
April 18, 2018 16:1 WSPC/S0219-5305 176-AA 1750008

Analysis and Applications, Vol. 16, No. 3 (2018) 307–338
c© World Scientific Publishing Company
DOI: 10.1142/S0219530517500087

A dual-gradient chemotaxis system modeling the spontaneous
aggregation of microglia in Alzheimer’s disease

Hai-Yang Jin

School of Mathematics
South China University of Technology

Guangzhou 510640, P. R. China
mahyjin@scut.edu.cn

Zhi-An Wang∗

Department of Applied Mathematics
Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
∗mawza@polyu.edu.hk

Received 7 May 2016
Accepted 16 March 2017
Published 11 May 2017

In this paper, we consider the following dual-gradient chemotaxis model
8>><
>>:

ut = ∆u −∇ · (χu∇v) + ∇ · (ξf(u)∇w), x ∈ Ω, t > 0,

τ1vt = ∆v + αu − βv, x ∈ Ω, t > 0,

τ2wt = ∆w + γu − δw, x ∈ Ω, t > 0,

with f(u) = um for m ≥ 1 and f(u) = u(u + 1)m−1 for 0 < m < 1, where Ω is a
bounded domain in R

n(n ≥ 2) with smooth boundary, m > 0, χ ≥ 0, ξ > 0, α, β, γ, δ > 0
and τ1, τ2 ∈ {0, 1}. The model was proposed to interpret the spontaneous aggregation
of microglia in Alzheimer’s disease due to the interaction of attractive and repulsive
chemicals released by the microglia. It has been shown in the literature that, when
m = 1, the solution of the model with homogeneous Neumann boundary conditions
either blows up or asymptotically decays to a constant in multi-dimensions depending
on the sign of θ = χα−ξγ, which means there is no pattern formation. In this paper, we
shall show as m > 1, the uniformly-in-time bounded global classical solutions exist in
multi-dimensions and hence pattern formation can develop. This is significantly different
from the results for the case m = 1. We perform the numerical simulations to illustrate
the various patterns generated by the model, verify our analytical results and predict
some unsolved questions. Biological applications of our results are discussed and open
problems are presented.
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1. Introduction and Main Results

Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized
by the presence of numerous senile plaques in the brain tissue [41], whose major
components are extracellular deposits of β-amyloid protein that build up in the
spaces between nerve cells. It was found in the brains of patients with AD that
activated microglia, which are the most abundant of the resident macrophage pop-
ulations in the central nerve system [39], are associated with β-amyloid deposit
and concentrated in regions of compact amyloid deposit, where they surround and
infiltrate into the β-amyloid plaques [37]. When activated from resting state upon
environment stimulation (like injury, infection and inflammation of the nervous sys-
tem), microglia will secrete proteases, cytokines, and reactive oxygen species which
cause the production of β-amyloid and encourage the aggregation of β-amyloid [37].
The growing size of these plaques in turn triggers the action of even more microglia,
which then secrete more cytokines, proteases, and oxygen species, thus amplifying
the neurodegeneration [22].

Despite enormous efforts and progress made in the past, the mechanism of
pathogenesis of AD still remains poorly understood. While conventional experi-
mental approaches have been unable to identify critical underlying causes for AD
due to its highly complex and dynamic interactions occurring among multiple cell
types throughout the aging process, mathematical models can serve as powerful
tools to help understand the molecular and cellular processes regulating complex
diseases [6]. Indeed, there have been a few mathematical approaches to model the
formation of senile plaques (marker of AD) such as PDE approach in [7] and kinetic
method in [24, 26], and the intertwined cross-talks among microglia, astroglia and
neurons by ODE approach in [40]. Recently, an integral–differential model describ-
ing the progression of AD with focus on the role of prions in memory impairment
was proposed and analyzed in [10].

While the cause of Alzheimer’s disease is incompletely known to date, it has
been widely accepted that microglial activation has a central role in the formation
of β-amyloid plaques [7, 9, 39]. Among other things, this paper will be devoted to
understanding the dynamics of microglia whose density in the brains of patients
with AD has been found to be much higher than those in the brains of healthy
individuals [16]. Particularly, microglia density distribution of the midbrain sub-
stantia nigra compacta is uneven and significantly higher than other regions [21].
Since microglia cells are strongly associated with β-amyloid deposit in the central
nerve system as mentioned above, understanding the mechanism of aggregates of
microglia will be an essential step to untangle the pathogenesis of AD. It is generally
believed that high density of microglia results from spontaneous aggregation rather
than proliferation [30]. One hypothesis is that chemicals (cytokines) secreted by
microglia including chemoattractant (i.e. Interleukin-1β protein) and chemorepel-
lent (i.e. tumor necrosis factor-α) might interact to produce the localized aggregates
of microglia. Hence a key question is what type of interactions between microglia
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and their secreted chemical factors would lead to localized aggregates of microglia.
Our present work will be concentrated on this question and explore the possible
mechanism leading to aggregates of microglia as a result of the combined interaction
of attraction and repulsion with microglia.

Toward the question raised above, Luca, Chavez-Ross, Edelstein-Keshet and
Mogilner proposed the following dual-gradient system in [30]:


ut = ∆u −∇ · (χu∇v)+∇ · (ξu∇w),

τ1vt = ∆v + αu − βv,

τ2wt = ∆w + γu − δw,

(1.1)

where u denotes the density of microglia, v denotes the concentration of chemoat-
tractant (like Interleukin-1β) and w accounts for the concentration of chemore-
pellent (like Tumor necrosis factor-α); χ ≥ 0 and ξ ≥ 0 are chemotactic coeffi-
cients measuring the strength of attraction and repulsion, respectively. α/γ and
β/δ are positive constants denoting production and degradation rates of chemoat-
tractant/chemorepellent, respectively. Here, τ1, τ2 ≥ 0 are nonnegative scaling con-
stants (see more details in [30]).

The main goal of proposing the model (1.1) in [30] is to examine whether the
combined chemicals (chemoattractant and chemorepellent) may interact to produce
aggregates of microglia. Linear stability analysis was performed in [30] to identify
the parameter regime for the local instability of constant steady states of (1.1)
in an interval with Neumann boundary conditions, where numerical simulations
of the model shows the possible periodic patterns. Later the existence of periodic
solutions in one dimension was rigorously proved using Hopf bifurcation theorems
in [29] by Liu, Shi and the second author. However, these analytical and numerical
results are inadequate to support the model to interpret the aggregation of microglia
in Alzheimer’s disease. Deeper and more exhaustive analysis, particularly in the
physical two or three dimensions, is highly desired. Recently, Tao and the second
author made a comprehensive investigation for the model (1.1) in a bounded domain
with homogeneous Neumann boundary condition in [45] and first found that the
solution behavior of (1.1) essentially depends on the sign of parameter θ := χα−ξγ,
which interprets the competing effect between attraction and repulsion as follows:

• θ < 0 ⇔ repulsion dominates;
• θ = 0 ⇔ repulsion cancels attraction;
• θ > 0 ⇔ attraction dominates.

The analysis in [45] reveals that the mathematical techniques used for the case β = δ

and β �= δ are very different. Since then a series of works have been developed
further for the model (1.1) in a bounded domain with homogeneous Neumann
boundary conditions which will be assumed in the sequel without mention anymore.
We outline the existing results briefly in the following. For the case β = δ, the
results of [45] asserted that: (1) if θ ≤ 0, then the model (1.1) with τ1 = τ2 = 0 has
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a unique global classical solution which converges to a unique constant steady state
asymptotically in two or higher dimensions. The same result holds for τ1 = τ2 = 1
in two dimensions; (2) if θ > 0, then there exists a threshold number σ = 8π

θ

such that the solution of (1.1) with τ1 = τ2 = 0 or τ1 = τ2 = 1 may blow-up
(or globally exists) in two dimensions if initial cell mass is larger (or smaller) than
the threshold number σ. These results together provided a basic picture for the
behavior of solutions of (1.1) with β = δ: for large initial cell mass, the solution
of (1.1) either blows up or converges to a constant steady state asymptotically,
which implies aggregation pattern does not exist. For the case β �= δ, the available
results are the following: (i) if θ ≤ 0, it was shown in [45] that for any large initial cell
mass, the model (1.1) admits a unique global classical solution which is uniformly
bounded in time for τ1 = τ2 = 0 and time-dependent for τ1 = τ2 = 1. This result
was improved recently in [18, 25] showing that if θ ≤ 0, the global solution of (1.1)
with τ1 = τ2 = 1 is also uniformly bounded in time. Furthermore in [27, 28], the
convergence of solutions to constant steady states is established for small initial cell
mass; (ii) if θ > 0, it was shown in [8, 53] that there is a threshold number same
as σ mentioned above such that the solution of (1.1) with τ1 = τ2 = 0 may blow
up (or globally exists) in two dimensions if the cell mass is larger (or smaller) than
σ. The same result was extended to the case τ1 = 1, τ2 = 0 in [20] by the authors.
The boundedness, blow-up and large time behavior of solutions have been recently
carried over to the whole space in [19, 42]. We find from the existing results that
the solution behavior of (1.1) for β = δ is the same as for β �= δ except the case
τ1 = τ2 = 1 remain unjustified. In the last section of this paper, we shall confirm
this case numerically. Hence one can conclude that for large cell mass, the solution
of the model (1.1) either blows up or converges to a constant asymptotically for any
parameter values. The bounded but not asymptotically constant solutions are ruled
out from the system (1.1). This entails that the model (1.1) cannot fully interpret
the aggregates of microglia observed in Alzheimer’s disease.

Due to the failure of generating aggregation patterns, the model (1.1) is unable
to testify the hypothesis that the interaction of chemotactic attraction and repulsion
with microglia may lead to the aggregates of microglia in the brains of patients
with Alzheimer’s disease [30]. Naturally, one will ask whether this failure comes
from the model or the hypothesis. If we presume that it is due to the model, we
need to modify the model (1.1). In this paper, we consider a modification of the
model (1.1) as follows:


ut = ∆u −∇ · (χu∇v)+∇ · (ξf(u)∇w),

τ1vt = ∆v + αu − βv,

τ2wt = ∆w + γu − δw,

(1.2)

where

f(u) =

{
um for m ≥ 1,

u(u + 1)m−1 for 0 < m < 1.
(1.3)
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When m = 1, the model (1.2) becomes (1.1) which says that the chemotactic
response of microglia to both chemoattractant and chemorepellent is linear. When
m �= 1, the model (1.2) implies that the chemotactic response of microglia to the
chemorepellent is nonlinear, different from the linear response to the chemoattrac-
tant. To formulate our problem completely, we prescribe the following initial and
boundary conditions


∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τ1v(x, 0) = τ1v0(x), τ2w(x, 0) = τ2w0(x), x ∈ Ω,

(1.4)

where Ω is a bounded domain in R
n(n ≥ 2) with smooth boundary and ν denotes

the outward normal vector of the boundary ∂Ω.
We shall show that the modified model (1.2)–(1.4) with m > 1 has a unique

global classical solution which is uniformly bounded in time for any large initial
cell mass and parameter values. Numerical simulations will be performed to show
that this solution is not an asymptotic constant and the aggregation pattern can
be generated. When ξ = 0 and w-equation is decoupled, the model (1.2) reduces
to the classical attractive chemotaxis model which has been widely studied over
the past several decades (e.g. see [4, 11, 13, 14, 31, 33, 34, 49, 52] and references
therein). Hereafter, we shall assume that ξ > 0 and our first main results on the
boundedness of solutions is as follows.

Theorem 1.1. Let Ω be a bounded domain in R
n with smooth boundary. Assume

that ξ, α, β, γ, δ > 0 and χ ≥ 0. Then the following results hold:

(i) If τ1 = τ2 = 0 and 0 ≤ u0 ∈ W 1,∞(Ω), then the system (1.2)–(1.4) has a unique
global classical solution (u, v, w) in C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)) for any
m > 1, n ≥ 2.

(ii) If τ1 = 1, τ2 = 0 and 0 ≤ (u0, v0) ∈ [W 1,∞(Ω)]2, the system (1.2)–(1.4) has a
unique global classical solution (u, v, w) in C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞))
for either m > 1 and n = 2 or m ≥ 2 and n ≥ 3.

Furthermore, for both cases (i) and (ii), there exists a constant C indepen-
dent of t such that

‖u(·, t)‖L∞ ≤ C.

If χ = 0, the v-equation can be decoupled from the system (1.2), and hence
the first and third equations of (1.2) with (1.4) become the following repulsive
chemotaxis system:



ut = ∆u + ξ∇ · (f(u)∇w), x ∈ Ω, t > 0,

τ2wt = ∆w + γu − δw, x ∈ Ω, t > 0,

∂u

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), τ2w(x, 0) = τ2w0(x), x ∈ Ω,

(1.5)
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where f(u) satisfies (1.3). The repulsive chemotaxis system (1.5) has not been
completely understood to date. The first result was obtained for m = 1 in [5] where
the existence of global classical solutions for n = 2 and weak solutions for n = 3, 4
of (1.5) with τ2 = 1 was obtained. The existence of global classical solutions for
n ≥ 3 still remains open. As m �= 1 it was shown in [43] if m is suitably small such
that 0 < m < 4

n+2 , then (1.5) with τ2 = 1 has a unique global classical solution for
n ≥ 2. As m ≥ 4

n+2 , it is conjectured that the same result would hold. In this paper,
we shall show for the simplified parabolic–elliptic version of (1.5), global classical
solutions exist with uniform-in-time bound for any m > 0 and n ≥ 2. Precisely, we
have the following results.

Proposition 1.2. Let Ω be a bounded domain in R
n with smooth boundary. Assume

0 ≤ u0 ∈ W 1,∞(Ω). Then for any m > 0 and n ≥ 2, the system (1.5) with τ2 = 0
admits a unique global classical solution (u, w) ∈ C0(Ω̄× [0,∞))∩C2,1(Ω̄× (0,∞))
which is uniformly bounded in time.

The results for the full parabolic model (1.2) (i.e. τ1 = τ2 = 1) with χ, ξ > 0
largely remain open. However, if β = δ and v0

α ≡ w0
γ , we can reduce the model (1.2)

into a volume-filling chemotaxis model [36, 47] and the following result is estab-
lished.

Theorem 1.3. Let Ω be a bounded domain in R
n with smooth boundary. Assume

β = δ and 0 ≤ (u0, v0, w0) ∈ [W 1,∞(Ω)]3 with v0
α = w0

γ . Then for any m > 1
and n ≥ 2, the system (1.2)–(1.4) with τ1 = τ2 = 1 has a unique classical solution
(u, v, w) ∈ C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)). Moreover, if 0 ≤ u0 ≤ (χα

ξγ )
1

m−1 , it
follows that

0 < u ≤
(

χα

ξγ

) 1
m−1

for all t > 0.

2. Local Existence and Preliminaries

In this section, we shall present some basic facts and results that will be used later.
The existence of local solutions of the problem (1.2)–(1.4) can be proved by the
fixed point theorem and maximum principle along the same lines shown in [45, 46].
Hence we only present the local existence result without proof below.

Lemma 2.1. Assume that 0 ≤ (u0, τ1v0, τ2w0) ∈ [W 1,∞(Ω)]3. Then there exists
Tmax ∈ (0,∞] such that the model (1.2)–(1.4) has a unique nonnegative classical
solution (u, v, w) ∈ C(Ω̄× [0, Tmax); R3)∩C2,1(Ω̄× (0, Tmax); R3). Moreover, u > 0
in Ω × (0, Tmax) and

if Tmax < ∞, then ‖u(·, t)‖L∞ → ∞ as t ↗ Tmax. (2.1)

Integrating equations in (1.2) and using the boundary condition in (1.4), the
following results can be readily obtained.
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Lemma 2.2. The solution (u, v, w) of (1.2)–(1.4) satisfies the following properties:

‖u(·, t)‖L1 = ‖u0‖L1 ,

‖v(·, t)‖L1 ≤ τ1‖v0‖L1 +
α

β
‖u0‖L1 ,

‖w(·, t)‖L1 ≤ τ2‖w0‖L1 +
γ

δ
‖u0‖L1.

The following inequalities are well known. We present them here for the conve-
nience of quotation later.

Lemma 2.3 ([23]). Let Ω be a bounded domain in R
n with smooth boundary.

Assume there is a constant C > 0 such that

‖u‖Ls ≤ C for all t ∈ (0, T ).

If v0 ∈ W 1,∞(Ω), then there exists some constant Cq such that for every t ∈ (0, T )
and 1 ≤ s < n, the solution of the problem

vt = ∆v + αu − βv in Ω,
∂v

∂ν
= 0 on ∂Ω

satisfies

‖v(t)‖W 1,q ≤ Cq (2.2)

for all q < ns
n−s . If s = n, then (2.2) holds for all q < ∞, and if s > n, (2.2) holds

for q = ∞.

Lemma 2.4 (Gagliardo–Nirenberg inequality). Let Ω be a bounded domain
in R

n with smooth boundary. Let 1 ≤ p, q ≤ ∞ satisfying (n − kq)p < nq for some
k > 0 and r ∈ (0, p). Then, for any h ∈ W k,q(Ω)∩Lr(Ω), there exist two constants
c1 and c2 depending only on Ω, q, k, r and n such that

‖h‖Lp ≤ c1‖Dkh‖a
Lq‖h‖1−a

Lr + c2‖h‖Lr , (2.3)

where a ∈ (0, 1) fulfilling

1
p

= a

(
1
q
− k

n

)
+ (1 − a)

1
r
.

We should remark the original Gagliardo–Nirenberg inequality (e.g. see [35]) is
stated only for r ≥ 1, but this condition can be easily relaxed to r ∈ (0, p) by using
the Hölder’s inequality (cf. [48, Lemma 3.2] or [45]).

3. Proof of Theorem 1.1(i)

From the blow-up criterion given in Lemma 2.1, it suffices to derive ‖u‖L∞ < ∞
for all t > 0 to extend the local solution to the global one. To this end, we first
show the boundedness of ‖u‖Lp for p > n as a starting point. Hereafter, we use ci

to denote a generic constant which may vary in the context.
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We first give an inequality that will be frequently used later. The proof of this
inequality is inspired from [45]. For completeness, we present it here.

Lemma 3.1. Let Ω be a bounded domain in R
n with smooth boundary. For any

ε > 0 and p > 1, there exists a constant C > 0 such that for each u ∈ L1(Ω), the
solution of the problem

− ∆w + δw = γu in Ω,
∂w

∂ν
= 0 on ∂Ω (3.1)

satisfies ∫
Ω

wpdx ≤ ε

∫
Ω

updx + C.

Proof. First, we apply the Agmon–Douglis–Nirenberg Lp-estimates [1, 2] to the
linear elliptic problem (3.1) with zero Neumann boundary condition, and find a
constant c1 > 0 such that

‖w(·, t)‖W 2,p ≤ c1‖u(·, t)‖Lp . (3.2)

Then we use the Gagliardo–Nirenberg inequality in Lemmas 2.2 and 2.4 and (3.2)
to get some constants c2 > 0 and c3 > 0 such that∫

Ω

wpdx = ‖w‖p
Lp ≤ c2‖D2w‖pθ

Lp‖w‖p(1−θ)
L1 + c2‖w‖p

L1

≤ c3‖u‖pθ
Lp + c3,

where

θ :=
1 − 1

p

1 +
2
n
− 1

p

∈ (0, 1)

due to p > 1. Furthermore, noting the fact θ ∈ (0, 1), the Young inequality entails
that ∫

Ω

wpdx ≤ c3‖u‖pθ
Lp + c3 ≤ ε

∫
Ω updx + c4(ε), (3.3)

which completes the proof.

Lemma 3.2. Let m > 1. Then for any p > max{n
2 , 1}, there exists a constant

C > 0 such that the solution of (1.2)–(1.4) with τ1 = τ2 = 0 satisfies∫
Ω

updx ≤ C for all t ∈ (0, Tmax).

Proof. Multiplying the first equation of (1.2) by pup−1, integrating by parts and
employing the second and the third equations in (1.2) with τ1 = τ2 = 0, we end up
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with
d

dt

∫
Ω

updx + p(p − 1)
∫

Ω

up−2|∇u|2dx +
p(p − 1)ξγ
p − 1 + m

∫
Ω

up+mdx

≤ (p − 1)χα

∫
Ω

up+1dx +
p(p − 1)ξδ
p − 1 + m

∫
Ω

up−1+mwdx. (3.4)

Since m > 1, then using the Young’s inequality, we have

(p − 1)χα

∫
Ω

up+1dx ≤ p(p − 1)ξγ
4(p − 1 + m)

∫
Ω

up+mdx + c1. (3.5)

Furthermore, by the Hölder inequality and the Young’s inequality, we can find two
constants c2, c3 > 0 such that

p(p − 1)ξδ
p − 1 + m

∫
Ω

up−1+mwdx ≤ p(p − 1)ξγ
4(p − 1 + m)

∫
Ω

up+mdx + c2

∫
Ω

wp+mdx

≤ p(p − 1)ξγ
2(p − 1 + m)

∫
Ω

up+mdx + c3,

(3.6)

where Lemma 3.1 has been used. Then substituting (3.5) and (3.6) into (3.4), one
has
d

dt

∫
Ω

updx + p(p − 1)
∫

Ω

up−2|∇u|2dx +
p(p − 1)ξγ

4(p − 1 + m)

∫
Ω

up+mdx ≤ c1 + c3. (3.7)

With the following inequality resulting from the Young’s inequality∫
Ω

updx ≤ p(p − 1)ξγ
4(p − 1 + m)

∫
Ω

up+mdx + c4, (3.8)

we have from (3.7) and (3.8) that

d

dt

∫
Ω

updx +
∫

Ω

updx ≤ c5.

This, together with Gronwall’s inequality, yields∫
Ω

updx ≤
∫

Ω

up
0dx + c5.

Then the proof of Lemma 3.2 is completed.

Similarly, for the system (1.5) with τ2 = 0, we have the following results.

Lemma 3.3. Let m > 0. Then for any p > max{n
2 , 1}, there exists a constant

C > 0 such that the solution of (1.5) with τ2 = 0 satisfies∫
Ω

updx ≤ C for all t ∈ (0, Tmax). (3.9)

Proof. We first consider the case m ≥ 1 and hence f(u) = um. In this case, we
multiply the first equation of (1.5) by pup−1, integrate by parts and then use the
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second equation of (1.5) with τ2 = 0. Then we get

d

dt

∫
Ω

updx + p(p − 1)
∫

Ω

up−2|∇u|2dx

= −p(p − 1)ξ
∫

Ω

up−2+m∇u · ∇wdx

=
p(p − 1)ξδ
p − 1 + m

∫
Ω

up−1+mwdx − p(p − 1)ξγ
p − 1 + m

∫
Ω

up+mdx. (3.10)

Then substituting (3.6) into (3.10), one can find a constant c1 > 0 such that

d

dt

∫
Ω

updx + p(p − 1)
∫

Ω

up−2|∇u|2dx +
p(p − 1)ξγ

2(p − 1 + m)

∫
Ω

up+mdx ≤ c1,

which together with (3.8) gives

d

dt

∫
Ω

updx +
∫

Ω

updx ≤ c2. (3.11)

Then applying Gronwall’s inequality to (3.11), one has (3.9) in the case of m ≥ 1.
On the other hand, if 0 < m < 1 one has f(u) = u(u + 1)m−1. In this case,

multiplying the first equation of (1.5) by p(u+1)p−1, and using the similar argument
as the case m ≥ 1, we end up with

d

dt

∫
Ω

(u + 1)pdx + p(p − 1)
∫

Ω

(u + 1)p−2|∇u|2dx

= −p(p − 1)ξ
∫

Ω

[(u + 1)p+m−2 − (u + 1)p+m−3]∇u · ∇wdx

=
p(p − 1)ξ
p − 1 + m

∫
Ω

(u + 1)p−1+m(δw − γu)dx

− p(p − 1)ξ
p − 2 + m

∫
Ω

(u + 1)p−2+m(δw − γu)dx

≤ p(p − 1)ξδ
p − 1 + m

∫
Ω

(u + 1)p−1+mwdx − p(p − 1)ξγ
p − 1 + m

∫
Ω

(u + 1)p+mdx

+
p(p − 1)(2p + 2m − 3)ξγ
(p − 1 + m)(p − 2 + m)

∫
Ω

(u + 1)p+m−1dx

≤ − p(p − 1)ξγ
2(p − 1 + m)

∫
Ω

(u + 1)p+mdx + c3

≤ −
∫

Ω

(u + 1)pdx + c4,

which together with the Gronwall’s inequality gives (3.9). Hence the proof of
Lemma 3.3 is completed.
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We are now in a position to prove Theorem 1.1(i) and Proposition 1.2.

Proof of Theorem 1.1(i). We apply the Agmon–Douglis–Nirenberg Lp-
estimates [1, 2] to the following linear elliptic equations under zero Neumann bound-
ary conditions: 


−∆v + βv = αu, x ∈ Ω, t ∈ (0, Tmax),

−∆w + δw = γu, x ∈ Ω, t ∈ (0, Tmax),

∂v

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

where β, δ > 0. Then there exists a constant c1 > 0 such that

‖(v, w)(·, t)‖W 2,p ≤ c1 ‖u(·, t)‖Lp , (3.12)

which together with Lemma 3.2 gives

‖(v, w)(·, t)‖W 2,p ≤ c2. (3.13)

Choosing p > n in (3.13) and using the Sobolev embedding theorem, we can find a
constant c3 > 0 such that

‖(∇v,∇w)(·, t)‖L∞ ≤ c3.

Then by the well-known Moser–Alikakos iteration procedure (cf. [3, 45]), one can
find a constant c4 > 0 such that

‖u(·, t)‖L∞ ≤ c4 for all t ∈ (0, Tmax). (3.14)

Then Theorem 1.1(i) immediately follows from (3.14) and Lemma 2.1.

Proof of Proposition 1.2. The combination of Lemma 3.3 and (3.12) gives

‖w(·, t)‖W 2,p ≤ c1. (3.15)

We choose p > n in (3.15) and use the Sobolev embedding theorem to obtain

‖∇w(·, t)‖L∞ ≤ c2.

Similarly, by the well-known Moser–Alikakos iteration procedure (cf. [3, 45]), we
can obtain

‖u(·, t)‖L∞ ≤ c3 for all t ∈ (0, Tmax). (3.16)

Then the proof of Proposition 1.2 is completed by combining (3.16) and
Lemma 2.1.
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4. Proof of Theorem 1.1(ii)

4.1. Basic energy estimates for n ≥ 2

With τ1 = 1, τ2 = 0 and m > 1, the system (1.2)–(1.4) reads as


ut = ∆u −∇ · (χu∇v) + ∇ · (ξum∇w), x ∈ Ω, t > 0,

vt = ∆v + αu − βv, x ∈ Ω, t > 0,

0 = ∆w + γu − δw, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(4.1)

Lemma 4.1. Assume that 0 ≤ (u0, v0) ∈ [W 1,∞(Ω)]2. If there exists a constant
c1 > 0 such that

‖u‖Lp ≤ c1 for all p > n, (4.2)

then there exists a unique triple (u, v, w) of nonnegative functions belonging
to C(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)) which solves (4.1) classically such that
‖u(·, t)‖L∞ ≤ c2, where c2 is a constant independent of t.

Proof. If (4.2) holds, from Lemma 2.3, we can find a constant c1 > 0 such that

‖∇v‖L∞ ≤ ‖v‖W 1,∞ ≤ c1. (4.3)

Furthermore, the combination of (3.12) and (4.2) gives

‖w‖W 2,p ≤ c2 for all p > n,

which together with the Sobolev embedding theorem gives

‖∇w‖L∞ ≤ c3. (4.4)

Then it follows from (4.3), (4.4) and the well-known Moser–Alikakos iteration pro-
cedure (cf. [3]) that there exists a constant c4 > 0 such that

‖u(·, t)‖L∞ ≤ c4 for all t ∈ (0, Tmax). (4.5)

This completes the proof of Lemma 4.1 by combining (4.5) and Lemma 2.1.

Now, it is the key to show (4.2) holds in order to prove Theorem 1.1(ii). Inspired
by [43, 44], we shall establish a combined estimate of

∫
Ω

updx+
∫
Ω
|∇v| 2(p+m)

m dx for
t > 0 to obtain the boundedness of solutions, instead of

∫
Ω

updx alone. As a starting
point toward this aim, we shall use the condition m > 1 to derive the boundedness
of ‖∇v‖L2.
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Lemma 4.2. Let m > 1 and 0 ≤ (u0, v0) ∈ [W 1,∞(Ω)]2. Then the solution of (4.1)
satisfies ∫

Ω

|∇v|2 dx ≤ C, (4.6)

where C > 0 is a constant independent of t.

Proof. Multiplying the first equation of (4.1) by lnu and integrating the result
over Ω yield that

d

dt

∫
Ω

u lnudx +
∫

Ω

|∇u|2

u
dx = χ

∫
Ω

∇u · ∇vdx − ξ

∫
Ω

um−1∇u · ∇wdx. (4.7)

We multiply the second equation of (4.1) by −∆v and integrate the resulting equa-
tion by part over Ω to obtain

1
2

d

dt

∫
Ω

|∇v|2 dx +
∫

Ω

|∆v|2 dx + β

∫
Ω

|∇v|2 dx = α

∫
Ω

∇u · ∇vdx. (4.8)

Furthermore, using the third equation of (4.1) and boundary conditions, we can
derive that

− ξ

∫
Ω

um−1∇u · ∇wdx =
ξ

m

∫
Ω

um∆wdx =
ξδ

m

∫
Ω

umwdx − ξγ

m

∫
Ω

um+1dx. (4.9)

The combination of (4.7), (4.8) and (4.9) gives

d

dt

∫
Ω

(
u ln u +

1
2
|∇v|2

)
dx +

∫
Ω

|∇u|2

u
dx

+
∫

Ω

|∆v|2 dx + β

∫
Ω

|∇v|2 dx +
ξγ

m

∫
Ω

um+1dx

= −(χ + α)
∫

Ω

u∆vdx +
ξδ

m

∫
Ω

umwdx

≤ (χ + α)2

2

∫
Ω

u2dx +
1
2

∫
Ω

|∆v|2dx +
ξδ

m

∫
Ω

umwdx,

which, together with the inequality 2β
∫
Ω u lnudx ≤ 2β

∫
Ω u2dx, yields that

d

dt

∫
Ω

(
u lnu +

1
2
|∇v|2

)
dx +

∫
Ω

|∇u|2

u
dx +

1
2

∫
Ω

|∆v|2dx

+ β

∫
Ω

|∇v|2 dx + 2β

∫
Ω

u ln udx +
ξγ

m

∫
Ω

um+1dx

≤ (χ + α)2 + 4β

2

∫
Ω

u2dx +
ξδ

m

∫
Ω

umwdx. (4.10)

With m > 1, using the Young’s inequality, we have

(χ + α)2 + 4β

2

∫
Ω

u2dx ≤ ξγ

4m

∫
Ω

um+1dx + c1. (4.11)
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Furthermore, applying the Hölder inequality and Young’s inequality to the last
term in (4.10), one has

ξδ

m

∫
Ω

umwdx ≤ ξγ

4m

∫
Ω

um+1dx + c2

∫
Ω

wm+1dx

≤ ξγ

2m

∫
Ω

um+1dx + c3,

(4.12)

where Lemma 3.1 has been used due to m+1 > 1. Set y(t) :=
∫
Ω(u ln u+ 1

2 |∇v|2)dx.
Substituting (4.11) and (4.12) into (4.10), one has

y′(t) + 2βy(t) ≤ c1 + c3,

which implies

y(t) ≤ y(0) + c4 for all t ∈ (0, Tmax). (4.13)

Noting the facts −u lnu ≤ 1
e for all u > 0 and the definition of y(t), then from (4.13),

we have
1
2

∫
Ω

|∇v|2dx ≤
∫

Ω

u0 ln u0dx +
1
2

∫
Ω

|∇v0|2dx −
∫

Ω

u ln udx + c4

≤
∫

Ω

u0 ln u0dx +
1
2

∫
Ω

|∇v0|2dx +
|Ω|
e

+ c4,

which gives (4.6). Then we complete the proof of this lemma.

Lemma 4.3. Let p > 1, q ≥ 2. Then there exist two constants C1 > 0 and C2 > 0
such that for all t ∈ (0, Tmax), the solution of (4.1) satisfies

d

dt

(∫
Ω

updx +
∫

Ω

|∇v|2qdx

)
+

2(p − 1)
p

∫
Ω

|∇u
p
2 |2dx

+
2(q − 1)

q

∫
Ω

|∇|∇v|q|2dx +
p(p − 1)ξγ

2(p − 1 + m)

∫
Ω

up+mdx

≤ p(p − 1)χ2

2

∫
Ω

up|∇v|2dx + C1

∫
Ω

u2|∇v|2q−2dx + C2. (4.14)

Proof. Multiplying the first equation of (4.1) by pup−1, and integrating the equa-
tion with respect to x over Ω, one has

d

dt

∫
Ω

updx + p(p − 1)
∫

Ω

up−2|∇u|2dx

= p(p − 1)χ
∫

Ω

up−1∇u · ∇vdx +
p(p − 1)ξ
p − 1 + m

∫
Ω

up−1+m(δw − γu)dx

≤ p(p − 1)
2

∫
Ω

up−2|∇u|2dx +
p(p − 1)χ2

2

∫
Ω

up|∇v|2dx

+
p(p − 1)ξδ
p − 1 + m

∫
Ω

up−1+mwdx − p(p − 1)ξγ
p − 1 + m

∫
Ω

up+mdx,
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which yields

d

dt

∫
Ω

updx +
p(p − 1)

2

∫
Ω

up−2|∇u|2dx +
p(p − 1)ξγ
p − 1 + m

∫
Ω

up+mdx

≤ p(p − 1)χ2

2

∫
Ω

up|∇v|2dx +
p(p − 1)ξδ
p − 1 + m

∫
Ω

up−1+mwdx. (4.15)

Furthermore, we can use Young’s inequality and Lemma 3.1 to estimate the last
term in (4.15) as

p(p − 1)ξδ
p − 1 + m

∫
Ω

up−1+mwdx ≤ p(p − 1)ξγ
4(p − 1 + m)

∫
Ω

up+mdx + c1

∫
Ω

wp+mdx

≤ p(p − 1)ξγ
2(p − 1 + m)

∫
Ω

up+mdx + c2.

(4.16)

Substituting (4.16) into (4.15), one has

d

dt

∫
Ω

updx +
2(p − 1)

p

∫
Ω

|∇u
p
2 |2dx +

p(p − 1)ξγ
2(p − 1 + m)

∫
Ω

up+mdx

≤ p(p − 1)χ2

2

∫
Ω

up|∇v|2dx + c2. (4.17)

We differentiate the second equation of system (4.1) and multiply the results by
2∇v to obtain

(|∇v|2)t = 2∇v · ∇∆v + 2α∇u · ∇v − 2β|∇v|2

= ∆|∇v|2 − 2|D2v|2 + 2α∇u · ∇v − 2β|∇v|2,
(4.18)

where we have used the identity ∆|∇v|2 = 2∇v · ∇∆v + 2|D2v|2. Multiplying the
equation (4.18) by q|∇v|2q−2(q ≥ 2), integrating the result by parts, one has

d

dt

∫
Ω

|∇v|2qdx + q(q − 1)
∫

Ω

|∇v|2q−4|∇|∇v|2|2dx

+ 2q

∫
Ω

|∇v|2q−2|D2v|2dx + 2qβ

∫
Ω

|∇v|2qdx

= q

∫
∂Ω

|∇v|2q−2 ∂|∇v|2
∂ν

dS + 2qα

∫
Ω

|∇v|2q−2∇u · ∇vdx

≤ q(q − 1)
4

∫
Ω

|∇v|2q−4|∇|∇v|2|2dx + 2qα

∫
Ω

|∇v|2q−2∇u · ∇vdx + c3,

(4.19)

where we have used the following estimate (see [15, inequality, (3.10)] for details)
due to (4.6)

q

∫
∂Ω

|∇v|2q−2 ∂|∇v|2
∂ν

dS ≤ q(q − 1)
4

∫
Ω

|∇v|2q−4|∇|∇v|2|2dx + c3.
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Next, we estimate the second term on the right-hand side of (4.19) as follows

2qα

∫
Ω

|∇v|2q−2∇u · ∇vdx

= −2q(q − 1)α
∫

Ω

u|∇v|2q−4∇v · ∇|∇v|2dx − 2qα

∫
Ω

u|∇v|2q−2∆vdx

≤ q(q − 1)
4

∫
Ω

|∇v|2q−4|∇|∇v|2|2dx + 4q(q − 1)α2

∫
Ω

u2|∇v|2q−2dx

+
2q

n

∫
Ω

|∇v|2q−2|∆v|2dx +
nqα2

2

∫
Ω

u2|∇v|2q−2dx. (4.20)

Substituting (4.20) into (4.19), one has

d

dt

∫
Ω

|∇v|2qdx +
q(q − 1)

2

∫
Ω

|∇v|2q−4|∇|∇v|2|2dx

≤ 2q

n

∫
Ω

|∇v|2q−2|∆v|2dx − 2q

∫
Ω

|∇v|2q−2|D2v|2dx

+
(

nqα2

2
+ 4q(q − 1)α2

) ∫
Ω

u2|∇v|2q−2dx + c3

≤
(

nqα2

2
+ 4q(q − 1)α2

)∫
Ω

u2|∇v|2q−2dx + c3, (4.21)

where we have used the inequality

2q

n

∫
Ω

|∇v|2q−2|∆v|2dx ≤ 2q

∫
Ω

|∇v|2q−2|D2v|2dx,

by noting the fact |∆v|2 ≤ n|D2v|. The combination of (4.17) and (4.21)
yields (4.14). Then we complete the proof of this lemma.

Next, we will show the boundedness of solutions of system (4.1). To this end, we
only need to show the boundedness of ‖u‖Lp for p > n by Lemma 4.1. We proceed
with cases n = 2 and n ≥ 3 separately in the following.

4.2. Boundedness for n = 2

We first present the L2-estimate as follows.

Lemma 4.4. Let m > 1 and n = 2. Then there exists a constant C3 > 0 such that
the solution of (4.1) satisfies

‖u(·, t)‖L2 ≤ C3 for all t ∈ (0, Tmax). (4.22)
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Proof. Choosing p = 2, q = 2 in Lemma 4.3, one has

d

dt

(∫
Ω

u2dx +
∫

Ω

|∇v|4dx

)
+

∫
Ω

|∇u|2dx +
∫

Ω

|∇|∇v|2|2dx +
ξγ

1 + m

∫
Ω

u2+mdx

≤ c1

∫
Ω

u2|∇v|2dx + c2. (4.23)

Using the Hölder inequality and Young’s inequality, and noting the fact m > 1, we
have

c1

∫
Ω

u2|∇v|2dx ≤ c1

(∫
Ω

u3dx

) 2
3

(∫
Ω

|∇v|6dx

) 1
3

≤ µ‖∇v‖6
L6 + c3‖u‖3

L3

≤ µ‖∇v‖6
L6 +

ξγ

2(1 + m)

∫
Ω

u2+mdx + c4.

(4.24)

Furthermore, we can use the Gagliardo–Nirenberg inequality and the fact
‖|∇v|2‖L1 = ‖∇v‖2

L2 ≤ C in (4.6) to obtain that

‖∇v‖6
L6 = ‖|∇v|2‖3

L3 ≤ c5‖∇|∇v|2‖2
L2‖|∇v|2‖L1 + c5‖|∇v|2‖3

L1

≤ c6‖∇|∇v|2‖2
L2 + c7.

(4.25)

Substituting (4.24) and (4.25) into (4.23), and taking µ = 1
2c6

, one has

d

dt

(∫
Ω

u2dx +
∫

Ω

|∇v|4dx

)
+

∫
Ω

|∇u|2dx

+
1
2

∫
Ω

|∇|∇v|2|2dx +
ξγ

2(1 + m)

∫
Ω

u2+mdx ≤ c8. (4.26)

Using the Gagliardo–Nirenberg inequality and Young’s inequality together with
Lemma 2.2 and (4.6) give∫

Ω

u2dx ≤ c9(‖∇u‖L2‖u‖L1 + ‖u‖2
L1) ≤ ‖∇u‖2

L2 + c10 (4.27)

and∫
Ω

|∇v|4dx ≤ c11(‖∇|∇v|2‖L2‖|∇v|2‖L1 + ‖|∇v|2‖2
L1) ≤

1
2
‖∇|∇v|2‖2

L2 + c12.

(4.28)

Let z(t) =
∫
Ω u2dx+

∫
Ω |∇v|4dx. Then the combination of (4.26), (4.27) and (4.28)

gives

z′(t) + z(t) ≤ c13,

which implies there exists a constant c14 > 0 such that

z(t) =
∫

Ω

u2dx +
∫

Ω

|∇v|4dx ≤ c14. (4.29)

Then the proof of Lemma 4.4 is completed.
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Lemma 4.5. Let m > 1, n = 2. For p > 2, there exists a constant C independent
of t such that the solution (u, v, w) of (4.1) satisfies

‖u‖Lp ≤ C. (4.30)

Proof. Multiplying the first equation of (4.1) by pup−1, and integrating the equa-
tion with respect to x over Ω, we arrive at the following inequality (see also (4.17))

d

dt

∫
Ω

updx +
2(p − 1)

p

∫
Ω

|∇u
p
2 |2dx +

p(p − 1)ξγ
2(p − 1 + m)

∫
Ω

up+mdx

≤ c1

∫
Ω

up|∇v|2dx + c2. (4.31)

Using the Hölder inequality and Young’s inequality, we have

c1

∫
Ω

up|∇v|2dx ≤ c1

(∫
Ω

up+mdx

) p
p+m

(∫
Ω

|∇v|
2(p+m)

m dx

) m
p+m

≤ p(p − 1)ξγ
4(p − 1 + m)

∫
Ω

up+mdx + c3

∫
Ω

|∇v|
2(p+m)

m dx.

(4.32)

Combining Lemma 2.3 and (4.22) and noting n = 2, we can find a constant c4 > 0
such that ∫

Ω

|∇v|
2(p+m)

m dx ≤ c4. (4.33)

The combination of (4.31), (4.32) and (4.33) gives

d

dt

∫
Ω

updx +
∫

Ω

updx ≤ c5, (4.34)

where we have used the following inequality:∫
Ω

updx ≤ 2(p − 1)
p

∫
Ω

|∇u
p
2 |2dx + c6,

which is obtained by the Gagliardo–Nirenberg inequality. Integrating (4.34)
yields (4.30) and the proof of Lemma 4.5 is completed.

4.3. Boundedness for n ≥ 3

Lemma 4.6. Let m ≥ 2 and n ≥ 3. Then for all m ≤ p < ∞, there exists a
constant C > 0 independent of t such that the solution of (4.1) satisfies

‖u(·, t)‖Lp ≤ C, for all t ∈ (0, Tmax) (4.35)

and

‖∇v(·, t)‖
L

2(p+m)
m

≤ C, for all t ∈ (0, Tmax). (4.36)
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Proof. For 2 ≤ m ≤ p < ∞ and q = p+m
m > 2, from Lemma 4.3, we can find two

constants c1 > 0 and c2 > 0 such that

d

dt

(∫
Ω

updx +
∫

Ω

|∇v|2qdx

)
+

2(p − 1)
p

∫
Ω

|∇u
p
2 |2dx

+
2(q − 1)

q

∫
Ω

|∇|∇v|q|2dx +
p(p − 1)ξγ

2(p − 1 + m)

∫
Ω

up+mdx

≤ c1

∫
Ω

up|∇v|2dx + c1

∫
Ω

u2|∇v|2q−2dx + c2. (4.37)

Using the Hölder inequality, we can choose q = m+p
m > 2 and λ = p+m

p+m−2 > 1 such
that ∫

Ω

up|∇v|2dx ≤
(∫

Ω

up+mdx

) p
p+m

·
(∫

Ω

|∇v|2qdx

) 1
q

(4.38)

and ∫
Ω

u2|∇v|2q−2dx ≤
(∫

Ω

up+mdx

) 2
p+m

·
(∫

Ω

|∇v|2(q−1)λdx

) 1
λ

. (4.39)

Moreover, we use the Gagliardo–Nirenberg inequality to obtain(∫
Ω

|∇v|2qdx

) 1
q

= ‖|∇v|q‖
2
q

L2 ≤ c3‖∇|∇v|q‖
2θ1

q

L2 · ‖|∇v|q‖
2(1−θ1)

q

L
2
q

+ c3‖|∇v|q‖
2
q

L
2
q
,

(4.40)

where

θ1 =

q

2
− 1

2
q

2
+

1
n
− 1

2

∈ (0, 1).

The combination of (4.6) and (4.40) gives

(∫
Ω

|∇v|2qdx

) 1
q

≤ c4

(∫
Ω

|∇|∇v|q|2dx

) 1
q ·

q
2 − 1

2
q
2+ 1

n
− 1

2 + c4. (4.41)

Similarly, defining θ2 =
q
2−

p+m−2
2p

q
2+ 1

n− 1
2

, and using the Gagliardo–Nirenberg inequality
and (4.6), we can find a constant c5 > 0 such that(∫

Ω

|∇v|2(q−1)λdx

) 1
λ

= ‖|∇v|q‖
2(q−1)

q

L
2(q−1)λ

q

= ‖|∇v|q‖
2(q−1)

q

L
2p

p+m−2

≤ c5‖∇|∇v|q‖
2(q−1)θ2

q

L2 · ‖|∇v|q‖
2(q−1)(1−θ2)

q

L
2
q

+ c5‖|∇v|q‖
2(q−1)

q

L
2
q
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≤ c5‖∇|∇v|q‖
2(q−1)θ2

q

L2 · ‖∇v‖2(q−1)(1−θ2)
L2 + c5‖∇v‖2(q−1)

L2

≤ c6

(∫
Ω

|∇|∇v|q|2dx

) (q−1)
q ·

q
2 − p+m−2

2p
q
2 + 1

n
− 1

2 + c6. (4.42)

The combination of (4.38), (4.39), (4.41) and (4.42) entails that

c1

∫
Ω

up|∇v|2dx + c1

∫
Ω

u2|∇v|2q−2dx

≤ c1c4

(∫
Ω

up+mdx

) p
p+m

(∫
Ω

|∇|∇v|q|2dx

) 1
q ·

q
2 − 1

2
q
2+ 1

n
− 1

2

+ c1c4

(∫
Ω

up+mdx

) p
p+m

+ c1c6

(∫
Ω

up+mdx

) 2
p+m

×
(∫

Ω

|∇|∇v|q|2dx

) (q−1)
q ·

q
2 − p+m−2

2p
q
2 + 1

n
− 1

2 + c1c6

(∫
Ω

up+mdx

) 2
p+m

. (4.43)

Since q = p+m
m , one can check that

p

p + m
+

1
q
·

q

2
− 1

2
q

2
+

1
n
− 1

2

=
p

p + m
+

m

p + m
·

q

2
− 1

2
q

2
+

1
n
− 1

2

< 1. (4.44)

Moreover, if q = p+m
m and m ≥ 2, it holds that

2
p + m

+
q − 1

q
·

q

2
− p + m − 2

2p
q

2
+

1
n
− 1

2

< 1. (4.45)

By the Young’s inequality, one can readily derive that for any ε > 0 and X, Y ≥ 0
there exists a constant C > 0 such that

XaY b ≤ ε(X + Y ) + C, (4.46)

where a > 0 and b > 0 are constants such that a + b < 1. Applying (4.46) to (4.43)
with the facts (4.44) and (4.45), we have

c1

∫
Ω

up|∇v|2dx + c1

∫
Ω

u2|∇v|2q−2dx ≤ ε

(∫
Ω

up+mdx +
∫

Ω

|∇|∇v|q|2dx

)
+ c7.

(4.47)

Substituting (4.47) into (4.37) and choosing ε = min{ q−1
q , p(p−1)ξγ

4(p−1+m)}, one has

d

dt

(∫
Ω

updx +
∫

Ω

|∇v|2qdx

)
+

2(p − 1)
p

∫
Ω

|∇u
p
2 |2dx +

(q − 1)
q

∫
Ω

|∇|∇v|q|2dx

+
p(p − 1)ξγ

4(p − 1 + m)

∫
Ω

up+mdx ≤ c8. (4.48)
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Using the Gagliardo–Nirenberg inequality, we have∫
Ω

|∇v|2qdx = ‖|∇v|q‖2
L2 ≤ c9‖∇|∇v|q‖2θ3

L2 · ‖|∇v|q‖2(1−θ3)

L
2
q

+ c9‖|∇v|q‖2

L
2
q
,

(4.49)

where

θ3 =

q

2
− 1

2
q

2
+

1
n
− 1

2

∈ (0, 1).

Noting ‖|∇v|q‖
L

2
q

= ‖|∇v|‖q
L2 ≤ c10 (see (4.6)), we have from (4.49) that

∫
Ω

|∇v|2qdx ≤ (q−1)
q ‖∇|∇v|q‖2

L2 + c11. (4.50)

Furthermore, using the Hölder inequality and Young’s inequality, we can derive
that ∫

Ω

updx ≤ p(p − 1)ξγ
4(p − 1 + m)

∫
Ω

up+mdx + c12. (4.51)

Substituting (4.49), (4.50) and (4.51) into (4.48) gives

d

dt

(∫
Ω

updx +
∫

Ω

|∇v|2qdx

)
+

∫
Ω

updx +
∫

Ω

|∇v|2qdx ≤ c13,

which implies there exists a constant c14 such that∫
Ω

updx +
∫

Ω

|∇v|2qdx ≤ c14,

which gives (4.35) and (4.36) by noting that q = p+m
m . Then we complete the proof

of Lemma 4.6.

4.4. Proof of Theorem 1.1(ii)

Theorem 1.1(ii) is a direct consequence of Lemmas 4.1, 4.5 and 4.6.

5. Proof of Theorem 1.3

In this section, we will study the model (1.2)–(1.4) with τ1 = τ2 = 1. With the
conditions given in Theorem 1.3, we can transform the system (1.2)–(1.4) into a
generalized volume-filling chemotaxis model. We are now in a position to prove
Theorem 1.3.

Proof of Theorem 1.3. Letting s = v
α − w

γ and using the conditions β = δ,
τ1 = τ2 = 1 and v0

α = w0
γ , from the second and third equations of (1.2)–(1.4), we
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can derive that


st = ∆s − βs, x ∈ Ω, t > 0,

∂s

∂ν
= 0, x ∈ ∂Ω, t > 0,

s(x, 0) = s0(x) :=
v0

α
− w0

γ
= 0, x ∈ Ω,

which implies s = v
α − w

γ = 0 by the maximum principle. Substituting the identity
w = γv

α into the first equation of system (1.2), one has


ut = ∆u − κ∇ · (u(l − um−1)∇v), x ∈ Ω, t > 0,

vt = ∆v + αu − βv, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(5.1)

where l = χα
ξγ , κ = χ

l . The reduced model (5.1) is a type of the volume-filling
chemotaxis model proposed in [36] and generalized in [47]. As m = 2, the existence
of global classical solutions of (5.1) has been studied in [50], where the bounded-
ness of solutions was proved in [12] by energy estimates and in [50] by a sophisti-
cated constructive approach. The asymptotic behavior of solutions was later studied
in [17, 51]. Although the method of [12, 50] is applicable to the case m > 1, here
we shall present a much simpler method maximum principle to derive the bound-
edness of solutions to (5.1) for any m > 1. To this end, we first note that the strong
maximum principle employed to the first equation of (5.1) gives that u(x, t) > 0 for
all t > 0 since u0(x) ≥ 0. Then we set U = l − um−1 < l and substitute it into the
first equation of (5.1). After some tedious calculations, we find that U(x, t) satisfies
the equation

Ut = ∆U +
m − 2
m − 1

1
l − U

|∇U |2 + κ(m − 1)U(l − U)∆v

+ κ(m − 1)(l − U)∇U∇v − κU∇U∇v. (5.2)

Noting that U0(x) = l − um−1
0 ≥ 0 by the condition u0 ≤ (χα

ξγ )
1

m−1 = l
1

m−1 and
U satisfies the Neumann boundary conditions. Then the strong maximum princi-
ple and Hopf’s lemma applied Eq. (5.2) yield U(x, t) > 0 for all t > 0. That is
0 < u(x, t) < l

1
m−1 . Finally, we remark that the local existence of classical solu-

tions of the generalized volume-filling chemotaxis model (5.1) can be proved by the
standard fixed point theorem (e.g. see [12, 47] for m = 2). This, together with the
boundedness derived above, finishes the proof of Theorem 1.3.

Remark 5.1. With the conditions given in Theorem 1.3, the system (1.2) is trans-
formed into the system (5.1). Furthermore, if m = 1, the system (5.1) become the
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classical attractive (or repulsive) chemotaxis model if αχ > ξγ (or αχ < ξγ). Hence
there is no pattern formation for the system (5.1) with m = 1 in multi-dimensions
(e.g. see [5, 49]). However, if m > 1, the system (5.1) is a generalized volume-filling
chemotaxis model and pattern formation can be generated, see [36] for the simu-
lation results of (5.1) with m = 2. This entails that substantial differences exist
between m > 1 and m = 1 for the system (1.2).

6. Simulations, Implications and Open Questions

In this paper, we prove that the model (1.2)–(1.4) with m > 1 has a unique global
classical solution which is uniformly bounded in time for the case τ1 = τ2 = 0 or
τ1 = 1, τ2 = 0. It takes the first step to show that the model can generate pat-
tern formation. In order to prove the model (1.2)–(1.4) is capable of producing the
aggregation pattern to interpret the aggregates of microglia due to its interaction
with both chemoattractant and chemorepellent, one needs to prove the existing
global solution is not a constant asymptotically. However, this appears to a very
challenging question and we have to leave it open by far. Then the numerical simu-
lation become a necessary and important tool. In this section, we shall numerically
illustrate that the model (1.2)–(1.4) truly produces nonconstant bounded solutions
(i.e. pattern formation), which implies that the modified model (1.2)–(1.4) pro-
vides a possible mechanism to explain the aggregates of microglia in Alzheimer’s
disease. Here, we will achieve two primary goals through the numerical simula-
tions. One is to show that the pattern formation of the model (1.2)–(1.4) with
m > 1 does not depends on the sign of θ = χα − ξγ and hence the dynam-
ics of the model substantially differs from the case m = 1 studied before. The
other is to find under what conditions, the aggregation patterns can be gener-
ated from the model (1.2)–(1.4). The numerical computations will be performed
by the computing package COMSOL Multiphysics based on the finite element
scheme.

In the following, we first perform the linear stability analysis to find the neces-
sary conditions on parameters for the instability of the homogeneous steady state
of (1.2)–(1.4) with m ≥ 1, and then show various numerical pattern formations and
discuss their implications.

6.1. Linearized stability analysis

Let (ū, v̄, w̄) denote the homogeneous (i.e. constant) steady state of the sys-
tem (1.2)–(1.4) satisfying ū > 0, v̄ = α

β ū, w̄ = γ
δ ū. We linearize the full chemotaxis

model (1.2) with τ1 = τ2 = 1 and m ≥ 1 around (ū, v̄, w̄) to get


Θt = A∆Θ + BΘ, x ∈ Ω, t > 0,

(ν · ∇)Θ = 0, x ∈ ∂Ω, t > 0,

Θ(x, 0) = Θ0(x) := (u − u0, v − v0, w − w0)T , x ∈ Ω,

(6.1)
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where T denote the transpose and

Θ =




u − ū

v − v̄

w − w̄


, A =




1 −χū ξūm

0 1 0

0 0 1


, B =




0 0 0

α −β 0

γ 0 −δ


.

Let Yk(x) denote the eigenfunction of the following eigenvalue problem:

∆Yk(x) + k2Yk(x) = 0, (ν · ∇)Yk(x) = 0,

where k is called the wavenumber. Since the problem (6.1) is linear, we look for
solutions Θ(x, t) in the form of

Θ(x, t) =
∑
k≥0

ckeλtYk(x). (6.2)

Substituting (6.2) into (6.1), for each k ≥ 0, we have

λYk(x) = −k2AYk(x) + BYk(x).

This implies λ is the eigenvalue of the following matrix:

Mk =



−k2 χūk2 −ξūmk2

α −k2 − β 0

γ 0 −k2 − δ


.

After some algebra, one can find that the eigenvalue λ of the matrix Mk satisfies

λ3 + a2(χ, k2)λ2 + a1(χ, k2)λ + a0(χ, k2) = 0, (6.3)

where

a2(χ, k2) = 3k2 + β + δ,

a1(χ, k2) = 3k4 + [2(β + δ) + ξγūm − αχū]k2 + δβ,

a0(χ, k2) = k6 + [β + δ + ξγūm − αχū]k4 + [βδ + βξγūm − δαχū]k2.

If the matrix Mk has eigenvalues with positive real part, then the homogeneous
steady state (ū, v̄, w̄) is unstable and the spatial pattern formation can be expected.
In fact, using the well-known Routh–Hurwitz criterion (see [32]), we have the fol-
lowing results on the stability/instability of (ū, v̄, w̄).

Proposition 6.1. Let (ū, v̄, w̄) be the homogeneous steady state of (1.2)–(1.4),
where α, β, γ, δ, ξ > 0. Then the following results hold.

(1) (ū, v̄, w̄) is locally asymptotically stable with respect to the system (1.2)–(1.4) if
χ ≥ 0 and satisfies

χ ≤ ξγ

α
ūm−1 min

{
β

δ
,
δ

β

}
. (6.4)

(2) (ū, v̄, w̄) is unstable with respect to (1.2)–(1.4) if αχ is large enough.
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Proof. From the Routh–Hurwitz criterion, we can derive that the homogeneous
steady state (ū, v̄, w̄) is locally asymptotically stable with respect to (1.2) if and
only if for every k ≥ 0, it holds that

a0(χ, k2) > 0 and a2(χ, k2)a1(χ, k2) − a0(χ, k2) > 0. (6.5)

A direct calculation shows that (6.5) will hold if the following inequalities are sat-
isfied

ξγūm − χαū ≥ 0 and βξγūm − δχαū ≥ 0,

which are ensured by (6.4). Hence the homogeneous steady state (ū, v̄, w̄) is locally
asymptotically stable under the conditions (6.4). From the definition of a0(x, k2),
we know that for any fixed k > 0, a0(χ, k2) < 0 when αχ is large enough, which
implies (ū, v̄, w̄) is unstable.

6.2. Numerical Simulations

The linear stability result shown above implies that a necessary condition for the
instability of the homogeneous steady state (ū, v̄, w̄) is

χ >
ξγ

α
ūm−1 min

{
β

δ
,
δ

β

}
. (6.6)

If m = 1, the instability condition (6.6) becomes χα > ξγ min{β
δ , δ

β } which
explains why the sign of θ = χα − ξγ is important if β = δ irrespective of the
value of the homogeneous steady states. It has been shown in [8, 45] that for any
β, δ > 0 and τ1 = τ2 = 0 or β = δ and τ1 = τ2 = 1, the solution of (1.2)–(1.4) with
m = 1 may blow- up if θ > 0 and is asymptotically a constant if θ ≤ 0. For β �= δ

and τ1 = τ2 = 1, it is conjectured that same results will hold but it remains to
verify analytically. Here, we confirm this conjecture by the numerical simulations
shown in Fig. 1. The initial data are set to be a small and large perturbation of
the homogeneous steady states (1, 1, 1) in Figs. 1(a) and 1(b), respectively. This
indicates that whether the solution of (1.2)–(1.4) with m = 1 blows up or is an
asymptotic constant is determined by the sign of θ, not caused by the initial values.
This verifies the analytical results obtained in [8, 45].

If m > 1, for given χ, ξ, α, β, γ, δ > 0, one can select the value of ū such that (6.6)
holds and pattern formation can be generated regardless of the sign of θ. We show
the patterns formed by the solution component u(x, y, t) of (1.2)–(1.4) with m > 1
for the case θ > 0 in Fig. 2 where it is seen that no blow-up occurs and pattern for-
mation arises. This is essentially different from the case m = 1 as shown in Fig. 1(a).
More interestingly, we find that three different classes of patterns (aggregates, strips
and reversed aggregates) are formed by the model (1.2)–(1.4) depending on the
magnitude of the background states (ū, v̄, w̄) = (ū, α

β ū, γ
δ ū), where the initial val-

ues are set as a small perturbation of (ū, v̄, w̄). In the simulations, we deliberately
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(a) θ > 0 (b) θ < 0

Fig. 1. Numerical illustration of solution component u(x, y, t) of the system (1.2)–(1.4) with
m = 1 and τ1 = τ2 = 1 in two dimensions for the case θ > 0 and θ < 0 where θ = χα − ξγ. The
initial data is set as a perturbation of the homogeneous background state (ū, v̄, w̄) = (ū, α

β
ū, γ

δ
ū),

namely u0 = ū + r, v0 = v̄ + r, w0 = w̄ + r, where r is a 2% small perturbation of the background
state (ū, v̄, w̄) in (a) and a 20% perturbation of the background state (ū, v̄, w̄) in (b). The parameter
values are: (a) ū = 1, χ = 8, ξ = 4, α = γ = β = 1, δ = 2; (b) ū = 1, χ = 8, ξ = 10, α = γ = β =
1, δ = 2.

choose β = δ and v0
α = w0

γ to make the numerical results comparable with the
theoretical results obtained in Theorem 1.3. From the parameter values chosen in
Fig. 2, one derives that the solution component u(x, y, t) satisfies that 0 < u ≤ 2
according to the results in Theorem 1.3. This is exactly verified by our numerical
results shown in Fig. 2. We remark if β �= δ, the model (1.2)–(1.4) will generate
the qualitatively same pattern formations as for the case β = δ (not shown here for
brevity).

Next, we examine the possible pattern formations generated from the case m > 1
and θ < 0. The numerical patterns of the solution component u(x, y, t) were shown
in Fig. 3. It is found the solution does not converge to a constant, which is signif-
icantly different from the case m = 1 and θ < 0 shown in Fig. 1(b). Furthermore,
the pattern variety is similar to the case θ > 0 where three classes of patterns
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(a) (b) (c)

Fig. 2. Numerical patterns formed by the solution component u(x, y, t) to the system 1.2–(1.4)
with m > 1 in two dimensions for the case θ = χα−ξγ > 0. The initial data is set as a perturbation
of the homogeneous background state (ū, v̄, w̄) = (ū, α

β
ū, γ

δ
ū), namely u0 = ū+r, v0 = v̄ +r, w0 =

w̄ + r, where r is a 2% small perturbation of the homogeneous background state (ū, v̄, w̄). The
parameter values are m = 2, χ = 8, ξ = 4, α = γ = β = δ = 1 and ū = 0.25 in (a), ū = 0.5 in (b)
and ū = 0.75 in (c).

(aggregates, strips and reversed aggregates) are also generated depending on the
value of the background states (ū, v̄, w̄) around which the initial data is prescribed.
By a simple calculation, it is easy to see that the results of Theorem 1.3 are consis-
tent with the numerical results. We furthermore stress that the numerical results
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(a) (b) (c)

Fig. 3. Numerical patterns of the solution component u(x, y, t) to the system (1.2)–(1.4) with
m > 1 and τ1 = τ2 = 1 in two dimensions for the case θ = χα − ξγ < 0. The initial data
is set as a perturbation of the homogeneous background state (ū, v̄, w̄) = (ū, α

β
ū, γ

δ
ū), namely

u0 = ū + r, v0 = v̄ + r, w0 = w̄ + r, where r is a 2% small perturbation of the homogeneous
background state (ū, v̄, w̄). The parameter values are m = 2, χ = 8, ξ = 10, α = γ = β = δ = 1
and ū = 0.25 in (a), ū = 0.4 in (b) and ū = 0.5 in (c).

for the remaining case θ = 0 are qualitatively same as the case θ �= 0 and they
are not shown here to avoid the repetition. In summary, except verifying our ana-
lytical results on the boundedness of solutions in Theorems 1.1 and 1.3, we can
draw the following conclusions from our numerical results that are not yet proved
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analytically:

(a) The pattern formation of the modified model (1.2)–(1.4) with m > 1 exists
for any model parameter values irrespective of the sign of θ = χα − ξγ and
solutions will neither blow up nor asymptotically converge to a constant. This
is essentially different from the case m = 1;

(b) The variety of patterns is determined by the magnitude of homogeneous back-
ground states (ū, v̄, w̄), where the initial data is set as a small perturbation of
(ū, v̄, w̄). The patterns change from aggregates to reserved aggregates as the
initial value is increased and the strips are the intermediate patterns between
them. In other words, the aggregates form only if the magnitude of background
states (ū, v̄, w̄) of initial values is small. If the magnitude of (ū, v̄, w̄) is large,
the model will generate patterns like stripe or reversed aggregates instead of
aggregates.

Related to the biological relevance, our results imply that (1.2)–(1.4) with m > 1
is able to interpret the spontaneous aggregation of microglia due to its interaction
with the combined attractive and repulsive chemicals. Specifically, if microglia inter-
act with both chemoattractant and chemorepellent linearly (namely m = 1), then
the aggregation cannot occur. However, if microglia interact with chemoattractant
linearly but with chemorepellent super-linearly (namely m > 1), the aggregation
pattern will arise if the background states (ū, v̄, w̄) of initial values are suitably
small.

As ξ = 0 (i.e. no repulsion), the model (1.2) becomes the classical Keller–
Segel model which does not admit pattern formation in multi-dimensions due to
its blow-up nature (e.g. see [11, 13, 14, 31, 33, 34, 49]). As χ = 0 (i.e. no attrac-
tion), the model (1.2) becomes the repulsive chemotaxis model (1.5) which has no
pattern formation either since its solution asymptotically converges to a constant
(see [5, 43, 45]). Therefore, the modified model (1.2) with m > 1 (super-linear
repulsive sensitivity) offers us a possible mechanism to test the hypothesis that
the aggregate of microglia is due to the combined interaction of attraction and
repulsion, and neither of them is dispensable. However, we should remark that our
revision might not be the only (or unique) way to modify the attraction–repulsion
chemotaxis model (1.1) to generate pattern formation from the modeling point of
view. For instance, one can try incorporating the volume-filling effect [36, 47] into
the model (1.1) as done in [38]. However, if so, the resulting model can gener-
ate aggregates without repulsion and hence the repulsion becomes dispensable for
the aggregation pattern formation. This, however, is not desirable for testing the
hypothesis. In this sense, our revision m > 1 for the model provides a valuable
perspective to model the aggregation caused by the combined interaction of attrac-
tion and repulsion although experiment results or date have not been available to
support it by far. This in turn reflects the role of mathematical modeling for com-
plex biology. But we by no means exclude other possible ways to modify the model
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such as the sensitivity related to attraction, which indeed imposes an interesting
question for the further study but exceeds the scope of this paper.

From the analytical point of view, there are various unsolved questions remain-
ing in our study due to the technical difficulty as listed below:

(1) The boundedness of solutions for the full model (1.2)–(1.4) with m > 1 and
τ1 = τ2 = 1 in two or higher dimensions;

(2) The existence of nonconstant stationary solutions of the system (1.2)–(1.4) with
m > 1;

(3) The large time behavior of solutions of the system (1.2)–(1.4) with m > 1;

In the paper, we only consider the model (1.2)–(1.4) for the case m > 1. The
case for m < 1 is not investigated in this paper. But we conjecture the solution of
the system (1.2)–(1.4) with m < 1 will blow-up regardless of the sign of θ. However,
this is a challenging problem and will be left for future pursue.
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