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MESENCHYMAL MOTION MODELS IN ONE DIMENSION∗
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Abstract. Mesenchymal motion denotes a form of cell movement through tissue which can be
observed for certain cancer metastases. In [T. Hillen, J. Math. Biol., 53 (2006), pp. 585–616], a
mathematical model for this form of movement was introduced. In the current paper we present a
comprehensive analysis of the one-dimensional mesenchymal motion model. We establish the global
existence of classical solutions and rigorously carry out the parabolic limit of the model. We discuss
the stationary solutions, prove the existence of traveling wave solutions, and use numerical simulations
to illustrate the results. Finally, we discuss the biological implications of the results.
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1. Introduction. Mesenchymal motion is a form of cellular movement through
tissue which is formed from fiber networks. An example is the invasion of tumor
metastases through collagen networks [7]. Cells migrate in fiber networks and change
their directions according to the orientational distribution of fibers. Moreover, cells
actively remodel the matrix by excreting a matrix degrading enzyme (e.g., protease)
to generate sufficient space in which to migrate.

The motion of mesenchymal cells in a tissue matrix was reported in a review
article by Friedl and Bröcker [7]. Mesoscopic and macroscopic mathematical models
for mesenchymal motion were derived by Hillen [12] in a temporally varying network
tissue. The mesoscopic models consist of a transport equation for the cell movement
and an ordinary differential equation (ODE) for the dynamics of tissue fibers. The
macroscopic models have the form of drift-diffusion equations, where the mean drift
velocity is given by the mean orientation of the tissue, and the diffusion tensor is
given by the variance-covariance matrix of the tissue orientation. The analysis in [12]
is divided into the case of undirected and directed tissue according to the distribution
of fiber orientation. In undirected tissue, the fibers are symmetrical along their axes
and both fiber directions are identical. For example, collagen fibers are undirected
and form the basis for many human and animal tissues. For directed tissue, the fibers
are unsymmetrical and the two ends can be distinguished (such as microtubules and
actin filaments). Branching collagen fiber networks can also be considered directional
if the branching points are of significance for the movement of cells [12].

The model from [12] was extended in [3, 4] to include cell-cell interactions and
chemotactic forces for the case of undirected fibers. Formal methods were used to
derive the corresponding macroscopic models. Painter [21] numerically studied mod-
els for cell movement in fiber tissues and showed pattern formation in the form of
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macroscopic networks.
In this paper, the one-dimensional mesenchymal motion model is fully analyzed.

The global existence of solutions, macroscopic limits, traveling waves, and stationary
solutions are investigated. The one-dimensional model is very instructive and we can
gain much insight into the mechanisms involved in the model. For example, we find
the existence of traveling pulse solutions for the cell population and identify some
mechanisms for cell aggregation. We also identify some differences between undirected
and directed tissue by analyzing the one-dimensional model. We restrict our attention
to the model for directed tissue only and the analysis can be completely adopted to
the study for undirected tissue from the mathematical point of view.

The paper is organized as follows. In the rest of this section, we will present the
one-dimensional mesenchymal motion model derived in [12] and discuss the stationary
solutions based on the telegraph process analysis. In section 2, we classify the one-
dimensional model as a degenerated hyperbolic system and conclude that there is no
shock solution. In section 3, the global existence of classical solutions is obtained along
the characteristics using a fixed point argument and general regularity results for the
semilinear hyperbolic system. In section 4, we rigorously carry out the parabolic limit
of the one-dimensional mesenchymal transport model, where we show that solutions of
the one-dimensional model converge to solutions of the corresponding drift-diffusion
limit equation. In section 5, we study the traveling wave solutions and find traveling
pulse solutions for the cell population and traveling front waves for fiber orientations.
In the final section 6, we summarize and compare our results with the results obtained
in [12]. Furthermore, we explain the findings in the context of the biological application
of cell movement in tissue.

1.1. Models for mesenchymal motion in one dimension. In this paper, we
are primarily interested in the one-dimensional mesenchymal motion model for the
case of directed tissue, which reads as follows [12]:

p+
t + sp+

x = −μp+ + μq+(p+ + p−),

p−t − sp−x = −μp− + μq−(p+ + p−),

q+
t = κ(p+ − p−)(q− − q+ + 1)q+,

q−t = κ(p+ − p−)(q− − q+ − 1)q−.

(1.1)

The quantities p+, p− denote density of cells moving to the right or left, respec-
tively, with a constant speed s. The functions q+, q− are distributions of fibers pointing
to the right (+) or left (−). The constant μ ≥ 0 denotes the turning rate, and the
constant κ ≥ 0 represents the cutting efficiency (rate of fiber degradation). The trans-
port term sp±x in (1.1) accounts for the cell migration in either direction with speed s.
The right-hand side of the first two equations describes the change of cell movement
in the field of fibers. The third and fourth equations of (1.1) describe the changes
of the fibers in either direction due to the interaction with cells. The derivation of
the above model is omitted here for brevity and we refer interested readers to [12]
for details. It is worthwhile to point out that the model for undirected tissue can be
regarded as a special case of (1.1) for κ = 0 (see also [12]). In this paper, we focus
on the model of directed tissue, and most of our results can be applied to the case of
undirected tissue. The significant difference, when it appears, will be emphasized.

The system (1.1) is closely related to the Goldstein–Kac system [8, 17] which de-
scribes correlated random walk in one space dimension. With p = p+ + p−,
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j = s(p+ − p−), q = q+ + q−, and ξ = q+ − q−, system (1.1) becomes

pt + jx = μ(q − 1)p,

jt + s2px = −μj + μsξp,

qt = (κ/s)jξ(1 − q),

ξt = (κ/s)j(q − ξ2).

(1.2)

Since (q+, q−) denotes a distribution, q++q− = 1. Hence one is interested in solutions
with q = 1. The set q = 1 is an invariant manifold of the system (1.2) which will be
verified later in Lemma 3.1. On this manifold the system (1.2) reduces to

pt + jx = 0,

jt + s2px = −μj + μsξp,

ξt = (κ/s)j(1 − ξ2).

(1.3)

If q+ is used instead of ξ, then the system becomes

pt + jx = 0,

jt + s2px = −μj + μs(2q+ − 1)p,

q+
t = 2(κ/s)jq+(1 − q+).

(1.4)

Finally, if the Kac’s trick is applied to the first two equations of the above equation,
then a damped wave equation is obtained:

(1.5) ptt + μpt = s2pxx − μs((2q+ − 1)p)x.

Any of (1.1)–(1.5) will be used for a particular question as shown later.
Now we investigate the connections between the one-dimensional mesenchymal

motion model and the well-known Goldstein–Kac model [8, 17]. We use the normal-
ization condition q+ + q− = 1 to substitute q− = 1 − q+ into the first two equations
of (1.1) and obtain

p+
t + sp+

x = −μ(1 − q+)p+ + μq+p−,

p−t − sp−x = μ(1 − q+)p+ − μq+p−.
(1.6)

The model for the case of undirected tissue (κ = 0) possesses some very interesting
properties. Undirected tissue fibers are symmetrical along their axes and both fiber
directions are identical, which indicates that q+ = q− = 1

2 . Then the model (1.6)
becomes the Goldstein–Kac model [8, 17]

p+
t + sp+

x =
μ

2
(p− − p+),

p−t − sp−x = −μ

2
(p− − p+).

(1.7)

The parabolic scaling for the Goldstein–Kac model, which leads to a parabolic equa-
tion, has been discussed in [9] and references therein.

For directed tissue, we define λ+ = μ(1 − q+), λ− = μq+; then (1.6) is converted
into

p+
t + sp+

x = −λ+p+ + λ−p−,

p−t − sp−x = λ+p+ − λ−p−,
(1.8)
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which is a modification of the Goldstein–Kac model. Extensions of the Goldstein–Kac
model and local and global existence of the solution to the extended model have been
extensively investigated in the literature [14, 15, 16]. The telegraph process of (1.8)
has been briefly discussed recently by Erban and Othmer [5]. The results obtained
in [14, 15, 16] can be applied to system (1.8) if the turning rates λ±(t, x) are given
functions. The theory does not, however, apply to (1.1), since the turning rates are
coupled with the q± equations.

In the next subsection, we will discuss stationary solutions for (1.1) based on the
telegraph process examined in [12].

We supply the system (1.1) with the initial condition

(1.9) p±(0, x) = p±I (x), q±(0, x) = q±I (x), x ∈ Ω.

Due to the biological interest and normalization condition q+ + q− = 1, we make the
following assumptions for the initial data and boundary conditions.

(ic) p±I ≥ 0, 0 ≤ q+
I , q−I ≤ 1, and q+

I + q−I = 1. For undirected tissue, we assume
that the initial data is symmetrical, i.e., q+

I = q−I = 1
2 .

Here we consider two types of boundary conditions.
(bc1) Ω = R and p±I (x), q±I (x) have compact support in Ω.
(bc2) Ω = [−l, l] and zero flux boundary condition, namely,

p+(t,±l) = p−(t,±l).

1.2. Stationary solutions. In this section we discuss stationary solutions of
the mesenchymal transport model (1.1) using an argument similar to that in [6]. We
first present a second-order telegraph equation which is derived from system (1.1). To
this end, we add and subtract the first two equations of (1.1) and obtain equations
for the total population p = p+ + p− and the population flux j = s(p+ − p−),

pt + jx = 0,

jt + s2px = −μj + μ(q+ − q−)sp,
(1.10)

with initial conditions p(0, x) = pI(x) and j(0, x) = jI(x), where pI and jI are
determined from the initial condition (1.9) of p+ and p−. We differentiate the first
equation of (1.10) with respect to t and the second equation with respect to x. After
that, we subtract the resulting equations and end up with a damped wave equation
with drift term (see (1.5) or [12])

(1.11) ptt + μpt + μ(sξqp)x = s2pxx,

where the drift velocity is given by the expectation of q denoted by ξq = q+ − q−.
Equation (1.11) is a form of telegraph equation which describes electrical transmission
in a telegraph cable when current leaks to the ground. A drift-diffusion equation can
be approximated by taking the limit μ → ∞, s → ∞ with diffusivity D = s2/μ < ∞
and drift velocity sξq < ∞. The same drift-diffusion equation also can be obtained by
multiscale methods (see [12]).

Suppose that equations (1.10) are defined in the interval Ω = [−l, l] and satisfy the
boundary condition (bc2). In terms of cell population density, the zero flux boundary
condition is equivalent to p+(±l) = p−(±l) = 1

2p(±l). We want to know under what
conditions, if any, these equations have time-independent, space-dependent solutions
for p±. The steady state condition jx = 0 of the first equation of (1.10) implies that
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j is a constant, and the zero flux boundary condition j(±l) = 0 furthermore gives
that j = 0. Consequently the second equation of (1.10) becomes

px =
μ

s
(q+ − q−)p.

This is a first-order equation for p, whose solution can be easily found:

(1.12) p(x) = p(−l) exp
(

μ

s

∫ x

−l

(q+(y) − q−(y))dy

)
.

The vanishing flux j = 0 gives that p+ = p−, and hence

(1.13) p±(x) =
p(−l)

2
exp

(
μ

s

∫ x

−l

(q+(y) − q−(y))dy

)
.

Note that the above integrals are bounded since q+ and q− are bounded by 1, which
will be proved in section 3. From the above equations, one can see how the distribu-
tion of fiber orientations q± affects the distribution of cell populations p and p±. In
particular, if μ �= 0 and q+ �= q−, then p and p± are nonconstants which correspond
to the stationary solutions of the system (1.10).

Particularly in undirected tissue, q+ = q− = 1
2 due to symmetry; then p and p±

are constants and p+ = p− = p(−l)
2 , which means that there is no aggregation of cells.

If q+ = 1, q− = 0, then

p±(x) =
p(−l)

2
exp

(μ

s
(x + l)

)
.

The cells accumulate at the end x = l. This is not surprising because all cells bias
their movement to the right and eventually accumulate at the right end due to the
zero flux boundary condition.

Similarly, if q+ = 0, q− = 1, then

p±(x) =
p(−l)

2
exp

(
−μ

s
(x + l)

)
,

and p± attains the maximum at x = −l.
Therefore, here we identify a mechanism which can lead to aggregation, namely,

μ �= 0, and the tissues are directed and cells have a probability 1 moving to the left
or right.

2. Classification as hyperbolic system. In this section we show that the
system (1.1) is degenerately hyperbolic, and we discuss shock solutions. To this end,
we rewrite (1.1) in a matrix form

(2.1) ut + Θux = H(u),

where u, Θ, and H(u) are defined as

u =

⎡⎢⎢⎣
p+

p−

q+

q−

⎤⎥⎥⎦, Θ =

⎡⎢⎢⎣
s 0 0 0
0 −s 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦, H(u) =

⎡⎢⎢⎣
−μp+ + μq+(p+ + p−)
−μp− + μq−(p+ + p−)

κ(p+ − p−)(q− − q+ + 1)q+

κ(p+ − p−)(q− − q+ − 1)q−

⎤⎥⎥⎦ .
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The drift term is linear, and hence the system (2.1) cannot create shock solutions.
The 4 × 4 matrix Θ has eigenvalues λ1 = −s < 0, λ2 = λ3 = 0, λ4 = s satisfying
λ1 < λ2 = λ3 < λ4 provided that s > 0. This implies that the system (2.1) and hence
(1.1) are hyperbolic but not strictly hyperbolic since the two eigenvalues λ2 and λ3

are identical. The eigenvectors ri corresponding to eigenvalues λi, i = 1, 2, 3, 4, are

r1 =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ , r2 =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ , r3 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ , r4 =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ .

It can be verified that ∇λi(u) · ri(u) = 0 for i = 1, 2, 3, 4, where ∇λi(u) · ri(u) means
the directional derivative of the eigenvalues λi in the direction of the eigenfunction
ri. Hence all characteristic fields (λi, ri) are linearly degenerate [2, 19]. Thus a shock
which separates intersecting characteristics defining a discontinuity does not exist.
However, the solution might contain contact discontinuities if data are discontinuous
(see [2]).

The characteristic slopes are determined from the eigenvalues of the 4× 4 matrix
Θ in (2.1) by dx

dt = λi, which is never infinite, so the line t = 0 is nowhere tangent
to a characteristic. Therefore, if initial data for p+, p−, q+, and q− are given along
the line t = 0, the resulting Cauchy problem should be well-posed, as shown in the
subsequent section.

3. Global existence. In this section, we will prove the global existence of solu-
tions to the system (1.1) subject to the initial condition (ic) and boundary condition
(bc1). For a bounded domain, the analysis for global existence will be a little bit more
complicated than for an unbounded domain, due to the boundary conditions, and is
left open here.

The system (1.1) is a coupling of two partial differential equations (PDEs) and
two ODEs. To prove the global existence of solutions to the system (1.1), we first
prove the nonnegativity of solutions.

Lemma 3.1. Let p±I ≥ 0 and q±I ≥ 0 with q+
I + q−I = 1. Assume that p±, q± ∈

L∞(0, T ; L∞(R)) is a solution to system (1.1) for some T > 0; then p± ≥ 0 and
0 ≤ q±(t, x) ≤ 1 with q+ + q− = 1.

Proof. We first show that q+ + q− = 1. Toward this end, we consider q = q+ + q−

and ξ = q+ − q−. Then we add and subtract the third and fourth equations of (1.1)
to obtain equations for q and ξ as follows:

qt = −κ(p+ − p−)(q − 1)ξ,
ξt = κ(p+ − p−)(q − ξ2),(3.1)

which can be rewritten in vector form

(3.2) Qt = −κ(p+ − p−)F (Q),

where

Q =
(

q
ξ

)
, F (Q) =

(
(q − 1)ξ
ξ2 − q

)
.

The initial data of the system (3.1) is given by

(3.3) qI = q+
I + q−I = 1, ξI = q+

I − q−I .
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It is straightforward to verify that the vector field F (Q) ∈ C1(R2), and hence it is
locally Lipschitz continuous with respect to Q for a given p± ∈ L∞(0, T ; L∞(R)). Then
the Cauchy problem (3.1), (3.3) has a unique solution by the fundamental existence-
uniqueness theorem. On the other hand, it is trivial to check that q = 1 is a solution
of the first equation of (3.1) satisfying initial condition (3.3). Hence the system (3.1),
(3.3) has a unique solution (q = 1, ξ), where ξ is determined by the equation

ξt = κ(q+ − q−)(1 − ξ2), ξI = q+
I − q−I .

It is worthwhile to point out that we provide an idea here for proving that q = 1 and
for proving the (local) existence of q and ξ given that p± ∈ L∞(0, T ; L∞(R)). This
idea will be used later without repeating this procedure.

We proceed to show that solutions q± preserve the positivity. Substituting q− =
1 − q+ into the third equation of (1.1), we have

(3.4) q+
t = 2κ(p+ − p−)(1 − q+)q+.

There are three cases to consider.
Case 1. q+

I = 1. Then we conclude that q+ = 1 is a solution to (3.4) with initial
condition q+

I = 1. Since the right-hand side of (3.4) is locally Lipschitz continuous
with respect to q+, the solution of (3.4) is unique. Hence q+(t, x) = 1 for all t, x.

Case 2. q+
I = 0. Using an argument similar to Case 1 we can show that q+(t, x) = 0

is a unique solution to (3.4).
Case 3. 0 < q+

I < 1. Then integrating (3.4) with respect to t from 0 to t, one has

q+

1 − q+
=

q+
I

1 − q+
I

exp
( ∫ t

0

2κ(p+(τ, ·) − p−(τ, ·))dτ

)
.

Due to 0 < q+
I < 1, we have

q+

1 − q+
≥ 0.

It follows immediately from the above equality that 0 ≤ q+ ≤ 1. Combining Cases 1,
2, and 3, we get that 0 ≤ q+ ≤ 1 for 0 ≤ q+

I ≤ 1. Applying q+ = 1 − q− in the fourth
equation of (1.1) and using the same approach, we can show that 0 ≤ q− ≤ 1.

Finally, we show the positivity of cell density p±(t, x). We use the theory of
invariant principle from [11] for the hyperbolic random walk system to achieve this
goal. To this end, we write the first two equations of the system (1.1) in a matrix form

φt = Gφ + Bφ + F(φ),(3.5)

where

φ =
(

p+

p−

)
, G =

⎛⎜⎝ −s
∂

∂x
0

0 s
∂

∂x

⎞⎟⎠ , B =
( −μ μ

μ −μ

)
,

and

F(φ) =
(

μq+(p+ + p−) − μp−

μq−(p+ + p−) − μp+

)
.
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Let Λ = [0,∞) ⊂ R. Then Λ is convex, and for each z ∈ ∂Λ, Λ has an outward normal
vector. Moreover, define Σ = Λ × Λ. Let φ ∈ ∂Σ, and without loss of generality we
assume that φ = (ϑ, 0) with ϑ ≥ 0. Then for the outward normal vector η(φ) = (0,−1)
of φ, we have

η(φ) · (Bφ + F(φ)) = −μq−ϑ ≤ 0,

where we have used the positivity of q−. Then by the theory in [11, Theorem 2], the
set Σ is positively invariant for the system (3.5), which shows the positivity of p±.
The proof is completed.

By Lemma 3.1, we obtain the following theorem.
Theorem 3.2. The set { (p+, p−, q+, q−) | p± ≥ 0, q± ≥ 0, q+ + q− = 1} is in-

variant to the system (1.1) provided that p±, q± ∈ L∞(0, T ; L∞(R)) for T > 0.
Remark 1. For p+ > p−, the term p+ − p− > 0 and q+ will increase while q−

decreases. Hence directionality is enhanced by the last two equations of (1.1).
Next, we prove the global existence of solutions to system (1.1) subject to initial

condition (ic). Due to Theorem 3.2, we can reformulate the system (1.1) as

p+
t + sp+

x = −μp+ + μq+(p+ + p−),

p−t − sp−x = −μp− + μq−(p+ + p−),

ξt = κ(p+ − p−)(1 − ξ2),

(3.6)

where q+ and q− are given by

(3.7) q+ =
1 + ξ

2
, q− =

1 − ξ

2
.

It is worthwhile to note that here ξ represents the expectation of fiber orientation in
one dimension subject to the initial condition ξI := ξ(0) = q+

I −q−I . Furthermore from
initial condition (ic), we have

−1 ≤ ξI ≤ 1.

We seek the global solutions of the system (3.6) in the following space:

X(0, T ) := {(p+, p−, ξ)| p±, ξ ∈ L∞(0, T ; L1 ∩ L∞(R))}.
We first give the local existence of solutions for the system (3.6).
Lemma 3.3 (local existence). Let p±I , q±I (x) ≥ 0 and q+

I + q−I = 1. Assume
p±I ∈ L1∩L∞(R) and ξI ∈ L1(R). Then there exists a time T0 > 0 such that the prob-
lem (3.6) with boundary condition (bc1) has a unique solution (p+, p−, ξ) ∈ X(0, T0)
satisfying −1 ≤ ξ ≤ 1.

Proof. For short we denote η = (p+, p−, ξ)T . The norm of the vector η is defined
as

‖η‖L∞(R) = max{‖p+‖L∞(R), ‖p−‖L∞(R), ‖ξ‖L∞(R)},
‖η‖L1(R) = max{‖p+‖L1(R), ‖p−‖L1(R), ‖ξ‖L1(R)},

Moreover, for the convenience of presentation we denote

f1(p+, p−, ξ) = −μp+ +
μ

2
(1 + ξ)(p+ + p−),

f2(p+, p−, ξ) = −μp− +
μ

2
(1 − ξ)(p+ + p−),

f3(p+, p−, ξ) = κ(p+ − p−)(1 − ξ2).
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Clearly the function fi(i = 1, 2, 3) is differentiable with respect to its arguments and
hence is locally Lipschitz continuous in any bounded subset of L1 ∩ L∞(R).

It is straightforward to show that system (3.6) is strictly hyperbolic with three
distinct uniform bounded eigenvalues λ1, λ2 satisfying −s = λ1 < λ3 = 0 < λ2 = s.
Then for each i = 1, 2, 3 and each point (t, x) in the t − x plane, the characteristic
equation of (3.6) defined by

dxi

dτ
= λi, xi(t) = x,

has a unique solution defined for all t > 0, describing the ith characteristic through
point (t, x). We denote such a solution by t �→ xi(τ ; t, x), where xi(τ ; t, x) = x+λi(τ−
t) and in particular x3(τ ; t, x) = x due to λ3 = 0. Following the argument in [2], we
define a set

D = {(t, x) | 0 ≤ t < 
/s,−
 + st ≤ x ≤ l − st} .

Note that 
 can be arbitrarily large since the domain is unbounded. Then for every
(t, x) ∈ D and every i ∈ {1, 2}, the characteristic curve {(t, xi(τ ; t, x))| 0 ≤ τ ≤ t} is
entirely contained inside D with xi(0; t, x) ∈ [−
, 
]. Such a set D is called a domain
of determinacy (see [2]).

The system (3.6) has two independent characteristics. We integrate the first
equation of (3.6) along the second characteristic curve x2(τ ; t, x), the second equa-
tion of (3.6) along the first characteristic x1(τ ; t, x), and the third equation along
x3(τ ; t, x) = x. Then (3.6) can be rewritten as an ODE system

p+
τ = −μp+(τ,x2(τ)) + μq+(τ,x2(τ))(p+(t,x2(τ)) + p−(τ,x2(τ))),

p−τ = −μp−(τ,x1(τ)) + μq−(τ,x1(τ))(p+(τ,x1(τ)) + p−(τ,x1(τ))),

ξτ = κ(p+(τ, x) − p−(τ, x))(1 − ξ2(τ, x)),

(3.8)

where xi(τ) := xi(τ ; t, x) for i = 1, 2 and x3(τ) = x.
In vector form, (3.8) can be reformulated as

uτ = f(u), u ∈ R
3,

where

f(u) =

⎛⎝ f1(u(τ,x2(τ)))
f2(u(τ,x1(τ)))

f3(u(τ, x))

⎞⎠.

Note that xi(τ) ∈ R (i = 1, 2). Then f(u) is locally Lipschitz continuous in any
bounded subset of L1 ∩L∞(R), and hence the local existence follows from the funda-
mental theorem of existence and uniqueness (e.g., see [22]). Due to Theorem 3.2 and
the definition of ξ, we have that −1 ≤ ξ ≤ 1. Then the proof is finished.

We proceed to derive a priori estimates in order to get global existence.
Lemma 3.4 (a priori estimates). Let the assumptions in Lemma 3.3 hold and let

(p+, p−, ξ) be the solution obtained in Lemma 3.3. Then for any 0 < t ≤ T0, there
exist constants C > 0 and C̃ > 0 such that

‖p+(t)‖L1∩L∞(R) + ‖p−(t)‖L1∩L∞(R) + ‖ξ(t)‖L1∩L∞(R) ≤ C exp(C̃T ),

and −1 ≤ ξ ≤ 1, where ‖ · ‖L1∩L∞(R) = ‖ · ‖L1(R) + ‖ · ‖L∞(R).
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Proof. For each (t, x) ∈ D and xi(0; t, x) ∈ [−
, 
], we integrate the first two
equations of (3.8) with respect to τ over [0, t] and obtain that

p+(t, x) = p+(x2(0)) +
∫ t

0

f1

(
p+(τ,x2(τ)), p−(τ,x2(τ)), ξ(τ,x2(τ))

)
dτ,

p−(t, x) = p−(x1(0)) +
∫ t

0

f2

(
p+(τ,x1(τ)), p−(τ,x1(τ)), ξ(τ,x1(τ))

)
dτ,

ξ(t, ξ) = ξI +
∫ t

0

(p+(τ, x) − p−(τ, x))(1 − ξ2(τ, x))dτ.

(3.9)

Using the terminology from [2], we call (p+, p−, ξ) a broad solution for the Cauchy
problem of (3.8) if (p+, p−, ξ) satisfies (3.9), at almost every point (t, x) ∈ D. In the
circumstance of semigroup theory, the broad solution defined above is called a mild
solution if the transport operator in (3.6) generates a continuous semigroup (see [13]
for details).

Taking the L∞-norm on both sides of (3.9), using the fact that fi is Lipschitz
continuous, and taking into account fi(0, 0, ξ) = 0 for i = 1, 2, we infer that

‖p+(t)‖L∞(R) + ‖p−(t)‖L∞(R) + ‖ξ(t)‖L∞(R)

≤ C1 + C2

∫ t

0

(‖p+(τ)‖L∞(R) + ‖p−(τ)‖L∞(R) + ‖ξ(τ)‖L∞(R))dτ,

where C1 is a constant such that ‖p+
I ‖L∞(R) + ‖p−I ‖L∞(R) + ‖ξI‖L∞(R) ≤ C1 and C2

depends on the Lipschitz constants of the functions fi(i = 1, 2, 3) and the turning
rate μ.

The application of Gronwall’s inequality to the above inequality gives

‖p+(t)‖L∞(R) + ‖p−(t)‖L∞(R) + ‖ξ(t)‖L∞(R) ≤ C1 exp(C2t).

Similarly, one can deduce that there exist constants C3, C4 > 0 such that

‖p+(t)‖L1(R) + ‖p−(t)‖L1(R) + ‖ξ(t)‖L1(R) ≤ C3 exp(C4t).

The last two inequalities imply the first conclusion of the lemma. The second conclu-
sion −1 ≤ ξ ≤ 1 follows directly from Theorem 3.2 and the definition of ξ.

By Lemmas 3.3 and 3.4, the existence theorem of global solutions is obtained.
Theorem 3.5 (global existence). Let initial condition (ic) hold. Assume p±I , ξI ∈

L1∩L∞(R). Then the problem (3.6) with boundary condition (bc1) has a unique global
solution (p+, p−, ξ) ∈ X(0,∞) satisfying −1 ≤ ξ ≤ 1 and p± ≥ 0. Consequently, the
problem (1.1) with initial condition (ic) and boundary condition (bc1) has a unique
global solution (p+, p−, q+, q−) such that p±, q± ∈ L∞(0,∞; L1∩L∞(R)) with p± ≥ 0
and 0 ≤ q± ≤ 1 with q+ + q− = 1.

Proof. We suppose that the maximal time Tmax of existence for the solution of
(3.6) is finite, namely, Tmax < ∞. From Lemma 3.4, we know that −1 ≤ ξ ≤ 1 for
any 0 ≤ t ≤ Tmax. Hence according to the well-known alternative results (e.g., see
[20, 22]), one has that

lim
t→Tmax

‖p+(t)‖L1∩L∞(R) = ∞ or lim
t→Tmax

‖p−(t)‖L1∩L∞(R) = ∞.(3.10)
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On the other hand, when −1 ≤ ξ ≤ 1, we have proven in Lemma 3.4 that for any
t ≤ Tmax, it holds that

‖p+(t)‖L1∩L∞(R) + ‖p−(t)‖L1∩L∞(R) ≤ C exp(C̃Tmax),

which contradicts (3.10) for 0 < Tmax < ∞. This contradiction in turn shows that
Tmax = ∞, and hence the global solution of (3.6) follows. Due to Theorem 3.1, the
second conclusion is an immediate consequence.

Remark 2. Mathematically, when cutting efficiency κ = 0, the system (1.1) be-
comes the one-dimensional mesenchymal motion model for undirected tissue (see [12]).
Due to the assumption q+(t, x) = q−(t, x) for undirected tissue, we obtain the follow-
ing global existence theorem for the model associated with undirected tissue.

Theorem 3.6. Suppose κ = 0. Let initial condition (ic) hold and let q+
I = q−I =

1/2. Assume p±I ∈ L1 ∩ L∞(R). Then there exists a unique global solution to system
(3.6) such that (p+, p−, ξ) ∈ X(0,∞) with ξ = 0 and p± ≥ 0. Hence there is a unique
global solution (p+, p−, 1/2, 1/2) to (1.1) with initial condition (ic) and boundary con-
dition (bc1) such that p± ∈ L∞(0,∞; L1 ∩ L∞(R)) satisfying p± ≥ 0.

Since the functions on the right-hand side of (1.1) are continuously differentiable
with respect to p+, p−, q+, and q−, by a theory for semilinear hyperbolic systems in
[2] (see Theorem 3.6 in [2]), the broad solution of Cauchy problem (1.1) obtained
in Theorem 3.5 is indeed a classical solution provided that the initial data (1.9) are
continuously differentiable, namely, we have the following results.

Theorem 3.7. Let the assumptions in Theorem 3.5 hold. In addition, we assume
that the initial data in (1.9) are continuously differentiable. Then the broad solution
u : D → R

2 obtained in Theorem 3.5 provides a classical solution. Moreover, if initial
data in (1.9) are nonnegative, the solution is nonnegative. Its partial derivatives ut

and ux, respectively, are broad solutions of the following semilinear system:

(ut)t = Huut − Θ · (ut)x,

(ux)t = Huux − Θ · (ux)x,

where u, H, and Θ are defined as in section 2 and Hu denotes the derivative of H
with respect to u.

Proof. The proof is similar to the argument in [2]. We omit the details.

4. Macroscopic limits. For the given fiber distribution q±(t, x), formal
parabolic and hydrodynamic limits were derived in [12] for the mesenchymal mo-
tion models (1.1) in n(n ≥ 1) dimensions. In this section we rigorously carry out the
parabolic limits for system (1.1) under some suitable assumptions.

To derive a limiting diffusion model for (1.1), we use the parabolic scaling of space
and time, with x̄ = εx denoting a macroscopic space scale and t̄ = ε2t a long time
scale. Now we use the equivalent system (1.3) in a slightly different form using the flux
J = p+ − p−. Upon substituting the above scaling variable into (1.3), and dropping
the bar for convenience, we end up with the following equations:

ε2∂tpε + εs∂xJε = 0,

ε2∂tJε + εs∂xpε = μξεpε − μJε,

ε2∂tξε = κ(p+
ε − p−ε )(1 − ξ2

ε),

(4.1)
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with initial data pε(0) = pI = p+
I +p−I , Jε(0) = JI = p+

I −p−I , ξε(0, ·) = q+
I − q−I . The

system (4.1) is equivalent to the following second-order damped hyperbolic equation
(see (1.5) or [12]):

(4.2)
ε4

μ
∂2

t pε + ε2∂tpε + ε∂x(sξεpε) = ε2 s2

μ
∂2

xpε,

which indicates that the drift term is a dominating term for ε small. As in [12], we
assume that the expectation of fiber directions is small as to the order of ε:

(4.3) ξq(t, x) = lim
ε→0

1
ε
ξε

(
t

ε2
,
x

ε

)
= lim

ε→0

1
ε

[
q+

(
t

ε2
,
x

ε

)
− q−

(
t

ε2
,
x

ε

)]
< ∞.

Under the above assumption, we formally obtain a drift-diffusion model with diffusion
coefficient s2

μ and drift velocity sξq from (4.2) by sending ε → 0 (see [12]),

(4.4) ∂tp + ∂x(sξqp) =
s2

μ
∂2

xp,

where p is the limit of pε as ε → 0. The goal of this section is to show that the solution
of (4.2) is convergent to the solution of (4.4) in the weak sense as ε → 0. To proceed
we give the definition of weak solutions that we address here.

Definition 4.1. We say that a function P ∈ L∞([0, T ]; H1(R)) is a weak solution
of (4.4) if P (t, x) satisfies the following:

(a) For any test function φ ∈ C∞
0 ([0, T ) × R), it holds that

−
∫ T

0

∫
R

P∂tφdxdt −
∫ T

0

∫
R

(sξqP )∂xφdxdt =
s2

μ

∫ T

0

∫
R

P∂2
xφdxdt +

∫
R

P (0)φ(0)dx.

(b) P (0) = pI = p+
I + p−I .

Next we establish the convergence properties of the solution (pε, Jε) as ε → 0. It
suffices to derive a uniform estimate for the solutions of system (4.1), which is given
in the following lemma.

Lemma 4.2. Let p±I ∈ H1(R) and let the assumption (4.3) hold. Assume further
that there exists a constant C1 > 0, independent of ε, such that

(4.5) |ξε|, |∂xξε| ≤ C1ε.

Then there is a constant C2, independent of ε, such that the solution (pε, Jε) of system
(4.1) satisfies, for any 0 ≤ t ≤ T ,

‖pε(t)‖H1(R) + ‖Jε(t)‖H1(R) + ‖ε∂tpε‖L2(R)

≤ C2(C1, μ, T )(‖pI‖H1(R) + ‖JI‖H1(R)),
(4.6)

where the constant C2 depends on C1, μ, and T .
Proof. We use the energy method to prove the lemma. First, note that pε(0) =

pI = p+
I + p−I ∈ H1(R) and Jε(0) = JI = p+

I − p−I ∈ H1(R). Multiplying the first
equation of (4.1) by pε and the second by Jε, adding the resultant equations, and
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integrating over [0, t) × R, we end up with the following inequality:

1
2

∫
R

(|pε|2 + |Jε|2)dx +
∫ t

0

∫
R

με−2|Jε|2dxdτ

=
1
2

∫
R

(|pI |2 + |JI |2)dx +
∫ t

0

∫
R

με−2ξεpεJεdxdτ

≤ 1
2

∫
R

(|pI |2 + |JI |2)dx +
∫ t

0

∫
R

μC1|ε−1pεJε|dxdτ,

(4.7)

where we have used the assumption (4.5). Applying Young’s inequality |C1ε
−1pεJε| ≤

1
2 (ε−2|Jε|2 + C2

1 |pε|2) in (4.7), we have∫
R

(|pε|2 + |Jε|2)dx +
∫ t

0

∫
R

με−2|Jε|2dxdτ

≤
∫

R

(|pI |2 + |JI |2)dx + μC2
1

∫ t

0

∫
R

|pε|2dxdτ.

By Gronwall’s inequality, we immediately get an L2-estimate of pε and Jε independent
of ε such that for 0 ≤ t < T ,

(4.8) ‖pε‖2
L2(R) + ‖Jε‖2

L2(R) ≤ (‖pI‖2
L2(R) + ‖JI‖2

L2(R)) exp(μC2
1T ).

Next we go to the higher order estimates. To this end, we multiply the first equation of
(4.1) by −∂2

xpε and the second by −∂2
xJε. Then we end up with the following estimates

using the same procedure as that deriving (4.7):

1
2

∫
R

(|∂xpε|2 + |∂xJε|2)dx +
∫ t

0

∫
R

με−2|∂xJε|2dxdτ

=
1
2

∫
R

(|∂xpI |2 + |∂xJI |2)dx +
∫ t

0

∫
R

με−2∂x(ξεpε)∂xJεdxdτ

≤ 1
2

∫
R

(|∂xpI |2 + |∂xJI |2)dx +
∫ t

0

∫
R

μC1ε
−1(|pε| + |∂xpε|)|∂xJε|dxdτ.

Using Young’s inequality and the fact that (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R, we
deduce that∫ t

0

∫
R

μC1ε
−1(|pε| + ∂xpε|)|∂xJε|dxdτ

≤ 1
2

∫ t

0

∫
R

με−2|∂xJε|2dxdτ +
C2

1

2

∫ t

0

∫
R

μ(|pε| + |∂xpε|)2dxdτ

≤ 1
2

∫ t

0

∫
R

με−2|∂xJε|2dxdτ + C2
1

∫ t

0

∫
R

μ|∂xpε|2dxdτ + C(T, pI , JI),

(4.9)

where (4.8) has been used and

C(T, pI , JI) = μC2
1T (‖pI‖2

L2(R) + ‖JI‖2
L2(R)) exp(μC2

1T ).

Now substituting (4.9) into (4.7) and applying Gronwall’s inequality to the resulting
inequality, we infer that

‖∂xpε‖2
L2(R) + ‖∂xJε‖2

L2(R)

≤ C(T, pI , JI)(‖∂xpI‖2
L2(R) + ‖∂xJI‖2

L2(R)) exp(μC2
1T )

≤ μC2
1T (‖pI‖H1(R) + ‖JI‖H1(R))2 exp(2μC2

1T ).

(4.10)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

388 ZHI-AN WANG, THOMAS HILLEN, AND MICHAEL LI

Furthermore, by (4.1) we have

(4.11) ‖ε∂tpε‖L2(R) = ‖∂xJε‖L2(R).

Then the combination of (4.8), (4.10), and (4.11) gives (4.6) and completes the
proof.

Theorem 4.3. Let the assumptions in Lemma 4.2 hold and let pε(0) = pI =
p+

I + p−I . Then as ε → 0, the solutions pε of (4.2) converge to a limit function p0,
which is a weak solution of (4.4) such that p0(t = 0) = pI .

Proof. According to the energy estimates (4.6), we see that the solution sequence
pε is uniformly bounded in L∞

loc([0,∞); H1(R)) and ε∂tpε is uniformly bounded in
L∞

loc([0,∞); L2(R)) for every ε > 0.
As a consequence of the Rellich–Kondrachov compactness theorem, there exist

a subsequence of pε and ε∂tpε, still denoted by pε and ε∂tpε, and functions p0 ∈
L∞

loc([0,∞); H2(R)) and p1 ∈ L∞
loc([0,∞); L2(R)) such that{

pε ⇀ p0 weakly∗ in L∞
loc([0,∞); H1(R)),

ε∂tpε ⇀ p1 weakly∗ in L∞
loc([0,∞); L2(R)).

(4.12)

Next we show that p0 is a weak solution of (4.4) subject to the given initial data. To
this end we multiply (4.2) by a test function φ ∈ C∞

0 ([0, T ) × R) with φ(T ) = 0 and
integrate the resultant equation to get

(4.13)

ε2

μ

∫ T

0

∫
R

pε∂
2
t φdxdt +

ε2

μ

∫
R

[pε(T )∂tφ(T ) − ∂tpε(0)φ(0)]dx

− ε2

μ

∫
R

[∂tpε(T )φ(T ) − pε(0)∂tφ(0)]dx −
∫ T

0

∫
R

pε∂tφdxdt +
∫

R

pε(T )φ(T )dx

− 1
ε

∫ T

0

∫
R

(sξεpε)∂xφdxdt =
∫

R

pε(0)φ(0)dx +
s2

μ

∫ T

0

∫
R

pε∂
2
xφdxdt.

Note that pε(0) = pI = p+
I + p−I ∈ H1(R). Hence Jε(0) = JI = p+

I − p−I ∈ H1(R) and
ε∂tpε(0) = ∂xJε(0) ∈ L2(R) from (4.1). Thus the second, third, and fourth terms in
(4.13) vanish as ε → 0 by (4.12). Using assumption (4.3) and sending ε → 0 in (4.13),
we obtain from (4.12) that

−
∫ T

0

∫
R

p0∂tφdxdt −
∫ T

0

∫
R

(sξqp0)∂xφdxdt

=
∫

R

pIφ(0)dx +
s2

μ

∫ T

0

∫
R

p0∂
2
xφdxdt,

(4.14)

which shows that p0 is a weak solution of (4.4) satisfying the initial condition.
Remark 3. It is worthwhile to note that assumptions (4.5) and (4.3) are auto-

matically satisfied for the case of undirected tissue where ξε = 0 (see also Remark 2).
Then the limit equation for the case of undirected tissue is a pure diffusion equation
without a drift term.

5. Traveling waves. Since the system (1.1) models the invasion of cells through
tissue, it is of interest to look for traveling wave solutions for (1.1) and see what kinds
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of movement patterns are used by cells for invasion. To this end, we first use the
invariant of motion q+ + q− = 1 and consider the equivalent system (1.4).

We introduce the wave variable

z = x − ct,

where c ≥ 0 denotes the wave speed. Then we can define the wave profile by

p(z) = p(t, x) = p(x − ct),
j(z) = j(t, x) = j(x − ct),

q+(z) = q+(t, x) = q+(x − ct).

(5.1)

Substituting (5.1) into (1.4), we convert (1.4) into an ODE system as follows:

−cpz + jz = 0,

−cjz + s2pz = −μj + μs(2q+ − 1)p,

−cq+
z =

2κ

s
j(1 − q+)q+.

(5.2)

We prescribe the boundary conditions by

p(−∞) = p(+∞) = 0,

j(−∞) = j(+∞) = 0,

q+(−∞) = q+
l , q+(+∞) = q+

r ,

(5.3)

where q−l and q+
r are constants and satisfy 0 ≤ q−l , q+

r ≤ 1, and q−l > q+
r . That is, we

look for the traveling pulse wave for p and decreasing traveling front wave for q+.
From (5.2) and the boundary conditions (5.3), we obtain an invariant of motion

for j and p such that

(5.4) j = cp.

Then the system (5.2) is reduced to a two-dimensional system by the substitution of
(5.4) into (5.2):

(c2 − s2)pz = μp[c − s(2q+ − 1)],

q+
z = −2κ

s
p(1 − q+)q+.

(5.5)

It is clear that (5.5) becomes a singular problem when c = s and that this singular
problem has no solution satisfying the boundary conditions (5.3). Indeed if c = s,
then q+ = 1 due to μ �= 0, which biologically means cells continuously move to the
right without changing movement direction. Also, q+ = 1 does not agree with the
boundary conditions (5.3). Thus we assume c �= s hereafter. We will see later that
biologically meaningful waves exist only for c < s. However, for now, we just assume
c �= s, and system (5.5) can be rewritten as

pz = −αp[c − s(2q+ − 1)],

q+
z = −βp(1 − q+)q+,

(5.6)

where α = − μ
c2−s2 , β = 2κ

s > 0. Due to the biological interest, we consider only non-
negative solutions where p ≥ 0 and 0 ≤ q± ≤ 1. In fact, the nonnegativity of solutions
to the system (5.6) with boundary conditions (5.3) can be analogously obtained by
following the argument used in section 3. Therefore we are interested only in those
heteroclinic orbits that remain nonnegative.
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5.1. Phase plane analysis. System (5.6) has a continuum of steady states
(0, θ) with 0 ≤ θ ≤ 1. The Jacobian matrix linearized about the steady state (0, θ) is

Js =
[ −α

(
c − s(2θ − 1)

)
0

−β(1 − θ)θ 0

]
.

The eigenvalues of Js are

(5.7) λ1 = −α
(
c − s(2θ − 1)

)
, λ2 = 0.

The corresponding eigenvectors are

r1 =
[

λ1

−β(1 − θ)θ

]
, r2 =

[
0
1

]
.(5.8)

When c �= s, we have two cases to consider corresponding to the sign of eigenvalue
λ1.

Case 1. If c > s > 0, then α < 0. It is straightforward to check that λ1 > 0, which
indicates every steady state (0, θ) with 0 ≤ θ ≤ 1 is unstable, and consequently there
is no nonnegative heteroclinic connection due to the lack of the stable manifold. We
thus claim that 0 ≤ c < s is a necessary condition for the existence of a traveling wave
and s is then a critical traveling speed. Thus we assume that c < s hereafter.

Case 2. If 0 ≤ c < s, then α > 0. We first fix the traveling speed c and solve
c− s(2θ∗ − 1) = 0 to get θ∗ = c+s

2s . Clearly we have that 0 < θ∗ < 1. Furthermore the
following properties hold:

θ < θ∗ ⇒ λ1 < 0,
θ = θ∗ ⇒ λ1 = 0,
θ > θ∗ ⇒ λ1 > 0.

(5.9)

Next, we show that there exists a pair of equilibria which generates a heteroclinic
connection for each fixed c satisfying 0 ≤ c < s. From (5.7), we see that every steady
state (0, θ) of the system (5.6) with 0 ≤ θ ≤ 1 has two manifolds, one of which is a one-
dimensional center manifold corresponding to zero eigenvalue λ2. Since each center
manifold is invariant under the flow of the system (5.6), and the set {(p, q+) : p = 0,
0 ≤ q+ ≤ 1} consists of steady states only and hence is invariant, the center manifold
is the q+ axis where 0 ≤ q+ ≤ 1. So the heteroclinic connection is determined only by
the stable and unstable manifolds corresponding to positive and negative eigenvalues
given by λ1, respectively. The existence of a heteroclinic orbit connecting the unstable
manifold of one fixed point with the stable manifold of another fixed point corresponds
to the existence of a traveling wave (heteroclinic orbit). Below we rigorously prove
the existence of such a heteroclinic connection. Beyond this, we also shall prove the
existence of a family of traveling waves since a continuum of steady state exists for
the system (5.6). Before proceeding, we give a remark as follows.

Remark 4. The constants q+ = 0 and q+ = 1 are solutions of the second equation
of (5.6), and furthermore it holds that

(a) if q+ = 0, then p → +∞ as z → −∞;
(b) if q+ = 1, then p → +∞ as z → +∞.
Therefore, neither the orbit q+ = 0 nor q+ = 1 can form a heteroclinic connection,

although {q+ = 1} is the unstable manifold of the equilibrium (0, 1) and {q+ = 0} is
the stable manifold of the equilibrium (0, 0). So hereafter we assume that 0 < q+ < 1
in order to obtain the existence of traveling waves.
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5.2. Existence of traveling waves. To show that an unstable manifold can
be connected by a stable manifold, we need to investigate the global structure of
the original nonlinear system. Below we shall apply LaSalle’s invariant principle (see
[10, 18]) to study the asymptotic behavior of solutions of the system (5.6), which is
described in the following lemma.

Lemma 5.1. Assume 0 ≤ c < s. Let (p, q+) be a solution of (5.6) subject to initial
conditions pI > 0 and 0 < q+

I < 1. Then the ω-limit set of solutions to system (5.6)
is contained in the following set:

(5.10) N = {(p, q+)| p = 0, 0 < q+ < θ∗},
and the α-limit set is contained in the set

(5.11) G = {(p, q+)| p = 0, θ∗ < q+ < 1},
where θ∗ is a constant between 0 and 1 determined by θ∗ = c+s

2s .
Proof. Define a function V (p, q+) by V (p, q+) = q+. Then in the set {(p, q+)| p ≥

0, 0 < q+ < 1}, V (p(z), q+(z)) > 0 and dV
dz ≤ 0 thanks to the second equation of

(5.6). Given a number L > 0, we now define a set

ΩL = {(p, q+)| V (p, q+) ≤ L, p > 0, 0 < q+ < 1}.
Since we restrict our attention to the case of 0 < q+ < 1, we let 0 < L < 1. Hence it
holds that

ΩL = {(p, q+)| p > 0, 0 < q+ < L}.
We now proceed to justify that the set ΩL is bounded for given 0 < L < 1. Toward
this end, we divide the first equation of (5.6) by the second equation to obtain that

(5.12)
dp

dq+
= −α(c + s)

β

1
(1 − q+)q+

+
2αs

β

1
1 − q+

.

Integrating this equation and recovering α and β yield a first integral

(5.13) p(q+) =
μs

2κ

[
ln(1 − q+)

c + s
− ln q+

c − s

]
+ C,

where C is a constant of integration determined by the boundary condition of q+

given in (5.3).
Then for any q+ = V (p, q+) < L, it is clear from (5.13) that p is bounded as a

function of q+. As a result, the set ΩL defined above is bounded.
We now define another set

N1 =
{

(p, q+)
∣∣∣∣dV

dz
= 0, 0 < q+ < 1

}
.

From the second equation of (5.6), we know that

dV

dz
= 0 ⇐⇒ p = 0 or q+ = 0 or q+ = 1.

Therefore, N1 = {(p, q+)| p = 0, 0 < q+ < 1} and is invariant since it is composed of
only steady states. With the help of LaSalle’s invariant principle, the ω-limits set of
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Fig. 1. The traveling wave for the system (5.6), where c = 1, s = 2, μ = 2, κ = 1. The waves
travel from the left to the right and c denotes the traveling speed and z = 0, 5, 10, 15, 20.

any trajectories of the system starting in the set ΩL for 0 < L < 1 is contained in
the set N1. Indeed, we can characterize the asymptotic behavior of the solution more
precisely. From (5.9), we know that λ1 > 0 for all θ∗ < θ < 1. Then the equilibrium
(0, θ) with θ∗ < θ < 1 is unstable. If we define N2 = {(p, q+)| p = 0, θ∗ < q+ < 1},
then all solutions of the system (5.6) converge to the set as z → +∞:

N = N1 \ N2 = {(p, q+)| p = 0, 0 < q+ < θ∗}.
In a similar fashion, if we study the problem (5.6) backward on variable z, we can
prove that all solutions of (5.6) converge to the set G when z → −∞, which completes
the proof.

Lemma 5.1 shows that any trajectory of the system (5.6) starting in a neighbor-
hood of an equilibrium (0, θ) with θ∗ < θ < 1 converges, as z → +∞, to another
equilibrium (0, θ) with 0 < θ < θ∗, which gives a nonnegative heteroclinic orbit (trav-
eling wave) connecting these two equilibria. This heteroclinic orbit can be explicitly
given by a level curve equation in the form of (5.13). It is worthwhile to point out
that the traveling speed c can be 0 from our analysis, which corresponds to a standing
wave. Hence we obtain the following existence theorem of traveling waves.

Theorem 5.2. Let us consider the system (5.6) given traveling speed c with 0 ≤
c < s and θ∗ = c+s

2s . Then for any equilibrium (0, c1) with θ∗ < c1 < 1 there exists
another equilibrium (0, c2) with 0 < c2 < θ∗ such that there is a bounded, nonnegative,
heteroclinic orbit connecting (0, c1) to (0, c2). That is, there exists a traveling solution
(p, q+) of the system (5.6) connecting two equilibria. Particularly, the system (5.6)
admits a standing wave for c = 0.

Notice that in Lemma 5.3 we will give an explicit relation between c1 and c2.
An example of traveling solution (p, q+) for system (5.6) is numerically plotted in

Figure 1. From the definition of p and the relation (5.4), we can derive that

(5.14) p+ =
s + c

2s
p, p− =

s − c

2s
p.

In addition to the relation

(5.15) q− = 1 − q+, j = cp,

we find the traveling waves for p+, p−, q−, and j in terms of p and q+, as given
above. The plots of the traveling structures of these quantities are given in Figure 2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MESENCHYMAL MOTION MODELS IN ONE DIMENSION 393

−50 −40 −30 −20 −10 0 10 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

c

z

p+

−50 −40 −30 −20 −10 0 10 20
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

c

z

p−

−50 −40 −30 −20 −10 0 10 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c

z

j

−50 −40 −30 −20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c

z

q−

Fig. 2. Numerical illustration of traveling waves for p+, p−, j, and q−, where c = 1, s =
2, μ = 2, κ = 1. The waves shift from the left to the right and c denotes the traveling speed and
z = 0, 5, 10, 15, 20.

A plot of all these quantities in a coordinate system is given in Figure 3 from which
the transition properties between cell movement direction and fiber orientation are
clearly indicated.

From the first equation of (1.4), we know that the total mass of cells is conserved
and so traveling pulse waves are expected, as we found analytically and numerically
above. The numerical simulation for p in Figure 1 indicates that individual cells can
move to the left or the right, but the whole cell group will move to the right contin-
uously. However, when the waves travel through, the fiber orientations are modified
by cells, and alignment to cell movement direction is enhanced, which is indicated by
the numerical simulation for q+ in Figure 3.

5.3. Family of traveling waves. Note that for each left state q+
l with θ∗ <

q+
l < 1 we find a corresponding right state (0, q+

r ) connecting to (0, q+
l ) which gives a

traveling wave. Here we give an explicit formula which relates q+
l and q+

r .
Lemma 5.3. Given a speed c satisfying 0 ≤ c < s, the left and right equilibria

(0, q+
l ) and (0, q+

r ) are related as

(5.16)
(

1 − q+
r

1 − q+
l

)s−c

=
(

q+
l

q+
r

)s+c

, 0 ≤ c < s.

Proof. An explicit heteroclinic connection has been given by (5.13). By Lemma
5.1, we infer that p(q+

l ) = p(q+
r ) = 0. Applying this condition to (5.13), one has that

ln(1 − q+
l )

c + s
− ln q+

l

c − s
=

ln(1 − q+
r )

c + s
− ln q+

r

c − s
.

Rearranging the above identity yields (5.16).
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Fig. 3. A plot of traveling solutions of system (1.1) in a coordinate system, where c = 1, s =
2, μ = 2, κ = 1, and z = 0, 5, 10, 15, 20.

By Lemma 5.3 we identify a family of heteroclinic orbits as shown in Figure 4.
From (5.13) we see that p is bounded as a function of q+ if 0 < q+ < 1. It would

be of interest also to find the upper bound for each orbit and to see how the upper
bound varies with respect to the right/left states of q+. Indeed, by (5.12), we get a
unique critical point q+ = θ∗ such that dp

dq+ |q+=θ∗ = 0. The second derivative of p

with respect to q+ is

(5.17)
d2p

dq+2 = −μs

2κ

[
1

(c + s)(1 − q+)2
+

1
(s − c)q+2

]
,

Noting that 0 ≤ c < s, it is easy to verify that d2p
dq+2 < 0 at q+ = θ∗. Moreover, we

know that p(q+
l ) = p(q+

r ) = 0. Hence p attains the maximal value at q+ = θ∗ given
by

(5.18) pmax =
μs

2κ

[
ln(1 − θ∗)

c + s
− ln θ∗

c − s

]
+ σ,

where

(5.19) σ = −μs

2κ

[
ln(1 − q+

l )
c + s

− ln q+
l

c − s

]
, θ∗ =

c + s

2s
.

Remark 5. From the above equation, we know that the upper bound pmax of p
depends on the left states q+

l of q. Also, we can easily verify that upper bound pmax

increases with respect to q+
l > θ∗ (see Figure 4).

Remark 6. The results obtained above for traveling waves are valid only for the
case of directed tissue. For undirected tissue, traveling waves with c < s do not exist.
Indeed, in the undirected case, we know that q+ = q− = 1

2 , and the system (5.6) is
reduced to a scalar equation

(5.20) pz =
μ2

c2 − s2
cp.
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Fig. 4. The illustration of a family of heteroclinic orbits for the system (5.6), where c = 1, s =
2, μ = 2, κ = 1, and θ∗ = 0.75. The arrow denotes the orientation of trajectories to the system (5.6).

Clearly, equation (5.20) has no solution satisfying boundary conditions (5.3).
Remark 7. The situation of nested heteroclinic orbits which correspond to travel-

ing waves is also known from other biological applications, for example, for an epidemic
with moving infectives (see [24]).

6. Conclusions. In this study, we analyze the one-dimensional mesenchymal
motion model proposed by Hillen [12]. We establish the global existence of classical
solutions for both cases of directed and undirected tissue. Particularly, we show that
the model of undirected tissue (κ = 0) has a constant solution for fiber orientation
distribution such that q(t, x, +s) = q(t, x,−s) = 1

2 , which means cells have no prefer-
ence in choosing a particular movement direction and they have equal probability of
moving to the right or left. We discuss the existence of inhomogeneous steady states
for the case of directed tissue and identify a mechanism of cell aggregation. We rig-
orously show the convergence of macroscopic limits of the model; i.e., the solution of
the mesoscopic model converges to that of the corresponding macroscopic continuum
model. Moreover, we study the traveling wave solutions and establish the existence of
a traveling pulse in total cell population p(t, x) and traveling front waves in fiber ori-
entation distribution q±(t, x). The standing wave (c = 0) is admitted in our analysis.
This is not surprising considering the fact that cells can move in two directions (left
and right) and two traveling waves with opposite direction can eliminate each other
to result in a standing wave. All our results are fairly consistent with the biological
relevance discussed in paper [12].

The one-dimensional model appears artificial when compared to the real three-
dimensional process of cell movement in fiber tissue. The benefit of studying the one-
dimensional model in detail is twofold. First of all, this model and its properties give
good intuition into mechanisms that might be important in the higher dimensional
case. For example, the existence of nonhomogeneous steady states will also be ex-
pected for higher dimensional models. Also, the model with directed fibers seems to
have a richer behavior. Essentially we identify three distinctions between directed and
undirected tissue which are hard to see from the three-dimensional model. We show
that for the one-dimensional model, there is no aggregation for undirected tissue,
whereas aggregation is possible for directed tissue. In addition, for the macroscopic
limit, there are no constraints of convergence for the model of undirected tissue. How-
ever, some suitable restriction is needed for directed tissue. Moreover, the model of
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undirected tissue does not admit traveling waves and the model of directed tissue
does. All these distinctions might be true for higher dimensional models.

Second, the model considered here can be used to describe cell movement in
highly aligned tissue. In fact, many tissues show a predominant orientation; for ex-
ample, the rapid spread of glioma cells across the corpus callosum results from the
migration of individual glioma cells along the highly aligned white matter tracks inside
brain tissue [1]. F-actin filaments in vascular smooth muscle cells (VSMCs) are highly
aligned on textured polydimethylsiloxane (PDMS) scaffolds [23], and skeletal muscles
have a highly organized structure which consists of parallel bundles of multinucleated
myotubes that are formed by the fusion of myoblast satellite cells [25]. The model
studied here can be used to describe spread and propagation of cells along those
aligned tissues. In that case, the traveling pulse waves shown in section 5 correspond
to an application of a “comb” to the tissue which is aligned positively or negatively
in a common direction. If a brush is applied upstream, say, the fibers will be flipped
and higher alignment to the right results, we call these waves alignment waves; see
also our simulations in Figures 1–3.

For the application of these models to cancer invasion through collagen tissue,
the undirected formalism is important. The result of no traveling pulses for that case
does not preclude invasions. It precludes only invasion in a self-similar fashion. It is
still possible that cells invade new areas, in particular if nonlinear proliferation terms
are added. The existence of traveling waves under incorporation of cell proliferation
is an interesting open question that comes out of the research done here.

Mathematically, the higher dimensional mesenchymal motion models show signif-
icant differences when compared to the one-dimensional case. In one dimension, fiber
orientation q(t, x, θ) has only two directions and hence is bounded due to the normal-
ization condition q+ + q− = 1. However, in higher dimensions, fibers have infinitely
many directions, and highly aligned tissue corresponds to q(t, x, θ) being a Dirac delta
function along that direction. Hence the function spaces have to be chosen to include
nonintegrable distributions, and standard L2 or L∞ methods do not apply. In a forth-
coming paper [13], we will study the existence of solutions for the high dimensional
mesenchymal motion models in a Banach space of measurable functions using semi-
group theory. If the existence theory stands, we can look into the interesting network
formation dynamics, which were found numerically in Painter [21].
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