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Abstract. In this paper, we consider the exogenous chemotaxis system with physical

mixed zero-flux and Dirichlet boundary conditions in one dimension. Since the Dirichlet

boundary condition can not contribute necessary estimates for the cross-diffusion struc-

ture in the system, the global-in-time existence and asymptotic behavior of solutions

remain open up to date. In this paper, we overcome this difficulty by employing the

technique of taking anti-derivative so that the Dirichlet boundary condition can be fully

used, and show that the system admits global strong solutions which exponentially sta-

bilize to the unique stationary solution as time tends to infinity against some suitable

small perturbations. To the best of our knowledge, this is the first result obtained on the

global well-posedness and asymptotic behavior of solutions to the exogenous chemotaxis

system with physical boundary conditions.

1. Introduction. Chemotaxis, the directional movement of cells in response to a

chemical stimulus gradient, is important for bacteria to find food (e.g., glucose) or to flee

from poisons [33] and critical to early development, normal function such as wound heal-

ing/inflammation and pathological process like cancer metastasis [34]. Mathematical

models of chemotaxis were firstly developed by Keller-Segel in 1970s with two proto-

types describing endogenous and exogenous chemotaxis, respectively. In the endogenous
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chemotaxis, cells respond to a chemical signal that is released from cells themselves.

While in the exogenous chemotaxis, cells respond to an external chemical signal (such

as oxygen, light or food). The typical example of endogenous chemotaxis is the spon-

taneous aggregation of Dictyostelium discoideum (Dd) cells in response to the chemical

cyclic adenosine monophosphate (cAMP) secreted by Dd cells [3], which was first modeled

mathematically by Keller and Segel in [17]. For such aggregation Keller-Segel models,

the homogeneous Neumann boundary conditions are usually prescribed to reproduce the

aggregating patterns [11, 12]. The prominent example of exogenous chemotaxis was re-

ported in [1] where motile Escherichia coli placed at one end of a capillary tube containing

an energy source and oxygen migrate out into the tube in the form of traveling bands

clearly visible to the naked eye. The mathematical model was subsequently proposed by

Keller and Segel in [18], which reads as⎧⎨
⎩
ut = Δu−∇ · (u∇φ(v)) in Ω,

vt = DΔv − uvm in Ω,
(1.1)

where u and v denote the bacterial density and oxygen concentration, respectively, at

position x ∈ Ω and time t > 0. D > 0 and m > 0 account for the chemical diffusivity

and consumption rate, respectively, and φ(v) is called the chemotactic sensitivity function

which typically has two prototypes: φ(v) = ln v (logarithmic sensitivity) and φ(v) = v

(linear sensitivity). The logarithmic sensitivity was originally used in [18] based on the

Weber-Fechner law (the sensory response to a stimulus is logarithmic) which has various

biological applications (cf. [10, 15, 21]). It was mentioned in [18, p.241] that the oxygen

diffusion rate D is negligible (i.e. 0 < D � 1) compared to the bacterial diffusion rate.

The existence of traveling wave solutions to (1.1) with logarithmic sensitivity with D ≥ 0

was shown in [16, 31, 35] for any 0 ≤ m ≤ 1, while the stability of traveling wavefronts

for the case m = 1 was obtained in [6, 8, 23–25, 30] and the instability of pulsating wave

for the case m = 0 was investigated in [9, 27].

When considering the exogenous chemotaxis system (1.1) in a bounded domain Ω, the

relevant physical boundary conditions (for instance see the experiment in [1]) are

∂νu− u∂νv = 0, v = v∗ on ∂Ω, (1.2)

where ∂ν = ∂
∂ν is the normal derivative on the boundary with ν denoting the outward

unit normal vector of ∂Ω, and the constant v∗ > 0 denotes the boundary value of v.

That is, the zero-flux boundary condition and Dirichlet boundary condition are imposed

to cell density u and chemical concentration v, respectively. The Keller-Segel system

(1.1) subject to the boundary condition (1.2) has also been used in the chemotaxis-fluid

model in [32] to describe the boundary accumulation layer of aerobic bacterial chemotaxis

towards the drop edge (air-water interface) in a sessile drop mixed with Bacillus subtilis

bacteria. The model in [32] reads⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut +w · ∇u = Δu−∇ · (u∇v) ,

vt +w · ∇v = DΔv − uv,

ρ(wt +w · ∇w) = μΔw +∇p− Vbgu(ρb − ρ)z,

∇ ·w = 0,

(1.3)
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EXOGENOUS CHEMOTAXIS SYSTEMS 719

where u and v denote the bacterial and oxygen concentrations, respectively, and w is the

fluid velocity governed by the incompressible Navier-Stokes equations with the pure fluid

density ρ and viscosity μ. p is a pressure function, Vbgu(ρb−ρ)z denotes the buoyant force

along the upward unit vector z where Vb and ρb are the bacterial volume and density,

respectively, and g is the gravitational constant. With boundary conditions in (1.2) and

the non-slip boundary condition for the fluid: w|∂Ω = 0, the works [7,20,32] have shown

that the system (1.3) can numerically reproduce the key features of experiment findings

in [32] in two and three dimensions.

Compared to a large number of results available to the endogenous chemotaxis models

with Neumann boundary conditions (cf. [2, 11, 12]), the basic questions like the global

well-posedness of the exogenous chemotaxis system (1.1) with physical boundary condi-

tions in (1.2) still remain poorly understood and only very limited analytical results are

available so far. The primary obstacle is that the estimate of ∇v, which is needed for the

global boundedness of solutions due to the cross-diffusion structure in the first equation

of (1.1), can not be achieved through the second equation of (1.1) with the Dirichlet

boundary condition which gives no information on ∇v. On the half line R+ = (0,∞),

the existence and stability of the unique stationary solution (ū, v̄) of (1.1)–(1.2) with

φ(v) = ln v was recently established in [5] for any m ≥ 0, where (ū, v̄) is of a boundary

(spike, layer) profile as D > 0 is small. When φ(v) = v, the existence of stationary solu-

tions to (1.1)–(1.2) with m = 1 was proved in [19] for all dimensions and the existence

of global weak solutions was established in [36] in one dimension. The local existence

of weak solutions to (1.3) on the water-drop shaped domain as in [32] with (1.2) and

w|∂Ω = 0 was proved in [26]. These appear to be the only results in the literature for

the Keller-Segel system (1.1) subject to the physical boundary conditions given in (1.2).

We also mention another result in [4] where the existence of stationary solutions of (1.1)

with φ(v) = v and m = 1 was established for all dimensions when the Dirichlet condition

for v in (1.2) was replaced by a boundary condition based on Henry’s law modeling the

dissolution of gas in water. The purpose of this paper is to further make a progress in

this direction for the Keller-Segel system (1.1) with linear sensitivity and boundary con-

ditions in (1.2) on a bounded interval I := (0, 1). Specifically we consider the following

problem ⎧⎪⎪⎨
⎪⎪⎩
ut = uxx − (uvx)x in I,

vt = Dvxx − uv in I,
(u, v)(x, 0) = (u0, v0)(x) in I

(1.4)

subject to the following boundary conditions:{
(ux − uvx)|x=0,1 = 0, v(0, t) = v(1, t) = v∗ if D > 0, (1.5a)

(ux − uvx)|x=0,1 = 0 if D = 0. (1.5b)

By integrating the first equation of (1.4) along with the boundary condition (1.5a), one

immediately finds that cell mass is conserved:∫
I
u(x, t)dx =

∫
I
u0(x)dx := M,
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where M > 0 denotes the initial cell mass. Then the stationary solution (ū, v̄) of (1.4)

with D > 0 satisfies ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ūxx − (ūv̄x)x = 0, x ∈ I,
Dv̄xx − ūv̄ = 0, x ∈ I,∫
I
ūdx = M,

(ūx − ūv̄x)|x=0,1 = 0, v̄|x=0,1 = v∗.

(1.6)

The results of [19] assert that the stationary problem (1.6) with D > 0 admits a unique

non-constant classical solution (ū, v̄) which is of a boundary layer profile as D > 0 is

small. While for the case D = 0, the system (1.4) with (1.5b) clearly has a unique

constant solution (M, 0).

The goal of this paper is to show that if the initial datum (u0, v0) is a small pertur-

bation of the stationary solution (ū, v̄), then the system (1.4) with (1.5a)–(1.5b) admits

a unique solution (u, v) satisfying for any D ≥ 0:

‖(u, v)− (ū, v̄)‖L∞ → 0 exponentially as t → ∞,

where (ū, v̄) = (M, 0) ifD = 0 and (ū, v̄) is the non-constant stationary solution satisfying

(1.6) if D > 0. As we know, this is the first result on the global well-posedness and

asymptotic dynamics of the system (1.1)–(1.2). We note that it was shown in [19] that

the unique non-constant stationary solution of (1.6) enjoys a boundary layer profile as

D > 0 is small, while only constant stationary solution exits when D = 0. With this fact

and the boundary conditions in (1.5), we may speculate that the solution of (1.4)–(1.5a)

with D > 0 will not converge to that of (1.4)–(1.5b) with D = 0 as D → 0, where

the boundary layer will arise to correct this discrepancy. Therefore the convergence of

solutions to (1.4)–(1.5a) with D > 0 as D → 0 is a very interesting question and we

shall investigate it in a separate paper. When φ(v) = ln v and the Dirichlet boundary

condition for u and Robin boundary condition for v are given, the convergence of solutions

for (1.1) with φ(v) = ln v and m = 1 as D → 0 has been shown in [13, 14]. But they

are completely different from the convergence of (1.4) with (1.5a) as D → 0 due to the

distinct sensitivity function φ(v) and boundary conditions.

Sketch of proof ideas. As mentioned previously, the boundary conditions for v in

(1.5) refrain from deriving the estimates of vx which is, however, necessary to establish the

global well-posedness of solutions of (1.4)–(1.5) due to the cross-diffusion structure in the

first equation (1.4). To overcome this barrier, by observing that the first equation of (1.4)

is conserved with zero-flux boundary condition on u, we develop an idea by considering

the primitive function of u in space, say �, and establish the equation of � which no

longer has cross-diffusion structure and the Dirichlet boundary condition of v can make

essential contributions. As such, we derive the boundedness and stability of (�, v) by the

delicate (weighted) energy estimates first and then transfer the results to (u, v). This

is our rough idea, and precise procedures are presented in section 3 for the case D > 0

and in section 4 for D = 0. Indeed, the analysis for the case D = 0 appears to be easier

than D > 0 since its background profile is constant, and thus no weighted estimates
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EXOGENOUS CHEMOTAXIS SYSTEMS 721

are needed. However, since v-equation is an ODE and lacks the diffusive dissipation,

we need to make full use of the ODE structure along with the explicit formula of v to

derive some delicate higher-order estimates which, in turn, requires stronger smallness

constraints upon the initial datum compared to the case D > 0.

The rest of this paper is organized as follows: In Sec. 2, we state our main results.

In Sec. 3, we investigate the asymptotic behavior of solutions to the system with D > 0.

Finally, the asymptotic behavior of the solution for the case D = 0 will be proved in

Sec. 4.

2. Statement of main results. In this section, we introduce the results on the

stationary problem (1.6) from [19] and state our main results on the asymptotic stability

of stationary solutions. Throughout the paper, we denote by L∞, L2, H1
0 and Hk the

standard function spaces L∞(I), L2(I), H1
0 (I) and Hk(I), respectively. We denote by Ī

the closure of I and by C a generic time-independent constant which may take different

values in different places. In the sequel, we often omit I without ambiguity.

Proposition 2.1 (Theorem 2.1 in [19]). For any M ∈ (0,∞), the problem (1.6) with

D > 0 admits a unique classical non-constant solution (ū, v̄) ∈ C1(Ī)∩C∞(I) such that

ū =
M∫

I ev̄dx
ev̄, ū > 0, 0 < v̄ ≤ v∗ for any x ∈ Ī. (2.1)

Our first result is the asymptotic stability of stationary solutions obtained in Propo-

sition 2.1 for the initial-boundary value problem (1.4), (1.5a) as time goes to infinity.

Theorem 2.1. Suppose that u0 ∈ H1 and v0 ∈ H2 with u0 ≥ 0, v0 ≥ 0 such that∫
I u0dx = M . Let (ū, v̄) be the stationary solution given in Proposition 2.1 with

∫
I ūdx =

M and define

ϕ0(x) =

∫ x

0

(u0(y)− ū(y)) dy.

Then there exists a constant δ0 > 0 such that if

‖ϕ0‖2H1 + ‖v0 − v̄‖2L2 ≤ δ0,

then the initial-boundary value problem (1.4), (1.5a) admits a unique global solution

(u, v) satisfying

u ∈ C([0,∞);H1) ∩ L2(0,∞;H2), v ∈ C([0,∞);H2) ∩ L2(0,∞;H3),

and the following asymptotic decay:

‖(u− ū, v − v̄)(·, t)‖L∞ ≤ Ce−αt for any t ≥ 0, (2.2)

where α and C are positive constants independent of t.

Remark 2.1. If the chemical concentration v takes different values at the endpoints

of the interval, say v(0, t) = a > 0 and v(1, t) = b > 0 with a �= b, the existence

and uniqueness of stationary solutions can be obtained by similar arguments as in [19].

However the stability result in Theorem 2.1 can only be shown to hold under the condition

that D(a− b)2 is small or the total mass of the bacteria M is large. The key difference
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722 G.-Y. HONG AND Z.-A. WANG

is that if a �= b, then the stationary solution component v̄ may be monotone in [0, 1]. If

this happens, we can only show that the estimate (3.12), which is essentially used in the

proof of Lemma 3.3, is guaranteed if D(a− b)2 is small or the total mass of the bacteria

M is large.

When D = 0, (1.4) becomes a PDE-ODE system which has a unique constant steady

state (M, 0) with M =
∫
I u0dx satisfying the boundary condition (1.5b). Then we have

our second result below.

Theorem 2.2. Let (u0, v0) ∈ H1 ×H2 with u0 ≥ 0, v0 ≥ 0 such that
∫
I u0dx = M and

define

w0(x) =

∫ x

0

(u0(y)−M)dy.

Then there exists a constant δ1 > 0 such that if

‖w0‖2H1 + ‖v0‖2H1 ≤ δ1,

then the initial-boundary value problem (1.4), (1.5b) admits a unique solution (u, v) in

I × (0,∞) satisfying

u ∈ C([0,∞);H1) ∩ L2(0,∞;H2), v ∈ C([0,∞);H2).

Furthermore, we have the following decay estimates:

‖(u−M, v)(·, t)‖L∞ ≤ Ce−α0t for any t > 0, (2.3)

where α0 and C > 0 are positive constants independent of t.

3. Asymptotic stability for the case D > 0. In this section, we will study the

asymptotic stability of the steady state of (1.4), (1.5b) for D > 0 by the method of

energy estimates. Before proceeding, we present an well-known inequality that will be

frequently used in the sequel.

Lemma 3.1 (cf. [28]). For any f ∈ H1(I), there exists a constant c1 > 0 such that

‖f‖L∞ ≤ c1

(
‖f‖

1
2

L2‖fx‖
1
2

L2 + ‖f‖L2

)
. (3.1)

Furthermore, if f ∈ H1
0 (I), then it holds that

‖f‖L∞ ≤ c2‖f‖
1
2

L2‖fx‖
1
2

L2 and ‖f‖L∞ ≤ c3‖fx‖L2 (3.2)

for some constants c2, c3 > 0.

3.1. A priori estimates. First of all, integrating the first equation in (1.6), we see that

the stationary solution (ū, v̄) satisfies⎧⎪⎪⎨
⎪⎪⎩
ūx − ūv̄x = 0,

Dv̄xx − ūv̄ = 0,

v̄(0) = v̄(1) = v∗,

(3.3)
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with
∫
I ūdx = M . In view of the zero-flux boundary condition in (1.5a) for u, we

know that the mass of the bacteria is conserved for all time. This along with the fact∫
I u0dx =

∫
I ūdx = M implies that∫

I
(u(x, t)− ū(x))dx = 0

for any t ≥ 0. Define

ϕ(x, t) =

∫ x

0

(u(y, t)− ū(y))dy, ψ = v − v̄,

that is

u = ϕx + ū, v = ψ + v̄. (3.4)

Substituting (3.4) into (1.4), integrating the first equation with respect to x and using

(3.3), we obtain the following perturbation equations:⎧⎨
⎩
ϕt = ϕxx − ϕxv̄x − ūψx − ϕxψx,

ψt = Dψxx − ūψ − v̄ϕx − ϕxψ,
(3.5)

with the initial datum

(ϕ, ψ)(x, 0) = (ϕ0, ψ0) =

(∫ x

0

(u0(y)− ū(y))dy, v0 − v̄

)
(3.6)

and the boundary conditions

(ϕ, ψ)(0, t) = (ϕ, ψ)(1, t) = 0. (3.7)

By the standard fixed point theorems (cf. [22, 29]), one can prove the local existence of

solutions to the initial-boundary value problem (3.5)–(3.7). Precisely, for any T > 0, if

we define

X(0, T ) := {(ϕ, ψ)|ϕ ∈ C([0, T ];H1
0 ∩H2) ∩ L2(0, T ;H3),

ψ ∈ C([0, T ];H1
0 ∩H2) ∩ L2(0, T ;H3)}

and denote

N(T ) := sup
0≤t≤T

(
‖ϕ‖2H2 + ‖ψ‖2H2

)
,

then we have the following local existence result.

Proposition 3.1 (Local existence). Let ϕ0 ∈ H1
0 ∩H2 and ψ0 ∈ H1

0 ∩H2 such that

ϕ0x + ū ≥ 0, ψ0 + v̄ ≥ 0

for any x ∈ I. Then there exists a positive constant T0 depending on N(0), ū and

v̄ such that the initial-boundary value problem (3.5)–(3.7) admits a unique solution

(ϕ, ψ) ∈ X(0, T0) satisfying N(T0) ≤ 2N(0) and

ϕx + ū ≥ 0, ψ + v̄ ≥ 0

for any (x, t) ∈ I × [0, T0).
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724 G.-Y. HONG AND Z.-A. WANG

In order to study the asymptotic behavior of solutions to the problem (1.4), (1.5a),

we first establish the global existence result for the initial-boundary value problem (3.5)–

(3.7).

Proposition 3.2. Assume the conditions of Proposition 3.1 hold. Then there exists a

positive constant δ∗ such that if ‖ϕ0‖2H1 + ‖ψ0‖2L2 ≤ δ∗, then the problem (3.5)–(3.7)

admits a unique global solution (ϕ, ψ) ∈ X(0,∞) which satisfies that for all t ≥ 0,

‖ϕ(·, t)‖2H1 + ‖ψ(·, t)‖2L2 ≤ Ce−α1t, ‖ϕxx(·, t)‖2L2 + ‖ψx(·, t)‖2H1 ≤ C (3.8)

for some constants α1 > 0 and C > 0 independent of t.

To ensure the global existence of solutions to the problem (3.5)–(3.7), by the local

existence result and the standard continuation argument, it suffices to prove the following

a priori estimates.

Proposition 3.3 (A priori estimates). For any T > 0 and any solution (ϕ, ψ) ∈ X(0, T )

to the problem (3.5)–(3.7) with (ϕ0, ψ0) ∈ H1
0 ∩H2, there exists a suitably small C0 > 0

independent of T such that if ‖ϕ0‖2H1 + ‖ψ0‖2L2 ≤ C0, then we have

‖ϕ(·, t)‖2H1 + ‖ψ(·, t)‖2L2 ≤ Ce−α1t, ‖ϕxx(·, t)‖2L2 + ‖ψx(·, t)‖2H1 ≤ C in [0, T ]

and∫ t

0

(
‖ϕ‖2H3 + ‖ψ‖2H3 + ‖ϕτ‖2H1 + ‖ψτ‖2H1

)
dτ ≤ C

(
‖ϕ0‖2H2 + ‖ψ0‖2H2

)
in [0, T ],

where α1 and C are positive constants independent of T .

We shall prove Proposition 3.3 by the argument of a priori assumption. That is, we

first assume that the solution (ϕ, ψ) to the problem (3.5)–(3.7) satisfy for any t ∈ [0, T ],

‖ϕ(·, t)‖H1 + ‖ψ(·, t)‖L2 ≤ 2δ, ‖ϕxx(·, t)‖L2 + ‖ψx(·, t)‖H1 ≤ 2σ in [0, T ], (3.9)

where 0 < δ < 1 and σ are positive constants to be determined later, and then derive the

a priori estimates with (4.6) to ensure the global existence of solutions. Finally, we show

that the solution exactly satisfies the a priori assumption (4.6) and close the argument.

Before proceeding, we note that by (3.9) along with (3.1), (3.2) and (3.7), we get

‖ϕ‖L∞ ≤ Cδ, ‖ψ‖L∞ ≤ Cδ
1
2σ

1
2 , ‖ϕx‖L∞ ≤ Cδ + Cδ

1
2 σ

1
2 (3.10)

for some constant C > 0 independent of δ, σ and T .

The following simple properties on the stationary solution are of importance in study-

ing the asymptotic behavior of solutions.

Lemma 3.2. Let (ū, v̄) be the stationary solution of (1.4), (1.5a) stated in Proposition

2.1. Then it holds that

0 < C−1
1 ≤ ū, v̄ ≤ C1 (3.11)

for some constant C1 > 0, and that

Dv̄2x ≤ v̄2ū. (3.12)
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EXOGENOUS CHEMOTAXIS SYSTEMS 725

Proof. According to Proposition 2.1, the proof of (3.11) is trivial and hence we prove

(3.12) only. Since 0 < v̄(x) ≤ v∗ for any x ∈ Ī, then there exists an x0 ∈ (0, 1) such that

0 < v̄(x0) = min
x∈Ī

v̄(x) and v̄x(x0) = 0.

Multiplying the second equation in (1.6) by v̄x followed by an integration from x0 to x,

we have

D

2
v̄2x =

∫ x

x0

ūv̄v̄ydy = λ

∫ v̄(x)

v̄(x0)

sesds ≤ λ

∫ v̄

0

sesds,

with λ = M∫
I ev̄dx

, where we have used the following identity

ū =
M∫

I ev̄dx
ev̄ =: λev̄ (3.13)

from (2.1). Hence, we get, thanks to (3.13) and integration by parts, that

Dv̄2x
2

≤ λ
v̄2ev̄

2
− λ

2

∫ v̄

0

s2esds =
v̄2ū

2
− λ

2

∫ v̄

0

s2esds ≤ v̄2ū

2
.

The proof is completed. �
Now let us turn to estimates on the solution (ϕ, ψ). Throughout the rest of this

subsection, we denote by C a generic positive constant which is independent of t, δ, σ

and the initial data. We begin with the following weighted L2 estimate.

Lemma 3.3. For any solution (ϕ, ψ) ∈ X(0, T ) to the problem (3.5)–(3.7) satisfying (3.9),

it holds that∫
I

(
ϕ2

ū
+

ψ2

v̄

)
dx+

∫ t

0

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
dτ ≤ C

(
‖ϕ0‖2L2 + ‖ψ0‖2L2

)
(3.14)

for any t ∈ [0, T ], provided that δ is suitably small.

Proof. Multiplying the first equation in (3.5) by ϕ
ū followed by an integration over I,

we get after using integration by parts that

1

2

d

dt

∫
I

ϕ2

ū
dx+

∫
I

ϕ2
x

ū
dx = −

∫
I
ϕϕx

[
v̄x +

(
1

ū

)
x

]
dx−

∫
I
ψxϕdx−

∫
I

ψxϕϕx

ū
dx.

(3.15)

By the first equation in (3.3), we have(
1

ū

)
x

+
v̄x
ū

= − 1

ū2
(ūx − ūv̄x) = 0,

and thus

−
∫
I
ϕϕx

[
v̄x +

(
1

ū

)
x

]
dx = 0. (3.16)

Thanks to (3.10) and the Cauchy-Schwarz inequality, we get∫
I

ψxϕϕx

ū
dx ≤ ‖ϕ‖L∞‖ψx‖L2‖ϕx‖L2 ≤ Cδ

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
. (3.17)
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Inserting (3.16) and (3.17) into (3.15) gives

1

2

d

dt

∫
I

ϕ2

ū
dx+

∫
I

ϕ2
x

ū
dx ≤ −

∫
I
ψxϕdx+ Cδ

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
. (3.18)

To proceed, multiplying the second equation in (3.5) by ψ
v̄ and then integrating the

resulting equation over I, we have

1

2

d

dt

∫
I

ψ2

v̄
dx+D

∫
I

ψ2
x

v̄
dx = −

∫
I

[
ū

v̄
ψ2 +Dψψx

(1
v̄

)
x

]
dx−

∫
I
ψϕxdx−

∫
I

ψ2ϕx

v̄
dx,

(3.19)

where, by virtue of (1.6) and (3.12), it holds that

−
∫
I

[
ū

v̄
ψ2 +Dψψx

(1
v̄

)
x

]
dx = −

∫
I
ψ2

(
ū

v̄
+

Dv̄xx
2v̄2

− Dv̄2x
v̄3

)
dx

= −
∫
I
ψ2

(
3

2

ū

v̄
−D

v̄2x
v̄3

)
dx

≤ −3

2

∫
I

ū

v̄
ψ2dx+

∫
I

ū

v̄
ψ2dx ≤ −1

2

∫
I

ū

v̄
ψ2dx.

For the last term on the right hand side of (3.19), by (3.2), (3.9), (3.11) and the Hölder

inequality, we get

−
∫
I

ψ2ϕx

v̄
dx ≤ C‖ψ‖L∞‖ψ‖L2‖ϕx‖L2 ≤ C‖ϕx‖L2‖ψx‖2L2 ≤ Cδ‖ψx‖2L2 .

We thus have from (3.19) that

1

2

d

dt

∫
I

ψ2

v̄
dx+D

∫
I

ψ2
x

v̄
dx+

1

2

∫
I

ū

v̄
ψ2dx ≤ −

∫
I
ψϕxdx+ Cδ‖ψx‖2L2 . (3.20)

Adding (3.20) with (3.18), we then arrive at

1

2

d

dt

∫
I

(
ϕ2

ū
+

ψ2

v̄

)
dx+

∫
I

(
ϕ2
x

ū
+D

ψ2
x

v̄
+

ūψ2

2v̄

)
dx ≤ Cδ

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
.

This along with (3.11) implies that

1

2

d

dt

∫
I

(
ϕ2

ū
+

ψ2

v̄

)
dx+

1

C1
min{1, D}

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
≤ Cδ

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
.

Therefore it holds that

d

dt

∫
I

(
ϕ2

ū
+

ψ2

v̄

)
dx+ β

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
≤ 0, (3.21)

provided that

Cδ ≤ 1

2C1
min{1, D} =:

β

2
. (3.22)

Integrating (3.21) over (0, t), we then get (3.14). The proof of Lemma 3.3 is complete. �
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In the next lemma, we are going to derive the estimate on ϕx.

Lemma 3.4. Under the conditions of Lemma 3.3, let (ϕ, ψ) ∈ X(0, T ) be a solution to

the initial-boundary value problem (3.5)–(3.7) satisfying (3.9). Then for any given σ > 0,

it holds for any t ∈ [0, T ] that

‖ϕ‖2H1 + ‖ψ‖2L2 ≤ C
(
‖ϕ0‖2H1 + ‖ψ0‖2L2

)
e−α1t, (3.23)

provided δ is suitably small, where α1 is determined by (3.32), C > 0 is a constant

independent of t, δ, σ and the initial data.

Proof. Multiplying the first equation in (3.5) by ϕt and integrating the resulting equa-

tion over I, we get by integration by parts that

1

2

d

dt

∫
I
ϕ2
xdx+

∫
I
ϕ2
tdx = −

∫
I
ϕxv̄xϕtdx−

∫
I
ūψxϕtdx−

∫
I
ϕtϕxψxdx. (3.24)

Next we estimate the terms on the right hand side of (3.24). By (3.11), (3.12) and the

Cauchy-Schwarz inequality, we deduce that

−
∫
I
ϕxv̄xϕtdx ≤ ‖v̄x‖L∞‖ϕx‖L2‖ϕt‖L2 ≤ ε‖ϕt‖2L2 + Cε‖ϕx‖2L2 , (3.25)

−
∫
I
ūψxϕtdx ≤ ‖ū‖L∞‖ϕt‖L2‖ψx‖L2 ≤ ε‖ϕt‖2L2 + Cε ‖ψx‖2L2

for any ε > 0. For the last term on the right hand side of (3.24), it follows from (3.10)

and the Cauchy-Schwarz inequality that

−
∫
I
ϕtϕxψxdx ≤ ‖ϕx‖L∞‖ϕt‖L2 ‖ψx‖L2 ≤ C

(
δ + Cδ

1
2 σ

1
2

) (
‖ϕt‖2L2 + ‖ψx‖2L2

)
.

(3.26)

Substituting (3.25)–(3.26) into (3.24) and choosing δ small enough such that

C
(
δ + Cδ

1
2 σ

1
2

)
≤ 1

4
, (3.27)

we get after taking ε suitably small that

1

2

d

dt

∫
I
ϕ2
xdx+

1

2

∫
I
ϕ2
tdx ≤ C‖ψx‖2L2 . (3.28)

Adding (3.28) with (3.21) multiplied by a sufficiently large constant K > 0 such that
1
2Kβ > C, it then follows that

d

dt

∫
I

(
ϕ2

ū
+

ψ2

v̄
+ ϕ2

x

)
dx+ β1

(
‖ϕx‖2L2 + ‖ψx‖2L2 + ‖ϕt‖2L2

)
≤ 0 (3.29)

for some β1 > 0. Multiplying (3.29) by eα1t with α1 being a constant to be determined

later, we have

d

dt

{
eα1t

∫
I

(ϕ2

ū
+

ψ2

v̄
+ ϕ2

x

)
dx

}

+ eα1t

[
β1(‖ϕx‖2L2 + ‖ψx‖2L2)−

∫
I
α1

(ϕ2

ū
+

ψ2

v̄
+ ϕ2

x

)
dx

]
≤ 0, (3.30)
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where we have ignored ‖ϕt‖2L2 on the left hand side of (3.29) due to β1 > 0. By (3.2),

(3.7), (3.11) and the Sobolev inequality ‖f‖L2 ≤ C‖fx‖L2 for any f ∈ H1
0 asserting∫

I

(
ϕ2

ū
+

ψ2

v̄

)
dx ≤ C

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
for some constant C > 0, we get from (3.30) that

d

dt

{
eα1t

∫
I

(
ϕ2

ū
+

ψ2

v̄
+ ϕ2

x

)
dx

}
≤ 0, (3.31)

provided that

α1 ≤ 1

2
min

{
β1

C
, β1

}
. (3.32)

This along with (3.11) gives rise to

‖ϕ‖2H1 + ‖ψ‖2L2 ≤ C
(
‖ϕ0‖2H1 + ‖ψ0‖2L2

)
e−α1t. (3.33)

We thus finish the proof of Lemma 3.4. �
In what follows, we derive some higher-order estimates for the solution.

Lemma 3.5. Let (ϕ, ψ) ∈ X(0, T ) be a solution to the initial-boundary value problem

(3.5)–(3.7) satisfying (3.9) and assume the conditions of Lemma 3.3 hold. Then it holds

for any t ∈ [0, T ] that

‖ϕxx‖L2 + ‖ψx‖H1 ≤ 3

2
σ, (3.34)

and that∫ t

0

(
‖ϕx‖2H1 + ‖ψx‖2H1 + ‖ϕτ‖2H1 + ‖ψτ‖2H1

)
dτ ≤ C

(
‖ϕ0‖2H2 + ‖ψ0‖2H2

)
, (3.35)

provided that δ and ‖ϕ0‖2H1 + ‖ψ0‖2L2 are suitably small, where σ is given by (3.51).

Proof. Let us begin with the estimate on ψx. Multiplying the second equation in (3.5)

by ψt followed by an integration with respect to x, we get

1

2

d

dt

∫
I

(
Dψ2

x + ūψ2
)
dx+

∫
I
ψ2
t dx = −

∫
I
ψtϕxψdx−

∫
I
v̄ϕxψtdx, (3.36)

where, thanks to (3.2), (3.9) and the Cauchy-Schwarz inequality, the terms on the right

hand side can be estimated as follows:

−
∫
I
ψtϕxψdx ≤ C‖ψ‖L∞‖ψt‖L2‖ϕx‖L2

≤ C‖ψx‖L2‖ψt‖L2‖ϕx‖L2

≤ Cδ
(
‖ψt‖2L2 + ‖ψx‖2L2

)
,

−
∫
I
v̄ϕxψtdx ≤ ‖v̄‖L∞‖ϕx‖L2‖ψt‖L2 ≤ ε‖ψt‖L2 + Cε‖ϕx‖2L2

for any ε > 0. We thus update (3.36), after taking ε and δ suitably small, as

d

dt

∫
I

(
Dψ2

x + ūψ2
)
dx+

∫
I
ψ2
t dx ≤ C

(
‖ϕx‖2L2 + ‖ψx‖2L2

)
.
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This along with (3.11) and (3.14) implies for any t ∈ [0, T ] that

‖ψ(·, t)‖2H1 +

∫ t

0

‖ψτ‖2L2dτ ≤ C‖ψ0x‖2L2 + C
(
‖ϕ0‖2L2 + ‖ψ0‖2L2

)
. (3.37)

To complete the proof, it now remains to derive the H2-estimates. Differentiating

(3.5) with respect to t, we get⎧⎨
⎩
ϕtt = ϕxxt − v̄xϕxt − ūψxt − ϕxtψx − ϕxψxt,

ψtt = Dψxxt − ūψt − v̄ϕxt − ϕxtψ − ϕxψt.
(3.38)

Multiplying the first equation in (3.38) by ϕt and the second one by ψt, integrating the

resulting equation over I, we get

1

2

d

dt

∫
I

(
ϕ2
t + ψ2

t

)
dx+

∫
I

(
ϕ2
xt +Dψ2

xt + ūψ2
t

)
dx

= −
∫
I
v̄xϕxtϕtdx−

∫
I
ūψxtϕtdx−

∫
I
v̄ϕxtψtdx−

∫
I
ϕxψxtϕtdx

−
∫
I
ϕxtψψtdx−

∫
I
ϕxψ

2
t dx−

∫
I
ϕxtψxϕtdx. (3.39)

We now estimate the terms on the right hand side of (3.39). By (3.11), (3.12) and the

Cauchy-Schwarz inequality, we have

−
∫
I
v̄xϕxtϕtdx−

∫
I
ūψxtϕtdx−

∫
I
v̄ϕxtψtdx ≤ ε

∫
I

(
ψ2
xt + ϕ2

xt

)
dx+ Cε

∫
I

(
ϕ2
t + ψ2

t

)
dx

(3.40)

for any ε > 0. Thanks to (3.9), (3.10) and the Cauchy-Schwarz inequality, we derive for

0 < δ ≤ 1 that

−
∫
I
ϕxψxtϕtdx−

∫
I
ϕxtψψtdx−

∫
I
ϕxψ

2
t dx

≤ C‖ϕx‖L∞‖ψxt‖L2‖ϕt‖L2 + ‖ψ‖L∞‖ϕxt‖L2‖ψt‖L2 + C‖ϕx‖L2‖ψt‖2L2

≤ C
(
δ + δ

1
2 σ

1
2

)
‖ψxt‖L2‖ϕt‖L2 + Cδ

1
2σ

1
2 ‖ϕxt‖L2‖ψt‖L2 + Cδ‖ψt‖2L2

≤ Cδ
1
2

(
‖ψxt‖2L2 + ‖ϕxt‖2L2

)
+ C

(
δ + δ

1
2 σ

) (
‖ϕt‖2L2 + ‖ψt‖2L2

)
. (3.41)

For the last term on the right hand side of (3.39), we get from (3.2) and Young’s inequality

that

−
∫
I
ϕxtψxϕtdx ≤ C‖ϕxt‖

3
2

L2‖ϕt‖
1
2

L2‖ψx‖L2 ≤ ε‖ϕxt‖2L2 + Cε‖ϕt‖2L2‖ψx‖4L2 (3.42)

for any ε > 0, where we have used the fact ϕt(0, t) = ϕt(1, t) = 0 due to (3.7). Substi-

tuting (3.40)–(3.42) into (3.39) and then taking ε and δ small enough, we get that

1

2

d

dt

∫
I

(
ϕ2
t + ψ2

t

)
dx+

1

2

∫
I

(
ϕ2
xt +Dψ2

xt + ūψ2
t

)
dx

≤ C
(
1 + δ

1
2 σ

)∫
I

(
ϕ2
t + ψ2

t

)
dx+ ‖ϕt‖2L2‖ψx‖4L2 . (3.43)
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Recalling (3.14) and (3.28), we have∫
I
ϕ2
xdx+

∫ t

0

∫
I
ϕ2
τdxdτ ≤ ‖ϕ0x‖2L2 + C

∫ t

0

‖ψx‖2L2dτ ≤ C
(
‖ϕ0‖2H1 + ‖ψ0‖2L2

)
,

(3.44)

provided δ is small enough and (3.27) holds. Combining (3.37) with (3.43) and (3.44),

we then get∫
I

(
ϕ2
t + ψ2

t

)
dx+

∫ t

0

∫
I

(
ϕ2
xτ + ψ2

xτ + ūψ2
τ

)
dxdτ

≤ C

∫
I

(
ϕ2
0xx + ϕ2

0x + ψ2
0xx + ψ2

0x

)
dx+

(
sup

0≤τ≤t
‖ψx‖4L2

)∫ t

0

∫
I
ϕ2
τdxdτ

+ C
(
1 + δ

1
2 σ

)∫ t

0

∫
I

(
ϕ2
τ + ψ2

τ

)
dxdτ

≤ C
(
‖ϕ0xx‖2L2 + ‖ψ0x‖2H1 + ‖ϕ0x‖2L2

)
+ C

(
1 + δ

1
2 σ

) (
‖ϕ0‖2L2 + ‖ψ0‖2L2

)
+ Cδ

1
2 σ‖ψ0x‖2L2 + C

(
‖ϕ0‖2H1 + ‖ψ0‖2L2

) (
‖ϕ0‖2L2 + ‖ψ0‖2H1

)2
(3.45)

for any t ∈ [0, T ], where ϕt|t=0 = ϕ0xx − ϕ0xv̄x − ūψ0x − ϕ0xψ0x and ψt|t=0 = Dψ0xx −
ūψ0 − v̄ϕ0x − ϕ0xψ0 from (3.5) have been used. From (3.1), (3.11), (3.12), the first

equation in (3.5) and the Cauchy-Schwarz inequality, we have∫
I
ϕ2
xxdx ≤ C

∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx+ ‖ϕx‖2L∞

∫
I
ψ2
xdx

≤ C

∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx+ C

(
‖ϕx‖L2‖ϕxx‖L2 + ‖ϕx‖2L2

) ∫
I
ψ2
xdx

≤ C

∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx+

1

2
‖ϕxx‖2L2 + C‖ϕx‖2L2

(
‖ψx‖2L2 + ‖ψx‖4L2

)
,

and thus ∫
I
ϕ2
xxdx ≤ C

∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx+ C‖ϕx‖2L2

(
‖ψx‖2L2 + ‖ψx‖4L2

)
.

This together with (3.14), (3.37), (3.44) and (3.45) yields that∫
I
ϕ2
xxdx ≤ C

(
‖ϕ0xx‖2L2 + ‖ψ0x‖2H1 + ‖ϕ0x‖2L2

)
+ C

(
1 + δ

1
2 σ

) (
‖ϕ0‖2L2 + ‖ψ0‖2L2

)
+ Cδ

1
2σ‖ψ0x‖2L2 + C

(
‖ϕ0‖2L2 + ‖ψ0‖2L2

) (
‖ϕ0‖2L2 + ‖ψ0‖2H1

)2
, (3.46)

and that∫ t

0

∫
I
ϕ2
xxdxdτ ≤ C

∫ t

0

∫
I
(ϕ2

τ + ϕ2
x + ψ2

x)dxdτ + sup
0≤τ≤t

(
‖ψx‖2L2 + ‖ψx‖4L2

) ∫ t

0

‖ϕx‖2L2dτ

≤ C
(
‖ϕ0‖2H1 + ‖ψ0‖L2

)
+

(
‖ϕ0‖2L2 + ‖ψ0‖2L2

) (
‖ψ0‖2H1 + ‖ϕ0‖2L2

)2
≤ C

(
‖ϕ0‖2H1 + ‖ψ0‖2L2

) (
1 + ‖ϕ0‖2L2 + ‖ψ0‖2H1

)2
. (3.47)
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where (3.27) has been used. Similarly, recalling (3.2), (3.7), (3.33), (3.37), (3.44), (3.45)

and the second equation in (3.5), we have∫
I
ψ2
xxdx ≤ C

∫
I

(
ψ2
t + ψ2 + ϕ2

x

)
dx+ ‖ψ‖2L∞

∫
I
ϕ2
xdx

≤ C

∫
I

(
ψ2
t + ψ2 + ϕ2

x

)
dx+ ‖ψ‖L2‖ψx‖L2

∫
I
ϕ2
xdx

≤ C
(
‖ϕ0xx‖2L2 + ‖ψ0x‖2H1 + ‖ϕ0x‖2L2

)
+ C

(
1 + δ

1
2 σ

) (
‖ϕ0‖2L2 + ‖ψ0‖2L2

)
+ Cδ

1
2 σ‖ψ0x‖2L2 + C

(
‖ϕ0‖2H1 + ‖ψ0‖2L2

) (
‖ϕ0‖2L2 + ‖ψ0‖2H1

)2
(3.48)

and∫ t

0

∫
I
ψ2
xxdxdτ ≤ C

∫ t

0

∫
I
(ψ2

τ + ψ2 + ϕ2
x)dxdτ +

(
sup

τ∈[0,t]

‖ψ(·, τ )‖2H1

)∫ t

0

∫
I
ϕ2
xdxdτ

≤ C
(
‖ψ0‖2H1 + ‖ϕ0‖2L2

)
+ C

(
‖ϕ0‖2L2 + ‖ψ0‖2L2

) (
‖ψ0‖2H1 + ‖ϕ0‖2L2

)
≤ C

(
1 + ‖ϕ0‖2L2 + ‖ψ0‖2L2

) (
‖ϕ0‖2L2 + ‖ψ0‖2H1

)
. (3.49)

Combining (3.37), (3.46) and (3.48), we arrive at

‖ϕxx(·, t)‖2L2 + ‖ψx(·, t)‖2H1 +

∫ t

0

∫
I

(
ϕ2
xτ + ψ2

xτ + ūψ2
τ

)
dxdτ

≤ C2

(
‖ϕ0xx‖2L2 + ‖ψ0x‖2H1

)
+ C

(
1 + δ

1
2 σ

) (
‖ϕ0‖2H1 + ‖ψ0‖2L2

)
+ Cδ

1
2 σ‖ψ0x‖2L2 + C

(
‖ϕ0‖2H1 + ‖ψ0‖2L2

) (
‖ϕ0‖2L2 + ‖ψ0‖2H1

)2
, (3.50)

where C2 > 0 and C > 0 are constants independent of t, δ, σ and the initial data.

Consequently, if we take

σ2 = max
{
4C2

(
‖ϕ0xx‖2L2 + ‖ψ0x‖2H1

)
, 1
}

(3.51)

and set both δ and ‖ϕ0‖2H1 + ‖ψ0‖2L2 small enough such that (3.27) is satisfied, and

C
(
1 + δ

1
2 σ

) (
‖ϕ0‖2H1 + ‖ψ0‖2L2

)
+ Cδ

1
2 σ‖ψ0x‖2L2

+ C
(
‖ϕ0‖2H1 + ‖ψ0‖2L2

) (
‖ϕ0‖2L2 + ‖ψ0‖2H1

)2 ≤ 2σ2 (3.52)

in (3.50), then it holds that

‖ϕxx(·, t)‖2L2 + ‖ψx(·, t)‖2H1 +

∫ t

0

∫
I

(
ϕ2
xτ + ψ2

xτ + ūψ2
τ

)
dxdτ ≤ 9

4
σ2. (3.53)

This gives (3.34). Differentiating the first equation in (3.5) with respect to x leads to

ϕxxx = ϕxt + v̄xxϕx − v̄xϕx − ūxψx − v̄ψxx − ϕxxψx − ϕxψxx,

which in combination with (1.6), (3.11), (3.12), (3.14), (3.47), (3.49), (3.53) and the

Sobolev inequality (3.1) yields that∫ t

0

∫
I
ϕ2
xxxdxdτ ≤ C

(
‖ϕ0‖2H2 + ‖ψ0‖2H2

)
, (3.54)
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732 G.-Y. HONG AND Z.-A. WANG

provided ‖ϕ0‖2H1 + ‖ψ0‖2L2 is suitably small. Similarly, we utilize (3.3), (3.11), (3.12),

(3.14), (3.46) and (3.53) to get∫ t

0

∫
I
ψ2
xxxdxdτ ≤ C

(
‖ϕ0‖2H2 + ‖ψ0‖2H2

)
, (3.55)

provided ‖ϕ0‖2H1 +‖ψ0‖2L2 is suitably small. Combining (3.47), (3.49), (3.54) and (3.55),

we then obtain (3.35) and finish the proof of Lemma 3.5. �
Proof of Proposition 3.3. According to Lemmas 3.2–3.5, to finish the proof of Propo-

sition 3.3, it suffices to close the a priori assumptions (3.9). To this end, we first fix σ

by (3.51) and choose δ and ‖ϕ0‖2H1 + ‖ψ0‖2L2 suitably small such that (3.22), (3.27) and

(3.52) hold. Then in view of (3.23) and (3.34), the a priori assumption (3.9) is closed

provided that ‖ϕ0‖2H1 + ‖ψ0‖2L2 is small enough. The proof is completed. �
3.2. Proof of Theorem 2.1. With the unique solution (ϕ, ψ) ∈ X(0,∞) obtained in

Proposition 3.2 to the reformulated problem (3.5)–(3.7), in view of (3.4), we conclude

that the initial-boundary value problem (1.4), (1.5a) admits a unique global solution

(u, v) satisfying,

u ∈ C([0,∞);H1) ∩ L2(0,∞;H2), v ∈ C([0,∞);H2) ∩ L2(0,∞;H3).

Furthermore, according to (3.8), we have

‖(u− ū, v − v̄)(·, t)‖2L2 ≤ Ce−α1t, ‖(ux − ūx, ϕx − v̄x)(·, t)‖L2 ≤ C for any t ≥ 0,

where C > 0 is independent of t. This along with the Sobolev inequality (3.1) implies

that

‖(u− ū, v − v̄)(·, t)‖L∞ ≤ C‖(u− ū, v − v̄)(·, t)‖
1
2

L2‖(ux − ūx, vx − v̄x)(·, t)‖
1
2

L2

+ C‖(u− ū, v − v̄)(·, t)‖L2

≤ Ce−
α1
4 t for any t ≥ 0.

This gives (2.2) with α = α1

4 . We thus finish the proof of Theorem 2.1. �

4. Asymptotic stability for the case D = 0. In this section, we are devoted to

studying the large time behavior of solutions to the problem (1.4), (1.5b) with D = 0.

As in the case D > 0, the heart of the matter is to derive some uniform-in-time estimates

on the solution.

4.1. A priori estimates. Now we consider the system (1.4) with D = 0:⎧⎨
⎩
ut = uxx − (uvx)x in I,

vt = −uv in I,
(4.1)

subject to the following initial and boundary conditions{
(u, v)|t=0 = (u0, v0)(x), u0 ≥ 0,

(ux − uvx)|x=0,1 = 0.
(4.2)

We shall show that

(u, v) → (M, 0) in L∞ as t → +∞,
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EXOGENOUS CHEMOTAXIS SYSTEMS 733

where M =
∫
I u0dx. To this end, we first reformulate the problem by defining

w(x, t) =

∫ x

0

(u(y, t)−M)dy

with

w|t=0 =

∫ x

0

(u0 −M)dy =: w0(x),

which leads to the following problem in terms of (w, v):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt = wxx −Mvx − wxvx,

vt = −Mv − wxv,

w(0, t) = w(1, t) = 0,

(w, v)|t=0 = (w0, v0)(x).

(4.3)

Similar to the caseD > 0 studied in the previous section, one can prove the local existence

of solutions to the initial-boundary value problem (4.3) in the following space

X0(0, T ) :=
{
(w, v)|w ∈ C([0, T ];H1

0 ∩H2) ∩ L2(0, T ;H3), v ∈ C([0, T ];H2)
}
.

Precisely, we have the following local existence result.

Proposition 4.1. Assume w0 ∈ H1
0∩H2 and v0 ∈ H2 such that w0x+M ≥ 0 and v0 ≥ 0.

Then there exists a positive constant T∗ depending on the initial data such that there

exists a unique solution (w, v) ∈ X0(0, T∗) to the problem (4.3) with ‖w‖2H2 + ‖v‖2H2 ≤
2
(
‖w0‖2H2 + ‖v0‖2H2

)
and

wx +M ≥ 0, v ≥ 0

for any (x, t) ∈ I × [0, T∗).

Next, we state the global existence result for the initial-boundary value problem (4.3),

from which we can obtain the global existence and large time behavior of the solution

(u, v) to the problem (4.1), (4.2).

Proposition 4.2. Let w0 ∈ H1
0 ∩ H2 and v0 ∈ H2 such that w0x + M ≥ 0 and v0 ≥

0. Then there exists a positive constant δ∗ such that if ‖w0‖2H1 + ‖v0‖2H1 ≤ δ∗, the

unique solution of the problem (4.3) obtained in Proposition 4.1 exists globally in time.

Furthermore, it holds that

‖wxx(·, t)‖2L2 + ‖vxx(·, t)‖2L2 + ‖w(·, t)‖2H1 + ‖v(·, t)‖2H1 ≤ Ce−α2t t ≥ 0, (4.4)

where C > 0 is a constant independent of t.

To prove Proposition 4.2, by the local existence result and the standard continuation

argument, we just need to establish some a priori estimates as stated in the following

proposition.

Proposition 4.3. For any T > 0, let (w, v) ∈ X0(0, T ) be a solution to the initial-

boundary value problem (4.3). Then there exists a constant Ĉ0 > 0 independent of T
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734 G.-Y. HONG AND Z.-A. WANG

such that if ‖w0‖2H1 + ‖v0‖2H1 ≤ Ĉ0, then the solution (w, v) possesses the following

estimates:

‖w(·, t)‖2H1 + ‖v(·, t)‖2H1 ≤ Ce−α2t, (4.5a)

‖wxx‖2L2 + ‖vxx(·, t)‖2L2 +

∫ t

0

(‖w‖2H3 + ‖wτ‖2H1 + ‖vτ‖2H2)dτ ≤ C (4.5b)

for any t ∈ [0, T ], where α2 is as in (4.8), the constant C > 0 is independent of T .

Proof. The proof of Proposition 4.3 consists of Lemmas 4.1–4.3 below. �
Before proceeding, we assume that the solution (w, v) to the problem (4.3) satisfy the

following a priori assumptions:

‖w(·, t)‖H1 + ‖v(·, t)‖H1 ≤ 2δ̃, ‖wxx(·, t)‖L2 ≤ 2σ̃ for any t ∈ [0, T ], (4.6)

where 0 < δ̃ < 1 and σ̃ ≥ 1 are constants to be determined later. We will derive some a

priori estimates for the solution in Lemmas 4.1–4.2 with (4.6). Throughout the proof of

Lemmas 4.1–4.2, we denote by C a generic positive constant which is independent of t,

δ̃, σ̃ and the initial data. Now let us derive the estimates on the H1-norm of (w, v) with

(4.6).

Lemma 4.1. For any T > 0, let (w, v) ∈ X0(0, T ) be a solution to the initial-boundary

value problem (4.3) satisfying (4.6). Then it holds for σ̃ ≥ 1 that

‖w‖2H1 + ‖v‖2H1 ≤ C(σ̃4‖v0‖2H1 + ‖w0‖2H1) for all t ∈ [0, T ], (4.7)

provided δ̃ is suitably small. Furthermore, we have the following decay estimate

‖w‖2H1 + ‖v‖2H1 ≤ C(σ̃4‖v0‖2H1 + ‖w0‖2H1)e−α2t for all t ∈ [0, T ], (4.8)

where α2 and C are positive constants independent of t, σ̃, δ̃ and the initial data.

Proof. We divide the proof into three steps.

Step 1. Estimates on w. Multiplying the first equation in (4.3) followed by an inte-

gration over I, we have

1

2

d

dt

∫
I
w2dx+

∫
I
w2

xdx = −
∫
I
wMvxdx−

∫
I
wxwvxdx. (4.9)

With integration by parts and the Cauchy-Schwarz inequality, we get

−
∫
I
wMvxdx =

∫
I
Mvwxdx ≤ η

∫
I
w2

xdx+ Cη

∫
I
v2dx (4.10)

for any η > 0. In view of (4.6), the Cauchy-Schwarz inequality and the Sobolev inequality

(3.2), we derive

−
∫
I
wxwvxdx ≤ C‖w‖L∞‖wx‖L2‖vx‖L2 ≤ Cδ̃

(
‖wx‖2L2 + ‖vx‖2L2

)
. (4.11)

Inserting (4.10) and (4.11) into (4.9), for suitably small δ̃ and η, it holds that

d

dt

∫
I
w2dx+

∫
I
w2

xdx ≤ C

∫
I

(
v2 + v2x

)
dx. (4.12)
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EXOGENOUS CHEMOTAXIS SYSTEMS 735

To proceed, multiplying the first equation in (4.3) by wt and then integrating the resulting

equation over I, we get

1

2

d

dt

∫
I
w2

xdx+

∫
I
w2

t dx = −M

∫
I
vxwtdx−

∫
I
wxvxwtdx. (4.13)

For the first term on the right hand side of (4.13), we utilize the Cauchy-Schwarz in-

equality to get

−M

∫
I
vxwtdx ≤ η‖wt‖2 + Cη‖vx‖2L2

for any η > 0. For the last term, from (3.1) and (4.6), we have

‖wx‖L∞ ≤ Cσ̃
1
2 δ̃

1
2 + Cδ̃, (4.14)

which along with the Cauchy-Schwarz inequality implies that∫
I
wxvxwtdx ≤ ‖wx‖L∞‖wt‖L2‖vx‖L2 ≤ C(σ̃

1
2 δ̃

1
2 + δ̃)

(
‖wt‖2L2 + ‖vx‖2L2

)
.

Therefore, after taking η suitably small (e.g., η < 1
4 ) and choosing δ̃ small enough such

that

C
(
σ̃

1
2 δ̃

1
2 + δ̃

)
≤ 1

4
, (4.15)

we update (4.13) as

d

dt

∫
I
w2

xdx+

∫
I
w2

t dx ≤ C‖vx‖2L2 .

This together with (4.12) gives

d

dt

∫
I
(w2 + w2

x)dx+

∫
I
(w2

x + w2
t )dx ≤ C

∫
I

(
v2 + v2x

)
dx. (4.16)

Step 2. Estimates on v. In view of (4.14), it holds that

M

2
≤ wx +M ≤ 3M

2
, (4.17)

provided

C(σ̃
1
2 δ̃

1
2 + δ̃) ≤ M

2
. (4.18)

Therefore we test the second equation in (4.3) against v to get

1

2

d

dt

∫
I
v2dx+

M

2

∫
I
v2dx ≤ 1

2

d

dt

∫
I
v2dx+

∫
I
(wx +M)v2dx = 0.

That is,

d

dt

∫
I
v2dx+M

∫
I
v2dx ≤ 0. (4.19)

Differentiating the second equation in (4.3) with respect to x gives

vxt = −(M + wx)vx − wxxv. (4.20)
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736 G.-Y. HONG AND Z.-A. WANG

Multiplying (4.20) by vx and then integrating the resulting equation over I, it follows

that

1

2

d

dt

∫
I
v2xdx+

∫
I
(M + wx)v

2
xdx = −

∫
I
wxxvvxdx (4.21)

with

−
∫
I
wxxvvxdx ≤ M

16
‖vx‖2L2 + C

∫
I
w2

xxv
2dx ≤ M

16
‖vx‖2L2 +

C

M
‖v‖2L∞

∫
I
w2

xxdx

≤ M

16
‖vx‖2L2 + C

σ̃2

M

(
‖vx‖L2‖v‖L2 + ‖v‖2L2

)
≤ M

8
‖vx‖2L2 + C

(
σ̃2

M
+

σ̃4

M2

)
‖v‖2L2 ,

where we have used (3.1), (4.6) and the Cauchy-Schwarz inequality. Furthermore, thanks

to (4.17) and the fact σ̃ ≥ 1, we have from (4.21) that

1

2

d

dt

∫
I
v2xdx+

M

4

∫
I
v2xdx ≤ Cσ̃4‖v‖2L2 . (4.22)

Combining (4.22) with (4.19), we then have

d

dt

∫
I
(σ̃4v2 + v2x)dx+ ĉ1

∫
I
(v2 + v2x)dx ≤ 0, (4.23)

where ĉ1 > 0 is a constant which depends on M but independent of σ̃.

Step 3. Decay estimates. Combining (4.23) with (4.16) yields that

d

dt

∫
I
(σ̃4v2 + v2x + w2 + w2

x)dx+ ĉ2
(
‖v‖2H1 + ‖wx‖2L2 + ‖wt‖2L2

)
≤ 0,

where ĉ2 is a constant depending on M but independent of σ̃. Consequently, we have

‖v‖2H1 + ‖w‖2H1 +

∫ t

0

(
‖v‖2H1 + ‖wx‖2L2 + ‖wτ‖2L2

)
dτ ≤ C(σ̃4‖v0‖2H1 + ‖w0‖2H1) (4.24)

for any t ∈ [0, T ], where we have used the fact σ̃ ≥ 1, C > 0 is a constant independent

of t, σ̃, δ̃ and the initial data. The estimate (4.7) is proved. To show the decay estimate

(4.8), multiplying (4.23) by eα̂1t with σ̃2α̂1 ≤ ĉ1, we deduce that

d

dt

{
eα̂1t

∫
I
(σ̃4v2 + v2x)dx

}
≤ 0, (4.25)

which immediately yields that∫
I
(σ̃4v2 + v2x)dx ≤ e−α̂1t

∫
I
(σ̃4v20 + v20x)dx. (4.26)

Since w(0, t) = w(1, t) = 0, we have ‖w‖2L2 ≤ C̃1‖wx‖2L2 for some constant C̃1 > 0.

Multiplying (4.16) by eα̂2t with α̂2 < min{ 1
2 C̃1, α̂1}, it follows that

d

dt

{
eα̂2t

∫
I
(w2 + w2

x)dx

}
≤ Ceα̂2t

∫
I

(
v2 + v2x

)
dx, (4.27)

and thus ∫
I
(w2 + w2

x)dx ≤ C
(
‖w0‖2H1 + σ̃4‖v0‖2H1

)
e−α̂2t,
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EXOGENOUS CHEMOTAXIS SYSTEMS 737

where we have used (4.26) and σ̃ ≥ 1, the constant C > 0 is independent of t, σ̃, δ̃ and

the initial data. The proof is completed. �
In the next lemma, we establish estimate for wxx.

Lemma 4.2. Assume the conditions of Lemma 4.1 hold. Then the solution (w, v) ∈
X0(0, T ) to the problem (4.3) satisfies

‖wxx‖L2 ≤ 3

2
σ̃ for any t ∈ [0, T ],

provided that δ̃ and ‖v0‖H1 + ‖w0‖H1 are suitably small, where σ̃ ≥ 1 is determined by

(4.40).

Proof. Differentiating the first equation in (4.3) with respect to t, we have

wtt = wxxt −Mvxt − wxtvx − wxvxt. (4.28)

Multiplying (4.28) by wt followed by an integration over I, we get

1

2

d

dt

∫
I
w2

t dx+

∫
I
w2

xtdx = −M

∫
I
vxtwtdx−

∫
I
wxtvxwtdx−

∫
I
wxvxtwtdx. (4.29)

We next estimate the terms on the right hand side of (4.29). Using integration by parts

and the Cauchy-Schwarz inequality, one has

−M

∫
I
vxtwtdx = M

∫
I
vtwtxdx ≤ 1

16

∫
I
w2

xtdx+ C

∫
I
v2t dx.

Furthermore, recalling (4.17) and the second equation in (4.3), we have∫
I
v2t dx ≤ C

∫
I
v2(wx +M)2dx ≤ C‖v‖2L2 . (4.30)

It thus holds that

−M

∫
I
vxtwtdx ≤ 1

16

∫
I
w2

xtdx+ C

∫
I
v2dx, (4.31)

provided C(σ̃
1
2 δ̃

1
2 + δ̃) ≤ M

2 . It follows from (3.2) and the Cauchy-Schwarz inequality

that

−
∫
I
wxtvxwtdx ≤ 1

16

∫
I
w2

xtdx+ C

∫
I
w2

t v
2
xdx ≤ 1

16

∫
I
w2

xtdx+ C‖wt‖2L∞‖vx‖2L2

≤ 1

16

∫
I
w2

xtdx+ C‖wt‖L2‖wxt‖L2‖vx‖2L2

≤ 1

8

∫
I
w2

xtdx+ C ‖wt‖2L2 ‖vx‖4L2 . (4.32)

For the last term on the right hand side of (4.29), integration by parts leads to∫
I
wxvxtwtdx = −

∫
I
wxxvtwtdx−

∫
I
wxvtwxtdx. (4.33)

Recalling the first equation in (4.3), we have∫
I
w2

xxdx ≤
∫
I
w2

t dx+M2

∫
I
v2xdx+

∫
I
w2

xv
2
xdx,
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where, thanks to the Sobolev inequality (3.1) and the Cauchy-Schwarz inequality, we

deduce that∫
I
w2

xv
2
xdx ≤ ‖wx‖2L∞

∫
I
v2xdx ≤ C

(
‖wx‖L2 ‖wxx‖L2 + ‖wx‖2L2

)
‖vx‖2L2

≤ 1

2
‖wxx‖2L2 + C‖wx‖2L2‖vx‖4L2 + C‖wx‖2L2‖vx‖2L2 .

It then follows that∫
I
w2

xxdx ≤ C‖wt‖2L2 + C‖wx‖2L2‖vx‖4L2 + C‖wx‖2L2‖vx‖2L2 . (4.34)

This, along with (3.2), (4.30) and the Cauchy-Schwarz inequality, yields

−
∫
I
wxxvtwtdx ≤ C

∫
I
w2

xxdx+ C

∫
I
v2tw

2
t dx ≤ C

∫
I
w2

xxdx+ C‖wt‖2L∞

∫
I
v2t dx

≤ C‖wxx‖2L2 + C‖wt‖L2‖wtx‖L2‖v‖2L2

≤ 1

16
‖wxt‖2L2 + C‖wxx‖2L2 + C‖wt‖2L2‖v‖4L2

≤ 1

16
‖wtx‖2L2 + C‖wt‖2L2 + C ‖wt‖2L2 ‖v‖4L2 + C‖wx‖2L2‖vx‖2L2(1 + ‖vx‖2L2).

(4.35)

It now remains to estimate the last term on the right hand side of (4.33). By (3.1),

(4.30), (4.34) and the Cauchy-Schwarz inequality, we get

−
∫
I
wxvtwxtdx ≤ 1

16

∫
I
w2

xtdx+ C

∫
I
v2tw

2
xdx ≤ 1

16

∫
I
w2

xtdx+ C‖wx‖2L∞

∫
I
v2t dx

≤ 1

16

∫
I
w2

xtdx+ C
(
‖wx‖L2‖wxx‖L2 + ‖wx‖2L2

)
‖v‖2L2

≤ 1

16

∫
I
w2

xtdx+ C‖wxx‖2L2 + C‖wx‖2L2‖v‖4L2 + C‖wx‖2L2‖v‖2L2

≤ 1

16

∫
I
w2

xtdx+ C‖wt‖2L2 + C‖wx‖2L2‖vx‖4L2 + C‖wx‖2L2‖vx‖2L2

+ C‖wx‖2L2‖v‖4L2 + C‖wx‖2L2‖v‖2L2 . (4.36)

With (4.35) and (4.36), we then update (4.33) as∫
I
wxvxtwtdx ≤ 1

8

∫
I
w2

xtdx+ C‖wt‖2L2 + C ‖wt‖2L2 ‖v‖4L2 + C‖wx‖2L2‖vx‖4L2

+ C‖wx‖2L2‖vx‖2L2 + C‖wx‖2L2‖v‖4L2 + C‖wx‖2L2‖v‖2L2 (4.37)

for any η > 0. Combining (4.29), (4.31), (4.32) and (4.37), we arrive at

d

dt

∫
I
w2

t dx+

∫
I
w2

xtdx

≤ C ‖vt‖2L2 + C ‖wt‖2L2 (1 + ‖v‖4H1) + C‖wx‖2L2‖v‖2H1 + C‖wx‖2L2‖v‖4H1 .
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Integrating the above inequality over [0, t] for any t ∈ [0, T ], thanks to (4.7), (4.30) and

wt|t=0 = w0xx −Mv0x − w0xv0x from (4.3)1, one can show that∫
I
w2

t dx+

∫ t

0

∫
I
w2

xτdxdτ

≤ C‖w0xx‖2L2 + ‖(w0x +M)v0x‖2L2 + C

∫ t

0

‖vτ‖2L2dτ

+ sup
τ∈[0,t]

‖v‖4H1

∫ t

0

(
‖wτ‖2L2 + ‖wx‖2L2

)
dτ + sup

τ∈[0,t]

‖v‖2H1

∫ t

0

‖wx‖2L2dτ

≤ C‖w0xx‖2L2 + C
(
σ̃2‖v0‖2H1 + ‖w0‖2H1

)(
1 + σ̃4‖v0‖4H1 + ‖w0‖4H1

)
. (4.38)

Recalling (4.7) and (4.34), we then get∫
I
w2

xxdx ≤ C‖wt‖2L2 + C‖wx‖2L2‖vx‖4L2 + C‖wx‖2L2‖vx‖2L2

≤ C3‖w0xx‖2L2 + C
(
σ̃2‖v0‖2H1 + ‖w0‖2H1

)(
1 + σ̃4‖v0‖4H1 + ‖w0‖4H1

)
(4.39)

for some constant C3 > 0 independent of t and the initial data, where we have used (4.7).

Consequently, we obtain ∫
I
w2

xxdx ≤ 9

4
σ̃2 for any t ∈ [0, T ],

provided

C3‖w0xx‖2L2 + C
(
σ̃2‖v0‖2H1 + ‖w0‖2H1

)(
1 + σ̃4‖v0‖4H1 + ‖w0‖4H1

)
≤ 9

4
σ̃2. (4.40)

It should be pointed out that the constraint (4.40) on σ̃ is reachable. Indeed, if we fix

the constant σ̃ ∈ (max{1, 2
√
C3‖w0xx‖L2},+∞), then (4.40) is automatically satisfied

provided ‖v0‖H1 + ‖w0‖H1 is suitably small. The proof is complete. �
Remark 4.1. According to (4.39), we can fix the constant

σ̃ ∈ (max{1, 2
√
C3‖w0xx‖L2},+∞).

Furthermore, let the constant δ̃ suitably small such that (4.15) and (4.18) hold. Then by

(4.7) and Lemma 4.2, if ‖v0‖H1 + ‖w0‖H1 is small enough, the a priori assumption (4.6)

is closed.

Now we have closed the a priori assumptions in (4.6) and proved most of the estimates

in (4.5). To guarantee the global existence of the solution (w, v), we need to derive some

more higher-order estimates (i.e., the rest of the estimates in (4.5)), and ultimately end

the proof of Proposition 4.3.

Lemma 4.3. Under the conditions of Lemmas 4.1–4.2, we get for any t ∈ [0, T ] that

‖vxx(·, t)‖2L2 +

∫ t

0

(
‖wxxx‖2L2 + ‖vτ‖2H2

)
dτ ≤ C,

where C > 0 is a constant depending on the initial data but independent of t.
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Proof. Differentiating the first equation in (4.3) with respect to x, we get

wxxx = wxt +Mvxx + wxxvx + wxvxx.

We thus derive, thanks to (3.1), (4.7), (4.38) and (4.39), that∫ t

0

‖wxxx‖2L2dτ ≤
∫ t

0

‖wxτ‖2L2dτ +

∫ t

0

‖vx‖2L∞‖wxx‖2L2dτ +M

∫ t

0

‖vxx‖2L2dτ

+

∫ t

0

‖wx‖2L∞‖vxx‖2L2dτ ≤ C + C

∫ t

0

‖vxx‖2L2dτ (4.41)

for any t ∈ [0, T ], where the constant C > 0 is independent of t. From the second

equation in (4.3), we have

v(x, t) = v0e
−

∫ t
0
(wx+M)dτ , (4.42)

vtxx = −(wx +M)vxx − wxxxv − 2wxxvx. (4.43)

Testing (4.43) against vxx, and then integrating the resulting equation over (0, t) for any

t ∈ (0, T ], we get∫
I
v2xx(·, t)dx+

∫ t

0

∫
I
(wx +M)v2xxdxdτ

= −
∫ t

0

∫
I
wxxxvvxxdxdτ − 2

∫ t

0

∫
I
wxxvxvxxdxdτ, (4.44)

where, due to (4.17), (4.41) and (4.42), it holds that∫ t

0

∫
I
wxxxvvxxdxdτ ≤ C

∫ t

0

‖v‖L∞‖wxxx‖L2‖vxx‖L2dτ

≤ C

∫ t

0

e−
M
2 τ‖wxxx‖L2‖vxx‖L2dτ

≤ M

8

∫ t

0

∫
I
v2xxdxdτ +

∫ t

0

e−
M
2 τ‖vxx‖2L2dτ + C (4.45)

for some constant C > 0 independent of t. For the last term on the right hand side of

(4.44), by (3.1), (4.7) and the Cauchy-Schwarz inequality, we have

−2

∫ t

0

∫
I
wxxvxvxxdxdτ ≤ M

8

∫ t

0

∫
I
v2xxdxdτ +

∫ t

0

‖vx‖2L∞

∫
I
w2

xxdxdτ

≤ M

8

∫ t

0

∫
I
v2xxdxdτ +

∫ t

0

(‖vx‖2L2 + ‖vxx‖2L2)‖wxx‖2L2dτ

≤ M

8

∫ t

0

∫
I
v2xxdxdτ + C

∫ t

0

‖wxx‖2L2(1 + ‖vxx‖2L2)dτ. (4.46)

Inserting (4.45) and (4.46) into (4.44), by (4.17), it follows that∫
I
v2xx(·, t)dx+

M

4

∫ t

0

∫
I
v2xxdxdτ

≤ C

∫ t

0

(
e−

M
2 τ + ‖wxx‖2L2

)
‖vxx‖2L2dτ + C

∫ t

0

‖wxx‖2L2dτ + C (4.47)
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for any t ∈ [0, T ]. Furthermore, by (4.24) and (4.34), one can show for any t ∈ [0, T ] that∫ t

0

‖wxx‖2L2dτ ≤ C

∫ t

0

‖wτ‖2L2dτ + sup
t∈[0,T ]

(
‖vx‖2L2 + ‖vx‖4L2

) ∫ t

0

‖wx‖2L2dτ ≤ C, (4.48)

where the constant C > 0 depends on ‖v0‖H1 and ‖w0‖H1 . This along with (4.47) and

the Gronwall inequality implies that∫
I
v2xx(·, t)dx+

M

4

∫ t

0

∫
I
v2xxdxdτ ≤ C. (4.49)

Combining (4.49) with (4.41) further yields that∫ t

0

‖wxxx‖2L2dτ ≤ C (4.50)

for any t ∈ [0, T ], where the constant C > 0 is independent of t. Finally, recalling the

second equation in (4.3), we get by virtue of (3.1), (4.7), (4.48)–(4.50) that∫ t

0

‖vτ (·, τ )‖2H2dτ ≤ C

for any t ∈ [0, T ]. We thus finish the proof of Lemma 4.3. �
4.2. Proof of Theorem 2.2. With the global existence result on the initial-boundary

value problem (4.3) and the decay estimates in (4.4) for (w, v) at hand, by the same

process as in the analysis for the case D > 0 in the previous section, one can easily

prove the global existence as well as decay estimates of solutions to the original problem

(1.4), (1.5b). Therefore we omit the details here for brevity. The proof of Theorem 2.2

is completed. �
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