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Though the boundary layer formation in the chemotactic process has been observed 
in experiment (cf. [63]), the mathematical study on the boundary layer solutions of 
chemotaxis models is just in its infant stage. Apart from the sophisticated theoretical 
tools involved in the analysis, how to impose/derive physical boundary conditions 
is a state-of-the-art in studying the boundary layer problem of chemotaxis models. 
This paper will proceed with a previous work [24] in one dimension to establish 
the convergence of boundary layer solutions of the Keller–Segel model with singular 
sensitivity in a two-dimensional space (half-plane) with respect to the chemical 
diffusion rate denoted by ε ≥ 0. Compared to the one-dimensional boundary layer 
problem, there are many new issues arising from multi-dimensions such as possible 
Prandtl type degeneracy, curl-free preservation and well-posedness of large-data 
solutions. In this paper, we shall derive appropriate physical boundary conditions 
and gradually overcome these barriers and hence establish the convergence of 
boundary layer solutions of the singular Keller–Segel system in the half-plane as the 
chemical diffusion rate vanishes. Specially speaking, we justify that the boundary 
layer converges to the outer layer (solution with ε = 0) plus the inner layer as ε → 0, 
where both outer and inner layer profiles are precisely derived and well understood. 
By doing this, the structure of boundary layer solutions is clearly characterized. 
We hope that our results and methods can shed lights on the understanding of 
underlying mechanisms of the boundary layer patterns observed in the experiment 
for chemotaxis such as the work by Tuval et al. [63], and open a new window in the 
future theoretical study of chemotaxis models.

© 2019 Elsevier Masson SAS. All rights reserved.

r é s u m é

Bien que la formation de couche limite dans le processus chimiotactique ait été 
observée expérimentalement (cf. [63]), l’étude mathématique des couches limites 
pour les modèles de chimiotaxie n’en est qu’à ses débuts. Outre les outils théoriques 
sophistiqués impliqués par l’analyse, la manière d’imposer/déduire des conditions 
aux limites physiques est un état de l’art dans l’étude du problème de la couche 
limite des modèles de chimiotaxie. Cet article poursuit un travail précédent en une 
dimension [24] et établit la convergence des couches limites du modèle de Keller–

* Corresponding author.
E-mail addresses: qianqian.hou@connect.polyu.hk (Q. Hou), mawza@polyu.edu.hk (Z. Wang).
https://doi.org/10.1016/j.matpur.2019.01.008
0021-7824/© 2019 Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.matpur.2019.01.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/matpur
mailto:qianqian.hou@connect.polyu.hk
mailto:mawza@polyu.edu.hk
https://doi.org/10.1016/j.matpur.2019.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matpur.2019.01.008&domain=pdf


252 Q. Hou, Z. Wang / J. Math. Pures Appl. 130 (2019) 251–287
Segel avec une sensibilité singulière dans un espace à deux dimensions (demi-plan) 
quand le taux de diffusion, noté ε ≥ 0, tend vers 0. Par rapport au problème de 
la couche limite unidimensionnelle, le cas multidimensionnel soulève de nombreuses 
difficultés, telles que la possible dégénérescence de type Prandtl, la préservation 
de la condition de rotationel nul, et le caractère bien posé des solutions pour des 
données larges. Dans cet article, nous établissons les conditions aux limites physiques 
appropriées et surmontons progressivement ces difficultés pour établir la convergence 
des solutions de couche limite du système de Keller–Segel dans le demi-plan lorsque 
le taux de diffusion chimique s’annule. En particulier, nous justifions que la couche 
limite converge vers la couche externe (solution avec ε = 0) plus la couche interne 
quand ε → 0, où les profils de couche interne et externe sont dérivés et compris 
avec précision. Ce faisant, la structure des solutions de couche limite est clairement 
caractérisée. Nous espérons que nos résultats et nos méthodes pourront éclairer la 
compréhension des mécanismes sous-jacents des modèles de couche limite observés 
dans l’expérience de chimiotaxie, tels que ceux de Tuval et al. [63], et ouvrir de 
nouvelles perspectives pour l’étude théorique des modèles de chimiotaxie.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

Chemotaxis, the movement of an organism in response to a chemical stimulus, has been a significant 
mechanism accounting for abundant biological processes, such as aggregation of bacteria [47,64], slime 
mould formation [21], fish pigmentation [50], tumor angiogenesis [3–5], primitive streak formation [51], 
blood vessel formation [14], wound healing [54]. As such, the mathematical works on modeling and analysis 
of chemotaxis has been greatly boosted in the past few decades. Mathematical modeling of chemotaxis dates 
to the pioneering works of Keller and Segel in [29] with linear sensitivity and in [28,30] with logarithmic 
singular sensitivity. This paper is concerned with the following Keller–Segel (KS) system with logarithmic 
sensitivity:

{
ut = ∇ · (D∇u− χu

c∇c), (�x, t) ∈ Ω × (0,∞),
ct = εΔc− uc,

(1.1)

where u(�x, t) and c(�x, t) denote cell density and chemical (signal) concentration at position �x, time t and 
the spatial domain Ω = R

2
+ = {�x = (x, y) ∈ R

2 | y > 0}. D > 0 and ε ≥ 0 are cell and chemical diffusion 
coefficients, respectively, and χ > 0 is referred to as the chemotactic coefficient measuring the strength of the 
chemotactic sensitivity. System (1.1) is the KS model proposed in [30] with linear nutrient consumption, and 
later found more applications to model the boundary movement of chemotactic bacterial populations [48]
and to describe the dynamical interactions between vascular endothelial cells (denoted by u), and signaling 
molecules vascular endothelial growth factor (denoted by c), in the initiation of tumor angiogenesis in [33]. 
Since the chemical diffusion ε has been assumed to be negligible (or small) in all these works [28,33,48] due 
to both mathematical simplicity and biological insignificancy, an immediate relevant question is whether the 
dynamics of (1.1) has significant difference between ε = 0 and ε > 0 small. Specifically we want to elucidate 
whether the solutions of (1.1) with ε > 0 converge to those with ε = 0 as ε vanishes. While attempting 
this question, one has to face another challenging issue of (1.1): the singularity at c = 0. Fortunately this 
singularity can be salvaged by a Cole–Hopf type transformation (cf. [32,41]):

�v = −∇ ln c = −∇c

c
, (1.2)

which transforms (1.1) into a non-singular system of conservation laws:



Q. Hou, Z. Wang / J. Math. Pures Appl. 130 (2019) 251–287 253
⎧⎪⎪⎨
⎪⎪⎩

ut −∇ · (u�v) = Δu, (�x, t) ∈ Ω × (0,∞),

�vt + ∇(ε|�v|2 − u) = εΔ�v,

(u,�v)(�x, 0) = (u0, �v0)(�x),

(1.3)

where we have appended initial data for completeness and taken D = χ = 1 for brevity but our analysis in 
this paper directly carries to generic positive parameters D, χ > 0.

Under the transformation (1.2), our question raised above boils down to investigate the vanishing diffusion 
limit of (1.3) as ε → 0, which is an intriguing mathematical problem alone despite of its relevance to biology, 
since the vanishing advection needs to be considered along with vanishing diffusion due to the dual effect of ε. 
There has been several works investigating the vanishing diffusion limit of (1.3) as ε → 0 in the literature. 
First in the whole space, it is shown that traveling wave solutions in R (cf. [42]) or global small-data solution 
of the Cauchy problem (cf. [52,66]) in Rd (d = 2, 3) of (1.3) is uniformly convergent in ε, namely (uε, �v ε)
converge to (u0, �v 0) in L∞-norm as ε → 0, where (uε, �v ε) denotes the solution of (1.3) with ε ≥ 0. In a 
bounded interval Ω = (0, 1), the solutions is still convergent (cf. [67]) in ε when (1.3) is endowed with the 
mixed homogeneous Neumann–Dirichlet boundary conditions

ux|x=0,1 = v|x=0,1 = 0 for ε ≥ 0.

However if Dirichlet boundary conditions are prescribed, the situation is more complicated in that one can 
not preassign a boundary value for v0 which is intrinsically determined by the second equation of (1.3) with 
ε = 0 as v0|x=0,1 = v0|x=0,1 +

∫ t

0 u0
x|x=0,1 dτ . Thus the appropriate Dirichlet boundary conditions should be 

imposed as (cf. [36]):

{
u|x=0,1 = ū ≥ 0, v|x=0,1 = v̄ if ε > 0,
u|x=0,1 = ū ≥ 0 if ε = 0,

(1.4)

where ū ≥ 0, v̄ ∈ R are constants. Hence if the boundary value for v with ε > 0 does not match the one 
with ε = 0 determined by the second equation of (1.3), boundary layers for the solution component v (i.e. 
rapid change of v near the boundary) will be present as ε is small. The above results imply that chemotaxis 
KS models with conventional Neumann (or zero-flux) boundary conditions will not generate boundary lay-
ers. To describe boundary layer phenomenon driven by chemotaxis observed in the experiment (e.g. [63]), 
Dirichlet boundary conditions are more relevant. Indeed boundary layer problem has been an important 
topic arising in the study of the inviscid limit of the Navier–Stokes equations near a boundary and has been 
one of the most fundamental issue in fluid mechanics attracting extensive studies (cf. [10,12,13,26,65,70,71]) 
since the pioneering work [55] by Prandtl in 1904. The existence of boundary layers for the transformed 
KS model (1.3) subject to Dirichlet boundary condition (1.4) has been numerically verified in [36] and 
rigorously proved in [25] in one dimension followed by a recent work [24] on the convergence (stability) of 
boundary layers. This paper will proceed to investigate the boundary layer problem of (1.3) in two dimen-
sions, which pertains to more realistic situations (cf. [63]). For simplicity, we consider the problem in the 
half plane Ω = R

2
+ = {�x = (x, y) ∈ R

2 | y > 0} and hence ∂Ω = {(x, y) ∈ R
2| y = 0}. In two dimensions, 

�v is a two-component vector from (1.2) and we denote �v = (v1, v2) in the sequel. Due to the special struc-
ture of (1.3), there are several essential differences between one dimension and two dimensions as detailed
below.

• First from the Cole–Hopf transformation (1.2), the curl for �v must be intrinsically free:

∇× �v = ∂xv2 − ∂yv1 = 0. (1.5)
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This indicates that in order to transfer the results of (1.3) to the original Keller–Segel system (1.1), the 
curl-free condition (1.5) has to be taken into account when prescribing boundary conditions. However 
no such concern is needed in one dimension. Taking the curl on both sides of the second equation of 
(1.3), one can get ∂t(∇ ×�v) = εΔ(∇ ×�v). Hence we ought to impose ∇ ×�v0 = 0 along with the condition 
∇ × �v |∂Ω = (∂xv2 − ∂yv1)|∂Ω = 0 for ε > 0 to preserve the intrinsic curl-free condition (1.5). Therefore 
the boundary conditions of components v1 and v2 are dependent and the Dirichlet boundary conditions 
of (1.3) with ε ≥ 0 are prescribed as:

{
u|y=0 = ū(x, t), (∇× �v)|y=0 = 0, v2|y=0 = v̄(x, t) if ε > 0,
u|y=0 = ū(x, t) if ε = 0,

(1.6)

where ū(x, t) and v̄(x, t) are functions of x and t, and the boundary conditions for v with ε > 0 in (1.6) 
is equivalent to ∂yv1|y=0 = ∂xv̄(x, t), v2|y=0 = v̄(x, t).

• Second, (1.5) implies that ∇|�v|2 = 2�v·∇�v. Then the second equation of (1.3) becomes �vt+2ε�v·∇�v−∇u =
εΔ�v, which is surprisingly analogous to the incompressible Navier–Stokes (INS) equations by setting 
�w = �v and p = −u:

{
�wt + �w · ∇�w + ∇p = εΔ�w, (�x, t) ∈ Ω × (0,∞),

∇ · �w = 0,
(1.7)

where �w is the fluid velocity and p the pressure. It is well-known that the inviscid limit of the INS 
equations will generate boundary layers if the following physical boundary conditions (e.g. see [8,44]) 
are prescribed:

{
�w |∂Ω = 0 if ε > 0,

�w · �n |∂Ω = 0 if ε = 0,

where �n is the unit outward normal vector of ∂Ω. However, the convergence of solutions of the INS 
equations to its limiting Euler equations (namely (1.7) with ε = 0), in two or higher dimensions as 
ε → 0 still remains unjustified due to the presence of (degenerate) Prandtl’s boundary layer equations 
(see [55]) whose well-posedness in Sobolev spaces is open except for analytic or monotonic data [1,8,15,
43,49]. As such, due to the analogy between (1.3) and the INS equations, a natural concern is whether the 
KS system (1.3) with Dirichlet boundary conditions in multi-dimensions will generate similar Prandtl’s 
boundary layers making the vanishing limit problem as ε → 0 unverifiable? This question does not exist 
in one dimension but must be first elucidated in higher dimensions before taking the next step. We shall 
show that the Prandtl’s boundary layer will not arise in our problem due to the peculiar structure of 
the system (1.3), see details in section 2.

• Thirdly the system (1.3) is invariant under the scaling for any λ > 0:

uλ(x, t) = λ2u(λx, λ2t), �vλ(x, t) = λ�v(λx, λ2t),

which indicates that d = 2 is the critical space dimension of (1.3) in the framework of Sobolev spaces, 
and d = 3 is supercritical while d = 1 is subcritical, same as the Navier–Stokes equations (see [6]). But 
analysis of (1.3) is somewhat more difficult than the INS equations due to the lack of the divergence-free 
condition which is critical for the existence of large solutions to the INS equations in two dimensions 
(e.g. see [11,45]). Indeed, although large-data solutions of (1.3) in one dimension have been obtained, 
none of the large-data solutions has been obtained in multi-dimensions so far even for the critical 
space dimension d = 2 (cf. [52,66]). Furthermore, when proving the convergence of boundary layers 
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in multi-dimensions, the system (1.3) lacks an energy-like structure as in one dimension (see [24]) to 
provide a L2-estimate independent of ε. In this paper, we shall develop a perturbation idea for small 
ε > 0, which fits our purpose of exploiting the inviscid limit as ε → 0 (see more details in section 4).

Bearing these structural differences between one dimension and multi-dimensions in mind, we shall exploit 
the zero-diffusion (inviscid) limit and hence the convergence of boundary layers for system (1.3) with (1.6)
in the half-plane Ω = R

2
+. By the boundary layer theory [55,60], we anticipate that the solution (uε, �v ε)

of (1.3) with (1.6) with small ε > 0 consists of two parts: inner (boundary) layer profile and outer layer 
profile (the solution profile with ε = 0). Note that the thickness of boundary layers in one dimension has 
been formally justified as O(ε1/2) in appendix of [24], which also holds for (1.3), (1.6) in two dimensions. 
Furthermore the inner boundary layer for u-component will be absent since the boundary conditions for u
between ε > 0 and ε = 0 are consistent. By (uε, �v ε) and (u0, �v 0) we denote the solution of (1.3) with (1.6)
with respect to ε > 0 and ε = 0, respectively. Then (uε, �v ε) is expected to have the following structure for 
some 0 < α, β ≤ 1

2 :

uε(x, y, t) = u0(x, y, t) + O(εα),

�v ε(x, y, t) = �v 0(x, y, t) +
(
vB,0
1

(
x,

y√
ε
, t
)
, vB,0

2
(
x,

y√
ε
, t
))

+ O(εβ),
(1.8)

where the outer layer profile (u0, �v 0) = (u0, v0
1 , v

0
2) is the solution of (1.3) and (1.6) with ε = 0, and 

(vB,0
1 , vB,0

2 ) denotes the inner layer profile which rapidly adjust from a value away from the boundary layer 
to another value on the boundary.

Due to various similarities between the second equation of (1.3) and the INS equations, justifying (1.8)
seems to be a great challenge at first glance due to the possible presence of degenerate Prandtl type equation 
(as INS equations do) whose well-posedness with general initial data in Sobolev space still remains as a 
grand open question in spite of numerous attempts (cf. [15,23,58,59,68,69]). However, thanks to the special 
structure of (1.3), the nonlinear trouble convection term ε∇|�v|2 in (1.3) vanishes as ε → 0 and the resulting 
limit equation �vt +∇u = 0 is fundamentally different from the Euler equation–limit equation of INS. Indeed 
a formal asymptotic analysis will show that the boundary layer equations are not of Prandtl’s type in two 
dimensions (see (2.6)–(2.7) in section 2). This key observation promises us a possibility to justifying (1.8), 
although we foresee that the presence of ε in the front of the nonlinear advection term ∇|�v|2 will bring us
additional challenges to derive ε-dependence for the estimates of (uε, �v ε) needed to explore the convergence 
of solutions in ε.

We conclude this section by briefly recalling other abundant results obtained for the transformed KS 
system (1.3) from various angles and hence for the original KS system (1.1) via transformation (1.2). In 
one dimension, the large time behavior of solutions was investigated when Ω = R in [19,35] with ε = 0
and in [46,53] with ε > 0. When Ω = (0, 1), the global existence and asymptotics of solutions under 
Neumann–Dirichlet boundary conditions for ε = 0 were obtained in [38,72], and later was extended to the 
case ε > 0 in [62,67]. For the Dirichlet boundary conditions, the global dynamics of solutions was exploited 
in [36]. Furthermore the existence and stability of traveling wave solutions were studied in [2,27,37,39–42]. 
To the best of our knowledge, the known well-posedness results in multi-dimension are merely confined to 
local large and global small solutions, see [7,20,34,52,66] for Ω = R

d (d ≥ 2) and [38] for Ω ⊂ R
d (d ≥ 2) 

bounded. Recently the well-posedness of the transformed KS system (1.3) with fractional diffusion has been 
studied in [16,17] for ε = 0 where the gradient term ∇u was replaced by a more general term ∇ur(1 ≤ r ≤ 2)
in the second equation of (1.3).

The rest of this paper is organized as follows. In section 2, we first present the outer and inner layer 
profiles and then state our main results on the convergence of boundary layer solutions of the transformed 
system (1.3) as well as the original KS system (1.1). In section 3, we present and prove some necessary 
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regularity results on the outer and inner layer profiles required to prove our main results. Then in section 4, 
we reformulate our problem and prove the main results. Finally in section 5 (Appendix), we outline the 
proofs for the outer/inner layer profiles announced in section 2.

2. Notation and main results

Notations.

• Without loss of generality, we assume 0 ≤ ε < 1 since we are concerned with the diffusion limit as 
ε → 0. We denote by C and C0 generic constants that may change from one line to another with C
independent of ε but dependent on T , and C0 independent of both ε and T .

• N+ represents the set of positive integers and N = N+ ∪ {0}. For z ∈ (0, ∞), we denote 〈z〉 =
√
z2 + 1.

• With 1 ≤ p ≤ ∞, we use Lp
xy and Lp

xz to denote the Lebesgue space Lp(R × R+) with respect to (x, y)
and (x, z), respectively, with corresponding norms ‖ · ‖Lp

xy
and ‖ · ‖Lp

xz
.

• Similarly, Hk
xy and Hk

xz for k ∈ N represent the Sobolev space W k,2(R ×R+) with respect to (x, y) and 
(x, z) respectively, with corresponding norms ‖ · ‖Hk

xy
and ‖ · ‖Hk

xz
. Without confusion, we still use Hk

xy

and Lp
xy to denote the two-dimensional vector spaces (Hk

xy)2 and (Lp
xy)2 for brevity.

• For k, m ∈ N, we introduce the anisotropic Sobolev space

Hk
xH

m
z :=

{
f(x, z) ∈ L2(R× R+) |

∑
0≤l1≤k, 0≤l2≤m

‖∂l1
x ∂l2

z f(x, z)‖L2
xz

< ∞
}

with norm ‖ · ‖Hk
xH

m
z

. Similarly Hk
xH

m
y will be used if the dependent variable of f is (x, y) ∈ R × R+.

• For simplicity, we use ‖ · ‖Lq
TX (1 ≤ q ≤ ∞) to denote ‖ · ‖Lq([0,T ];X) for Banach space X.

2.1. Equations for inner and outer layer profiles

This subsection is devoted to deriving the equations for outer and inner layer profiles by applying formal 
asymptotic analysis to solutions (uε, �v ε) of (1.3) with (1.6) with small ε > 0. Hence based on the WKB 
theory (see e.g. [24], [22, Chapter 4], [18,57]), the solution (uε, �v ε) has the following asymptotic expansions 
with respect to ε in Ω for j ∈ N:

uε(x, y, t) =
∞∑
j=0

εj/2
(
uI,j(x, y, t) + uB,j(x, z, t)

)
,

�v ε(x, y, t) =
∞∑
j=0

εj/2
(
�v I,j(x, y, t) + �v B,j(x, z, t)

)
,

(2.1)

where the boundary layer coordinate is defined as:

z = y

ε1/2 , y ∈ (0,∞). (2.2)

Each term in (2.1) is assumed to be smooth and the boundary-layer profiles (uB,j, �v B,j) enjoy the following 
basic hypothesis (see also [22, Chapter 4], [18], [57]):

(H) uB,j and �v B,j decay to zero exponentially as z → ∞.

In order to obtain the equations for outer and inner layer profiles in (2.1), the analysis will be split into three 
steps. First the initial and boundary values follow from the substitution of (2.1) into the third equality of 
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(1.3) and (1.6). Then we deduce the equations for layer profiles by inserting (2.1) into the first and second 
equations of (1.3) successively. Applying these procedures and using the asymptotic matching method 
(details are given in appendix) we deduce that the leading-order outer layer profile (uI,0, �v I,0)(x, y, t) satisfies 
the following initial–boundary value problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uI,0
t −∇ · (uI,0�v I,0) = ΔuI,0, (x, y, t) ∈ R× R+ × (0, T ),

�v I,0
t −∇uI,0 = 0,

(uI,0, �v I,0)(x, y, 0) = (u0, �v0)(x, y),

uI,0(x, 0, t) = ū(x, t).

(2.3)

Note that (2.3) is exactly the system (1.3), (1.6) with ε = 0, whose solution is denoted as (u0, �v 0)(x, y, t). 
Then we conclude that

(uI,0, �v I,0)(x, y, t) = (u0, �v 0)(x, y, t), (x, y, t) ∈ R× R+ × (0, T ) (2.4)

thanks to the uniqueness of solutions. The leading-order inner layer profile uB,0(x, z, t) satisfies

uB,0(x, z, t) ≡ 0

and vB,0
1 (x, z, t), the first component of �v B,0(x, z, t), solves

⎧⎪⎪⎨
⎪⎪⎩

∂tv
B,0
1 = ∂2

zv
B,0
1 , (x, z, t) ∈ R× R+ × (0, T ),

vB,0
1 (x, z, 0) = 0,

∂zv
B,0
1 (x, 0, t) = 0,

(2.5)

which gives rise to

vB,0
1 (x, z, t) ≡ 0, (2.6)

by the uniqueness of solutions. The second component of �v B,0(x, z, t) fulfills

⎧⎪⎪⎨
⎪⎪⎩

∂tv
B,0
2 + ū(x, t)vB,0

2 = ∂2
zv

B,0
2 , (x, z, t) ∈ R× R+ × (0, T ),

vB,0
2 (x, z, 0) = 0,

vB,0
2 (x, 0, t) = v̄(x, t) − vI,02 (x, 0, t)

(2.7)

and the first-order inner layer profile uB,1(x, z, t) is determined by vB,0
2 (x, z, t) via

uB,1(x, z, t) = ū(x, t)
∞∫
z

vB,0
2 (x, η, t) dη. (2.8)

From (2.6)–(2.7), we see that the boundary layer profile (vB,0
1 , vB,0

2 ) is not of degenerate Prandtl type and 
hence the justification for the convergence of boundary layers is promising. Moreover, the first-order outer 
layer profile (uI,1, �v I,1)(x, y, t) is the solution of
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uI,1
t = ∇ · (uI,0�v I,1) + ∇ · (uI,1�v I,0) + ΔuI,1, (x, y, t) ∈ R× R+ × (0, T ),

�v I,1
t = ∇uI,1,

(uI,1, �vI,1)(x, y, 0) = (0, 0),

uI,1(x, 0, t) = −ū(x, t)
∞∫
0

vB,0
2 (x, z, t) dz.

(2.9)

For the first-order inner layer profile �v B,1(x, z, t), its first component vB,1
1 (x, z, t) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂tv
B,1
1 − ∂xu

B,1 = ∂2
zv

B,1
1 , (x, z, t) ∈ R× R+ × (0, T ),

vB,1
1 (x, z, 0) = 0,

∂zv
B,1
1 (x, 0, t) = ∂xv̄(x, t) − ∂yv

I,0
1 (x, 0, t)

(2.10)

and its second component vB,1
2 (x, z, t) solves

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tv
B,1
2 + ū(x, t)vB,1

2 = ∂2
zv

B,1
2 − 2(vI,02 (x, 0, t) + vB,0

2 )∂zvB,0
2 +

∞∫
z

Γ(x, η, t) dη,

vB,1
2 (x, z, 0) = 0, (x, z) ∈ R× R+,

vB,1
2 (x, 0, t) = −vI,12 (x, 0, t).

(2.11)

The second-order inner layer profile uB,2(x, z, t) is given as

uB,2(x, z, t) = ū(x, t)
∞∫
z

vB,1
2 (x, η, t) dη −

∞∫
z

∞∫
η

Γ(x, ξ, t) dξdη, (2.12)

where

Γ(x, z, t) :=(uI,1(x, 0, t) + uB,1)∂zvB,0
2 + ∂yu

I,0(x, 0, t)vB,0
2

+ ∂zu
B,1(vI,02 (x, 0, t) + vB,0

2 ) + z∂yu
I,0(x, 0, t)∂zvB,0

2 .
(2.13)

Finally vB,2
1 (x, z, t), the first component of �v B,2(x, z, t), solves the following problem:

⎧⎪⎪⎨
⎪⎪⎩

∂tv
B,2
1 = −∂x[2vI,02 (x, 0, t)vB,0

2 + vB,0
2 vB,0

2 ] + ∂xu
B,2 + ∂2

zv
B,2
1 ,

vB,2
1 (x, z, 0) = 0, (x, z) ∈ R× R+,

∂zv
B,2
1 (x, 0, t) = −∂yv

I,1
1 (x, 0, t).

(2.14)

The derivation of (2.3)–(2.14) will be detailed in Appendix and their well-posedness will be gradually 
discussed in section 3. One can go further to deduce the initial boundary value problems for higher order 
layer profiles (uI,j , vI,j), (uB,j+1, vB,j+1

1 , vB,j
2 ) with j ≥ 2, but they are unnecessary for our results.

2.2. Main results

It is well-known that the appropriate compatibility conditions of initial and boundary data on the bound-
ary are needed to get the existence of the boundary layer solution and prove its convergence (cf. [12,24,59]). 
Following the convention of [31], by “the compatibility conditions up to order m (m ∈ N) for problem (1.3), 
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(1.6) with ε = 0”, we mean that ∂k
t u|t=0 = ∂k

t ū(x, 0) on the boundary ∂Ω = {(x, y) ∈ R
2| y = 0} for 

0 ≤ k ≤ m, where ∂k
t u|t=0 are determined by u0, �v0, ū, v̄ and their time derivatives through the equations 

in (1.3). Specifically in our present work we shall need the following compatibility conditions:

(A1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(x, 0) =u0(x, 0),
∂tū(x, 0) =[∇ · (u0�v0) + Δu0](x, 0),
∂2
t ū(x, 0) =∇ · [∂tū(x, 0)�v0(x, 0)] + ∇ · [u0∇u0] + Δ∂tū(x, 0),

∂3
t ū(x, 0) =∇ · [∂2

t ū(x, 0)�v0(x, 0)] + 2∇ · [∂tū(x, 0)∇u0] + ∇ · [u0∇∂tū(x, 0)] + Δ∂2
t ū(x, 0),

∂4
t ū(x, 0) =∇ · [∂3

t ū(x, 0)�v0(x, 0)] + 3∇ · [∂2
t ū(x, 0)∇u0(x, 0)]

+ 3∇ · [∂tū(x, 0)∇∂tū(x, 0)] + ∇ · [u0∇∂2
t ū(x, 0)�v0]

and

(A2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̄(x, 0) =v02(x, 0),
∂tv̄(x, 0) =∂yu0(x, 0),
∂2
t v̄(x, 0) =∂y[∇ · (u0�v0) + Δu0](x, 0),

∂3
t v̄(x, 0) =∂y[∇ · (∇ · (u0�v0) + Δu0)�v0](x, 0) + ∇ · (u0�v0)(x, 0) + Δ[∇ · (u0�v0) + Δu0](x, 0),

where (A1) stands for the compatibility condition for problem (1.3), (1.6) with ε = 0 up to order 4 and 
(A2) for problem (2.7) up to order 3. They can be derived from (2.3) and (2.7). Similarly the compatibility 
conditions for other initial–boundary problems mentioned in the sequel are defined in the same way (cf. [31, 
page 319]).

To prove our result, we need the following regularity on solutions of (1.3), (1.6) with ε = 0.

Proposition 2.1. Assume that the initial and boundary data satisfy

u0, �v0 ∈ H9
xy, u0 ≥ 0, ∇× �v0 = 0; ∂k

t ū, ∂
k
t v̄ ∈ L2

loc([0,∞);H10−2k
x ), 0 ≤ k ≤ 5

and (A1) hold. Then there exists a time T0 with 0 < T0 < ∞ such that the problem (1.3), (1.6) with ε = 0
has a unique solution (u0, �v 0)(x, y, t) on [0, T0] satisfying ∇ × �v 0(x, y, t) ≡ 0 and

∂k
t u

0 ∈ L2([0, T0];H10−2k
xy ), k = 0, 1, 2, 3, 4, 5;

∂k
t �v

0 ∈ L2([0, T0];H11−2k
xy ), k = 1, 2, 3, 4, 5;

�v 0 ∈ L∞([0, T0];H9
xy).

The proof of Proposition 2.1 is standard and hence omitted for brevity. The interested reader may be 
referred to [34, Theorem 1.1] where the local well-posedness of (1.3) with Ω = R

d (d ≥ 2) is proved. 
Moreover, the curl free requirement is automatically fulfilled by the solution since by applying “∇×” to 
the second equation of (1.3) with ε = 0, it follows that (∇ × �v 0)t = 0, which along with the assumption 
∇ × �v0 = 0 leads to ∇ × �v 0 = 0.

Remark 2.1. Proposition 2.1 only gives the local existence of large solutions to the problem (1.3), (1.6)
with ε = 0. In the sequel, we shall denote the maximal lifespan of solutions to (1.3), (1.6) with ε = 0 by 
Tmax(0 < Tmax < ∞) without further clarification. The global existence of large solutions to the problem 
(1.3), (1.6) with ε ≥ 0 still remains open to date. However if some smallness conditions are imposed on the 
initial data (u0, �v0), the global existence of solutions can be obtained (cf. [56]). Furthermore the regularity 
of initial data can be reduced if we only seek the existence of solutions without exploring convergence of 
boundary layers which requires higher regularity on solutions.
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We are now in a position to state our main result. For brevity, instead of proving (1.8), we shall prove a 
similar result with convergence rate for �v by O(ε1/4), and remark that (1.8) can be obtained similarly by 
imposing a higher regularity on the initial and boundary data.

Theorem 2.1. Suppose that the initial and boundary data satisfy

u0, �v0 ∈ H9
xy, u0 ≥ 0, ∇× �v0 = 0; ∂k

t ū, ∂
k
t v̄ ∈ L2

loc([0,∞);H10−2k
x ), 0 ≤ k ≤ 5

and the compatibility conditions (A1)–(A2). Let (u0, �v 0)(x, y, t) be the solution obtained in Proposition 2.1
and let 0 < T ≤ Tmax. Then there exists a constant εT > 0 decreasing in T with lim

T→∞
εT = 0 (defined 

in Lemma 4.3) such that for any ε ∈ (0, εT ], the problem (1.3), (1.6) admits a unique solution (uε, �v ε) ∈
C([0, T ]; H2

xy ×H2
xy) on [0, T ] satisfying ∇ × �v ε(x, y, t) ≡ 0 and

‖uε(x, y, t) − u0(x, y, t)‖L∞([0,T ];L∞
xy) ≤ Cε1/2,

‖�v ε(x, y, t) − �v 0(x, y, t) −
(
0, vB,0

2
)(
x,

y√
ε
, t
)
‖L∞([0,T ];L∞

xy) ≤ Cε1/4,
(2.15)

where the constant C > 0 is independent of ε and

vB,0
2 (x, z, t) :=

t∫
0

0∫
−∞

1√
π(t− s)

e−
( (z−η)2

4(t−s) +(t−s)ū
)
[ū(v̄ − v0

2(x, 0, s) − ∂sv
0
2(x, 0, s))]dηds. (2.16)

Remark 2.2. The convergence rate for �v in (2.15) can be enhanced to O(ε1/2) by including the higher-order 
profiles (uI,2, �v I,2), (uB,3, vB,3

1 , vB,2
2 ) in the approximation (Ua, �V a) (see Section 4), and then applying the 

similar procedures as proving (2.15) based on stronger assumptions on initial–boundary data: u0, �v 0 ∈ H11, 
∂k
t ū, ∂

k
t v̄ ∈ L2

loc([0, ∞]; H12−2k
x ).

Remark 2.3. The regularity of (uε, �v ε) in Theorem 2.1 is much lower than that of the given initial data 
(u0, �v0) ∈ H9

xy, since the conditions (A1)–(A2) only provide the zero-th order compatibility condition for 
the problem (1.3), (1.6) with ε > 0 (i.e. ū(x, 0) = u0(x, 0) and v̄(x, 0) = v02(x, 0)). By assuming further 
that the initial–boundary data satisfy the compatibility conditions of (1.3), (1.6) with ε > 0 up to order 4, 
the regularity space of (uε, �v ε) can be improved to C([0, T ]; H9

xy ×H9
xy). However the regularity derived in 

Theorem 2.1 is sufficient to derive our main result (2.15).

Finally we transfer the results obtained in Theorem 2.1 to the original KS chemotaxis system (1.1). Note 
that the boundary condition in (1.6) for �v is equivalent to [∇c ·�n+ v̄(x, t)c]|y=0 = 0 by a simple calculation, 
where �n denotes the unit outward normal vector of ∂Ω = {(x, y) ∈ R

2 | y = 0}, namely �n = (0, −1). Then 
the corresponding initial–boundary value problem of the original chemotaxis model (1.1) reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (∇u− χu
c∇c), (x, y, t) ∈ R× R+ × (0, T ),

ct = εΔc− uc,

(u, c)(x, y, 0) = (u0, c0)(x, y),
u|y=0 = ū(x, t), [∇c · �n + v̄(x, t)c]|y=0 = 0 if ε > 0,
u|y=0 = ū(x, t) if ε = 0.

(2.17)

By Theorem 2.1, we get the following results for the problem (2.17).
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Theorem 2.2. Suppose (u0, ln c0) ∈ H9
xy × H10

xy with u0 ≥ 0, c0 > 0. Let the assumptions in Theorem 2.1
hold with �v0 = −∇c0

c0
. Then (2.17) admits a unique solution (uε, cε) ∈ C([0, T ]; H2

xy ×H3
xy) for ε ∈ (0, εT ]

and (u0, c0) ∈ C([0, T ]; H9
xy ×H10

xy) for ε = 0 such that

‖uε(x, y, t) − u0(x, y, t)‖L∞([0,T ];L∞
xy) ≤ Cε1/2,

‖cε(x, y, t) − c0(x, y, t)‖L∞([0,T ];L∞
xy) ≤ Cε1/4

(2.18)

and

‖∇cε(x, y, t) −∇c0(x, y, t) +
(
0, c0(x, y, t)vB,0

2
(
x,

y√
ε
, t
))
‖L∞([0,T ];L∞

xy) ≤ Cε1/4, (2.19)

where vB,0
2 is defined in (2.16) and the constant C > 0 is independent of ε.

The results of Theorem 2.2 show that the boundary layers will be present in the slope (derivative) of 
solution component c (i.e. ∇c) instead of the value of c itself. The first equation of (2.17) indicates that 
the presence of boundary layer in ∇c will cause a rapid change in chemotactic flux near the boundary for 
small ε > 0. This means that chemical diffusion rate ε plays an important role for the dynamics in the 
vicinity of boundary and can not be neglected, which elucidates the question whether the dynamics of (1.1)
is significantly different between ε = 0 and ε > 0 small.

3. Regularity of outer and inner layer profiles

To assert the well-posedness of solutions of (2.7)–(2.14), we first exploit some preliminary results. In 
particular, to solve (2.7) and (2.11) we introduce the following auxiliary system

⎧⎪⎪⎨
⎪⎪⎩

θt(x, z, t) + ū(x, t)θ(x, z, t) = ∂2
zθ(x, z, t) + ρ(x, z, t), (x, z, t) ∈ R× R+ × R+,

θ(x, z, 0) = 0,

θ|z=0 = 0.

(3.1)

Then the following regularity result on solutions of (3.1) holds.

Proposition 3.1. Let 0 < T < ∞ and m ∈ N+. Suppose ρ satisfies for all l ∈ N that

〈z〉l∂k
t ρ ∈ L2([0, T ];H2m−2k

x L2
z), k = 0, 1, · · · ,m

and ū(x, t) satisfies

∂k
t ū ∈ L2([0, T ];H2m+1−2k

x ), k = 0, 1, · · · ,m.

Assume further that ρ and ū satisfy the compatibility conditions up to order (m − 1) for the problem (3.1). 
Then (3.1) admits a unique solution θ(x, z, t) on [0, T ] such that for any l ∈ N

〈z〉l∂k
t θ ∈ L∞([0, T ];H2m−2k

x H1
z ) ∩ L2([0, T ];H2m−2k

x H2
z ), k = 0, 1, · · · ,m.

We omit the proof of Proposition 3.1 since it is standard and refer the reader to [9, pages 380–388] for 
details. To study (2.9) we consider the following initial–boundary problem
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ht = Δh + ∇ · (�f1h) + ∇ · (f2 �w) + f, (x, y, t) ∈ R× R+ × R+,

�wt = ∇h + �g,

(h, �w)(x, y, 0) = (h0, �w0)(x, y),

h|y=0 = 0,

(3.2)

whose well-posedness is as follows.

Proposition 3.2. Let 0 < T < ∞ and m ∈ N+. Suppose that (h0, �w0) ∈ H2m−1
xy ×H2m−1

xy and

∂k
t f ∈ L2([0, T ];H2m−2−2k

xy ), ∂k
t �g ∈ L2([0, T ];H2m−1−2k

xy ) for k = 0, 1, · · · ,m− 1;

∂k
t
�f1 ∈ L∞([0, T ];H2m−1−2k

xy ), ∂k
t f2 ∈ L2([0, T ];H2m−2k

xy ) for k = 0, 1, · · · ,m− 1.

Assume further that (h0, �w0) and f, �g, �f1, f2 satisfy the compatibility conditions up to order (m − 1) for 
problem (3.2). Then (3.2) admits a unique solution (h, �w)(x, y, t) on [0, T ] such that

∂k
t h ∈ L2([0, T ];H2m−2k

xy ) for k = 0, 1, · · · ,m;

∂k
t �w ∈ L2([0, T ];H2m+1−2k

xy ) for k = 1, · · · ,m; �w ∈ L∞([0, T ];H2m−1
xy ).

The proof of Proposition 3.2 is omitted for brevity and refer to [24, Proposition 3.1] for details.
Finally, for the regularity on solutions of (2.10) and (2.14), we introduce the following system

⎧⎪⎪⎨
⎪⎪⎩

ψt(x, z, t) = ∂2
zψ(x, z, t) + r(x, z, t), (x, z, t) ∈ R× R+ × R+,

ψ(x, z, 0) = 0,

∂zψ(x, 0, t) = s(x, t).

(3.3)

For system (3.3), we have the following result.

Proposition 3.3. Let 0 < T < ∞ and assume the integer m ≥ 3. Assume r(x, z, t) fulfills for all l ∈ N that

〈z〉lr, 〈z〉l∂tr ∈ L2([0, T ];Hm
x L2

z); 〈z〉l∂2
t r ∈ L2([0, T ];Hm−2

x L2
z)

and s(x, t) satisfies

s, ∂ts ∈ L2([0, T ];Hm
x ); ∂2

t s ∈ L2([0, T ];Hm−2
x ).

Assume further that r and s satisfy the compatibility conditions up to order 1 for the initial–boundary 
problem (3.3). Then there exists a unique solution ψ(x, z, t) of (3.3) on [0, T ] such that for any l ∈ N:

〈z〉lψ, 〈z〉l∂zψ, 〈z〉l∂tψ ∈ L∞([0, T ];Hm
x L2

z) ∩ L2([0, T ];Hm
x H1

z );

〈z〉l∂z∂tψ, 〈z〉l∂2
t ψ ∈ L∞([0, T ];Hm−2

x L2
z) ∩ L2([0, T ];Hm−2

x H1
z ).

(3.4)

Proof. The existence and uniqueness for solution of system (3.3) directly follows from [31, page 170, Theo-
rem 5.1] and we omit it for brevity. It remains to derive the desired regularity estimates (3.4) for solution ψ. 
With 0 ≤ j ≤ m and l ∈ N, we first apply ∂j

x (j-th order differentiation) to (3.3), then multiply the resulting 
equation with 2〈z〉2l∂j

xψ in L2
xz and use integration by parts to derive
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d

dt
‖〈z〉l∂j

xψ‖2
L2

xz
+ 2‖〈z〉l∂j

x∂zψ‖2
L2

xz

= − 4l
∞∫
0

∞∫
−∞

〈z〉2l−2z(∂z∂j
xψ)(∂j

xψ)dxdz + 2
∞∫
0

∞∫
−∞

〈z〉2l(∂j
xr)(∂j

xψ)dxdz

+ 2
∞∫

−∞

(∂j
x∂zψ(x, 0, t))(∂j

xψ(x, 0, t))dx (3.5)

≤1
2‖〈z〉

l∂j
x∂zψ‖2

L2
xz

+ C0(l2 + 1)‖〈z〉l∂j
xψ‖2

L2
xz

+ ‖〈z〉l∂j
xr‖2

L2
xz

+ 2
∞∫

−∞

(∂j
xs(x, t))(∂j

xψ(x, 0, t))dx

with

2
∞∫

−∞

(∂j
xs(x, t))(∂j

xψ(x, 0, t))dx ≤2
∞∫

−∞

|∂j
xs(x, t)| ‖∂j

xψ(x, z, t)‖L∞
z
dx

≤C0

∞∫
−∞

|∂j
xs(x, t)| ‖∂j

xψ(x, z, t)‖H1
z
dx

≤1
2‖〈z〉

l∂j
x∂zψ‖2

L2
xz

+ 1
2‖〈z〉

l∂j
xψ‖2

L2
xz

+ C0‖∂j
xs‖2

L2
x
,

where the Sobolev embedding inequality has been used. Summing (3.5) from j = 0 to j = m and applying 
Gronwall’s inequality, one deduces that

‖〈z〉lψ‖2
L∞

T Hm
x L2

z
+ ‖〈z〉l∂zψ‖2

L2
THm

x L2
z
≤ C. (3.6)

Here the constants C0 and C are as stated in section 2. We proceed to derive higher regularity estimates 
for ψ. Similar to the above procedure in deriving (3.5), we apply ∂j

x to (3.3) and multiply the resulting 
equation with 2〈z〉2l∂j

x∂tψ in L2
xz to have

d

dt
‖〈z〉l∂j

x∂zψ‖2
L2

xz
+ 2‖〈z〉l∂j

x∂tψ‖2
L2

xz

≤1
2‖〈z〉

l∂j
x∂tψ‖2

L2
xz

+ C0(l2 + 1)‖〈z〉l∂j
x∂zψ‖2

L2
xz

+ C0‖〈z〉l∂j
xr‖2

L2
xz

+ 2
∞∫

−∞

(∂j
xs(x, t))(∂j

x∂tψ(x, 0, t))dx

(3.7)

with

2
∞∫

−∞

(∂j
xs(x, t))(∂j

x∂tψ(x, 0, t))dx ≤1
2‖〈z〉

l∂j
x∂z∂tψ‖2

L2
xz

+ 1
2‖〈z〉

l∂j
x∂tψ‖2

L2
xz

+ C0‖∂j
xs‖2

L2
x
.

On the other hand, by setting t = 0 in the first equation of (3.3) and noting that ∂2
zψ(x, z, 0) = 0 thanks 

to the initial condition ψ(x, z, 0) = 0 in (3.3), we derive ∂tψ(x, z, 0) = r(x, z, 0). Then applying ∂t to (3.3)
one finds that ∂tψ solves a similar system as (3.3) with r(x, z, t), s(x, t) and the initial condition replaced 
by ∂tr(x, z, t), ∂ts(x, t) and ∂tψ(x, z, 0) = r(x, z, 0), respectively. Thus it follows from (3.5) that
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d

dt
‖〈z〉l∂j

x∂tψ‖2
L2

xz
+ 2‖〈z〉l∂j

x∂z∂tψ‖2
L2

xz

≤‖〈z〉l∂j
x∂z∂tψ‖2

L2
xz

+ C0(l2 + 1)‖〈z〉l∂j
x∂tψ‖2

L2
xz

+ ‖〈z〉l∂j
x∂tr‖2

L2
xz

+ C0‖∂j
x∂ts‖2

L2
x
.

(3.8)

We add (3.8) to (3.7) and then sum the results from j = 0 to j = m to get

d

dt
(‖〈z〉l∂zψ‖2

Hm
x L2

z
+ ‖〈z〉l∂tψ‖2

Hm
x L2

z
) + ‖〈z〉l∂tψ‖Hm

x L2
z

+ ‖〈z〉l∂z∂tψ‖2
Hm

x L2
z

≤C0(‖〈z〉l∂zψ‖2
Hm

x L2
z

+ ‖〈z〉l∂tψ‖2
Hm

x L2
z
) + C0(‖〈z〉lr‖2

Hm
x L2

z
+ ‖〈z〉l∂tr‖2

Hm
x L2

z
+ ‖s‖2

Hm
x

+ ‖∂ts‖2
Hm

x
),

which along with Gronwall’s inequality leads to

‖〈z〉l∂zψ‖2
L∞

T Hm
x L2

z
+ ‖〈z〉l∂tψ‖2

L∞
T Hm

x L2
z

+ ‖〈z〉l∂tψ‖L2
THm

x L2
z

+ ‖〈z〉l∂z∂tψ‖2
L2

THm
x L2

z
≤ C. (3.9)

By an analogous argument as deriving (3.9) one can deduce for all l ∈ N that

‖〈z〉l∂z∂tψ‖2
L∞

T Hm−2
x L2

z
+ ‖〈z〉l∂2

t ψ‖2
L∞

T Hm−2
x L2

z

+ ‖〈z〉l∂2
t ψ‖L2

THm−2
x L2

z
+ ‖〈z〉l∂z∂2

t ψ‖2
L2

THm−2
x L2

z
≤ C.

(3.10)

Combining (3.6), (3.9) and (3.10), we get the desired estimates and complete the proof. �
With the above results in hand, we establish the well-posedness of (2.7)–(2.14).

Lemma 3.1. Suppose the assumptions in Theorem 2.1 hold. Let (u0, �v 0)(x, y, t) be the solution obtained in 
Proposition 2.1 and 0 < T ≤ Tmax. Then

vB,0
2 (x, z, t) :=

t∫
0

0∫
−∞

1√
π(t− s)

e−
( (z−η)2

4(t−s) +(t−s)ū
)
[ū(v̄ − v0

2(x, 0, s) − ∂sv
0
2(x, 0, s))]dηds (3.11)

is the unique solution of (2.7) on [0, T ] satisfying for all l ∈ N that

〈z〉l∂k
t v

B,0
2 ∈ L∞([0, T ];H8−2k

x H1
z ) ∩ L2([0, T ];H8−2k

x H2
z ), k = 0, 1, 2, 3, 4. (3.12)

Furthermore, it follows from the equations (2.7) and (2.8) that

〈z〉lvB,0
2 ∈ L∞([0, T ];H6

xH
3
z ), 〈z〉l∂tvB,0

2 ∈ L∞([0, T ];H4
xH

3
z ) (3.13)

and that

〈z〉l∂k
t u

B,1 ∈ L∞([0, T ];H8−2k
x H2

z ) ∩ L2([0, T ];H8−2k
x H3

z ), k = 0, 1, 2, 3, 4.

Proof. Observing that for fixed x ∈ R, (2.7) can be converted to the one dimensional heat equation with 
independent variables (t, z) ∈ (0, T ) × R+, which has been explicitly solved by a formula similar to (3.11)
using the reflection method with odd extension in [24, Lemma 3.2]. Thus we omit the derivation of (3.11)
for brevity and refer the reader to [24, Lemma 3.2] for details. We proceed to prove (3.12). Let ϕ(z) be a 
smooth function defined on [0, ∞) satisfying

ϕ(0) = 1, ϕ(z) = 0 for z > 1. (3.14)

Denote ṽB,0
2 (x, z, t) = vB,0

2 (x, z, t) −
(
v̄(x, t) − v0

2(x, 0, t)
)
ϕ(z). Then one deduces from (2.7) and (2.4) that
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⎧⎪⎪⎨
⎪⎪⎩

∂tṽ
B,0
2 + ū(x, t)ṽB,0

2 = ∂2
z ṽ

B,0
2 + ρ(x, z, t), (x, z, t) ∈ R× R+ × (0, T ),

ṽB,0
2 (x, z, 0) = 0,

ṽB,0
2 (x, 0, t) = 0,

(3.15)

where ρ(x, z, t) =
(
v̄(x, t) −v0

2(x, 0, t)
)
∂2
zϕ(z) −∂t

(
v̄(x, t) −v0

2(x, 0, t)
)
ϕ(z) − ū(x, t)

(
v̄(x, t) −v0

2(x, 0, t)
)
ϕ(z). 

The compatibility condition v̄(x, 0) = v02(x, 0) in (A2) has been used to determine the initial data of ṽB,0
2

in (3.15). We next prove that ρ satisfies the assumptions in Proposition 3.1 with m = 4. First note that for 
f(x, y, t) ∈ Hk+1

xy with fixed t > 0 and k ∈ N the following holds

‖f(x, 0, t)‖2
Hk

x
=

k∑
j=0

∞∫
−∞

|∂j
xf(x, 0, t)|2 dx

≤
k∑

j=0

∞∫
−∞

‖∂j
xf(x, y, t)‖2

L∞
y
dx

≤C0

k∑
j=0

∞∫
−∞

‖∂j
xf(x, y, t)‖2

H1
y
dx ≤ C0‖f(x, y, t)‖2

Hk+1
xy

,

(3.16)

where the Sobolev embedding inequality has been used. Then it follows from Proposition 2.1 and (3.16)
that

‖∂k
t v

0
2(x, 0, t)‖L2

TH10−2k
x

≤ ‖∂k
t v

0
2‖L2

TH11−2k
xy

≤ C, k = 1, 2, 3, 4, 5 (3.17)

and that ‖v0
2(x, 0, t)‖L2

TH8
x
≤ ‖v0

2‖L2
TH9

xy
≤ C. Hence from the above estimates we deduce for l ∈ N and 

k = 0, 1, 2, 3, 4 that

‖〈z〉l∂k
t ρ‖L2

TH8−2k
x L2

z

≤
(
‖∂k

t v̄‖L2
TH8−2k

x
+ ‖∂k

t v
0
2(x, 0, t)‖L2

TH8−2k
x

)
‖〈z〉l∂2

zϕ‖L2
z

+
(
‖∂k+1

t v̄‖
L2

TH
10−2(k+1)
x

+ ‖∂k+1
t v0

2(x, 0, t)‖
L2

TH
10−2(k+1)
x

)
‖〈z〉lϕ‖L2

z

+
k∑

j=0
(‖∂j

t v̄‖L2
TH8−2j

x
+ ‖∂j

t v
0
2(x, 0, t)‖L2

TH8−2j
x

)‖∂k−j
t ū‖

L∞
T H

9−2(k−j)
x

‖〈z〉lϕ‖L2
z

≤C,

(3.18)

where ‖∂k−j
t ū‖

L∞
T H

9−2(k−j)
x

≤ C has been used thanks to the assumptions on ū in Theorem 2.1. Moreover, 
it is easy to verify that ρ and ū satisfy the compatibility conditions up to order 3 for the problem (3.15)
under assumption (A2). We then apply Proposition 3.1 with m = 4 to (3.15) to conclude that

〈z〉l∂k
t ṽ

B,0
2 ∈ L∞([0, T ];H8−2k

x H1
z ) ∩ L2([0, T ];H8−2k

x H2
z ), k = 0, 1, 2, 3, 4,

which, along with the definition of ṽB,0
2 and (3.17) gives rise to (3.12). The estimate for uB,1 follows directly 

from (2.8), (3.12) and the assumptions on ū in Theorem 2.1. It remains to prove (3.13). Indeed, by (2.7)
and (3.12) we deduce for all l ∈ N that

‖〈z〉lvB,0
2 ‖L∞

T H6
xH

3
z
≤ C0(‖ū‖L∞

T H6
x
‖〈z〉lvB,0

2 ‖L∞
T H6

xH
1
z

+ ‖〈z〉l∂tvB,0
2 ‖L∞

T H6
xH

1
z
) ≤ C. (3.19)

A similar argument gives ‖〈z〉l∂tvB,0
2 ‖L∞H4H3 ≤ C. The proof is completed. �
T x z
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Lemma 3.2. Suppose the assumptions in Theorem 2.1 hold. Let (u0, �v 0)(x, y, t) and vB,0
2 (x, z, t) be 

as obtained in Proposition 2.1 and Lemma 3.1, respectively. Then (2.9) admits a unique solutions 
(uI,1, �v I,1)(x, y, t) on [0, T ] such that

∂k
t u

I,1 ∈ L2([0, T ];H8−2k
xy ), k = 0, 1, 2, 3, 4;

∂k
t �v

I,1 ∈ L2([0, T ];H9−2k
xy ), k = 1, 2, 3, 4; �v I,1 ∈ L∞([0, T ];H7

xy).
(3.20)

Proof. Let ϕ be as defined in (3.14). We denote ũI,1(x, y, t) = uI,1(x, y, t) + ϕ(y)ū(x, t) 
∫∞
0 vB,0

2 (x, z, t)dz. 
Then it follows from (2.9) that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tũ
I,1 = ∇ · (�v 0ũI,1) + ∇ · (u0�v I,1) + ΔũI,1 + f,

�v I,1
t = ∇ũI,1 + �g,

(ũI,1, �v I,1)(x, y, 0) = (0, 0),

ũI,1(x, 0, t) = 0,

(3.21)

where �g(x, y, t) = −∇
[
ϕ(y)ū(x, t) 

∫∞
0 vB,0

2 (x, z, t)dz
]

and

f(x, y, t) =ϕ(y)∂t
[
ū(x, t)

∞∫
0

vB,0
2 (x, z, t)dz

]
− Δ

[
ϕ(y)ū(x, t)

∞∫
0

vB,0
2 (x, z, t)dz

]

−∇ ·
[
ϕ(y)ū(x, t)�v 0(x, y, t)

∞∫
0

vB,0
2 (x, z, t)dz

]
.

To apply Proposition 3.2 with m = 4 to (3.21) we next verify that �v 0, u0, f and �g satisfy the corresponding 
assumptions. By the Cauchy–Schwarz inequality and Lemma 3.1 we deduce for j = 0, 1, 2, 3, 4 that

∥∥∥∥
∞∫
0

∂j
t v

B,0
2 dz

∥∥∥∥
L∞

T H8−2j
x

≤
( ∞∫

0

〈z〉−2dz

)1/2

‖〈z〉∂j
t v

B,0
2 ‖L∞

T H8−2j
x L2

z
≤ C. (3.22)

Thus it follows for k = 0, 1, 2, 3 that

‖∂k
t f‖L2

TH6−2k
xy

≤C0

k+1∑
j=0

‖∂k+1−j
t ū‖

L2
TH

8−2(k+1−j)
x

∥∥ ∞∫
0

∂j
t v

B,0
2 dz

∥∥
L∞

T H7−2j
x

‖ϕ‖H6
y

+C0

k∑
i+j=0

‖∂k−(i+j)
t ū‖

L2
TH

7−2(k−i−j)
x

‖∂i
t�v

0‖L∞
T H7−2i

∥∥ ∞∫
0

∂j
t v

B,0
2 dz

∥∥
L∞

T H7−2j
x

‖ϕ‖H7
y

+C0

k∑
j=0

‖∂k−j
t ū‖

L2
TH

8−2(k−j)
x

∥∥ ∞∫
0

∂j
t v

B,0
2 dz

∥∥
L∞

T H8−2j
x

‖ϕ‖H8
y
≤ C.

Similarly, for k = 0, 1, 2, 3, one gets ‖∂k
t �g‖L2

TH7−2k
xy

≤ C.
It is easy to verify that f , �g, u0 and �v 0 satisfy the compatibility conditions up to order 3 for problem (3.21)

under assumption (A1)–(A2). By the above estimates for �g, f and Proposition 2.1, we apply Proposition 3.2
with m = 4 to (3.21) to conclude that

∂k
t ũ

I,1 ∈ L2([0, T ];H8−2k
xy ) for k = 0, 1, 2, 3, 4,

∂k
t �v

I,1 ∈ L2([0, T ];H9−2k
xy ) for k = 1, 2, 3, 4, �v I,1 ∈ L∞([0, T ];H7

xy),

which, along with the definition of ũI,1 and (3.22), leads to (3.20) and completes the proof. �
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Lemma 3.3. Suppose the assumptions in Theorem 2.1 hold true. Let (u0, �v 0)(x, y, t) and uB,1(x, z, t) be as 
derived in Proposition 2.1 and Lemma 3.1, respectively. Then there exists a unique solution vB,1

1 (x, z, t) of 
(2.10) on [0, T ] such that for any l ∈ N

〈z〉lvB,1
1 , 〈z〉l∂zvB,1

1 , 〈z〉l∂tvB,1
1 ∈ L∞([0, T ];H5

xL
2
z) ∩ L2([0, T ];H5

xH
1
z );

〈z〉l∂z∂tvB,1
1 , 〈z〉l∂2

t v
B,1
1 ∈ L∞([0, T ];H3

xL
2
z) ∩ L2([0, T ];H3

xH
1
z ).

(3.23)

Furthermore, it follows from (2.10) that

〈z〉lvB,1
1 ∈ L∞([0, T ];H5

xH
2
z ), 〈z〉l∂tvB,1

1 ∈ L∞([0, T ];H3
xH

2
z ). (3.24)

Proof. Let r(x, z, t) = ∂xu
B,1(x, z, t) and s(x, t) = ∂xv̄(x, t) −∂yv

0
1(x, 0, t). We next verify that r(x, z, t) and 

s(x, t) satisfy the assumptions in Proposition 3.3 with m = 5. In fact, for l ∈ N one deduces from Lemma 3.1
that

‖〈z〉lr‖L2
TH5

xL
2
z

+ ‖〈z〉l∂tr‖L2
TH5

xL
2
z

+ ‖〈z〉l∂2
t r‖L2

TH3
xL

2
z

≤‖〈z〉luB,1‖L2
TH6

xL
2
z

+ ‖〈z〉l∂tuB,1‖L2
TH6

xL
2
z

+ ‖〈z〉l∂2
t u

B,1‖L2
TH4

xL
2
z
≤ C.

Moreover, (3.16) and Proposition 2.1 entail that

‖s‖L2
TH5

x
+ ‖∂ts‖L2

TH5
x

+ ‖∂2
t s‖L2

TH3
x
≤‖v̄‖L2

TH6
x

+ ‖v0
1‖L2

TH7
xy

+ ‖∂tv̄‖L2
TH6

x
+ ‖∂tv0

1‖L2
TH7

xy

+ ‖∂2
t v̄‖L2

TH4
x

+ ‖∂2
t v

0
1‖L2

TH5
xy

≤ C.

It is easy to verify that the compatibility conditions up to order 1 for problem (2.10) are fulfilled by r and s
under assumption (A1)–(A2). By the above estimates on r(x, z, t) and s(x, t), we can apply Proposition 3.3
to (2.10) and derive (3.23). Moreover, (3.24) follows from (2.10) and (3.23) by a similar argument as deriving 
(3.19). The proof is completed. �
Lemma 3.4. Suppose the assumptions in Theorem 2.1 hold. Let (u0, �v 0)(x, y, t), (vB,0

2 , uB,1)(x, z, t) and 
(uI,1, �v I,1)(x, y, t) be as derived in Proposition 2.1, Lemma 3.1 and Lemma 3.2, respectively. Then (2.11)
admits a unique solution vB,1

2 (x, z, t) on [0, T ] satisfying for all l ∈ N that

〈z〉l∂k
t v

B,1
2 ∈ L∞([0, T ];H6−2k

x H1
z ) ∩ L2([0, T ];H6−2k

x H2
z ), k = 0, 1, 2, 3. (3.25)

Moreover, it follows from (2.11) and (2.12) that

〈z〉lvB,1
2 ∈ L∞([0, T ];H4

xH
3
z ), 〈z〉l∂tvB,1

2 ∈ L∞([0, T ];H2
xH

3
z ) (3.26)

and that

〈z〉l∂k
t u

B,2 ∈ L∞([0, T ];H6−2k
x H2

z ) ∩ L2([0, T ];H6−2k
x H3

z ), k = 0, 1, 2, 3. (3.27)

Proof. Let ϕ be as defined in (3.14). Denote ṽB,1
2 (x, z, t) = vB,1

2 (x, z, t) + ϕ(z)vI,12 (x, 0, t). From (2.11) one 
deduces that ⎧⎪⎪⎨

⎪⎪⎩
∂tṽ

B,1
2 + ū(x, t)ṽB,1

2 = ∂2
z ṽ

B,1
2 + ρ,

ṽB,1
2 (x, z, 0) = 0,

ṽB,1(x, 0, t) = 0,

(3.28)
2
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where ρ(x, z, t) = ∂tv
I,1
2 (x, 0, t)ϕ(z) +ū(x, t)vI,12 (x, 0, t)ϕ(z) −vI,12 (x, 0, t)∂2

zϕ(z) −2(v0
2(x, 0, t) +vB,0

2 )∂zvB,0
2 +∫∞

z
Γ(x, η, t) dη with Γ(x, z, t) defined in (2.13). For k = 0, 1, 2, 3 and l ∈ N one has

〈z〉l∂k
t ρ =[〈z〉lϕ(z)∂k+1

t vI,12 (x, 0, t) + 〈z〉lϕ(z)∂k
t (ū(x, t)vI,12 (x, 0, t)) − 〈z〉l∂2

zϕ(z)∂k
t v

I,1
2 (x, 0, t)]

− 2〈z〉l∂k
t [(v0

2(x, 0, t) + vB,0
2 )∂zvB,0

2 ] + [〈z〉l
∞∫
z

∂k
t Γ(x, η, t) dη]

:=R1 −R2 + R3.

We proceed to estimate R1, R2 and R3. First it follows from (3.16) and Lemma 3.2 that

‖∂k
t v

I,1
2 (x, 0, t)‖L2

TH8−2k
x

≤ ‖∂k
t v

I,1
2 ‖L2

TH9−2k
xy

≤ C, k = 1, 2, 3, 4 (3.29)

and that ‖vI,12 (x, 0, t)‖L2
TH6

x
≤ ‖vI,12 ‖L2

TH7
xy

≤ C. Thus by (3.29) and a similar argument as deriving (3.18)
one gets ‖R1‖L2

TH6−2k
x L2

z
≤ C. Moreover, it follows from the Sobolev embedding inequality that

‖R2‖L2
TH6−2k

x L2
z
≤

k∑
j=0

(‖∂j
t v

0
2‖L2

TH8−2j
xy

‖〈z〉l∂k−j
t ∂zv

B,0
2 ‖

L∞
T H

6−2(k−j)
x L2

z

+ ‖∂j
t v

B,0
2 ‖L2

TH8−2j
x H2

z
‖〈z〉l∂k−j

t ∂zv
B,0
2 ‖

L∞
T H

6−2(k−j)
x L2

z
) ≤ C,

where we have used the following inequality

‖f(x, z, t)g(x, z, t)‖Hl
xL

2
z
≤C0

l∑
i=0

‖∂i
xf‖L∞

xz

l∑
j=0

‖∂j
xg‖L2

xz

≤C0

l∑
i=0

‖∂i
xf‖H2

xz

l∑
j=0

‖∂i
xg‖L2

xz
≤ C0‖f‖Hl+2

x H2
z
‖g‖Hl

xL
2
z

(3.30)

for fixed t > 0. By (3.16), Proposition 2.1, Lemma 3.1 and a similar argument as estimating ‖R2‖L2
TH6−2k

x L2
z

one derives for all l ∈ N and k = 0, 1, 2, 3 that

‖〈z〉l+2∂k
t Γ‖L2

TH6−2k
x L2

z
≤ C. (3.31)

On the other hand, the Cauchy–Schwarz inequality entails for fixed t ∈ [0, T ] that

‖R3‖2
H6−2k

x L2
z
≤

∞∫
0

(
〈z〉l

∞∫
z

‖∂k
t Γ(x, η, t)‖H6−2k

x
dη

)2
dz

≤
∞∫
0

〈z〉−2dz ·
( ∞∫

0

‖〈η〉l+1∂k
t Γ‖H6−2k

x
dη

)2

≤
∞∫
0

〈z〉−2dz ·
∞∫
0

〈η〉−2dη ·
∞∫
0

‖〈η〉l+2∂k
t Γ‖2

H6−2k
x

dη

≤C0‖〈z〉l+2∂k
t Γ‖2

H6−2k
x L2

z
,

which, along with (3.31) gives rise to ‖R3‖L2
TH6−2k

x L2
z
≤ C. Then collecting the above estimates for R1, R2

and R3 we deduce for all l ∈ N and k = 0, 1, 2, 3 that ‖〈z〉l∂k
t ρ‖ 2 6−2k 2 ≤ C. It is easy to verify that 
LTHx Lz
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ρ and ū fulfill the compatibility conditions up to order 2 for problem (3.28) under assumption (A1)–(A2). 
Then we apply Proposition 3.1 with m = 3 to (3.28) to conclude that

〈z〉l∂k
t ṽ

B,1
2 ∈ L∞([0, T ];H6−2k

x H1
z ) ∩ L2([0, T ];H6−2k

x H2
z ), k = 0, 1, 2, 3,

which, in conjunction with the definition of ṽB,1
2 and (3.29), implies (3.25). Then (3.27) follows directly from 

(2.12), (3.25) and (3.31). Finally, by a similar argument used in deriving (3.19), one deduces (3.26) from 
(3.25), (2.11) and (3.31). The proof is finished. �
Lemma 3.5. Suppose the assumptions in Theorem 2.1 hold. Let �v 0(x, y, t), vB,0

2 (x, z, t), �v I,1(x, y, t) and 
uB,2(x, z, t) be as derived in Proposition 2.1, Lemma 3.1, Lemma 3.2 and Lemma 3.4 respectively. Then 
(2.14) admits a unique solution vB,2

1 (x, z, t) on [0, T ] such that for any l ∈ N,

〈z〉lvB,2
1 , 〈z〉l∂zvB,2

1 , 〈z〉l∂tvB,2
1 ∈ L∞([0, T ];H3

xL
2
z) ∩ L2(0, T ;H3

xH
1
z );

〈z〉l∂z∂tvB,2
1 , 〈z〉l∂2

t v
B,2
1 ∈ L∞([0, T ];H1

xL
2
z) ∩ L2([0, T ];H1

xH
1
z ).

(3.32)

Moreover, it follows from (2.14) that

〈z〉lvB,2
1 ∈ L∞([0, T ];H3

xH
2
z ), 〈z〉l∂tvB,2

1 ∈ L∞([0, T ];H2
xz). (3.33)

Proof. Let r(x, z, t) = −∂x[2v0
2(x, 0, t)vB,0

2 + vB,0
2 vB,0

2 ] + ∂xu
B,2 and s(x, t) = −∂yv

I,1
1 (x, 0, t). To apply 

Proposition 3.3 to (2.14) we shall prove that r and s satisfy the assumptions of Proposition 3.3 with m = 3. 
First, it is easy to verify that r and s fulfill the compatibility conditions up to order 1 for problem (2.14)
under assumption (A1)–(A2). Moreover, for any l ∈ N we deduce from (3.17) and (3.30) that

‖〈z〉l∂tr‖L2
TH3

xL
2
z
≤C0(‖v0

2‖L2
TH5

xy
‖〈z〉l∂tvB,0

2 ‖L∞
T H4

xL
2
z

+ ‖∂tv0
2‖L2

TH5
xy
‖〈z〉lvB,0

2 ‖L∞
T H4

xL
2
z

+ ‖vB,0
2 ‖L∞

T H6
xH

2
z
‖〈z〉l∂tvB,0

2 ‖L2
TH4

xL
2
z

+ ‖〈z〉l∂tuB,2‖L2
TH4

xL
2
z
) ≤ C.

Similarly, one derives ‖〈z〉lr‖L2
TH3

xL
2
z
+ ‖〈z〉l∂2

t r‖L2
TH1

xL
2
z
≤ C. On the other hand, it follows from (3.16) and 

Lemma 3.2 that

‖s‖L2
TH3

x
+ ‖∂ts‖L2

TH3
x

+ ‖∂2
t s‖L2

TH1
x
≤ ‖vI,11 ‖L2

TH5
xy

+ ‖∂tvI,11 ‖L2
TH5

xy
+ ‖∂2

t v
I,1
2 ‖L2

TH3
xy

≤ C.

Combining the above estimates for r(x, z, t) and s(x, t) we then apply Proposition 3.3 with m = 3 to (2.14)
and derive (3.32). By a similar argument as deriving (3.19), we get (3.33) from (2.14) and (3.32). The proof 
is completed. �
4. Proof of main results

To show the convergence results in (2.15), we first approximate solutions (uε, �v ε) of (1.3), (1.6) with 
ε > 0 by a superposition of outer and inner layer profiles derived in the previous section, and then estimate 
the remainders by the delicate energy method and bootstrap argument. In particular the approximation 
(Ua, �V a)(x, y, t) is defined as follows:

Ua(x, y, t) =u0(x, y, t) + ε1/2uI,1(x, y, t) + ε1/2uB,1
(
x,

y√
ε
, t
)

+ εuB,2
(
x,

y√ , t
)
− εϕ(y)uB,2(x, 0, t),
ε
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�V a(x, y, t) =�v 0(x, y, t) +
(
0, vB,0

2

(
x,

y√
ε
, t
))

+ ε1/2�v I,1(x, y, t)

+ ε1/2�v B,1
(
x,

y√
ε
, t
)

+ ε
(
vB,2
1

(
x,

y√
ε
, t
)
, 0

)

and the remainder (Uε, �V ε)(x, y, t) is as follows

Uε(x, y, t) := ε−1/2(uε − Ua)(x, y, t), �V ε(x, y, t) := ε−1/2(�v ε − �V a)(x, y, t),

where ϕ is defined in (3.14) and εϕ(y)uB,2(x, 0, t), εvB,2
1

(
x, y√

ε
, t
)

in the definition of Ua, �V a are used to 

homogenize the boundary values of Uε and �V ε. The initial–boundary problem for the remainder follows 
directly from (1.3), (1.6) and initial and boundary conditions in (2.5)–(2.14), and reads as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Uε
t = ε1/2∇ · (Uε�V ε) + ∇ · (Uε�V a) + ∇ · (�V εUa) + ΔUε + ε−1/2fε,

�V ε
t = −ε3/2∇(|�V ε|2) − 2ε∇(�V ε · �V a) + ∇Uε + εΔ�V ε + ε−1/2�g ε,

(Uε, �V ε)(x, y, 0) = (0, 0),

(Uε, V ε
2 )(x, 0, t) = (0, 0), ∂yV

ε
1 (x, 0, t) = 0,

(4.1)

where

fε = ΔUa + ∇ · (Ua�V a) − Ua
t , �g ε = εΔ�V a + ∇Ua − ε∇(|�V a|2) − �V a

t . (4.2)

4.1. Regularity estimates on Uε and �V ε

This subsection is to prove the well-posedness of (4.1) in space C([0, T ]; H2
xy × H2

xy). In particular, we 
derive the following result.

Proposition 4.1. Suppose that the assumptions in Theorem 2.1 hold and that 0 < T ≤ Tmax with Tmax derived 
in Proposition 2.1. Then there is a positive constant εT decreasingly depending on T with lim

T→0
εT = 0

(see Lemma 4.3) such that for any ε ∈ (0, εT ], the problem (4.1) admits a unique solution (Uε, �V ε) ∈
C([0, T ]; H2

xy ×H2
xy) on [0, T ] satisfying

‖Uε‖2
L∞

T L2
xy

+ ‖�V ε‖2
L∞

T L2
xy

+ ‖∇Uε‖2
L∞

T L2
xy

+ ε‖∇�V ε‖2
L∞

T L2
xy

≤ Cε1/2 (4.3)

and

ε1/2‖Uε‖2
L∞

T H2
xy

+ ε3/2‖�V ε‖2
L∞

T H2
xy

+ ε5/2‖�V ε‖2
L2

TH3
xy

≤ C, (4.4)

where the constant C > 0 is independent of ε, depending on T .

We remark that the estimates (4.3) and (4.4) are crucial to prove our main result (Theorem 2.1). Before 
proceeding, we briefly introduce the additional difficulties encountered (compared to the one-dimensional 
case) and main ideas used in proving Proposition 4.1. When estimating the remainder (Uε, �V ε) (cf. [24]), 
an L2 uniform-in-ε estimates of (uε, �v ε) is used in the one dimensional case (cf. [24, Lemma 2.1]), while 
system (1.3), (1.6) in multi-dimensions lacks an energy-like structure to provide such L2 uniform-in-ε es-
timates of ε-independence. The challenge in our analysis thus consists in deriving the estimates (4.3) and 
(4.4) for (Uε, �V ε) without any uniform-in-ε a priori estimates of solutions (uε, �v ε). Here we overcome this 
barrier and achieve our results by regarding (uε, �v ε) as a small perturbation of (Ua, �V a) and employing the 
bootstrap method by choosing ε small enough.
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We next recall some basic facts for later use. For G1(x, z, t) ∈ Hk
xH

m
z with k, m ∈ N and fixed t > 0, we 

have from the change of variables that
∥∥∥∂m

y G1

(
x,

y√
ε
, t
)∥∥∥

Hk
xL

2
y

= ε
1
4−m

2 ‖∂m
z G1(x, z, t)‖Hk

xL
2
z
. (4.5)

Similar arguments in deriving (3.16) entail that

‖G2(x, 0, t)‖2
Hk

x
≤C0

k∑
j=0

∞∫
−∞

‖∂j
xG2(x, z, t)‖2

H1
z
dx = C0‖G2(x, z, t)‖2

Hk
xH

1
z
, (4.6)

provided G2(x, z, t) ∈ Hk
xH

1
z for fixed t > 0. Furthermore, if G3(x, z, t) ∈ H3

xH
2
z one has

‖G3(x, 0, t)‖L∞
x

≤ C0‖G3(x, z, t)‖L∞
xz

≤ C0‖G3(x, z, t)‖H2
xz
,

‖∂xG3(x, 0, t)‖L∞
x

≤ C0‖G3(x, z, t)‖H3
xH

2
z
.

(4.7)

For G4(x, z, t) ∈ H2
xz with fixed t > 0, one deduces by the Sobolev embedding inequality that

∥∥∥G4

(
x,

y√
ε
, t
)∥∥∥

L∞
xy

= ‖G4(x, z, t)‖L∞
xz

≤ C0‖G4(x, z, t)‖H2
xz
. (4.8)

For h1(x, y, t) ∈ H1
xy with fixed t > 0, it follows from the Gagliardo–Nirenberg interpolation inequality that

‖h1‖L4
xy

≤ C0(‖h1‖1/2
L2

xy
‖∇h1‖1/2

L2
xy

+ ‖h1‖L2
xy

) (4.9)

and

‖h1‖L4
xy

≤ C0‖h1‖1/2
L2

xy
‖∇h1‖1/2

L2
xy
, (4.10)

provided further h1|y=0 = 0. For h2(x, y, t) ∈ H2
xy one gets

‖h2‖L∞
xy

≤ C0(‖h2‖1/2
L2

xy
‖∇2h2‖1/2

L2
xy

+ ‖h2‖L2
xy

) (4.11)

and

‖h2‖L∞
xy

≤ C0‖h2‖1/2
L2

xy
‖∇2h2‖1/2

L2
xy
, (4.12)

provided h2|y=0 = 0.
We shall prove Proposition 4.1 by the following Lemma 4.1–Lemma 4.4, where a priori estimates on the 

solutions (Uε, �V ε) is derived based on the L2 regularity on external force fε(x, y, t) and �g ε(x, y, t). The 
assumption 0 < ε < 1 and the results of Proposition 2.1, Lemma 3.1–Lemma 3.5 will be frequently used in 
the sequel without further clarification.

The estimates on fε and �g ε are given as follows.

Lemma 4.1. Suppose that the assumptions in Theorem 2.1 hold. Let 0 < T ≤ Tmax with Tmax derived in 
Proposition 2.1. Then there exists a constant C independent of ε, such that

‖fε‖L∞
T L2

xy
≤ Cε3/4, ‖∂tfε‖L∞

T L2
xy

≤ Cε3/4.
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Proof. First it follows from the definition of Ua, �V a, fε, (2.3) and (2.9) that

fε =ε1/2∂2
xu

B,1 + ε1/2∂2
yu

B,1 + ε∂2
xu

B,2 + ε∂2
yu

B,2 − εϕ(y)∂2
xu

B,2(x, 0, t) − εuB,2(x, 0, t)∂2
yϕ(y)

+ ∂x
[
− εϕ(y)uB,2(x, 0, t)

(
vI,01 + ε1/2vI,11 + ε1/2vB,1

1 + εvB,2
1

)]
+ ∂y

[
− εϕ(y)uB,2(x, 0, t)

(
vI,02 + vB,0

2 + ε1/2vI,12 + ε1/2vB,1
2

)]
+ ∂x

[(
uI,0 + ε1/2uI,1)(ε1/2vB,1

1 + εvB,2
1

)]
+ ε∂x(uI,1vI,11 )

+ ∂x
[(
ε1/2uB,1 + εuB,2)(vI,01 + ε1/2vI,11 + ε1/2vB,1

1 + εvB,2
1

)]
+ ∂y

[(
uI,0 + ε1/2uI,1)(vB,0

2 + ε1/2vB,1
2

)]
+ ε∂y(uI,1vI,12 )

+ ∂y
[(
ε1/2uB,1 + εuB,2)(vI,02 + vB,0

2 + ε1/2vI,12 + ε1/2vB,1
2

)]
− ε1/2∂tu

B,1 − ε∂tu
B,2 + εϕ(y)∂tuB,2(x, 0, t).

Moreover, from the transformation z = y√
ε
, (5.8), (5.10) and (2.6) we deduce that

ε1/2∂2
yu

B,1 =ε−1/2∂2
zu

B,1 = −ε−1/2uI,0(x, 0, t)∂zvB,0
2 = −uI,0(x, 0, t)∂yvB,0

2 ,

ε∂2
yu

B,2 = − ε1/2uI,0(x, 0, t)∂yvB,1
2 − ε1/2(uI,1(x, 0, t) + uB,1)∂yvB,0

2 − ∂yu
I,0(x, 0, t)vB,0

2

− ε1/2∂yu
B,1(vI,02 (x, 0, t) + vB,0

2 ) − y∂yu
I,0(x, 0, t)∂yvB,0

2 ,

which, substituted into the above expression for fε gives rise to

fε =ε1/2∂2
xu

B,1 + ε∂2
xu

B,2 − εϕ(y)∂2
xu

B,2(x, 0, t) − ε∂2
yϕ(y)uB,2(x, 0, t)

+ ∂x
[
− εϕ(y)uB,2(x, 0, t)

(
vI,01 + ε1/2vI,11 + ε1/2vB,1

1 + εvB,2
1

)]
+ ∂y

[
− εϕ(y)uB,2(x, 0, t)

(
vI,02 + vB,0

2 + ε1/2vI,12 + ε1/2vB,1
2

)]
+ ∂x

[(
uI,0 + ε1/2uI,1 + ε1/2uB,1 + εuB,2)(ε1/2vB,1

1 + εvB,2
1

)]
+ ∂x

[(
ε1/2uB,1 + εuB,2)(vI,01 + ε1/2vI,11

)]
+ ε∂x(uI,1vI,11 ) + ε∂y(uI,1vI,12 )

+
(
uI,0(x, y, t) − uI,0(x, 0, t) − y∂yu

I,0(x, 0, t)
)
∂yv

B,0
2

+
(
∂yu

I,0(x, y, t) − ∂yu
I,0(x, 0, t)

)
vB,0
2 + ε1/2(uI,0(x, y, t) − uI,0(x, 0, t)

)
∂yv

B,1
2

+ ε1/2(uI,1(x, y, t) − uI,1(x, 0, t)
)
∂yv

B,0
2 + ε1/2(vI,02 (x, y, t) − vI,02 (x, 0, t)

)
∂yu

B,1

+ ε1/2[∂yuI,0vB,1
2 + ∂yu

I,1vB,0
2 + ∂yv

I,0
2 uB,1]

+ ε∂y
[
uI,1vB,1

2 + uB,1(vI,12 + vB,1
2

)
+ uB,2(vI,02 + vB,0

2 + ε1/2vI,12 + ε1/2vB,1
2

)]
− ε1/2∂tu

B,1 − ε∂tu
B,2 + εϕ(y)∂tuB,2(x, 0, t)

:=
11∑
i=1

Ki,

(4.13)

where Ki represents the entirety of the i-th line in the above expression. We first prove ‖fε‖L∞
T L2

xy
≤ Cε3/4

by estimating each Ki (1 ≤ i ≤ 10). Indeed, (4.5), (4.6), (4.7) and (4.8) lead to

‖K3‖L∞
T L2

xy

≤ε‖φ‖L∞
y
‖uB,2(x, 0, t)‖L∞

T L∞
x

(
‖∂yvI,02 ‖L∞

T L2
xy

+ ‖∂yvB,0
2 ‖L∞

T L2
xy

+ ‖∂yvI,12 ‖L∞
T L2

xy
+ ‖∂yvB,1

2 ‖L∞
T L2

xy

)
+ ε‖∂yφ‖L2

y
‖uB,2(x, 0, t)‖L∞

T L2
x

(
‖vI,02 ‖L∞

T L∞
xy

+ ‖vB,0
2 ‖L∞

T L∞
xy

+ ‖vI,12 ‖L∞
T L∞

xy
+ ‖vB,1

2 ‖L∞
T L∞

xy

)
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≤Cε3/4‖uB,2‖L∞
T H2

xz

(
‖vI,02 ‖L∞

T H2
xy

+ ‖vB,0
2 ‖L∞

T H2
xz

+ ‖vI,12 ‖L∞
T H2

xy
+ ‖vB,1

2 ‖L∞
T H2

xz

)
≤Cε3/4,

where 0 < ε < 1 has been used. Similar arguments further give the estimates for K2, K1 and K11 as follows:

‖K2‖L∞
T L2

xy
≤Cε3/4‖uB,2‖L∞

T H2
xz

(
‖vI,01 ‖L∞

T H2
xy

+ ‖vB,1
1 ‖L∞

T H2
xz

+ ‖vI,11 ‖L∞
T H2

xy
+ ‖vB,2

1 ‖L∞
T H2

xz

)
≤Cε3/4

and

‖K1‖L∞
T L2

xy
≤ε3/4‖uB,1‖L∞

T H2
xL

2
z

+ ε5/4‖uB,2‖L∞
T H2

xL
2
z

+ C0ε(‖uB,2‖L∞
T H2

xH
1
z

+ ‖uB,2‖L∞
T L2

xH
1
z
)

≤Cε3/4

and

‖K11‖L∞
T L2

xy
≤ε3/4‖∂tuB,1‖L∞

T L2
xz

+ ε5/4‖∂tuB,2‖L∞
T L2

xz
+ C0ε‖ϕ(y)‖L2

y
‖∂tuB,2‖L∞

T L2
xH

1
z
≤ Cε3/4.

By the Sobolev embedding inequality and (4.5) we have

‖K5‖L∞
T L2

xy
≤
(
‖∂x�v I,0‖L∞

T L∞
xy

+ ε1/2‖∂x�v I,1‖L∞
T L∞

xy

)(
ε1/2‖uB,1‖L∞

T L2
xy

+ ε‖uB,2‖L∞
T L2

xy

)
+

(
‖�v I,0‖L∞

T L∞
xy

+ ε1/2‖�v I,1‖L∞
T L∞

xy

)(
ε1/2‖∂xuB,1‖L∞

T L2
xy

+ ε‖∂xuB,2‖L∞
T L2

xy

)
+ ε‖∇uI,1‖L∞

T L∞
xy
‖�v I,1‖L∞

T L2
xy

+ ε‖uI,1‖L∞
T L∞

xy
‖∇�v I,1‖L∞

T L2
xy

≤C0
(
‖�v I,0‖L∞

T H3
xy

+ ε1/2‖�v I,1‖L∞
T H3

xy

)(
ε3/4‖uB,1‖L∞

T H1
xL

2
z

+ ε5/4‖uB,2‖L∞
T H1

xL
2
z

)
+ C0ε‖uI,1‖L∞

T H3
xy
‖�v I,1‖L∞

T H1
xy

≤Cε3/4.

To bound K4, K9 and K10, we use (4.5), (4.8) and similar arguments as estimating K5 and derive that

‖K4‖L∞
T L2

xy
≤C0ε

3/4(‖uI,0‖L∞
T H3

xy
+ ‖uI,1‖L∞

T H3
xy

+ ‖uB,1‖L∞
T H3

xH
2
z

+ ‖uB,2‖L∞
T H3

xH
2
z

)
×
(
‖vB,1

1 ‖L∞
T H1

xL
2
z

+ ‖vB,2
1 ‖L∞

T H1
xL

2
z

)
≤Cε3/4

and

‖K9‖L∞
T L2

xy

≤C0ε
3/4(‖uI,0‖L∞

T H3
xy
‖vB,1

2 ‖L∞
T L2

xz
+ ‖uI,1‖L∞

T H3
xy
‖vB,0

2 ‖L∞
T L2

xz
+ ‖�v I,0‖L∞

T H3
xy
‖uB,1‖L∞

T L2
xz

)
≤Cε3/4

and

‖K10‖L∞
T L2

xy

≤C0ε
3/4[‖uI,1‖L∞

T H3
xy
‖vB,1

2 ‖L∞
T L2

xH
1
z

+ (‖vI,12 ‖L∞
T H3

xy
+ ‖vB,1

2 ‖L∞
T H2

xH
3
z
)‖uB,1‖L∞

T L2
xH

1
z

]
+ C0ε

3/4(‖vI,02 ‖L∞
T H3

xy
+ ‖vB,0

2 ‖L∞
T H2

xH
3
z

+ ‖vI,12 ‖L∞
T H3

xy
+ ‖vB,1

2 ‖L∞
T H2

xH
3
z

)
‖uB,2‖L∞

T L2
xH

1
z

≤Cε3/4.

We come to estimate K6 by applying the change of variables y = ε1/2z, Taylor’s formula, (4.5), Theorem 2.1
and Lemma 3.1 to get
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‖K6‖L∞
T L2

xy
=ε

∥∥∥∥uI,0(x, y, t) − uI,0(x, 0, t) − y∂yu
I,0(x, 0, t)

y2 · z2∂yv
B,0
2

∥∥∥∥
L∞

T L2
xy

≤ε‖∂2
yu

I,0‖L∞
T L∞

xy
‖z2∂yv

B,0
2 ‖L∞

T L2
xy

≤C0ε
3/4‖uI,0‖L∞

T H4
xy
‖〈z〉2∂zvB,0

2 ‖L∞
T L2

xz

≤Cε3/4.

A similar argument as estimating K6 leads to

‖K7‖L∞
T L2

xy
≤ C0ε

3/4(‖uI,0‖L∞
T H4

xy
‖〈z〉vB,0

2 ‖L∞
T L2

xz
+ ‖uI,0‖L∞

T H3
xy
‖〈z〉∂zvB,1

2 ‖L∞
T L2

xz

)
≤ Cε3/4

and

‖K8‖L∞
T L2

xy
≤ C0ε

3/4(‖uI,1‖L∞
T H3

xy
‖〈z〉∂zvB,0

2 ‖L∞
T L2

xz
+ ‖�v I,0‖L∞

T H3
xy
‖〈z〉∂zuB,1‖L∞

T L2
xz

)
≤ Cε3/4.

Substituting the above estimates for K1 to K11 into (4.13) we conclude that ‖fε‖L∞
T L2

xy
≤ Cε3/4.

It remains to prove ‖∂tfε‖L∞
T L2

xy
≤ Cε3/4. To this end, we first note that with Banach spaces X, Y, Z if 

‖fg‖Z ≤ C0‖f‖X‖g‖Y holds for all f ∈ X, g ∈ Y , then it follows that

‖∂t(fg)‖Z ≤ ‖∂tf‖X‖g‖Y + ‖f‖X‖∂tg‖Y , (4.14)

provided ∂tf ∈ X and ∂tg ∈ Y . Thus from the estimates on K3, (4.14), Proposition 2.1 and 
Lemma 3.1–Lemma 3.4, one deduces that

‖∂tK3‖L∞
T L2

xy

≤Cε3/4‖uB,2‖L∞
T H2

xz

(
‖∂tvI,02 ‖L∞

T H2
xy

+ ‖∂tvB,0
2 ‖L∞

T H2
xz

+ ‖∂tvI,12 ‖L∞
T H2

xy
+ ‖∂tvB,1

2 ‖L∞
T H2

xz

)
+ Cε3/4‖∂tuB,2‖L∞

T H2
xz

(
‖vI,02 ‖L∞

T H2
xy

+ ‖vB,0
2 ‖L∞

T H2
xz

+ ‖vI,12 ‖L∞
T H2

xy
+ ‖vB,1

2 ‖L∞
T H2

xz

)
≤Cε3/4.

Similarly it follows from (4.14) and the above estimates on K1, K2 and K4 to K11 that

‖∂tKi‖L∞
T L2

xy
≤ Cε3/4, i = 1, 2, 4, 5, · · · , 11.

Combining the above estimates for ∂tK1 to ∂tK11 with (4.13) we end up with ‖∂tfε‖L∞
T L2

xy
≤ Cε3/4. The 

proof is completed. �
Lemma 4.2. Suppose the assumptions in Theorem 2.1 hold. Let 0 < T ≤ Tmax with Tmax obtained in 
Proposition 2.1. Then there exists a positive constant C independent of ε, depending on T such that

‖�g ε‖L∞
T L2

xy
≤ Cε, ‖∂t�g ε‖L∞

T L2
xy

≤ Cε.

Proof. By the definition of �g ε in (4.2) we write its first component gε1 as follows:

gε1 =
[
εΔvI,01 + ε3/2ΔvI,11 + ε3/2∂2

xv
B,1
1 + ε2∂2

xv
B,2
1 + ε2∂2

yv
B,2
1 + ε∂xu

B,2 − εϕ(y)∂xuB,2(x, 0, t)
]

−
[
2ε�V a · ∂x�V a + ε∂tv

B,2
1

]
:=M1 −M2,

where the second equation of (2.3), (2.9) and the first equation of (2.10) have been used. We proceed to 
estimate M1 and M2. First (4.5) and (4.6) lead to
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‖M1‖L∞
T L2

xy
≤C0

(
ε‖�v I,0‖L∞

T H2
xy

+ ε3/2‖�v I,1‖L∞
T H2

xy
+ ε7/4‖vB,1

1 ‖L∞
T H2

xL
2
z

+ ε9/4‖vB,2
1 ‖L∞

T H2
xL

2
z

+ ε5/4‖vB,2
1 ‖L∞

T L2
xH

2
z

+ ε‖uB,2‖L∞
T H1

xH
1
z

)
≤Cε.

To bound M2 we first estimate ‖�V a‖L∞
T L∞

xy
by the Sobolev embedding inequality, (4.8) and 0 < ε < 1 as 

follows

‖�V a‖L∞
T L∞

xy
≤C0

(
‖�v I,0‖L∞

T H2
xy

+ ‖vB,0
2 ‖L∞

T H2
xz

+ ε1/2‖�v I,1‖L∞
T H2

xy

+ ε1/2‖vB,1
1 ‖L∞

T H2
xz

+ ε1/2‖vB,1
2 ‖L∞

T H2
xz

+ ε‖vB,2
1 ‖L∞

T H2
xz

)
≤C.

(4.15)

Similar arguments further yield

‖∂t�V a‖L∞
T L∞

xy
, ‖∂x�V a‖L∞

T L2
xy
, ‖∂x∂t�V a‖L∞

T L2
xy

≤ C. (4.16)

Thus by (4.15), (4.16) and (4.5) we obtain

‖M2‖L∞
T L2

xy
≤ C0ε(‖�V a‖L∞

T L∞
xy
‖∂x�V a‖L∞

T L2
xy

+ ‖∂tvB,2
1 ‖L∞

T L2
xy

) ≤ Cε.

Hence from the above estimates for M1, M2 one derives ‖gε1‖L∞
T L2

xy
≤ Cε. By (4.14), the above estimates for 

M1, M2 and (4.16), we further derive that ‖∂tgε1‖L∞
T L2

xy
≤ Cε. It remains to estimate gε2 and ∂tgε2. Indeed 

from the definition of �g ε in (4.2) it follows that

gε2 =
[
εΔvI,02 + ε3/2ΔvI,12 + ε∂2

xv
B,0
2 + ε3/2∂2

xv
B,1
2 − ε∂yϕ(y)uB,2(x, 0, t)

]
+

[
2ε(vI,02 (x, 0, t) − vI,02 (x, y, t))∂yvB,0

2 − 2ε∂yvB,0
2 (ε1/2vI,12 + ε1/2vB,1

2 )
]

− 2ε(vI,01 + ε1/2vI,11 + ε1/2vB,1
1 + εvB,2

1 )(∂yvI,01 + ε1/2∂yv
I,1
1 + ε1/2∂yv

B,1
1 + ε∂yv

B,2
1 )

− 2ε(vI,02 + vB,0
2 + ε1/2vI,12 + ε1/2vB,1

2 )(∂yvI,02 + ε1/2∂yv
I,1
2 + ε1/2∂yv

B,1
2 )

:=M3 + M4 −M5 −M6,

where the second equation of (2.3), (2.9) and F 0
2 = F 1

2 = 0 in (5.13) have been used. First, by (4.5), (4.6)
and 0 < ε < 1 we get

‖M3‖L∞
T L2

xy
≤C0ε(‖�v I,0‖L∞

T H2
xy

+ ‖�v I,1‖L∞
T H2

xy
+ ‖vB,0

2 ‖L∞
T H2

xL
2
z

+ ‖vB,1
2 ‖L∞

T H2
xL

2
z

+ ‖uB,2‖L∞
T L2

xH
1
z
)

≤Cε.

By an analogous argument as estimating K6 in the proof of Lemma 4.1 and (4.8) one deduces

‖M4‖L∞
T L2

xy

≤ C0ε
5/4‖vI,02 ‖L∞

T H3
xy
‖〈z〉vB,0

2 ‖L∞
T L2

xH
1
z

+ C0ε
5/4‖vB,0

2 ‖L∞
T L2

xH
1
z
(‖�v I,1‖L∞

T H2
xy

+ ‖vB,1
2 ‖L∞

T H2
xz

)
≤ Cε5/4.

We then use the Cauchy–Schwarz inequality, (4.5) and (4.8) to derive

‖M5‖L∞
T L2

xy
≤C0ε(‖�v I,0‖L∞

T H2
xy

+ ‖�v I,1‖L∞
T H2

xy
+ ‖vB,1

1 ‖L∞
T H2

xz
+ ‖vB,2

1 ‖L∞
T H2

xz
)

× (‖∂y�v I,0‖L∞
T L2

xy
+ ‖∂y�v I,1‖L∞

T L2
xy

+ ‖∂zvB,1
1 ‖L∞

T L2
xz

+ ‖∂zvB,2
1 ‖L∞

T L2
xz

)
≤Cε.

Moreover, ‖M6‖L∞
T L2

xy
≤ Cε follows from a similar argument. Now collecting the above estimates from M3

to M6, we conclude that ‖gε2‖L∞
T L2

xy
≤ Cε. Finally, from (4.14) and the above estimates from M3 to M6, 

one deduces that ‖∂tgε2‖L∞L2 ≤ Cε. The proof is completed. �

T xy
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We next establish the L2 estimates for Uε and �V ε.

Lemma 4.3. Suppose that the assumptions in Proposition 4.1 hold. Assume further that the solution 
(Uε, �V ε)(x, y, t) of (4.1) on [0, T ] satisfies

‖Uε‖2
L∞

T L2
xy

+ ‖�V ε‖2
L∞

T L2
xy

< 1. (4.17)

Then there exists a positive constant εT (defined in (4.26)) decreasing in T with lim
T→∞

εT = 0, such that for 
any ε ∈ (0, εT ] the following holds true:

‖Uε‖2
L∞

T L2
xy

+ ‖�V ε‖2
L∞

T L2
xy

≤ C2ε
1/2 <

1
2 . (4.18)

Moreover, there exists a constant C independent of ε such that

‖∇Uε‖2
L2

TL2
xy

+ ε‖∇�V ε‖2
L2

TL2
xy

≤ Cε1/2. (4.19)

Proof. First, it follows from a similar argument as deriving (4.15) that

‖Ua‖L∞
T L∞

xy
≤ C, ‖∂tUa‖L∞

T L∞
xy

≤ C, ‖∂t�V a‖L∞
T L∞

xy
≤ C. (4.20)

Thus we conclude from (4.20), (4.15), Lemma 4.1 and Lemma 4.2 that there exists a constant C3 independent 
of ε, depending on T satisfying:

‖Ua‖2
L∞

T L∞
xy

+ ‖�V a‖2
L∞

T L∞
xy

≤ C3, ‖fε‖2
L∞

T L2
xy

+ ‖�g ε‖2
L∞

T L2
xy

≤ C3ε
3/2. (4.21)

We proceed by taking the L2
xy inner products of the first and second equations of (4.1) with 2Uε and 2�V ε

respectively, then adding the results to obtain

d

dt
(‖Uε‖2

L2
xy

+ ‖�V ε‖2
L2

xy
) + 2‖∇Uε‖2

L2
xy

+ 2ε‖∇�V ε(t)‖2
L2

xy

= 2
∞∫
0

∞∫
−∞

(−ε1/2Uε�V ε · ∇Uε + ε3/2|�V ε|2 ∇ · �V ε)dxdy

+ 2
∞∫
0

∞∫
−∞

(−Uε�V a · ∇Uε − Ua�V ε · ∇Uε + 2ε(�V a · �V ε)∇ · �V ε)dxdy

+ 2
∞∫
0

∞∫
−∞

(ε−1/2fεUε + ∇Uε · �V ε + ε−1/2�g ε · �V ε)dxdy

:=I1 + I2 + I3.

The estimate for I1 follows from (4.9), (4.10) and the Cauchy–Schwarz inequality:

I1 ≤2ε1/2‖Uε‖L4
xy
‖�V ε‖L4

xy
‖∇Uε‖L2

xy
+ 2ε3/2‖�V ε‖2

L4
xy
‖∇�V ε‖L2

xy

≤C0ε
1/2‖Uε‖1/2

L2
xy
‖∇Uε‖3/2

L2
xy

(‖�V ε‖1/2
L2

xy
‖∇�V ε‖1/2

L2
xy

+ ‖�V ε‖L2
xy

)

+ C0ε
3/2(‖�V ε‖L2

xy
‖∇�V ε‖L2

xy
+ ‖�V ε‖2

L2
xy

)‖∇�V ε‖L2
xy

≤1‖∇Uε‖2
L2 + 1

ε‖∇�V ε‖2
L2 + C0(ε2‖Uε‖2

L2 ‖�V ε‖2
L2 + ε)‖�V ε‖2

L2 (4.22)
2 xy 4 xy xy xy xy
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+ C0(ε2‖Uε‖2
L2

xy
‖�V ε‖2

L2
xy

+ ε3/2‖�V ε‖L2
xy

+ ε2‖�V ε‖2
L2

xy
)‖∇�V ε‖2

L2
xy

≤1
2‖∇Uε‖2

L2
xy

+ 1
4ε‖∇

�V ε‖2
L2

xy
+ 2C0‖�V ε‖2

L2
xy

+ C0(ε2‖Uε‖2
L2

xy
‖�V ε‖2

L2
xy

+ ε3/2‖�V ε‖L2
xy

+ ε2‖�V ε‖2
L2

xy
)‖∇�V ε‖2

L2
xy
,

where in the last inequality we have used the estimates (ε2‖Uε‖2
L2

xy
‖�V ε‖2

L2
xy

+ ε) < 2 thanks to (4.17)
and the assumption ε ∈ (0, 1). Noting that (4.17) and ε ∈ (0, 1) further lead to C0(ε2‖Uε‖2

L2
xy
‖�V ε‖2

L2
xy

+
ε3/2‖�V ε‖L2

xy
+ ε2‖�V ε‖2

L2
xy

) < 3C0ε
3/2. Hence by choosing ε small enough such that

ε < (12C0)−2, (4.23)

one derives 3C0ε
3/2 < 1

4ε and deduces C0(ε2‖Uε‖2
L2

xy
‖�V ε‖2

L2
xy

+ ε3/2‖�V ε‖L2
xy

+ ε2‖�V ε‖2
L2

xy
) < 1

4ε, which 

substituted into (4.22) gives rise to

I1 ≤ 1
2‖∇Uε‖2

L2
xy

+ 1
2ε‖∇

�V ε‖2
L2

xy
+ 2C0‖�V ε‖2

L2
xy
.

Moreover, by the Cauchy–Schwarz inequality and (4.21), we deduce that

I2 ≤1
4‖∇Uε‖2

L2
xy

+ 1
2ε‖∇

�V ε‖2
L2

xy
+ 8‖�V a‖2

L∞
xy
‖Uε‖2

L2
xy

+ 8‖Ua‖2
L∞

xy
‖�V ε‖2

L2
xy

+ 8ε‖�V a‖2
L∞

xy
‖�V ε‖2

L2
xy

≤1
4‖∇Uε‖2

L2
xy

+ 1
2ε‖∇

�V ε‖2
L2

xy
+ 8C3(‖Uε‖2

L2
xy

+ ‖�V ε‖2
L2

xy
).

It follows from the Cauchy–Schwarz inequality and (4.21) that

I3 ≤1
4‖∇Uε‖2

L2
xy

+ C̃0(‖Uε‖2
L2 + ‖�V ε‖2

L2
xy

) + ε−1(‖fε‖2
L2

xy
+ ‖�g ε‖2

L2
xy

)

≤1
4‖∇Uε‖2

L2
xy

+ C̃0(‖Uε‖2
L2 + ‖�V ε‖2

L2
xy

) + C3ε
1/2,

where the constant C̃0 is independent of ε and t. Now collecting the above estimates for I1–I3, one gets 
under the assumption (4.23) that

d

dt
(‖Uε‖2

L2
xy

+ ‖�V ε‖2
L2

xy
) + ‖∇Uε‖2

L2
xy

+ ε‖∇�V ε‖2
L2

xy

≤(2C0 + C̃0 + 8C3)(‖Uε‖2
L2

xy
+ ‖�V ε‖2

L2
xy

) + C3ε
1/2,

(4.24)

which, along with Gronwall’s inequality yields

‖Uε‖2
L∞

T L2
xy

+ ‖�V ε‖2
L∞

T L2
xy

≤ C3Te
(2C0+C̃0+8C3)T ε1/2. (4.25)

To fulfill the assumption (4.23) and to derive (4.18), we set

εT = min
{

(12C0)−2,
(
2C3Te

(2C0+C̃0+8C3)T
)−2

, 1
}
. (4.26)

Then for any ε ∈ (0, εT ], the estimates (4.18) immediately follows from (4.25). Finally integrating (4.24)
over [0, T ] and using (4.18), we obtain (4.19). The proof is completed. �

The H2 regularity estimate on Uε and �V ε is given in the following lemma.
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Lemma 4.4. Let the assumptions in Lemma 4.3 hold. Then there exists a constant C independent of ε such 
that

‖∇Uε‖2
L∞

T L2
xy

+ ε‖∇�V ε‖2
L∞

T L2
xy

+ ‖∂tUε‖2
L∞

T L2
xy

+‖∂t�V ε‖2
L∞

T L2
xy

+ ‖∇∂tU
ε‖2

L2
TL2

xy
+ ε‖∇∂t�V

ε‖2
L2

TL2
xy

≤ Cε1/2.
(4.27)

Consequently, it follows from (4.1) that

ε1/2‖Uε‖2
L∞

T H2
xy

+ ε3/2‖�V ε‖2
L∞

T H2
xy

+ ε5/2‖�V ε‖2
L2

TH3
xy

≤ C. (4.28)

Proof. Taking the L2
xy inner products of the first and second equation of (4.1) with 2∂tUε and 2∂t�V ε

respectively and using integration by parts, one derives after adding the results

d

dt
(‖∇Uε‖2

L2
xy

+ ε‖∇�V ε‖2
L2

xy
) + 2‖∂tUε‖2

L2
xy

+ 2‖∂t�V ε‖2
L2

xy

=2
∞∫
0

∞∫
−∞

(−ε1/2Uε�V ε · ∇∂tU
ε + ε3/2|�V ε|2∇ · ∂t�V ε)dxdy

+ 2
∞∫
0

∞∫
−∞

(−Uε�V a · ∇∂tU
ε − Ua�V ε · ∇∂tU

ε + 2ε(�V a · �V ε)∇ · ∂t�V ε)dxdy

+ 2
∞∫
0

∞∫
−∞

(ε−1/2fε∂tU
ε + ∇Uε · ∂t�V ε + ε−1/2�g ε · ∂t�V ε)dxdy

:=I4 + I5 + I6.

By (4.9), (4.10) and the Cauchy–Schwarz inequality we have

I4 ≤2ε1/2‖Uε‖L4
xy
‖�V ε‖L4

xy
‖∇∂tU

ε‖L2
xy

+ 2ε3/2‖�V ε‖2
L4

xy
‖∇∂t�V

ε‖L2
xy

≤C0ε
1/2‖Uε‖1/2

L2
xy
‖∇Uε‖1/2

L2
xy

(‖�V ε‖1/2
L2

xy
‖∇�V ε‖1/2

L2
xy

+ ‖�V ε‖L2
xy

)‖∇∂tU
ε‖L2

xy

+ C0ε
3/2(‖�V ε‖L2

xy
‖∇�V ε‖L2

xy
+ ‖�V ε‖2

L2
xy

)‖∇∂t�V
ε‖L2

xy

≤1
4‖∇∂tU

ε‖2
L2

xy
+ 1

4ε‖∇∂t�V
ε‖2

L2
xy

+ C0(‖Uε‖2
L2

xy
‖∇Uε‖2

L2
xy

+ ε2‖�V ε‖2
L2

xy
‖∇�V ε‖2

L2
xy

+ ε2‖�V ε‖4
L2

xy
).

Moreover, a similar argument as estimating I2 and I3 yields:

I5 ≤ 1
4‖∇∂tU

ε‖2
L2

xy
+ 1

2ε‖∇∂t�V
ε‖2

L2
xy

+ C3(‖Uε‖2
L2

xy
+ ‖�V ε‖2

L2
xy

)

and

I6 ≤ 1
4‖∇Uε‖2

L2
xy

+ C̃0(‖∂tUε‖2
L2

xy
+ ‖∂t�V ε‖2

L2
xy

) + C3ε
1/2.

We proceed by differentiating the first equation of (4.1) with respect to t, then multiplying the resulting 
equation with 2∂tUε in L2

xy and using integration by parts to derive
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d

dt
‖∂tUε‖2

L2
xy

+ 2‖∇∂tU
ε‖2

L2
xy

= − 2ε1/2
∞∫
0

∞∫
−∞

(∂tUε�V ε + Uε∂t�V
ε) · ∇∂tU

εdxdy

− 2
∞∫
0

∞∫
−∞

(
∂t(Uε�V a) + ∂t(Ua�V ε)

)
· ∇∂tU

εdxdy

+ 2ε−1/2
∞∫
0

∞∫
−∞

∂tf
ε∂tU

εdxdy

:=I7 + I8 + I9.

The estimate for I7 follows from (4.9), (4.10) and the Cauchy–Schwarz inequality

I7 ≤C0ε
1/2‖∇∂tU

ε‖3/2
L2

xy
‖∂tUε‖1/2

L2
xy

(‖�V ε‖1/2
L2

xy
‖∇�V ε‖1/2

L2
xy

+ ‖�V ε‖L2
xy

)

+ C0ε
1/2‖∇∂tU

ε‖L2
xy
‖∇Uε‖1/2

L2
xy
‖Uε‖1/2

L2
xy

(‖∂t�V ε‖1/2
L2

xy
‖∇∂t�V

ε‖1/2
L2

xy
+ ‖∂t�V ε‖L2

xy
)

≤1
8‖∇∂tU

ε‖2
L2

xy
+ 1

8ε‖∇∂t�V
ε‖2

L2
xy

+ C0ε
2(‖�V ε‖2

L2
xy
‖∇�V ε‖2

L2
xy

+ ‖�V ε‖4
L2

xy
)‖∂tUε‖2

L2
xy

+ C0ε(‖Uε‖2
L2

xy
‖∇Uε‖2

L2
xy

+ ‖Uε‖L2
xy
‖∇Uε‖L2

xy
)‖∂t�V ε‖2

L2
xy
.

By (4.15), (4.20) and the Cauchy–Schwarz inequality one derives

I8 ≤ 1
8‖∇∂tU

ε‖2
L2

xy
+ C(‖∂tUε‖2

L2
xy

+ ‖∂t�V ε‖2
L2

xy
) + C(‖Uε‖2

L2
xy

+ ‖�V ε‖2
L2

xy
).

The Cauchy–Schwarz inequality further leads to I9 ≤ ‖∂tUε‖2
L2

xy
+ ε−1‖∂tfε‖2

L2
xy

. We next differentiate the 

second equation of (4.1) with respect to t, then take the L2
xy inner product of 2∂t�V ε with the resulting 

equation and use integration by parts to have

d

dt
‖∂t�V ε‖2

L2
xy

+ 2ε‖∇∂t�V
ε‖2

L2
xy

=4ε3/2
∞∫
0

∞∫
−∞

�V ε · ∂t�V ε(∇ · ∂t�V ε)dxdy

+ 2ε
∞∫
0

∞∫
−∞

∂t(�V ε · �V a)(∇ · ∂t�V ε)dxdy

+ 2
∞∫
0

∞∫
−∞

(∇∂tU
ε · ∂t�V ε + ε−1/2∂t�g

ε · ∂t�V ε)dxdy

:=I10 + I11 + I12.

First, (4.9) and the Cauchy–Schwarz inequality entail that

I10 ≤C0ε
3/2(‖�V ε‖1/2

L2
xy
‖∇�V ε‖1/2

L2
xy

+ ‖�V ε‖L2
xy

)(‖∂t�V ε‖1/2
L2

xy
‖∇∂t�V

ε‖1/2
L2

xy
+ ‖∂t�V ε‖L2

xy
)‖∇∂t�V

ε‖L2
xy

≤1
8ε‖∇∂t�V

ε‖2
L2

xy
+ C0(ε3‖�V ε‖2

L2
xy
‖∇�V ε‖2

L2
xy

+ ε2‖�V ε‖L2
xy
‖∇�V ε‖L2

xy
)‖∂t�V ε‖2

L2
xy

+ C0(ε3‖�V ε‖4
L2

xy
+ ε2‖�V ε‖2

L2
xy

)‖∂t�V ε‖2
L2

xy
.

Moreover, from (4.15) and (4.20) one gets

I11 ≤ 1
ε‖∇∂t�V

ε‖2
L2 + C0(‖�V ε‖2

L2 + ‖∂t�V ε‖2
L2 ).
8 xy xy xy
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Finally, it follows from the Cauchy–Schwarz inequality that I12 ≤ 1
8‖∇∂tU

ε‖2
L2

xy
+ ε−1‖∂t�g ε‖2

L2
xy

+
C0‖∂t�V ε‖2

L2
xy

. Collecting the above estimates for I4–I12 we arrive at

d

dt
(‖∇Uε‖2

L2
xy

+ ε‖∇�V ε‖2
L2

xy
+ ‖∂tUε‖2

L2
xy

+ ‖∂t�V ε‖2
L2

xy
)

+‖∂tUε‖2
L2

xy
+ ‖∂t�V ε‖2

L2
xy

+ ‖∇∂tU
ε‖2

L2
xy

+ ε‖∇∂t�V
ε‖2

L2
xy

≤ C(ε‖�V ε‖2
L2

xy
‖∇�V ε‖2

L2
xy

+ ‖Uε‖2
L2

xy
‖∇Uε‖2

L2
xy

+ ‖Uε‖2
L2

xy
+ ‖�V ε‖4

L2
xy

+ 1) × (‖∂tUε‖2
L2

xy
+ ‖∂t�V ε‖2

L2
xy

+ 1)

+ Cε1/2 + ε−1(‖∂tfε‖2
L2

xy
+ ‖∂t�g ε‖2

L2
xy

),

(4.29)

where 0 < ε < 1 has been used. On the other hand, from (4.1), Lemma 4.1 and Lemma 4.2, we have

‖∂tUε(x, y, 0)‖2
L2

xy
= ε−1‖fε(x, y, 0)‖2

L2
xy

≤ ε−1‖fε‖2
L∞

T L2
xy

≤ Cε1/2

and similarly ‖∂t�V ε(x, y, 0)‖2
L2

xy
= ε−1‖�g ε(x, y, 0)‖2

L2
xy

≤ Cε. Thus we can apply Gronwall’s inequality and 

Lemma 4.1–Lemma 4.3 to (4.29) and derive (4.27). The estimate (4.28) follows immediately from the system 
(4.1) and (4.27). Indeed, by the second equation of (4.1) and (4.11) one deduces for fixed t ∈ [0, T ] that

ε2‖�V ε‖2
H2

xy
≤C0(ε3‖∇�V ε‖2

L2
xy
‖�V ε‖2

L∞
xy

+ ε2‖∇�V ε‖2
L2

xy
‖�V a‖2

L∞
xy

+ ε2‖�V ε‖2
L∞

xy
‖∇�V a‖2

L2
xy

+ ‖Uε‖2
H1

xy
+ ‖∂t�V ε‖2

L2
xy

+ ε−1‖�g ε‖2
L2

xy
)

≤C0(ε3‖∇�V ε‖2
L2

xy
‖�V ε‖L2

xy
‖�V ε‖H2

xy
+ ε2‖∇�V ε‖2

L2
xy
‖�V a‖2

L∞
xy

+ ε2‖�V ε‖L2
xy
‖�V ε‖H2

xy
‖∇�V a‖2

L2
xy

+ ‖Uε‖2
H1

xy
+ ‖∂t�V ε‖2

L2
xy

+ ε−1‖�g ε‖2
L2

xy
)

≤1
2ε

2‖�V ε‖2
H2

xy
+ C0(ε4‖∇�V ε‖4

L2
xy
‖�V ε‖2

L2
xy

+ ε2‖∇�V ε‖2
L2

xy
‖�V a‖2

L∞
xy

+ ε2‖�V ε‖2
L2

xy
‖∇�V a‖4

L2
xy

+ ‖Uε‖2
H1

xy
+ ‖∂t�V ε‖2

L2
xy

+ ε−1‖�g ε‖2
L2

xy
).

Subtracting 1
2ε

2‖�V ε‖2
H2

xy
from both sides of the above inequality, then using (4.27), (4.18), (4.15) and 

Lemma 4.2 one gets

ε2‖�V ε‖2
L∞

T H2
xy

≤ Cε1/2, (4.30)

where we have also used ‖∇�V a‖2
L∞

T L2
xy

≤ Cε−1/2, which follows from (4.5) and a similar argument in deriving 

(4.15). Moreover, one derives ε‖Uε‖2
L∞

T H2
xy

+ε3‖�V ε‖2
L2

TH3
xy

≤ Cε1/2 by a similar argument as deriving (4.30). 
The proof is completed. �

We come to prove Proposition 4.1 by the results of Lemma 4.3 and Lemma 4.4.

Proof of Proposition 4.1. Noting that the conclusion (4.18) is stronger that the hypothesis (4.17) in 
Lemma 4.3, one deduces that all the conclusions in Lemma 4.3 and Lemma 4.4 hold true by the conti-
nuity of solutions under the assumption ε ∈ (0, εT ] (see [61, page 21, Proposition 1.21]). Hence we derive 
(4.3), (4.4) and (Uε, �V ε) ∈ C([0, T ]; H2

xy ×H2
xy). The uniqueness can be proved by the method used in [67], 

and we omit the details for brevity. �



Q. Hou, Z. Wang / J. Math. Pures Appl. 130 (2019) 251–287 281
4.2. Proof of Theorem 2.1 and Theorem 2.2

We next prove Theorem 2.1 and Theorem 2.2 by the results of Proposition 4.1.

Proof of Theorem 2.1. First, by the fact that (Uε, �V ε) uniquely solves problem (4.1) one deduces that 
(uε, �v ε) with uε = ε1/2Uε+Ua, �v ε = ε1/2�V ε+ �V a is the unique solution of (1.3), (1.6) with ε ∈ (0, εT ]. Thus 
the regularity (uε, �v ε) ∈ C([0, T ]; H2

xy×H2
xy) follows from the fact that (Uε, �V ε), (Ua, �V a) ∈ C([0, T ]; H2

xy×
H2

xy). We next prove the curl-free property of �v ε by applying the operator “∇×” to the second equation of 
(1.3) with ε > 0 to find

⎧⎪⎪⎨
⎪⎪⎩

(∇× �v ε)t = εΔ(∇× �v ε),

(∇× �v ε)(x, y, 0) = 0,

∇× �v ε|y=0 = 0,

(4.31)

where the assumption ∇ × �v0 = 0 and the boundary conditions (1.6) have been used. Consequently, the 
uniqueness on solution of (4.31) entails that ∇ × �v ε = 0. Moreover, (2.16) follows from Lemma 3.1. Then 
it remains to prove (2.15). By (4.11), (4.3) and (4.4) we get

‖�V ε‖L∞
T L∞

xy
≤ C0

(
‖∇2�V ε‖1/2

L∞
T L2

xy
‖�V ε‖1/2

L∞
T L2

xy
+ ‖�V ε‖L∞

T L2
xy

)
≤ C(ε− 3

8 · ε 1
8 + ε

1
4 ) ≤ Cε−1/4. (4.32)

Similarly, it follows that

‖Uε‖L∞
T L∞

xy
≤ C0‖∇2Uε‖1/2

L∞
T L2

xy
‖Uε‖1/2

L∞
T L2

xy
≤ Cε−1/8 · ε1/8 ≤ C. (4.33)

Hence, the definition of �V ε, the Sobolev embedding inequality, (4.8) and (4.32) lead to

‖�v ε(x, y, t) − �v 0(x, y, t) −
(
0, vB,0

2
)(
x,

y√
ε
, t
)
‖L∞

T L∞
xy

≤C0
(
ε1/2‖�v I,1‖L∞

T H2
xy

+ ε1/2‖vB,1
1 ‖L∞

T H2
xz

+ ε1/2‖vB,1
2 ‖L∞

T H2
xz

+ ε‖vB,2
1 ‖L∞

T H2
xz

+ ε1/2‖�V ε‖L∞
T L∞

xy

)
≤Cε1/4.

(4.34)

Similarly, by (4.33) and the definition of Uε we have

‖uε(x, y, t) − u0(x, y, t)‖L∞
T L∞

xy

≤C0ε
1/2(‖uI,1‖L∞

T H2
xy

+ ‖uB,1‖L∞
T H2

xz
+ ‖uB,2‖L∞

T H2
xz

+ ‖Uε‖L∞
T L∞

xy

)
≤Cε1/2.

(4.35)

The combination of (4.34) and (4.35) gives (2.15) and completes the proof. �
Proof of Theorem 2.2. By (uε, �v ε) and (u0, �v 0) we denote the solutions of problem (1.3), (1.6) obtained in 
Theorem 2.1 and Proposition 2.1, respectively. Let

cε(x, y, t) = c0(x, y) exp
{ t∫

0

[−ε∇ · �v ε + ε|�v ε|2 − uε](x, y, τ) dτ
}
,

c0(x, y, t) = c0(x, y) exp
{
−

t∫
u0(x, y, τ) dτ

}
.

(4.36)
0
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It is easy to verify that (uε, cε)(x, y, t) and (u0, c0)(x, y, t) solve (2.17) with ε ∈ (0, εT ] and ε = 0, respectively. 
Indeed under the curl-free property ∇ × �v ε(x, y, t) = 0, one has that

Δ�v ε = ∇(∇ · �v ε) −∇× (∇× �v ε) = ∇(∇ · �v ε). (4.37)

By this, a direct computation on (4.36) leads to

−∇cε

cε
= −∇c0

c0
+

t∫
0

[ε∇(∇ · �v ε) − ε∇|�v ε|2 + ∇uε] dτ

= �v0 +
t∫

0

[εΔ�v ε − ε∇|�v ε|2 + ∇uε] dτ

= �v0 +
t∫

0

∂τ�v
ε dτ

= �v ε,

(4.38)

where the assumption �v0 = −∇c0
c0

in Theorem 2.2 and the second equation of (1.3) have been used. Thus, 
(4.38) along with the first equation of (1.3) with ε > 0 implies that (uε, cε) satisfies the first equa-
tion of (2.17). Following a similar argument, one deduces that (uε, cε) solves the second equation and 
the initial–boundary conditions of system (2.17) by using (4.37) and the second equation of (1.3). Hence 
(uε, cε) solves (2.17) with ε ∈ (0, εT ]. Similarly, (u0, c0) solves (2.17) with ε = 0. We further deduce that 
(uε, cε) ∈ C([0, T ]; H2

xy × H3
xy) and (u0, c0) ∈ C([0, T ]; H9

xy × H10
xy) by the regularity estimates of (uε, �v ε)

and (u0, �v 0) in Theorem 2.1 and Proposition 2.1. The uniqueness follows from the standard method used 
in [67]. Finally, one derives (2.18) and (2.19) by (4.36), (2.15), (4.4) and following the arguments employed 
in the proof of [24, Theorem 2.2]. We omit it for brevity. �
5. Appendix

This section is devoted to the derivation of equations (2.3)–(2.14), by employing the asymptotic analysis, 
which has been used in [24, Appendix] to derive layer profiles in one dimension and in [25, Appendix] to 
determine the thickness of boundary layers. We omit the details for brevity and just sketch the procedure.

Step 1. Initial and boundary conditions. Substituting (2.1) into the initial conditions in (1.3) and following 
the arguments used in [25, Appendix], we have

uI,0(x, y, 0) = u0(x, y), uB,0(x, z, 0) = 0,

�v I,0(x, y, 0) = �v0(x, y), �v B,0(x, z, 0) = 0
(5.1)

and for j ≥ 1

uI,j(x, y, 0) = uB,j(x, z, 0) = 0,

�v I,j(x, y, 0) = �v B,j(x, z, 0) = 0.
(5.2)

For the boundary conditions, we insert (2.1) into (1.6) and use (2.2) to get for j ∈ N that
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ū(x, t) =
∞∑
j=0

εj/2
[
uI,j(x, 0, t) + uB,j(x, 0, t)

]
,

v̄(x, t) =
∞∑
j=0

εj/2
[
vI,j2 (x, 0, t) + vB,j

2 (x, 0, t)
]
,

0 =
∞∑
j=0

εj/2
[
∂yv

I,j
1 (x, 0, t) + ε−1/2∂zv

B,j
1 (x, 0, t)

]
−

∞∑
j=0

εj/2∂x
[
vI,j2 (x, 0, t) + vB,j

2 (x, 0, t)
]
.

To fulfill the above boundary conditions for all small ε > 0, it is required that

ū(x, t) = uI,0(x, 0, t) + uB,0(x, 0, t),

v̄(x, t) = vI,02 (x, 0, t) + vB,0
2 (x, 0, t),

0 = ∂zv
B,0
1 (x, 0, t),

∂xv̄(x, t) = ∂yv
I,0
1 (x, 0, t) + ∂zv

B,1
1 (x, 0, t)

(5.3)

and for j ≥ 1 that

0 = uI,j(x, 0, t) + uB,j(x, 0, t),

0 = vI,j2 (x, 0, t) + vB,j
2 (x, 0, t),

0 = ∂yv
I,j
1 (x, 0, t) + ∂zv

B,j+1
1 (x, 0, t).

(5.4)

Step 2. Equations for uI,j and uB,j . We first substitute (2.1) without the inner layer profiles (uB,j , �v B,j)
into the first equation of (1.3) to get the equations for outer layer profiles uI,j:

uI,j
t −

j∑
k=0

∇ · (uI,k�v I,j−k) = ΔuI,j for j ∈ N. (5.5)

To find the equations for inner layer profiles uB,j, by a similar argument in [24, Step 2, Appendix], namely 
inserting (2.1) into the first equation of (1.3) and subtracting (5.5) from the resulting equation then applying 
Taylor expansion to uI,j , �v I,j , we end up with

∞∑
j=−2

εj/2G̃j(x, z, t) = 0, (5.6)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G̃−2 = − ∂2
zu

B,0,

G̃−1 = − uI,0(x, 0, t)∂zvB,0
2 − vI,02 (x, 0, t)∂zuB,0 − ∂z(uB,0vB,0

2 ) − ∂2
zu

B,1,

G̃0 =∂tu
B,0 − ∂x[(uI,0(x, 0, t) + uB,0)vB,0

1 ] − ∂x(uB,0vI,01 (x, 0, t)) − uB,0∂yv
I,0
2 (x, 0, t)

− (uI,0(x, 0, t) + uB,0)∂zvB,1
2 − (uI,1(x, 0, t) + uB,1)∂zvB,0

2 − ∂yu
I,0(x, 0, t)vB,0

2

− ∂zu
B,0(vI,12 (x, 0, t) + vB,1

2 ) − ∂zu
B,1(vI,02 (x, 0, t) + vB,0

2 )
− ∂2

xu
B,0 − ∂2

zu
B,2 − z∂yu

I,0(x, 0, t)∂zvB,0
2 − z∂yv

I,0
2 (x, 0, t)∂zuB,0,

· · · · · · ,

with G̃j = 0 for j ≥ −2. From G̃−2 = 0 we get ∂2
zu

B,0 = 0, which upon integrations twice with respect to z
over (z, ∞) along with the assumption (H), yields
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uB,0(x, z, t) = 0, for (x, z, t) ∈ R× R+ × [0, T ]. (5.7)

Furthermore, it follows from (5.7), G̃−1 = 0 and the first identity of (5.3) that

∂2
zu

B,1 = −uI,0(x, 0, t)∂zvB,0
2 = −ū(x, t)∂zvB,0

2 , (5.8)

which, upon integration over (z, ∞) gives rise to

∂zu
B,1 = −ū(x, t)vB,0

2 , (5.9)

where the assumption (H) has been used.
Applying a similar procedure as deriving (5.9) by inserting (5.7) into G̃0 = 0, we get

∂2
zu

B,2 = − ∂x(uI,0(x, 0, t)vB,0
1 ) − uI,0(x, 0, t)∂zvB,1

2 − (uI,1(x, 0, t) + uB,1)∂zvB,0
2

− ∂yu
I,0(x, 0, t)vB,0

2 − ∂zu
B,1(vI,02 (x, 0, t) + vB,0

2 ) − z∂yu
I,0(x, 0, t)∂zvB,0

2
(5.10)

and then integrating the above equation with respect to z twice, we have

uB,2 = ū(x, t)
∞∫
z

vB,1
2 (x, η, t) dη −

∞∫
z

∞∫
η

Γ(x, ξ, t) dξdη, (5.11)

where

Γ(x, z, t) :=∂x(uI,0(x, 0, t)vB,0
1 ) + (uI,1(x, 0, t) + uB,1)∂zvB,0

2

+ ∂yu
I,0(x, 0, t)vB,0

2 + ∂zu
B,1(vI,02 (x, 0, t) + vB,0

2 ) + z∂yu
I,0(x, 0, t)∂zvB,0

2 .

Step 3. Equations for �v I,j and �v B,j . Applying an analogous argument as Step 2 to the second equation of 
(1.3), we derive

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�v I,0
t −∇uI,0 = 0,

�v I,1
t −∇uI,1 = 0,

�v I,j
t + 2

j−2∑
k=0

∇(�v I,k · �v I,j−2−k) −∇uI,j − Δ�v I,j−2 = 0 for j ≥ 2

(5.12)

and
∞∑

j=−1
ε

j
2 �F j(x, z, t) = 0, (5.13)

where �F j(x, z, t) = (F j
1 , F

j
2 )(x, z, t) with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F−1
1 =0,
F 0

1 =∂tv
B,0
1 − ∂xu

B,0 − ∂2
zv

B,0
1 ,

F 1
1 =∂tv

B,1
1 − ∂xu

B,1 − ∂2
zv

B,1
1 ,

F 2
1 =∂tv

B,2
1 + ∂x(2vI,01 (x, 0, t)vB,0

1 + vB,0
1 vB,0

1 + 2vI,02 (x, 0, t)vB,0
2 + vB,0

2 vB,0
2 )

− ∂xu
B,2 − ∂2

xv
B,0
1 − ∂2

zv
B,2
1 ,

· · · · · ·
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and
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F−1
2 = −∂zu

B,0,

F 0
2 = ∂tv

B,0
2 − ∂zu

B,1 − ∂2
zv

B,0
2 ,

F 1
2 = ∂tv

B,1
2 + 2(vI,01 (x, 0, t) + vB,0

1 )∂zvB,0
1 + 2(vI,02 (x, 0, t) + vB,0

2 )∂zvB,0
2 − ∂zu

B,2 − ∂2
zv

B,1
2 ,

· · · · · · ,

which leads to F j
1 = 0, F j

2 = 0 with j ≥ −1 to guarantee that (5.13) holds true for all small ε > 0. Finally, 
the initial boundary value problems (2.3)–(2.14) shown in section 2 follow directly from the results derived 
in Step 1–Step 3. Indeed, by (5.5) with j = 0, (5.12), (5.1) and (5.3), we derive (2.3). From (5.13) with 
j = 0, (5.7), (5.1) and (5.3) one deduces (2.5). Similarly, (2.7) is the combination of (5.9), (5.13) with j = 0, 
(5.1) and (5.3) while (2.9) comes from (5.5) with j = 1, (5.12), (5.2) and (5.4). Moreover (5.13), (5.2) and 
(5.4) with j = 1 lead to (2.10). The combination of (5.10), (5.13) with j = 1, (5.2), (5.4) and vB,0

1 = 0 yields 
(2.11). Finally, (2.14) follows from (5.13) with j = 1, (5.2) and (5.4).
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