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Boundary spike-layer solutions of the singular Keller–Segel
system: existence and stability

Jose A. Carrillo, Jingyu Li and Zhi-An Wang

Abstract

We explore the existence and nonlinear stability of boundary spike-layer solutions of the Keller–
Segel system with logarithmic singular sensitivity in the half space, where the physical zero-flux
and Dirichlet boundary conditions are prescribed. We first prove that, under above boundary
conditions, the Keller–Segel system admits a unique boundary spike-layer steady state where
the first solution component (bacterial density) of the system concentrates at the boundary as a
Dirac mass and the second solution component (chemical concentration) forms a boundary layer
profile near the boundary as the chemical diffusion coefficient tends to zero. Then we show that
this boundary spike-layer steady state is asymptotically nonlinearly stable under appropriate
perturbations. As far as we know, this is the first result obtained on the global well-posedness of
the singular Keller–Segel system with nonlinear consumption rate. We introduce a novel strategy
of relegating the singularity, via a Cole–Hopf type transformation, to a nonlinear nonlocality
which is resolved by the technique of ‘taking anti-derivatives’, that is, working at the level of
the distribution function. Then, we carefully choose weight functions to prove our main results
by suitable weighted energy estimates with Hardy’s inequality that fully captures the dissipative
structure of the system.

1. Introduction

In their seminal work 16, Keller and Segel proposed the following singular chemotaxis system{
ut = uxx − χ[u(lnw)x]x,
wt = εwxx − uwm,

(1.1)

to describe the propagation of traveling bands of chemotactic bacteria observed in the
celebrated experiment of Adler 1, where u(x, t) denotes the bacterial density and w(x, t) the
oxygen/nutrient concentration. ε � 0 is the chemical diffusion coefficient, χ > 0 denotes the
chemotactic coefficient and m � 0 the oxygen consumption rate. The system (1.1) has been
well known as the singular Keller–Segel model nowadays as a cornerstone for the modeling of
chemotactic movement in pursuing nutrient.

The prominent feature of the Keller–Segel system (1.1) is the use of a logarithmic sensitivity
function lnw, which was experimentally verified later in 14. This logarithm results in a
mathematically unfavorable singularity which, however, has been proved to be necessary to
generate traveling wave solutions (cf. 27) that were the first kind results obtained for the
Keller–Segel system (1.1). When 0 � m < 1, Keller and Segel 16 have shown that the model
(1.1) with ε = 0 can generate traveling bands qualitatively in agreement with the experiment
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findings of 1, and later the existence results of traveling wave solutions were extended to
any ε � 0 and 0 � m � 1 (cf. 15, 27, 29, 36), where the wave profile of (u,w) is of (pulse,
front) for 0 � m < 1 and of (front, front) for m = 1. When m > 1, it was proved that the
system (1.1) did not admit any type of traveling wave solutions (for example, see 36, 39).
Although the Keller–Segel model (1.1) with m = 1 cannot reproduce the pulsating wave profile
to interpret the experiment of 1, it was later employed to describe the boundary movement
of bacterial chemotaxis 31 and migration of endothelial cells toward the signaling molecule
vascular endothelial growth factor during the initiation of angiogenesis (cf. 17).

Aside from the existence of traveling wave solutions, the logarithmic singularity become a
source of difficulty in studying the Keller–Segel system (1.1), such as stability of traveling waves,
global well-posedness, and so on. When m = 1, a Cole–Hopf type transformation was cleverly
used to remove the singularity, which consequently led to a lot of interesting analytical works,
for instance the stability of traveling waves (cf. 3, 4, 6, 13, 18, 22–25), global well-posedness
and/or asymptotic behavior of solutions (see 5, 8, 20, 21, 26, 28, 32, 37, 42, 43 in one-
dimensional bounded or unbounded space and 7 9 19, 20 33 35 40, 41 in multidimensional
spaces) and boundary layer solutions 10–12. However, as far as we know no results have been
available for the case m �= 1 except the existence of traveling wave solutions as mentioned above.
The main issue is that the Cole–Hopf type transformation used for resolving the logarithmic
singularity worked effectively for the case m = 1, but generated new analytical barriers that
are hard to handle. The purpose of this paper is to develop a novel strategy to break down
these barriers and make some progress on the global dynamics (global existence and large-time
behavior of solutions) of the singular Keller–Segel system (1.1) for any m � 0.

We shall consider the Keller–Segel system (1.1) in the half-space R+ = [0,∞) with the
following initial value

(u,w)(x, 0) = (u0(x), w0(x)), x ∈ R+, (1.2)

and boundary conditions{
(ux − χu(lnw)x)(0, t) = 0, w(0, t) = b,

(u,w)(+∞, t) = (0, 0),
(1.3)

where b > 0 is a constant denoting the boundary value of w(x, t). That is we prescribe the
zero-flux boundary conditions for u and nonhomogeneous Dirichlet boundary condition for w.
Indeed such boundary conditions as (1.3) have been used in the chemotaxis-fluid model to
reproduce the boundary accumulation layers formed by aerobic bacteria in the experiment of
38. They are also consistent with the experimental conditions of Adler 1 where the nutrient
was placed at one end of capillary tube. It is worthwhile to note that boundary conditions
(1.3) are different from Neumann boundary conditions that were often used in the literature
for chemotaxis models. Hence, no empirical results/methods are directly available for our
concerned problem. Indeed with nonhomogeneous Dirichlet boundary condition on w, the basic
L2-estimate becomes elusive in contrast to Neumann boundary conditions. In this paper, we
shall develop some new ideas to establish the existence, uniqueness and stability of steady
states to the Keller–Segel system (1.1)–(1.3) with m � 0. Specifically, we show that:

(i) the problem (1.1)–(1.3) admits a unique nonconstant steady state (U,W ), where U forms
a Dirac mass at the boundary x = 0 as χ → ∞ or ε → 0 and W forms a boundary-layer
profile as ε → 0 (see Theorem 2.1);

(ii) the unique boundary spike-layer steady state (U,W ) obtained above is asymptotically
stable. Actually, we show that if the initial value (u0, w0) is a small perturbation of
the steady state (U,W ) in some topological sense, then the solution of (1.1)–(1.3) will
converge to (U,W ) pointwisely as time tends to infinity (see Theorem 2.2).

Resorting to the special structure of (1.1) under the boundary conditions (1.3), we are able to
find the explicit steady state solution (U,W ) whose asymptotic profile as χ → ∞ or ε → 0 can



44 JOSE A. CARRILLO, JINGYU LI AND ZHI-AN WANG

be determined. Therefore, the result (i) above can be obtained without too much analytical
effort. However, when proving the asymptotic stability of (U,W ) stated in (ii), we have to
deal with the challenge of the logarithmic singularity. Our new idea of settling this difficulty
is to transform the singular Keller–Segel system into a system with a nonlinear nonlocal
term via a Cole–Hopf type transformation (simply speaking we relegate the singularity to
a nonlocality). By fully exploiting the system structure and employing the ‘technique of taking
anti-derivatives’, we convert this nonlocality into an exponential nonlinearity and then prove
our desired results via the method of weighted energy estimates by carefully choosing weight
functions. As far as we know, the results and ideas described above are new, and we achieve
an understanding of the long-time asymptotics for the singular Keller–Segel system (1.1) with
m �= 1.

Although we consider the singular Keller–Segel system (1.1) with any m � 0 in one
dimension, the ideas developed in this paper may be applicable to multidimensional spaces.
However, one has to face new difficulties. On one hand, the steady state (U,W ) cannot be
explicitly expressed in multi-dimensions, and on the other hand, the technique of ‘taking anti-
derivatives’ ought to be associated with gradient and/or divergence operators. Moreover, the
procedure of carrying out weighted energy estimates with appropriate weight functions will
be sophisticated.

The paper is organized as follows. In Section 2, we shall derive the explicit formula of spiky-
layer steady states, and state the main result of this paper on the asymptotic stability of
spiky-layer steady states. Section 3 is devoted to the proofs of our main results.

2. Boundary spike-layer steady states

In this section, we first study the steady state problem of system (1.1). The steady state can
be solved explicitly, and behaves like a (spike, layer) profile as ε is small. We then present some
elementary calculations and state our main results on the asymptotic stability of the spike.

With the zero-flux boundary condition on u, we immediately find that the bacterial mass is
conserved, namely

λ :=
∫ ∞

0

u(x, t)dx =
∫ ∞

0

u0(x)dx, (2.1)

which can be obtained directly by integrating the first equation of (1.1) over R+. Therefore,
λ > 0 is a prescribed number denoting cell mass.

The steady state of (1.1) subject to boundary condition (1.3) satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Uxx − χ(U(lnW )x)x = 0,

εWxx − UWm = 0,∫ ∞

0

U(x)dx = λ > 0,

(2.2)

with boundary conditions
(Ux − χU(lnW )x)(0) = 0, W (0) = b, (U,W )(+∞) = (0, 0). (2.3)

We first solve (2.2)–(2.3) explicitly.

Proposition 2.1. Assume m � 0 and χ > |1 −m|. Then system (2.2)–(2.3) has a unique
solution (U,W ) satisfying U ′(x) < 0, W ′(x) < 0, and

U(x) =
λ2(χ + 1 −m)2

2ε(χ + m + 1)b1−m

(
1 +

λ(χ + m− 1)(χ + 1 −m)
2ε(χ + m + 1)b1−m

x

) −2χ
χ+m−1

, (2.4)

W (x) = b

(
1 +

λ(χ + m− 1)(χ + 1 −m)
2ε(χ + m + 1)b1−m

x

) −2
χ+m−1

. (2.5)
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Proof. The first equation of (2.2) and the boundary condition (2.3) at x = 0 give

Ux = χU(lnW )x.

Then there is a constant c0 > 0 such that

U(x) = c0W
χ. (2.6)

Substituting (2.6) into the second equation of (2.2) leads to

εWxx = c0W
χ+m.

Multiplying this equation by Wx, and using the boundary condition (2.3) at x = +∞, we have

εW 2
x

2
=

c0W
χ+m+1

χ + m + 1
. (2.7)

Owing to the second equation of (2.2), Wxx � 0, and noting Wx(+∞) = 0, we get

Wx(x) � 0, for x ∈ [0,∞).

It then follows from (2.7) that

Wx = −
(

2c0
ε(χ + m + 1)

) 1
2

W
χ+m+1

2 .

For convenience, we denote

A :=
(

2
ε(χ + m + 1)

) 1
2

, r :=
χ + m− 1

2
> 0.

Then
1
r
(W−r)x = Ac

1
2
0 .

This directly yields from (2.3) that

W (x) =
(
b−r + rAc

1
2
0 x

)− 1
r

. (2.8)

We next determine the value of c0. By (2.6) and the third equation of (2.2), we have

c0

∫ ∞

0

(
b−r + rAc

1
2
0 x

)−χ
r

dx = λ.

Note that −χ
r + 1 = −χ+1−m

χ+m−1 < 0 (due to χ > |1 −m|) gives −χ
r < −1. Then a simple

computation yields

c0 =
λ2(χ + 1 −m)2

2ε(χ + m + 1)bχ+1−m
.

Now substituting c0 into (2.8) and (2.6), we get (2.4) and (2.5), and thus finish the proof. �

Next we derive the asymptotic profile of the unique steady state (U,W ) given by formulas
(2.4) and (2.5), which turns out that the bacteria density U forms a boundary spike as χ → ∞
or ε → 0 and W forms a boundary layer as ε → 0.

Theorem 2.1. Let m � 0 and χ > |1 −m| and (U,W ) be the unique solution of (2.2)–(2.3)
obtained in Proposition 2.1. Then the following results hold.
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(i) As χ → ∞, U concentrates at x = 0 and W converges to the boundary value b on any
bounded interval. That is

U(x) → λδ(x) in the sense of distribution as χ → ∞,

W (x) → b uniformly in [0, N ] for any 0 < N < ∞ as χ → ∞.

(ii) As ε → 0, U concentrates at x = 0 and W (x) forms a (boundary) layer near x = 0.
Namely

U(x) → λδ(x) in the sense of distribution as ε → 0

and there is a constant η = η(ε) satisfying ε/η(ε) → 0 as ε → 0 such that

lim
ε→0

‖W‖L∞[η,∞] = 0, lim inf
ε→0

‖W‖L∞[0,∞) > 0.

Proof. We first prove (i). For any ζ(x) ∈ C∞
0 [0,∞) and any h > 0, we have∫ ∞

0

U(x)ζ(x)dx− λζ(0) =
∫ ∞

0

U(x)(ζ(x) − ζ(0))dx

=
∫ h

0

U(x)(ζ(x) − ζ(0))dx +
∫ ∞

h

U(x)(ζ(x) − ζ(0))dx.

(2.9)

On one hand, for any x > 0, we can rewrite (2.4) as

U(x) =
λ2

2εb1−m

(1 + 1−m
χ )2

1 + m+1
χ

⎛
⎝ 1
χx

+
λ

2εb1−m

1 − (1−m)2

χ2

1 + m+1
χ

⎞
⎠

−2χ
χ+m−1

χ−1− 2(1−m)
χ+m−1

x
2χ

χ+m−1

.

It is easy to see that U(x) → 0 uniformly on [h,∞) as χ → ∞. It then follows from Lebesgue
dominated convergence theorem that∫ ∞

h

U(x)(ζ(x) − ζ(0))dx → 0 as χ → ∞.

On the other hand, since ζ(x) ∈ C∞
0 [0,∞), there is a constant C0 such that |ζ(x) − ζ(0)| =

|ζ ′(θ)|x � C0x. Thus, it follows that∣∣∣∣∣
∫ h

0

U(x)(ζ(x) − ζ(0))dx

∣∣∣∣∣ � C0

∫ h

0

xU(x)dx � C0λh.

It hence follows from (2.9) that

lim
χ→∞

∣∣∣∣
∫ ∞

0

U(x)ζ(x)dx− λζ(0)
∣∣∣∣ � C0λh, ∀h > 0,

which implies

U(x) → λδ(x) as χ → ∞.

To derive the limit of W (x), we note that there exists a constant C1 > 0, such that for all
x ∈ [0, N ] and large χ, it holds that

1 �
(

1 +
λ(χ + m− 1)(χ + 1 −m)

2ε(χ + m + 1)b1−m
x

) 1
χ+m−1

=

⎛
⎝1 +

λ

2εb1−m

1 − (1−m)2

χ2

1 + m+1
χ

χx

⎞
⎠

1
χ+m−1

� (1 + C1Nχ)
1

χ+m−1 → 1 as χ → ∞.

This implies W (x) → b uniformly on any bounded interval.
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Figure 1 (colour online). Profiles of steady state (U,W )(x) with b = λ = ε = 1, m = 0.5 for
different values of χ > 0.
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Figure 2 (colour online). Asymptotic profiles of steady state (U,W )(x) with respect to ε > 0,
where b = λ = χ = 1, m = 0.5.

Next we prove (ii). To this end, we rewrite (U,W )(x) as

U(x) =
θσξ

2χε

(
1 +

σ

ε
x
)−ξ

, W (x) = b
(
1 +

σ

ε
x
)−ξ/χ

(2.10)

with θ = λ(χ + 1 −m) > 0, σ = λ(χ+1−m)(χ+m−1)
2(χ+m+1)b1−m > 0, ξ = 2χ

χ+m−1 . Note that ξ > 1 since
χ > |1 −m|. Then one can verify that U(x) → 0 uniformly on [h,∞) as ε → 0
for h > 0. By the same argument as proving case (i), we have that U(x) →
λδ(x) in the sense of distribution as ε → 0. Now we proceed to prove W (x) forms a boundary
layer near x = 0. Indeed it can be directly checked from (2.10) that for η(ε) = O(εα) with
0 < α < 1, W (x) → 0 uniformly on [η(ε),∞) as ε → 0 (namely limε→0 ‖W‖L∞[η(ε),∞] = 0). On
the other hand, it is obvious that lim infε→0 ‖W‖L∞[0,∞) = b > 0. This implies W (x) develops
a boundary layer on [0, η(ε)] as ε → 0 and hence completes the proof. �

To illustrate our results, we numerically plot the asymptotic profiles of (U,W ) in Figures 1
and 3 for χ → ∞, and in Figures 2 and 4 for ε → 0. In Figure 1 for 0 < m < 1 or Figure 3 for
m > 1, we see that the value of U(0) increases as χ increases and U behaves like a spike (Dirac
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Figure 3 (colour online). Profiles of steady state (U,W )(x) with b = λ = ε = 1, m = 2 for
different values of χ > 0.
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Figure 4 (colour online). Asymptotic profiles of steady state (U,W )(x) with respect to ε > 0,
where b = λ = 1, χ = 3, m = 2.

delta function) concentrating at the boundary x = 0, while W is elevated toward the boundary
value b = 1 as χ increases. This verifies the results of Theorem 2.1(i). Figure 2 (for 0 < m < 1)
or Figure 4 (for m > 1) demonstrates the asymptotic profile of U and W as ε decreases to zero,
where we observe that U tends to aggregate at the boundary x = 0 like a Dirac delta function
while W tends to vanish in the interior of the domain (outer-layer region) but remains positive
in the region close to the boundary x = 0 (inner-layer region) as ε decreases. In particular,
the slope of curve W becomes increasingly steeper at x = 0 as ε decreases. This implies that
W (x) develops a boundary layer profile as ε is small, which is well consistent with the results
of Theorem 2.1(ii).

We next study the asymptotic stability of the steady state (U,W ) to the system (1.1)–(2.1).
Because the chemical concentration w(x, t) has a vacuum end state, the first equation of Keller–
Segel system (1.1) encounters a singularity at x = ∞ which makes a very difficult task to work
with (1.1) directly. To overcome such difficulty, we employ a Cole–Hopf type transformation

v := −wx

w
, that is, (lnw)x = −v, (2.11)
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which gives

w(x, t) = be−
∫ x
0 v(y,t)dy (2.12)

due to (2.11) and boundary condition w(0, t) = b, and hence transforms system (1.1) into a
nonlocal parabolic–parabolic system of conservation laws as follows⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = uxx + χ(uv)x, (x, t) ∈ R+ × R+

vt = εvxx − (εv2 − uwm−1)x, (x, t) ∈ R+ × R+

w(x, t) = be−
∫ x
0 v(y,t)dy,

(u, v)(x, 0) = (u0(x), v0(x))

(2.13)

where v0 = −w0x
w0

. Before proceeding, we should remark that although the singularity is
removed via the Cole–Hopf transformation (2.11), the price we pay is that the transformed
system (2.13) has a nonlocal term and quadratic advection term which also bring tremendous
difficulty to mathematical analysis. However, in the case m = 1, the nonlocal term naturally
vanishes and the system (2.13) becomes more tractable. There have been a large amount of
results available to (2.13) with m = 1 as recalled in the Introduction. We particulary remark
that when Dirichlet boundary conditions are imposed to (2.13) with m = 1, the existence and
stability of boundary layer solutions have been shown recently in 10–12 where, however, the
original Keller–Segel system (1.1) was found to have no boundary layer solutions when reversing
the results of (2.13) to v via (2.11). In this paper, we shall consider entirely different boundary
conditions so that boundary spike and layer solutions can develop from the Keller–Segel system
(1.1) for any m � 0. When m �= 1, the second equation of (2.13) contains an advection including
both quadratic nonlinearity and a nonlocal term, which leads to a very challenging problem.
As far as we know, there was not any result available for (2.13) with m �= 1. In this paper, we
shall develop some novel ideas to explore the system (2.13) and hence obtain the first results
on the original Keller–Segel model (1.1) with m �= 1 subject to the boundary condition (1.3)
by studying the transformed nonlocal system (2.13). Next to state our main results, we derive
the boundary conditions of v(x, t). The second equation of (1.1) also gives

(lnw)t = ε
(wx

w

)
x

+ ε
(wx

w

)2

− uwm−1 = −εvx + εv2 − uwm−1.

Because b is a constant, for smooth solutions (lnw)t = 0 at x = 0, it then follows that

εvx − (εv2 − uwm−1) = 0 at x = 0.

Denote by (U, V )(x) the steady state of (2.13), where U(x) is explicitly given in (2.4). Then
by (2.11) and Proposition 2.1, we find V given as

V (x) = −Wx

W
=

λ(χ + 1 −m)
ε(χ + m + 1)b1−m

(
1 +

λ(χ + m− 1)(χ + 1 −m)
2ε(χ + m + 1)b1−m

x

)−1

.

It can be easily verified that

V (x) → 0 as x → +∞.

Since we are devoted to proving that v(x, t) → V (x) as t → ∞, the following condition
is naturally imposed: v(+∞, t) = 0, which requires that wx

w → 0 as x → ∞. Therefore, the
boundary conditions for (2.13) relevant to (1.3) is{

ux + χuv = εvx − (εv2 − uwm−1) = 0, x = 0
(u, v) → (0, 0), x → ∞.

(2.14)

From Proposition 2.1, one can check that (U, V )(x) is a unique steady state of (2.13)–(2.14).
In the following, we shall focus on attention to study the global well-posedness and asymptotic
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behavior of solutions to the initial-boundary value problem (2.13)–(2.14) when the initial value
(u0, v0) is a small perturbation of (U, V )(x).

Because the steady state has a vacuum end state which leads to a singularity in the energy
estimates, as to be seen later, we have to study its stability in carefully selected weighted
functional spaces to resolve the singularity, where the weights depend on the range of m. To
state our results more precisely, we denote by Hk(k � 0) the usual Sobolev space whose norm
is abbreviated as ‖f‖2

k :=
∑k

j=0 ‖∂j
xf‖2 with ‖f‖ := ‖f‖L2(R+), and Hk

ω denotes the weighted
Sobolev space of measurable function f such that

√
ω∂j

xf ∈ L2(R+) for 0 � j � k with norm
‖f‖2

k,ω :=
∑k

j=0 ‖
√
ω∂j

xf‖2 and ‖f‖ω := ‖√ωf‖L2(R+).
Our main results are stated as follows.

Theorem 2.2. Assume m � 0 and χ > |1 −m|. Let (U, V ) be the unique steady
state of system (2.13)–(2.14). Assume that the initial perturbation around (U, V ) satisfies
φ0(∞) = ψ0(∞) = 0, where

(φ0, ψ0)(x) =
∫ x

0

(u0(y) − U(y), v0(y) − V (y))dy.

(1) If m � 1, then there exists a constant δ0 > 0 such that if ‖φ0‖2
1,w1

+ ‖ψ0‖2
1,w2

+
‖φ0xx‖2 + ‖ψ0xx‖2 � δ0, where w1 = 1/U and w2 = W 1−m, then the system (2.13)–(2.14) has
a unique global solution (u, v)(x, t) satisfying⎧⎨

⎩
u− U ∈ C([0,∞);H1 ∩ L2

w1
) ∩ L2((0,∞);H2 ∩H1

w1
),

v − V ∈ C([0,∞);H1 ∩ L2
w2

) ∩ L2((0,∞);H2 ∩H1
w2

).
(2.15)

(2) If 0 � m < 1 and χ 
 1, then there exists a constant δ1 > 0 such that if
‖φ0‖2

1,w3
+ ‖φ0xx‖2 + ‖ψ0‖2

2 � δ1, where w3 = Wm−1/U , then the system (2.13)–(2.14) has a
unique global solution (u, v)(x, t) satisfying⎧⎨

⎩
u− U ∈ C([0,∞);H1 ∩ L2

w3
) ∩ L2((0,∞);H2 ∩H1

w3
),

v − V ∈ C([0,∞);H1) ∩ L2((0,∞);H2).
(2.16)

(3) In both cases (1) and (2) above, we have the following asymptotic convergence:

sup
x∈R+

|(u, v)(x, t) − (U, V )(x)| → 0 as t → +∞, (2.17)

and

‖u(·, t) − U(·)‖L1(R+) → 0 as t → +∞. (2.18)

By using the Cole–Hopf transformation (2.11), we transfer Theorem 2.2 to the original
Keller–Segel system (1.1)–(1.3).

Theorem 2.3. Assume m � 0 and χ > |1 −m|. Let (U,W ) be the unique steady state of
(1.1)–(1.3). Assume that the initial perturbation satisfies φ0(∞) = ψ0(∞) = 0, where

φ0(x) =
∫ x

0

(u0(y) − U(y))dy, ψ0(x) = − lnw0(x) + lnW (x).
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(1) If m � 1, then there exists a constant δ2 > 0 such that if ‖φ0‖2
1,w1

+ ‖ψ0‖2
1,w2

+
‖φ0xx‖2 + ‖ψ0xx‖2 � δ0, then the system (1.1)–(1.3) has a unique global solution (u,w)(x, t)
satisfying ⎧⎨

⎩
u− U ∈ C([0,∞);H1 ∩ L2

w1
) ∩ L2((0,∞);H2 ∩H1

w1
),

w −W ∈ C([0,∞);H1) ∩ L2((0,∞);H2).

(2) If 0 � m < 1 and χ 
 1, then there exists a constant δ3 > 0 such that if ‖φ0‖2
1,w3

+
‖φ0xx‖2 + ‖ψ0‖2

2 � δ3, then the system (1.1)–(1.3) has a unique global solution (u,w)(x, t)
satisfying ⎧⎨

⎩
u− U ∈ C([0,∞);H1 ∩ L2

w3
) ∩ L2((0,∞);H2 ∩H1

w3
),

w −W ∈ C([0,∞);H1) ∩ L2((0,∞);H2).

(3) In either of the above cases (1) or (2), we have the following asymptotic convergence:

sup
x∈R+

|(u,w)(x, t) − (U,W )(x)| → 0 as t → +∞,

and

‖u(·, t) − U(·)‖L1(R+) → 0 as t → +∞.

It is worthy to point out that in the previous theorems the L1 convergence of the cell density
is obtained as a consequence of the convergence in relative L2-entropy, see its proof in Section 3
for details.

3. Stability of the spike/layer steady state (Proof of Theorem 2.2)

In this section, we first prove Theorem 2.2 by using the weighted energy method. We divide the
proofs into two parts m � 1 and 0 � m < 1. In the latter case, the Hardy inequality plays an
important role to capture the full dissipative structures of the system. Finally, we transfer the
stability of (U, V ) for system (2.13)–(2.14) back to the original Keller–Segel system (1.1)–(2.1),
and prove that the steady state (U,W ) is asymptotically stable.

3.1. Reformulation of the problem

The steady state (U, V ) of system (2.13)–(2.14) satisfies{
Uxx + χ(UV )x = 0,

εVxx − (εV 2 − UWm−1)x = 0,
(3.1)

with boundary conditions

(Ux + χUV )(0) = (εVx − (εV 2 − UWm−1))(0) = 0, (U, V )(+∞) = (0, 0).

Integrating (3.1) in x gives {
Ux + χ(UV ) = 0,

εVx − (εV 2 − UWm−1) = 0.
(3.2)

In view of (2.14), (u, v) actually satisfies the no-flux boundary conditions. The perturbation
around (U, V ) should have the conservation of mass. In other words, it holds that∫ ∞

0

(u(x, t) − U(x), v(x, t) − V (x))dx =
∫ ∞

0

(u0(x) − U(x), v0(x) − V (x))dx = (0, 0). (3.3)
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This fact stimulates us to employ the technique of anti-derivative to study the asymptotic
stability of steady state (U, V ). More importantly, we find that once we take the anti-derivative
for v, the nonlocal term in w (see (2.12)) will be removed. This key observation helps us find
a potential way to deal with the nonlocal effect. Therefore, we decompose the solution (u, v)
as

φx = u− U, ψx = v − V. (3.4)

Then

(φ, ψ)(x, t) =
∫ x

0

(u(y, t) − U(y), v(y, t) − V (y))dy.

Substituting (3.4) into (2.13), integrating the equations in x, and using (3.1), we get⎧⎪⎪⎨
⎪⎪⎩

φt = φxx + χV φx + χUψx + χφxψx, (x, t) ∈ R+ × R+,

ψt = εψxx − 2εV ψx − UWm−1(1 − e−(m−1)ψ) + Wm−1φx

−εψ2
x −Wm−1(1 − e−(m−1)ψ)φx,

(3.5)

where the initial value (φ, ψ)(x, 0) is given by

(φ, ψ)(x, 0) = (φ0, ψ0)(x) =
∫ x

0

(u0(y) − U(y), v0(y) − V (y))dy, (3.6)

which satisfies

(φ0, ψ0)(+∞) = (0, 0)

and the boundary condition satisfies from (3.3) that

(φ, ψ)(0, t) = (0, 0), (φ, ψ)(+∞, t) = (0, 0), (3.7)

We remark that the second equation of (3.5) does not contain the term Wm−1φx originally.
Here we artificially add and subtract this term in the second equation of (3.5) in order to cancel
the trouble ‘cross’ terms in the energy estimates. This treatment is indeed a very important trick
introduced in this paper. We finally comment that working at the level of the anti-derivatives
is in some sense related to ideas used in Keller–Segel models stemming from optimal transport
as in 2. It turns out the analysis for the case m � 1 and 0 � m < 1 are quite different. Hence,
in the following we shall separate these two cases to discuss.

3.2. Case m � 1

We look for solutions of system (3.5) with (3.6) and (3.7) in the space

X(0, T ) := {(φ, ψ)(x, t)
∣∣φ ∈ C([0, T ];H2 ∩H1

w1
), φx ∈ L2((0, T );H2 ∩H1

w1
),

ψ ∈ C([0, T ];H2 ∩H1
w2

), ψx ∈ L2((0, T );H2 ∩H1
w2

)},
for T ∈ (0,+∞], where w1 = 1/U and w2 = W 1−m. Set

N(t) := sup
τ∈[0,t]

(‖φ(·, τ)‖1,w1 + ‖φxx(·, τ)‖ + ‖ψ(·, τ)‖1,w2 + ‖ψxx(·, τ)‖).

Since

U(x) � λ2(χ + 1 −m)2

2ε(χ + m + 1)b1−m
=: ū (3.8)

and W (x) � b for x ∈ R+, we have

w1 � 2ε(χ + m + 1)b1−m

λ2(χ + 1 −m)2
> 0 and w2 � b1−m > 0 (3.9)
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since m � 1. Thus, the Sobolev embedding theorem implies

sup
τ∈[0,t]

{‖φ(·, τ)‖L∞ , ‖φx(·, τ)‖L∞ , ‖ψ(·, τ)‖L∞ , ‖ψx(·, τ)‖L∞} � N(t).

For system (3.5)–(3.7), we have the following results.

Proposition 3.1. Assume m � 1 and χ > |1 −m|. Then there exists a constant δ1,
such that if N(0) � δ1, the system (3.5)–(3.7) has a unique global solution (φ, ψ) ∈ X(0,∞)
satisfying

‖φ‖2
1,w1

+ ‖ψ‖2
1,w2

+ ‖φxx‖2 + ‖ψxx‖2

+
∫ t

0

(‖φx(τ)‖2
1,w1

+ ‖ψx(τ)‖2
1,w2

+ ‖φxxx(τ)‖2 + ‖ψxxx(τ)‖2)dτ � CN2(0)
(3.10)

for any t ∈ [0,∞).

The local existence of solutions to system (3.5)–(3.7) is standard (see, for example, 30). To
prove Proposition 3.1, we only need to derive the following a priori estimates.

Proposition 3.2. Assume that the conditions of Proposition 3.1 hold, and that
(φ, ψ) ∈ X(0, T ) is a solution of system (3.5)–(3.7) for some constant T > 0. Then there is
a positive constant ε1 > 0, independent of T , such that if N(t) � ε1 for any 0 � t � T , then
(φ, ψ) satisfies (3.10) for any 0 � t � T .

We first establish the basic L2 estimate.

Lemma 3.1. If N(t) � 1, then there exists a constant C > 0 such that∫ ∞

0

(
φ2

U
+ W 1−mψ2

)
+
∫ t

0

∫ ∞

0

(
φ2
x

U
+ W 1−mψ2

x + Uψ2

)
� C(‖φ0‖2

w1
+ ‖ψ0‖2

w2
). (3.11)

Proof. Multiplying the first equation of (3.5) by φ
U and the second one by χW 1−mψ,

integrating the resulting equations in x, and using the Taylor expansion to get

1 − e−(m−1)ψ = (m− 1)ψ −
∞∑

n=2

(1 −m)nψn

n!
,

we have

1
2
d

dt

∫ ∞

0

(
φ2

U
+ χW 1−mψ2

)
+
∫ ∞

0

φ2
x

U
+ χε

∫ ∞

0

W 1−mψ2
x

−
∫ ∞

0

φ2

2

[(
1
U

)
xx

−
(
χV

U

)
x

]
− χ

∫ ∞

0

ψ2
[ε
2
(W 1−m)xx + ε(VW 1−m)x + (1 −m)U

]

= χ

∫ ∞

0

φφxψx

U
− χε

∫ ∞

0

W 1−mψψ2
x + χ(1 −m)

∫ ∞

0

φxψ
2

+ χ

∫ ∞

0

(Uψ + φxψ)
∞∑

n=2

(1 −m)nψn

n!
.

(3.12)
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A direct calculation by (3.2) and (2.2) yields(
1
U

)
xx

−
(
χV

U

)
x

= 0, (3.13)

and
ε

2
(W 1−m)xx + ε(VW 1−m)x + (1 −m)U

= −ε

2
(1 −m)mW−m−1W 2

x +
ε

2
(1 −m)W−mWxx

+ εVxW
1−m + ε(1 −m)VW−mWx + (1 −m)U

= −ε

2
(1 −m)mW−m−1W 2

x +
1 − 3m

2
U + εV 2W 1−m + ε(1 −m)VW−mWx.

(3.14)

To estimate (3.14), for convenience, we set

θ := λ(χ + 1 −m) > 0, β := ε(χ + m + 1)b1−m > 0, r :=
χ + m− 1

2
> 0. (3.15)

Then by (2.4) and (2.5), we have

U(x) =
θ2

2β

(
1 +

θr

β
x

)−χ
r

, W (x) = b

(
1 +

θr

β
x

)− 1
r

,

Wx(x) = −bθ

β

(
1 +

θr

β
x

)− 1
r−1

, V (x) = −Wx

W
=

θ

β

(
1 +

θr

β
x

)−1

.

(3.16)

Substituting (3.16) into (3.14) gives

RHS of (3.14) =
θ2

β

(
m2 + m

2(χ + m + 1)
+

1 − 3m
4

)(
1 +

θr

β
· x

)−χ
r

=
1 −m2 + χ(1 − 3m)

2(χ + m + 1)
· U

� − χ

χ + m + 1
· U,

(3.17)

where we have used m � 1. Next we estimate the terms on the right-hand side of (3.12). With
the fact |Ux|

U � χθ
β , we derive that

φ2

U
=

∫ x

0

(
φ2

U

)
x

=
∫ x

0

(
2φφx

U
− φ2Ux

U2

)
� C

(∫ ∞

0

φ2

U
+
∫ ∞

0

φ2
x

U

)
� CN2(t),

and hence have
|φ|√
U

� CN(t).

Note that W 1−m(x) � b1−m over (0,∞) when m � 1. Then it follows that

χ

∫ ∞

0

|φφxψx|
U

= χ

∫ ∞

0

|φ|√
U

· |φx|√
U

· |ψx|

� CN(t)
εb1−m

∫ ∞

0

φ2
x

U
+ χεN(t)b1−m

∫ ∞

0

ψ2
x

� CN(t)
∫ ∞

0

φ2
x

U
+ χεN(t)

∫ ∞

0

W 1−mψ2
x.
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By Cauchy–Schwarz inequality and the fact ‖ψ(·, t)‖L∞ � N(t), one has

χ(1 −m)
∫ ∞

0

φxψ
2 � N(t)

∫ ∞

0

φ2
x

U
+ CN(t)

∫ ∞

0

Uψ2,

− χε

∫ ∞

0

W 1−mψψ2
x � χεN(t)

∫ ∞

0

W 1−mψ2
x.

Furthermore, noting em−1 =
∑∞

n=0
(1−m)n

n! , if N(t) < 1 and hence ‖ψ(·, t)‖L∞ � 1, we have∣∣∣∣∣
∞∑

n=2

(1 −m)nψn

n!

∣∣∣∣∣ � (1 −m)2ψ2
∞∑

n=2

(1 −m)n−2

n!
� (1 −m)2ψ2em−1.

Hence, ∣∣∣∣∣
∫ ∞

0

(U + φx)ψ
∞∑

n=2

(1 −m)nψ2

n!

∣∣∣∣∣ � C(m− 1)2
∫ ∞

0

(U + |φx|)|ψ|3

� CN(t)
∫ ∞

0

Uψ2 + N(t)
∫ ∞

0

φ2
x

U
.

(3.18)

Now substituting (3.17)–(3.18) into (3.12), we have

1
2

∫ ∞

0

(
φ2

U
+ χW 1−mψ2

)
+ (1 − CN(t))

∫ t

0

∫ ∞

0

φ2
x

U

+ χε(1 − 2N(t))
∫ t

0

∫ ∞

0

W 1−mψ2
x +

(
χ2

χ + m + 1
− CN(t)

)∫ t

0

∫ ∞

0

Uψ2

� 1
2

∫ ∞

0

(
φ2

0

U
+ χW 1−mψ2

0

)
.

Therefore, (3.11) holds provided that N(t) � 1. �

We next establish the H1 estimate.

Lemma 3.2. If N(t) � 1, then the solution of (3.5)–(3.7) satisfies∫ ∞

0

(
φ2
x

U
+ W 1−mψ2

x

)
+
∫ t

0

∫ ∞

0

(
φ2
xx

U
+ W 1−mψ2

xx

)
� C(‖φ0‖2

1,w1
+ ‖ψ0‖2

1,w2
), (3.19)

where C > 0 is a constant independent of t.

Proof. Multiplying the first equation of (3.5) by φxx

U , integrating the resultant equation in
x, and noting

φtφxx

U
=

(
φtφx

U

)
x

−
(
φ2
x

2U

)
t

+ φtφx · Ux

U2
,

we get

d

dt

∫ ∞

0

φ2
x

2U
+
∫ ∞

0

φ2
xx

U
= −χ

∫ ∞

0

(
V φx

U
+ ψx

)
φxx − χ

∫ ∞

0

φxψxφxx

U
+
∫ ∞

0

φtφx · Ux

U2
.

(3.20)
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By Young’s inequality, the following inequalities hold

χ

∣∣∣∣
(
V φx

U
+ ψx

)
φxx

∣∣∣∣ � φ2
xx

2U
+

χ2V 2φ2
x

U
+ χ2Uψ2

x,

χ

∣∣∣∣φxψxφxx

U

∣∣∣∣ � N(t)φ2
xx

U
+

N(t)χ2φ2
x

4U
,

where we have used the fact that ‖ψx(·, t)‖L∞ � N(t). Similarly, noting |Ux|
U2 � χθ

βU , we have

φtφx · Ux

U2
= (φxx + χV φx + χUψx + χφxψx)φx · Ux

U2

� φ2
xx

4U
+

C(1 + N(t))φ2
x

U
+ Cφ2

x + Cψ2
x.

Thus, it follows from (3.20) that

d

dt

∫ ∞

0

φ2
x

2U
+
(

1
4
−N(t)

)∫ ∞

0

φ2
xx

U
� C

(∫ ∞

0

φ2
x

U
+
∫ ∞

0

ψ2
x

)
, (3.21)

which, along with (3.11) and the fact W 1−m � b1−m over (0,∞) for m � 1, leads to∫ ∞

0

φ2
x

U
+
∫ t

0

∫ ∞

0

φ2
xx

U
� C

∫ ∞

0

(
φ2

0x

U
+

φ2
0

U
+ W 1−mψ2

0

)
. (3.22)

Multiplying the second equation of (3.5) by W 1−mψxx, and using the following equality

ψtW
1−mψxx = (W 1−mψtψx)x − (1 −m)W−mWxψtψx −

(
W 1−mψ2

x

2

)
t

,

we get

1
2
d

dt

∫ ∞

0

W 1−mψ2
x + ε

∫ ∞

0

W 1−mψ2
xx

=
∫ ∞

0

(2εV W 1−mψx − φx)ψxx +
∫ ∞

0

(1 − e−(m−1)ψ)(U + φx)ψxx

+ ε

∫ ∞

0

W 1−mψ2
xψxx − (1 −m)

∫ ∞

0

W−mWxψtψx.

(3.23)

Furthermore Young’s inequality gives rise to the following estimate:

|(2εV W 1−mψx − φx)ψxx| � εW 1−mψ2
xx

4
+ 8εV 2W 1−mψ2

x +
2Wm−1φ2

x

ε
.

Since |1 − e−(m−1)ψ| � C(m− 1)|ψ| if N(t) < 1 by Taylor’s theorem, we have

|(1 − e−(m−1)ψ)(U + φx)ψxx|
� C(m− 1)(U + |φx|)|ψψxx|

� (ε + N(t))
4

W 1−mψ2
xx + C(m− 1)2Wm−1U2ψ2 + C(m− 1)2N(t)Wm−1φ2

x

� (ε + N(t))
4

W 1−mψ2
xx + CUψ2 + CN(t)

φ2
x

U
,

where in view of (3.16) we have used the fact Wm−1 � bm−1 for m � 1 and

Wm−1U =
bm−1θ2

2β

(
1 +

θr

β
x

)−2

. (3.24)
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Similarly, since ‖ψx(·, t)‖L∞ � N(t), we get

−εW 1−mψ2
xψxx � N(t)W 1−m

2
ψ2
xx + ε2N(t)W 1−mψ2

x,

and

−(1 −m)W−mWxψtψx � W 1−m

4ε
ψ2
t + ε(1 −m)2W−1−mW 2

xψ
2
x

� εW 1−m

4
ψ2
xx + C(W 1−mψ2

x + Uψ2 + φ2
x),

where we have used the second equation of (3.5) and W−2W 2
x = θ2

β2 (1 + θr
β x)−2 � θ2

β2 . Now
integrating (3.23) in t, we arrive at

1
2

∫ ∞

0

W 1−mψ2
x +

1
4
(ε− 3N(t))

∫ t

0

∫ ∞

0

W 1−mψ2
xx

� 1
2

∫ ∞

0

W 1−mψ2
0x + C

∫ t

0

∫ ∞

0

(
W 1−mψ2

x +
φ2
x

U
+ Uψ2

)

which by (3.11) further gives∫ ∞

0

W 1−mψ2
x + ε

∫ t

0

∫ ∞

0

W 1−mψ2
xx � C

∫ ∞

0

(
W 1−mψ2

0x +
φ2

0

U
+ W 1−mψ2

0

)
, (3.25)

if N(t) � 1. The desired (3.19) follows from (3.22) and (3.25). �

The H2 estimate is as follows.

Lemma 3.3. If N(t) � 1, then it follows that∫ ∞

0

(
φ2
xx + ψ2

xx

)
+
∫ t

0

∫ ∞

0

(
φ2
xxx + ψ2

xxx

)
� C(‖φ0xx‖2 + ‖ψ0xx‖2 + ‖φ0‖2

1,w1
+ ‖ψ0‖2

1,w2
),

(3.26)

where C > 0 is a constant independent of t.

Proof. By (3.5), (3.11) and (3.19), it is easy to see that∫ t

0

∫ ∞

0

φ2
t � C

∫ t

0

∫ ∞

0

(φ2
xx + V 2φ2

x + U2ψ2
x + φ2

xψ
2
x)

� C(‖φ0‖2
1,w1

+ ‖ψ0‖2
1,w2

),

(3.27)

and∫ t

0

∫ ∞

0

ψ2
t � C

∫ t

0

∫ ∞

0

(ψ2
xx + V 2ψ2

x + U2W 2(m−1)ψ2 + W 2(m−1)φ2
x + ψ2

x + W 2(m−1)φ2
xψ

2)

� C(‖φ0‖2
1,w1

+ ‖ψ0‖2
1,w2

). (3.28)

Differentiating (3.5) with respect to t leads to⎧⎪⎪⎨
⎪⎪⎩
φtt = φtxx + χV φtx + χUψtx + χφtxψx + χφxψtx,

ψtt = εψtxx − 2εV ψtx − (m− 1)UWm−1e−(m−1)ψψt − 2εψxψtx

− (m− 1)Wm−1e−(m−1)ψψtφx + Wm−1e−(m−1)ψφtx.

(3.29)
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Multiplying the first equation of (3.29) by φt and integrating it in x, we get

1
2
d

dt

∫ ∞

0

φ2
t +

∫ ∞

0

φ2
tx

= χ

∫ ∞

0

(V φtx + Uψtx + φtxψx + φxψtx)φt

�
(

1
4

+ N(t)
)∫ ∞

0

(φ2
tx + εψ2

tx) + C

∫ ∞

0

(V 2 + U2 + N(t))φ2
t ,

(3.30)

where we have used ‖ψx(·, t)‖L∞ � N(t) and ‖φx(·, t)‖L∞ � N(t) in the above inequality.
Similarly, multiplying the second equation of (3.29) by ψt and integrating it in x,

1
2
d

dt

∫ ∞

0

ψ2
t + ε

∫ ∞

0

ψ2
tx − ε

∫ ∞

0

Vxψ
2
t + (m− 1)

∫ ∞

0

UWm−1e−(m−1)ψψ2
t

=
∫ ∞

0

(Wm−1e−(m−1)ψφtx − 2εψxψtx − (m− 1)Wm−1e−(m−1)ψψtφx)ψt

�
∫ ∞

0

(
1
4
φ2
tx + εN(t)ψ2

tx

)
+ C

∫ ∞

0

ψ2
t .

(3.31)

Thus, combining (3.30) with (3.31), and noticing Vx < 0, m � 1 and N(t) � 1, we have∫ ∞

0

(φ2
t + ψ2

t ) +
∫ t

0

∫ ∞

0

(φ2
tx + ψ2

tx)

� C

∫ ∞

0

(φ2
0xx + φ2

0x + ψ2
0x + ψ2

0xx) + C

∫ t

0

∫ ∞

0

(φ2
t + ψ2

t )

� C(‖φ0xx‖2 + ‖ψ0xx‖2 + ‖φ0‖2
1,w1

+ ‖ψ0‖2
1,w2

),

(3.32)

where we have used (3.27), (3.28) and the compatibility condition of the initial data. Using
(3.5) again, we also get∫ ∞

0

φ2
xx � C

∫ ∞

0

(φ2
t + φ2

x + ψ2
x) � C(‖φ0xx‖2 + ‖ψ0xx‖2 + ‖φ0‖2

1,w1
+ ‖ψ0‖2

1,w2
) (3.33)

and ∫ ∞

0

ψ2
xx � C

∫ ∞

0

(ψ2
t + ψ2

x + φ2
x) � C(‖φ0xx‖2 + ‖ψ0xx‖2 + ‖φ0‖2

1,w1
+ ‖ψ0‖2

1,w2
).

Differentiating the first equation of (3.5) in x yields

φxxx = φtx − χV φxx − χVxφx − χUψxx − χUxψx − χφxxψx − χφxψxx,

which in combination with (3.27), (3.28) and (3.32) leads to∫ t

0

∫ ∞

0

φ2
xxx � C(‖φ0xx‖2 + ‖ψ0xx‖2 + ‖φ0‖2

1,w1
+ ‖ψ0‖2

1,w2
).

Similarly, differentiating the second equation of (3.5) in x, and using (3.27), (3.28) and (3.32),
we have ∫ t

0

∫ ∞

0

ψ2
xxx � C(‖φ0xx‖2 + ‖ψ0xx‖2 + ‖φ0‖2

1,w1
+ ‖ψ0‖2

1,w2
). (3.34)

The desired estimate (3.26) follows from (3.33)–(3.34). �

Remark 3.1. Proposition 3.2 is a consequence of Lemmas 3.1, 3.2 and 3.3.
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3.3. Case 0 � m < 1

As in the case m � 1, we look for solutions of system (3.5) with (3.6) and (3.7) in the space

Y (0, T ) := {(φ, ψ)(x, t)
∣∣φ ∈ C([0, T ];H2 ∩H1

w3
), φx ∈ L2((0, T );H2 ∩H1

w3
),

ψ ∈ C([0, T ];H2), ψx ∈ L2((0, T );H2)},

for T ∈ (0,+∞], where w3 = Wm−1/U . Set

N(t) := sup
τ∈[0,t]

(‖φ(·, τ)‖1,w3 + ‖φxx(·, τ)‖ + ‖ψ(·, τ)‖2).

Proposition 3.3. Assume 0 � m < 1 and that χ is large enough. There exists a constant δ2,
such that if N(0) � δ2, then system (3.5)–(3.7) has a unique global solution (φ, ψ) ∈ Y (0,∞)
satisfying

‖φ‖2
1,w3

+ ‖φxx‖2 + ‖ψ‖2
2 +

∫ t

0

(‖φx(τ)‖2
1,w3

+ ‖φxxx(τ)‖2 + ‖ψx(τ)‖2
2)dτ � CN2(0) (3.35)

for any t ∈ [0,∞).

To prove Proposition 3.3, it suffices to derive the following a priori estimates.

Proposition 3.4. Under the same assumptions of Proposition 3.3, if (φ, ψ) ∈ Y (0, T ) is a
solution of system (3.5)–(3.7) for a constant T > 0, then there is a positive constant ε2 > 0,
independent of T , such that if N(t) � ε2 for any 0 � t � T , then (φ, ψ) satisfies (3.35) for any
0 � t � T .

The following Hardy inequality plays an important role in establishing the a priori estimates.

Lemma 3.4 (Hardy inequality). If f ∈ H1
0 (0,∞), then for j �= −1, it holds that∫ ∞

0

(1 + kx)jf2(x)dx � 4
(j + 1)2k2

∫ ∞

0

(1 + kx)j+2f2
x(x)dx,

where k > 0 is a constant.

Proof. Since C∞
0 (0,∞) is dense in H1

0 (0,∞), by density argument (cf. [34, Section 50.3]),
we only consider f ∈ C∞

0 (0,∞). Then by Cauchy–Schwarz inequality, for j �= −1, we have∫ ∞

0

(1 + kx)jf2(x)dx =
1

(j + 1)k

∫ ∞

0

f2(x)d((1 + kx)j+1)

= − 2
(j + 1)k

∫ ∞

0

(1 + kx)j+1f(x)fx(x)dx

� 2
|(j + 1)k|

(∫ ∞

0

(1 + kx)jf2(x)dx
) 1

2
(∫ ∞

0

(1 + kx)j+2f2
x(x)dx

) 1
2

which complete the proof. �

We now derive the L2 estimate.
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Lemma 3.5. If N(t) � 1, then there is a constant C > 0 independent of t such that the
solution of system (3.5)–(3.7) satisfies

∫ ∞

0

(
Wm−1φ2

U
+ ψ2

)
+
∫ t

0

∫ ∞

0

(
Wm−1φ2

x

U
+ ψ2

x + UWm−1ψ2

)

� C

∫ ∞

0

(
Wm−1φ2

0

U
+ ψ2

0

)
.

(3.36)

Proof. Multiplying the first equation of (3.5) by Wm−1φ
U and the second one by χψ,

integrating the resultant equations in x, we have

1
2
d

dt

∫ ∞

0

(
Wm−1φ2

U
+ χψ2

)
+
∫ ∞

0

Wm−1φ2
x

U
+ χε

∫ ∞

0

ψ2
x + χ

∫ ∞

0

(Wm−1)xφψ

−
∫ ∞

0

φ2

2

[(
Wm−1

U

)
xx

−
(
χWm−1V

U

)
x

]
− χ

∫ ∞

0

ψ2
[
εVx + (1 −m)UWm−1

]

= χ

∫ ∞

0

Wm−1φφxψx

U
− χε

∫ ∞

0

ψψ2
x + χ(1 −m)

∫ ∞

0

Wm−1φxψ
2

+ χ

∫ ∞

0

Wm−1(Uψ + φxψ)
∞∑

n=2

(1 −m)nψn

n!
.

(3.37)

A direct calculation by (3.13) and (3.16) yields

χ(Wm−1)x =
(1 −m)χθbm−1

β

(
1 +

θr

β
x

) 1−m
r −1

, (3.38)

− 1
2

[(
Wm−1

U

)
xx

−
(
χWm−1V

U

)
x

]

= − 1
2U

[
(Wm−1)xx − χ(Wm−1)xV − 2(Wm−1)x

Ux

U

]
− Wm−1

2

[(
1
U

)
xx

−
(
χV

U

)
x

]

= − 1
2U

[
(Wm−1)xx + χ(Wm−1)xV

]

=
(1 −m)bm−1

β
((m− 1 + r) − χ)

(
1 +

θr

β
x

) 2−2m
r

,

and

− χ
[
εVx + (1 −m)UWm−1

]
=

χθ2

β

(
εr

β
− (1 −m)bm−1

2

)(
1 +

θr

β
x

)−2

.
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By Lemma 3.4 with (3.15), we have

1
2

∫ ∞

0

Wm−1φ2
x

U
=

βbm−1

θ2

∫ ∞

0

(
1 +

θr

β
x

)χ+1−m
r

φ2
x

� bm−1

4β
(χ + 1 −m− r)2

∫ ∞

0

(
1 +

θr

β
x

) 2−2m
r

φ2,

χε

2

∫ ∞

0

ψ2
x � χεθ2r2

8β2

∫ ∞

0

(
1 +

θr

β
x

)−2

ψ2.

(3.39)

Moreover, a direct calculation in view of (3.15) gives

(1 −m)bm−1

β
((m− 1 + r) − χ) +

bm−1

4β
(χ + 1 −m− r)2

=
bm−1

16β
[
8(1 −m)(χ + 3m− 3) − 16χ(1 −m) + (χ− 3m + 3)2

]

=
bm−1

16β
[χ + 3(1 −m)][χ− 5(1 −m)]

� B1,

and

χθ2

β

(
εr

β
− (1 −m)bm−1

2

)
+

χεθ2r2

8β2

=
χθ2bm−1

2β

[
(χ + m− 1)2

16(χ + m + 1)
+ m− 2

χ + m + 1

]

� B2.

Now substituting (3.38)–(3.39) into (3.37), and noting when χ 
 1, there exists a constant
C1 > 0 such that

B1

(
1 +

θr

β
x

) 2−2m
r

φ2 + B2

(
1 +

θr

β
x

)−2

ψ2 +
(1 −m)χθbm−1

β

(
1 +

θr

β
x

) 1−m
r −1

φψ

� C1

((
1 +

θr

β
x

) 2−2m
r

φ2 +
(

1 +
θr

β
x

)−2

ψ2

)
,

one can see that

LHS of (3.37) � 1
2
d

dt

∫ ∞

0

(
Wm−1φ2

U
+ χψ2

)
+

1
2

∫ ∞

0

(
Wm−1φ2

x

U
+ χεψ2

x

)

+ C1

∫ ∞

0

((
1 +

θr

β
x

) 2−2m
r

φ2 +
(

1 +
θr

β
x

)−2

ψ2

)
.

(3.40)
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The right-hand side of (3.37) can be estimated as follows. It is easy to see that

Wm−1φ2

U
=

∫ x

0

(
Wm−1φ2

U

)
x

=
∫ x

0

(
2Wm−1φφx

U
+

(Wm−1)xφ2

U
− φ2Wm−1Ux

U2

)

� C

∫ ∞

0

Wm−1φ2

U
+
∫ ∞

0

Wm−1φ2
x

U

� CN2(t),

which implies
√
Wm−1√

U
|φ| � CN(t). Hence,

χ

∫ ∞

0

Wm−1|φφxψx|
U

� CN(t)
∫ ∞

0

Wm−1φ2
x

U
+ χεN(t)

∫ ∞

0

ψ2
x. (3.41)

By Young’s inequality and (3.24), one has

χ(1 −m)
∫ ∞

0

Wm−1φxψ
2 � CN(t)

∫ ∞

0

Wm−1φ2
x

U
+ CN(t)

∫ ∞

0

Wm−1Uψ2
x

� CN(t)
∫ ∞

0

Wm−1φ2
x

U
+ CN(t)

∫ ∞

0

ψ2
x.

By Lemma 3.4 and (3.24) again, we get∣∣∣∣∣
∫ ∞

0

Wm−1Uψ
∞∑

n=2

(1 −m)nψn

n!

∣∣∣∣∣ � C

∫ ∞

0

Wm−1U |ψ|3

� CN(t)
∫ ∞

0

(
1 +

θr

β
x

)−2

ψ2 � CN(t)
∫ ∞

0

ψ2
x,

and∣∣∣∣∣
∫ ∞

0

Wm−1φxψ

∞∑
n=2

(1 −m)nψn

n!

∣∣∣∣∣ � C

∫ ∞

0

Wm−1|φx||ψ|3

� CN(t)
∫ ∞

0

Wm−1φ2
x

U
+ CN(t)

∫ ∞

0

Wm−1Uψ2

� CN(t)
∫ ∞

0

Wm−1φ2
x

U
+ CN(t)

∫ ∞

0

ψ2
x.

(3.42)

Now substituting (3.40), (3.41)–(3.42) into (3.37), we have∫ ∞

0

(
Wm−1φ2

U
+ χψ2

)
+ (1 − CN(t))

∫ t

0

∫ ∞

0

Wm−1φ2
x

U
+ (χε− CN(t))

∫ t

0

∫ ∞

0

ψ2
x

�
∫ ∞

0

(
Wm−1φ2

0

U
+ χψ2

0

)
.

Therefore, (3.36) holds provided that N(t) � 1. �

Lemma 3.6. If N(t) � 1, then∫ ∞

0

(
Wm−1φ2

x

U
+ ψ2

x

)
+
∫ t

0

∫ ∞

0

(
Wm−1φ2

xx

U
+ ψ2

xx

)
� C(‖φ0‖2

1,w3
+ ‖ψ0‖2

1). (3.43)
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Proof. Multiplying the first equation of (3.5) by Wm−1φxx

U yields

d

dt

∫ ∞

0

Wm−1φ2
x

2U
+
∫ ∞

0

Wm−1φ2
xx

U
= −χ

∫ ∞

0

Wm−1

(
V φx

U
+ ψx +

φxψx

U

)
φxx

−
∫ ∞

0

φtφx

(
Wm−1

U

)
x

.

By Young’s inequality and (3.24), we have

χ

∣∣∣∣Wm−1V φx

U
φxx

∣∣∣∣ � Wm−1φ2
xx

4U
+

χ2Wm−1V 2φ2
x

U
� Wm−1φ2

xx

4U
+

CWm−1φ2
x

U
,

χ
∣∣Wm−1ψxφxx

∣∣ � Wm−1φ2
xx

4U
+ χ2Wm−1Uψ2

x � Wm−1φ2
xx

4U
+ Cψ2

x,

χ

∣∣∣∣Wm−1φxψx
φxx

U

∣∣∣∣ � N(t)Wm−1φ2
xx

4U
+

N(t)χ2Wm−1φ2
x

U
,

and

−φtφx

(
Wm−1

U

)
x

= −(φxx + χV φx + χUψx + χφxψx)
φx

U

(
(Wm−1)x − Wm−1Ux

U

)

� Wm−1φ2
xx

4U
+

CWm−1φ2
x

U
+ Cψ2

x.

Thus,

d

dt

∫ ∞

0

Wm−1φ2
x

2U
+

1
4
(1 −N(t))

∫ ∞

0

Wm−1φ2
xx

U
� C

(∫ ∞

0

Wm−1φ2
x

U
+
∫ ∞

0

ψ2
x

)
. (3.44)

Multiplying the second equation of (3.5) by ψxx, and noting

ψtψxx = (ψtψx)x −
(
ψ2
x

2

)
t

,

we get

1
2
d

dt

∫ ∞

0

ψ2
x + ε

∫ ∞

0

ψ2
xx =

∫ ∞

0

(2εV ψx −Wm−1φx)ψxx

+
∫ ∞

0

Wm−1(1 − e−(m−1)ψ)(U + φx)ψxx + ε

∫ ∞

0

ψ2
xψxx

� ε

2
(1 + N(t))

∫ ∞

0

ψ2
xx + C

∫ ∞

0

ψ2
x + C

∫ ∞

0

Wm−1φ2
x

U
.

(3.45)

Now integrating (3.44) and (3.45) in t, by (3.36), we get (3.43) provided that N(t) � 1. �

Applying the same argument as that of Lemma 3.3, we have the following H2-estimates. For
brevity, we omit the details of the proof.

Lemma 3.7. If N(t) � 1, then∫ ∞

0

(
φ2
xx + ψ2

xx

)
+
∫ t

0

∫ ∞

0

(
φ2
xxx + ψ2

xxx

)
� C(‖φ0xx‖2 + ‖φ0‖2

1,w3
+ ‖ψ0‖2

2).

Remark 3.2. Proposition 3.4 follows from Lemmas 3.5, 3.6 and 3.7.
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Before we prove our main results, we present a well-known result for convenience.

Lemma 3.8. If f ∈ W 1,1(0,∞) is a nonnegative function, then f(t) → 0 as t → ∞.

3.4. Proof of main results

Now we are ready to prove Theorems 2.2 and 2.3.

Proof of Theorem 2.2. The a priori estimates (3.10) in the case m � 1 and (3.35) in the case
0 � m < 1 guarantee that N(t) is small for all t > 0 if N(0) is small enough. Hence, applying
the standard extension argument, one can obtain the global well-posedness of system (3.5)
with (3.7) and (3.6) in X(0,∞) if m � 1 and in Y (0,∞) if 0 � m < 1. In view of (3.4), system
(2.13)–(2.14) has a unique global solution (u, v)(x, t) satisfying (2.15) and (2.16), respectively.
Next we proceed to prove the L∞ convergence (2.17) and L1 convergence (2.18). We consider
the case m � 1 first. From the estimates (3.10) and (3.35), we claim that

‖φx(·, t)‖ + ‖ψx(·, t)‖ → 0 as t → +∞. (3.46)

Indeed, to prove (3.46), we just need to verify that ‖φx(·, t)‖2 ∈ W 1,1(0,∞) and ‖ψx(·, t)‖2 ∈
W 1,1(0,∞) from Lemma 3.8. We first prove the former one: ‖φx(·, t)‖2 ∈ W 1,1(0,∞). From
(3.8) and Lemma 3.1, one has∫ ∞

0

∫ ∞

0

φ2
x � ū

∫ ∞

0

∫ ∞

0

φ2
x

U
< ∞. (3.47)

Moreover from the results of Proposition 3.1 along with the Sobolev inequality, we have
‖ψx‖L∞ � c0 for some positive constant c0. Then using the first equation of (3.5) and
positiveness of w1 and w2 (see (3.9)), we can find positive constant ci(i = 1, 2, 3, 4) such that

d

dt

∫ ∞

0

φ2
x = −2

∫ ∞

0

φxxφt

= −2
∫ ∞

0

φxx(φxx + χV φx + χUψx + χφxψx)

� c1

∫ ∞

0

‖φx‖2
1,w1

+ c2

∫ ∞

0

‖ψx‖2
w2

+ c3‖ψx‖L∞

∫ ∞

0

(φ2
x + φ2

xx)

� c4

∫ ∞

0

‖φx‖2
1,w1

+ c2

∫ ∞

0

‖ψx‖2
w2

,

(3.48)

where we have used the uniform boundedness of U(x) and V (x). Then we integrate (3.48) on
both sides with respect to t and use (3.10) to get∫ ∞

0

d

dt

∫ ∞

0

φ2
x � c4

∫ ∞

0

∫ ∞

0

‖φx‖2
1,w1

+ c2

∫ ∞

0

∫ ∞

0

‖ψx‖2
w2

< ∞,

which together with (3.47) implies ‖φx(·, t)‖2 ∈ W 1,1(0,∞). Then from Lemma 3.8, it follows
that ‖φx(·, t)‖ → 0 as t → +∞. By similar arguments, we have ‖ψx(·, t)‖ → 0 as t → +∞.
Therefore, the claim (3.46) is proven.

By Cauchy–Schwarz inequality and (3.10), we find

φ2
x(x, t) = 2

∣∣∣∣
∫ x

0

φxφxx(y, t)dy
∣∣∣∣ � 2

(∫ ∞

0

φ2
xdy

)1/2(∫ ∞

0

φ2
xxdy

)1/2

→ 0
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as t → +∞. This implies supx∈R+
|φx(x, t)| → 0 as t → +∞. Similarly, we can show that

sup
x∈R+

|ψx(x, t)| → 0 as t → +∞.

which gives the convergence (2.17).
Next we prove the L1 convergence. For the case m � 1, with Lemma 3.2, we find a constant

c5 > 0 depending upon initial value only such that∫ ∞

0

φ2
x

U
� c5. (3.49)

Next using the fact W 1−mbm−1 � 1 (see (3.9)), we have from (3.21) and Lemma 3.1 that∫ ∞

0

(
d

dt

∫ ∞

0

φ2
x

U

)
� C

(∫ ∞

0

∫ ∞

0

φ2
x

U
+
∫ ∞

0

∫ ∞

0

ψ2
x

)

� C

(∫ ∞

0

∫ ∞

0

φ2
x

U
+ bm−1

∫ ∞

0

∫ ∞

0

W 1−mψ2
x

)
� c6,

(3.50)

where c6 > 0 is a constant depending on initial value only.
Then the combination of (3.49) and (3.50), along with Lemma 3.8, gives∫ ∞

0

φ2
x

U
→ 0 as t → ∞,

which thus with the help of Hölder inequality yields

∫ ∞

0

|φx| �
(∫ ∞

0

φ2
x

U

)1/2(∫ ∞

0

U

)1/2

→ 0 as t → ∞

due to the fact that U � 0 is integrable over (0,∞). This gives the L1 convergence (2.18).
Finally analogous arguments show the same result for the case 0 � m < 1. Then the proof of
Theorem 2.2 is complete. �

Proof of Theorem 2.3. Since the transformed system (2.13) and the original Keller–Segel
system (1.1) share the same solution component u, it remains only to pass the results from v
to w to complete the proof of Theorem 2.3. By (3.4) and Theorem 2.2, we get the regularity
of wx/w −Wx/W . We proceed to prove the results for w −W . Set ξ := w −W . By (2.11) and
(3.4),

W = be−
∫ x
0 V (y)dy and w(x, t) = be−

∫ x
0 v(y,t)dy = be−

∫ x
0 (ψx+V )dy = e−ψW.

Thus, ξ satisfies

ξt − εξxx = UWm − uwm = UWm(1 − e−mψ) −Wmφxe
−mψ, (3.51)

with initial and boundary conditions

ξ(x, 0) = ξ0(x), ξ(0, t) = ξ(+∞, t) = 0.

By Taylor expansion, since ‖ψ(·, t)‖L∞ � N(t) � 1, it follows

|1 − e−mψ| =

∣∣∣∣∣mψ −
∞∑

n=2

(−m)nψn

n!

∣∣∣∣∣ � C|ψ|, and e−mψ � C.
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Multiplying (3.51) by ξ and using Young’s inequality, we have

1
2
d

dt

∫ ∞

0

ξ2 + ε

∫ ∞

0

ξ2
x =

∫ ∞

0

Wm[U(1 − e−mψ) − φxe
−mψ]ξ

� h

∫ ∞

0

Wm−1Uξ2 +
C

2h

∫ ∞

0

(
UWm+1ψ2 +

Wm+1φ2
x

U

)

� 2hβbm−1

r2

∫ ∞

0

ξ2
x + C

(∫ ∞

0

Uψ2 +
∫ ∞

0

φ2
x

U

)
,

where h is a constant to be determined, and we have used Young’s inequality in the first
inequality, and (3.24), Lemma 3.4 and Wm+1 � bm+1 in the second inequality. Integrating this
inequality in t, taking h = εr2

4βbm−1 = (χ+m−1)2

16(χ+m+1) , and using Lemmas 3.1 and 3.5, we have∫ ∞

0

ξ2 + ε

∫ t

0

∫ ∞

0

ξ2
x �

∫ ∞

0

ξ2
0 + C(‖φ0‖2

wi
+ ‖ψ0‖2

wj
). (3.52)

Here wi = 1
U , wj = W 1−m if m � 1, and wi = Wm−1

U , wj = 1 if 0 � m < 1.
To estimate the first-order derivative of ξ, we multiply (3.51) by ξxx to get

1
2
d

dt

∫ ∞

0

ξ2
x + ε

∫ ∞

0

ξ2
xx = −

∫ ∞

0

Wm[U(1 − e−mψ) − φxe
−mψ]ξxx

� ε

2

∫ ∞

0

ξ2
xx +

C

2ε

∫ ∞

0

(
U2W 2mψ2 + W 2mφ2

x

)

� ε

2

∫ ∞

0

ξ2
xx + C

(∫ ∞

0

Uψ2 +
∫ ∞

0

φ2
x

)
,

where we have used W 2mU2 � b2mθ4

4β2 and W 2m � b2m. Thus, integrating this inequality in t
and using Lemmas 3.1 and 3.5, we have∫ ∞

0

ξ2
x + ε

∫ t

0

∫ ∞

0

ξ2
xx �

∫ ∞

0

ξ2
0x + C(‖φ0‖2

wi
+ ‖ψ0‖2

wj
). (3.53)

By (3.52) and (3.53), one can see that ‖ξx‖ → 0 as t → ∞. Then by Cauchy–Schwarz inequality,
we get

ξ2(x, t) = 2
∫ x

0

ξξx � 2
(∫ ∞

0

ξ2

) 1
2
(∫ ∞

0

ξ2
x

) 1
2

� C‖ξx‖.

Hence,

sup
x∈R+

|ξ(x, t)| � C‖ξx‖ 1
2 → 0 as t → ∞,

which completes the proof of Theorem 2.3. �
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