy (1.6) and the assumptions in Theorem 3.1 hold. Then the

solution ð�;  Þ of (4.2)�(4.3) satis¯es

jj�zzð�; tÞjj2 þ jj zzð�; tÞjj2 þ
Z t

0

jj�zzzð�; �Þjj2d� þ
Z t

0

jj zzð�; �Þjj2d�

� Cðjj�0jj22 þ jj 0jj 22Þ þ C

Z t

0

Z
ðj�j þ j�zj þ j zj þ j�zzjÞj�z zjdzd�

þ C

Z t

0

Z
ðj�zzj þ j zzj þ j�zzzjÞjð�z zÞzjdzd�
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þ C

Z t

0

Z
jF jðj j þ j zj þ j zzjÞdzd�

þ C

Z t

0

Z
ðjF j þ jFzzjÞj�zjdzd� þ C

Z t

0

Z
ðjFzj þ jFzzjÞj zzjdzd�: ð5:35Þ

Proof. We multiply the ¯rst equation of (4.2) by 1=U , di®erentiate the resulting

equation with respect to z twice. Then we multiply the second equation of (4.2) by

1=f 0ðUÞ and then di®erentiate the result with respect to z twice. We end up with the

following

1

U
�t

� �
zz

¼ D

U
�zz

� �
zz

þ s

U
�z

� �
zz

þ  zzz þ
V

U
�z

� �
zz

þ 1

U
�z z

� �
zz

;

1

f 0ðUÞ  t

� �
zz

¼ s
 z

f 0ðUÞ
� �

zz

þ �zzz þ
F

f 0ðUÞ
� �

zz

:

8>>>>><
>>>>>:

ð5:36Þ

Then multiplying the ¯rst equation of (5.36) by �zz, the second equation by  zz,

adding them, and integrating the results, we have

1

2

d

dt

Z
�2
zz

U
þ  2

zz

� �
dzþ

Z
1

U

� �
zz

�t þ 2
1

U

� �
z

�tz

� 

�zzdz

þ
Z

1

f 0ðUÞ
� �

zz

 t þ 2
1

f 0ðUÞ
� �

z

 tz

� 

 zzdz

¼ D

Z
�zz
U

� �
zz

�zzdzþ s

Z
�z
U

� �
zz

�zzdz

þ
Z

V

U
�z

� �
zz

�zzdzþ
Z

1

U
�z z

� �
zz

�zzdz

þ
Z

s

f 0ðUÞ  
� �

zz

 zzdzþ
Z

F

f 0ðUÞ
� �

zz

 zzdz

¼: I1 þ I2 þ I3 þ I4 þ I5 þ I6: ð5:37Þ

By integration by parts, it can be readily veri¯ed that

I1 ¼
D

2

Z
1

U

� �
zz

�2
zzdz�D

Z
1

U
�2
zzzdz;

I2 ¼ � s

2

Z
1

U

� �
zzz

� 2
zdzþ

3s

2

Z
1

U

� �
z

�2
zzdz;

I3 ¼ � 1

2

Z
V

U

� �
zzz

� 2
zdzþ

3

2

Z
V

U

� �
z

�2
zzdz;

I5 ¼ s

Z
1

f 0ðUÞ
� �

zz

 z zzdzþ
3s

2

Z
1

f 0ðUÞ
� �

z

 2
zzdz:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5:38Þ
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Substituting (5.38) into (5.37) yields

1

2

d

dt

Z
�2
zz

U
þ  2

zz

� �
dzþD

Z
1

U
�2
zzzdz

þ
Z

1

U

� �
zz

�t þ 2
1

U

� �
z

�tz

� 

�zzdz

þ
Z

1

f 0ðUÞ
� �

zz

 t þ 2
1

f 0ðUÞ
� �

z

 tz

� 

 zzdz

¼ � 1

2

Z
sþ V

U

� �
zzz

�2
zdzþ

1

2

Z
3

sþ V

U

� �
z

þ D

U

� �
zz

� 

�2
zzdz

þ
Z

1

U
�z z

� �
zz

�zzdzþ s

Z
1

f 0ðUÞ
� �

zz

 z zzdz

þ 3s

2

1

f 0ðUÞ
� �

z

 2
zzdzþ

Z
F

f 0ðUÞ
� �

zz

 zzdz: ð5:39Þ

Now we estimate the last two terms on the left-hand side of (5.39). By substituting

the ¯rst equation of (4.2), one can derive that

1

U

� �
zz

�t þ 2
1

U

� �
z

�tz

� 

�zz

¼ D
1

U

� �
z

�2
zz

� �
z

þ 2ðsþ V Þ 1

U

� �
z

�2
zz

þ ðsþ V Þ 1

U

� �
zz

þ 2Vz

1

U

� �
z

� �
�z�zz

� U
1

U

� �
zz

 z�zz þ
1

U

� �
zz

�z z�zz þ 2 U
1

U

� �
z

 z�zz

� �
z

� 2Uz

1

U

� �
z

 z�zz þ 2
1

U

� �
z

ð�z zÞz�zz: ð5:40Þ

Using the second equation of (4.2), we infer that

1

f 0ðUÞ
� �

zz

 t þ 2
1

f 0ðUÞ
� �

z

 tz

� 

 zz

¼ s
1

f 0ðUÞ
� �

zz

 z zz þ f 0ðUÞ 1

f 0ðUÞ
� �

zz

�z zz
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þ 2s
1

f 0ðUÞ
� �

z

 2
zz þ 2

1

f 0ðUÞ
� �

z

ðf 0ðUÞ�zÞz zz

þ 1

f 0ðUÞ
� �

zz

F �  zz þ 2 � 1

f 0ðUÞ
� �

z

� Fz �  zz: ð5:41Þ

Inserting (5.40) and (5.41) into (5.39), we obtain

1

2

d

dt

Z
�2
zz

U
þ  2

zz

� �
dzþD

Z
1

U
� 2
zzzdz

¼ � 1

2

Z
sþ V

U

� �
zzz

�2
zdz

þ 1

2

Z
3

sþ V

U

� �
z

þ D

U

� �
zz

� 4ðsþ V Þ 1

U

� �
z

� 

�2
zzdz

�
Z

ðsþ V Þ 1

U

� �
zz

þ 2Vz

1

U

� �
z

� �
�z�zzdz

�
Z

1

U

� �
zz

�z z�zzdzþ
Z

U
1

U

� �
zz

þ 2Uz

1

U

� �
z

� 

 z�zz

� 2

Z
1

U

� �
z

ð�z zÞz�zzdzþ
Z

1

U
�z z

� �
zz

�zzdz

� s

2

Z
1

f 0ðUÞ
� �

z

 2
zzdz�

Z
f 0ðUÞ 1

f 0ðUÞ
� �

zz

�z zzdz

� 2

Z
1

f 0ðUÞ
� �

z

ðf 0ðUÞ�zÞz zzdz

þ
Z

F

f 0ðUÞ
� �

zz

 zzdz�
Z

1

f 0ðUÞ
� �

zz

F �  zzdz

� 2 �
Z

1

f 0ðUÞ
� �

z

� Fz �  zzdz: ð5:42Þ

It is worthwhile to note again that U and V as well as their derivatives are bounded.

So we can apply Cauchy�Schwarz inequality to (5.42) to obtain

1

2

d

dt

Z
� 2
zz

U
þ  2

zz

� �
dzþD

Z
1

U
�2
zzzdz

� C

Z
ð�2

z þ �2
zz þ  2

zÞdz�
s

4

Z
1

f 0ðUÞ
� �

z

 2
zzdz
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�
Z

1

U

� �
zz

�z z�zzdz� 2

Z
1

U

� �
z

ð�z zÞz�zzdz

þ
Z

1

U
�z z

� �
zz

�zzdzþ C

Z
ðjF j þ jFzj þ jFzzjÞj zzdz: ð5:43Þ

The last term on the right-hand side of (5.43) can be calculated as

1

U
�z z

� �
zz

�zz ¼
1

U

� �
zz

�z z�zz þ
1

U

� �
z

ð�z zÞz�zz

þ 1

U
ð�z zÞz�zz

� �
z

� 1

U
ð�z zÞz�zzz: ð5:44Þ

Note that 1
f 0ðUÞ
� �

z
¼ f 00ðUÞ

f 0ðUÞ 2 jUzj and jUzj; f 0ðUÞ; f 00ðUÞ are bounded. Then substituting

(5.44) into (5.43), integrating the result w.r.t. t and using (1.6), (5.2) and (5.21), we

obtain

Z
ð�2

zz þ  2
zzÞdzþD

Z t

0

Z
�2
zzzdzd�

� C

Z
ð�2

0;zz þ  2
0;zzÞdzþ �M

Z t

0

Z
 2
zzdzd�

þ C

Z t

0

Z
ðj�j þ j�zj þ j zj þ j�zzj þ j zzjÞj�z zjdzd�

þ C

Z t

0

Z
jð�z zÞzjðj�zzj þ j�zzzjÞdzd�

þ C

Z
ðjF j þ jFzj þ jFzzjÞj zzjdz: ð5:45Þ

To complete the proof, we need to estimate
R t
0

R
 2
zzdzd� . Toward this end, we

multiply the ¯rst equation of (4.2) by  zzz to obtain after some computations that

�t zzz ¼Dð�zz zzÞz þ ðs�z zzÞz þ ðU z zzÞz þ ðV �z zzÞz
þ ð�z z zzÞz �D�zzz zz � ðVz�z þ ðsþ V Þ�zzÞ zz

� U 2
zz � Uz z zz � ð�z zÞz zz: ð5:46Þ

From the second equation of (4.2) one has that

�t zzz ¼ð� zzzÞt � sð� zzzÞz þ sð�z zzÞz � sð�zz zÞz
þ s�zzz z � ð�ðf 0ðUÞ�zÞzzÞz þ ð�zðf 0ðUÞ�zÞzÞz
� f 0ðUÞ�2

zz � ðf 0ðUÞÞz�z�zz � ð�FzzÞz þ �zFzz: ð5:47Þ
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Equating (5.46) with (5.47) and integrating the result w.r.t. z, we end up withZ
U 2

zzdz ¼� d

dt

Z
� zzzdzþ s

Z
�zzz zdz�

Z
f 0ðUÞ�2

zzdz

�
Z

ðf 0ðUÞÞz�z�zzdz�D

Z
�zzz zzdz

�
Z

ðVz�z þ ðsþ V Þ�zzÞ zzdz

�
Z

Uz z zzdz�
Z

ð�z zÞz zzdzþ
Z
�zFzzdz

� d

dt

Z
�z zzdzþ C

Z
ð�2

z þ �2
zz þ  2

zÞdzþ
4D2

uþ

Z
�2
zzzdz

þ
Z

uþ

2
 2
zz �

Z
ð�z zÞz zzdzþ

Z
j�zFzzjdz; ð5:48Þ

where we have used Cauchy�Schwarz inequality.

Integrating (5.48) with respect to t and using the fact 0 < uþ � U � u�, and
choosing � such that � � �4, where �4 is de¯ned in Sec. 5.2 we haveZ t

0

Z
 2
zzdz �

4

uþ

Z
�z zzdz�

4

uþ

Z
�0;z 0;zzdz

þ C

Z t

0

Z
ð�2

z þ �2
zz þ  2

zÞdz�
Z t

0

Z
ð�z zÞz zzdz

�Cðjj�0jj22 þ jj 0jj22Þ

þ C

Z t

0

Z
ðj�j þ j�zj þ j zj þ j�zzjÞj�z zjdzd�

þ C

Z t

0

Z
ðj�zzj þ j zzj þ j�zzzjÞjð�z zÞzjdzd�

þ C

Z t

0

Z
jF jðj j þ j zj þ j zzjÞdzd�

þ C

Z t

0

Z
ðjF j þ jFzzjÞj�zjdzd�

þ C

Z t

0

Z
ðjFzj þ jFzzjÞj zzjdzd�; ð5:49Þ

where Cauchy�Schwarz inequality (5.2), (5.20) and (5.45) have been used. Finally

the combination of (5.49) with (5.45) concludes the proof.

Proof of Proposition 4.3. In fact it only remains to show that the a priori

estimate (4.7) holds. To this end, we need to estimate the cubic nonlinear terms
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in (5.1). Indeed, by applying (4.4), (4.5), the Cauchy�Schwarz inequality, Taylor

theorem and the Sobolev embedding theorems, all of these cubic terms can be

bounded by CNðtÞðR t
0
jj�zð�; �Þjj22d� þ

R t
0
jj zð�; �Þjj21d�Þ for some constant C > 0 and

for t 2 ½0;T �. Then from Lemma 5.1 we have

N 2ðtÞ þ
Z t

0

jjð�ð�; �Þ;  ð�; �ÞÞjj2L 2
w
d� þ

Z t

0

jj�zð�; �Þjj22d� þ
Z t

0

jj zð�; �Þjj21d�

� CN 2ð0Þ þ CNðtÞ
Z t

0

jj�zð�; �Þjj22d� þ
Z t

0

jj zð�; �Þjj21d�
� �

for t 2 ½0;T � and for some constant C > 0.

Therefore, by using (4.9) and letting NðtÞ � 2Nð0Þ < 1
2C ¼: �3, we obtain the

following estimate for any t 2 ½0;T �

N 2ðtÞ þ
Z t

0

jjð�ð�; �Þ;  ð�; �ÞÞjj2L 2
w
d� þ 1

2

Z t

0

jj�zð�; �Þjj22d�

þ 1

2

Z t

0

jj zð�; �Þjj 21d� � CN 2ð0Þ

which gives the desired estimate (4.7). Thus the proof of Proposition 4.3 is

complete.

Proof of Theorem 4.1. Due to Proposition 4.3, it only remains to show (4.8).

Indeed from global estimate (4.7), we derive

jjð�zð�; tÞ;  zð�; tÞÞjj1 ! 0 as t ! þ1: ð5:50Þ
Consequently, for all z 2 R,

�2
zðz; tÞ ¼ 2

Z z

�1
�z�zzðy; tÞdy

� 2

Z þ1

�1
�2
zdy

� �1=2 Z þ1

�1
�2
zzdy

� �1=2

! 0 as t ! þ1: ð5:51Þ

Applying the same argument to  z leads to, for all z 2 R,

 zðz; tÞ ! 0 as t ! þ1:

Hence (4.8) is proved.

6. Numerical Veri¯cations

In this section, we will numerically verify the theoretical results obtained in foregoing

sections. Since the numerical scheme is restricted to a ¯nite domain, we consider the

stability of traveling wave solutions under the perturbations that vanish outside the

¯nite domain to mimic the real situation. The boundary conditions are set as

Dirichlet conditions such that they are compatible with the initial data. We select
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Fig. 1. The numerical illustration of the evolution of traveling wave solutions for system (1.11). Only

pro¯les of u are displayed. The wave propagates from the left to the right. (a) A numerical solution u of

(1.11), (6.1) with D ¼ 2; � ¼ 1; � ¼ 1 and fðuÞ ¼ u. The curves are plotted at time t equals to 50, 100, 150,
200, 250, 300, 350, 380, 400, 420. (b) A numerical solution of (1.11), (6.1) where D ¼ 1; � ¼ 1; � ¼ 1 and

fðuÞ ¼ u2. The curves are plotted at time t equals to 50, 100, 130, 160, 170, 180, 190, 200. The left state u�

and right state uþ of cell density are set as 2 and 1, respectively. A subtle di®erence observed in these two

¯gures is that the transition part of traveling wave from the left and right state in (a) is steeper than that in
(b), which shows the fact that shock wave structure is more pronounced as the di®usion constant D

becomes smaller.
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various examples for function fðuÞ such that condition (1.6) is satis¯ed. TheMATLAB

PDE package is used to perform numerical computations. The domain is set as [0, 400]

and mesh size is 0.2. We only plot the quantity of interest: cell density u.

The ¯rst initial datum is chosen as

u0ðxÞ ¼ ~uðxÞ ¼ 1þ 1

1þ expð2ðx� 100ÞÞ ;

v0ðxÞ ¼ ~vðxÞ ¼ 1þ 1

1þ expð�2ðx� 100ÞÞ :
ð6:1Þ

The left and right states of the traveling wave solution ðU ;V Þ are
ðu�; v�Þ ¼ ð2; 1Þ; ðuþ; vþÞ ¼ ð1; 2Þ: ð6:2Þ

The amplitude of the wave is not small.

The ¯rst example of fðuÞ satisfying condition (1.6) is chosen to be fðuÞ ¼ u. For

initial data given in (6.1), the evolution of a traveling wave solution of (1.11) is

plotted in Fig. 1(a). We now perturb the initial data (6.1) in the form of

ðu0 � ~uÞðxÞ ¼ ðv0 � ~vÞðxÞ ¼ sin x

ððx� 100Þ=10Þ2 þ 1
ð6:3Þ

so that the perturbation is in H 1ðRÞ �H 1ðRÞ as required by Theorem 3.1. With the

numerical simulation shown in Fig. 2, we observe that the solution subject to such a

perturbation (6.3) stabilizes to a traveling wave solution.
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Fig. 2. The numerical illustration of the stability of the traveling wave solution u for system (1.11), (6.3)

with fðuÞ ¼ u satisfying the condition (1.6), where D ¼ 2; � ¼ 1; � ¼ 1.
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The next example of fðuÞ satisfying condition (1.6) is chosen to be fðuÞ ¼ u2. For

the initial data given in (6.1), Fig. 1(b) shows the evolution of a numerical traveling

wave. Then we perturb (6.1) such that

ðu0 � ~uÞðxÞ ¼ ðv0 � ~vÞðxÞ ¼ sin x expð�0:0008ðx� 100Þ2Þ: ð6:4Þ

It is evident that such a perturbation is in H 1ðRÞ �H 1ðRÞ. Figure 3 shows the

stability of the traveling wave solution of system (1.11) under such a pertur-

bation (6.4). It is clearly observed that the solution converges to a traveling wave as

time increases. Lastly, we provide another example fðuÞ ¼ uþ 0:1 sinðuÞ which

satis¯es condition (1.6) and f 00ðuÞ changes the sign. The initial perturbation is

given as

ðu0 � ~uÞðxÞ ¼ ðv0 � ~vÞðxÞ ¼ cos x expð�0:0008ðx� 100Þ2Þ ð6:5Þ
which is also in H 1ðRÞ �H 1ðRÞ. Figure 4 illustrates the stability of the traveling

wave solution of (1.11) under the perturbation (6.5).

The numerical simulations illustrated above show that traveling wave solutions of

system (1.11) are stable for various functions fðuÞ satisfying (1.6) under di®erent

perturbations, which con¯rms our theoretical results. Moreover, the numerical

simulations show that the stability result still holds true without the restriction,

� ¼ 0 in (3.1) and that the traveling waves are also stable under large perturbations,

which are however not proved analytically in the paper.
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Fig. 3. The numerical illustration of the stability of the traveling wave solution u for system (1.11), (6.4),

where D ¼ 1; � ¼ 1; � ¼ 1 and fðuÞ ¼ u2. The left state u� and right state uþ of cell density are set as 2

and 1, respectively.
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7. Conclusion

In this paper, we established the nonlinear stability of traveling wave (viscous shock)

solutions with arbitrary wave amplitudes for a Keller�Segel type model (1.7) which

describes the chemotactic movement of cells/organisms along the concentration

gradient of the chemical which is non-di®usible. The L2 energy estimates and theory

of nonlinear conservation laws were applied to prove the results. Numerical simu-

lations are performed which agree with the analytical results. Our results are ap-

plicable to both attractive (� > 0 and � < 0) and repulsive (� < 0 and � > 0) cases.

We considered a more general chemical kinetic function gðu; cÞ than that in the

literature18,27,36,38 and generalized the results in Ref. 20 where the function fðuÞ is
linear. The model considered in this paper has applications in cancer modeling3�5,17

and self-organization of myxobacteria27 as well as angiogenesis.18 However, the case

�� > 0 was not discussed in this paper. Our preliminary numerical simulations (not

shown here) show that the traveling wave solutions are unstable under small per-

turbations. Hence the instability of traveling wave solutions when �� > 0 is expected.

We shall study this in the future.
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Fig. 4. The numerical simulations of the stability of the traveling wave solution u for system (1.11), (6.5)

with fðuÞ ¼ uþ 0:1 sinðuÞ, where D ¼ 4; � ¼ 1; � ¼ 1.
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