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Abstract

This paper is concernedwith the stationary problemof an aero-taxis systemwith

physical boundary conditions proposed by Tuval et al (2005 Proc. Natl Acad.

Sci. 102 2277–82) to describe the boundary layer formation in the air–�uid

interface in any dimensions. By considering a special case where �uid is free,

the stationary problem is essentially reduced to a singularly perturbed nonlocal

semi-linear elliptic problem.Denoting the diffusion rate of oxygen by ε > 0, we

show that the stationary problemadmits a unique classical solution of boundary-

layer pro�le as ε→ 0, where the boundary-layer thickness is of order ε. When

the domain is a ball, we �nd a re�ned asymptotic boundary layer pro�le up

to the �rst-order approximation of ε by which we �nd that the slope of the

layer pro�le in the immediate vicinity of the boundary decreases with respect

to (w.r.t.) the curvature while the boundary-layer thickness increases w.r.t. the

curvature.

Keywords: chemotaxis, boundary layer, nonlocal, semi-linear elliptic equation

Mathematics Subject Classi�cation numbers: 35J60, 35J25, 35J15, 35B20.

(Some �gures may appear in colour only in the online journal)

5Author to whom any correspondence should be addressed.

1361-6544/20/105111+31$33.00 © 2020 IOP Publishing Ltd & London Mathematical Society Printed in the UK 5111

https://doi.org/10.1088/1361-6544/ab8f7c
https://orcid.org/0000-0001-6503-3020
https://orcid.org/0000-0003-2945-5810
https://orcid.org/0000-0003-1222-4987
mailto:wyang@wipm.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/ab8f7c&domain=pdf&date_stamp=2020-8-13


Nonlinearity 33 (2020) 5111 C-C Lee et al

1. Introduction

Aerobic bacteria often live in thin �uid layers near the air–water interface where the dynam-

ics of bacterial chemotaxis, oxygen diffusion and consumption can be encapsuled in a

mathematical model as follows (see [31])





vt + ~w · ∇u = ∆v −∇ · (v∇u) inΩ,

ut + ~w · ∇u = D∆u− uv inΩ,

ρ(~wt + ~w∇~w)+∇p = µ∆~w − v∇φ inΩ,

∇ · ~w = 0,

(1.1)

whereΩ is a smooth bounded domain inRn(n > 1), v(x, t) and u(x, t) denote the concentration
of bacteria and oxygen, respectively, and ~w is the velocity �eld of a �uid �ow governed by

the incompressible Navier–Stokes equations with density ρ, pressure p and viscosity µ, where
∇φ = Vbg(ρb − ρ)z describes the gravitational force exerted by bacteria onto the �uid along

the upward unit vector z proportional to the bacterial volume Vb, the gravitational constant g

and the bacterial density ρb; D is the diffusion rate of oxygen. The system (1.1) describes the

chemotacticmovement of bacteria towards the concentration of oxygenwhich is saturatedwith

a constant ū at the air–water interface (boundary ofΩ) and will be absorbed (consumed) by the

bacteria, where both bacteria and oxygen diffuses and are convected with the �uid. Therefore

the physical boundary conditions as employed in [31] is the zero-�ux boundary condition on

v and Dirichlet boundary condition on u as well as no-slip boundary condition on ~w, namely

∂νv − v∂νu = 0, u = ū, ~w = 0 on ∂Ω (1.2)

where ū is a positive constant accounting for the saturation of oxygen at the air–water interface

and ν denotes the unit outward normal vector to the boundary ∂Ω. The model (1.1) and (1.2)

has been successfully used in [31] to numerically recover the (accumulation) boundary layer

phenomenon observed in the water drop experiment reported in [31]. Later more extensive

numerical studies were performed in [4, 18] for the model (1.1) in a chamber. Analytic study

of (1.1) on the water-drop shaped domain as in [31] with physical boundary condition (1.2) was

started with [20] where the local existence of weak solutionswas proved.Recent works [21, 22]

obtained the global well-posedness of a variant of (1.1) in a 3D cylinder with mixed boundary

conditions under some additional conditions on the consumption rate. The above-mentioned

appear to the only analytical results of (1.1) with physical boundary conditions (1.2) in the

literature. In the meanwhile, there are many results on the unboundedwhole space RN(N > 2)

or bounded domain with Neumann boundary conditions on both v and u as well as no-slip

boundary condition on ~w (see earliest works [6, 19, 29]). For the micro–macro derivation of

chemotaxis models with �uid, we refer to a work [2].

It should be emphasized that most prominent observation in the experiment performed in

[31] was the boundary-layer formation by bacteria near the air–water interface. Therefore an

analytical question is naturally to exploit whether the model (1.1) and (1.2) will have boundary-

layer solutions relevant to the experiment of [31]. Except afore-mentioned numerical studies,

no any kind analytical results on the boundary-layer formation of (1.1) and (1.2) are available

in the literature as far as we know. The purpose of this paper is to make some progress towards

this direction by considering the stationary problem of (1.1) and (1.2). Below we shall brie�y

derive the stationary problem that we are concerned with and the strategies used to solve our

problem. Integrating the �rst equation of (1.1) in space with boundary condition (1.2), we �nd
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that the bacterial mass is preserved in time, namely

∫

Ω

v(x, t)dx =

∫

Ω

v(x, 0)dx :=m

where m > 0 denotes the initial bacterial mass. In one dimension it is straightforward to

verify that ~w ≡ 0 by the divergence free condition and no-slip boundary condition in (1.2).

The multi-dimensional case will be much more sophisticated mathematically. Motivated by

the experiment of [31] where stationary boundary-layer patterns without �uid motion were

observed, we consider the stationary problem of (1.1) and (1.2) with �uid-free (i.e. ~w = 0 and

∇p = −v∇φ), which along with the mass conservation reads as






∆v −∇ · (v∇u) = 0 inΩ,

D∆u− uv = 0 inΩ,

∂νv − v∂νu = 0, u = ū on ∂Ω,∫

Ω

v(x)dx = m.

(1.3)

In this paper, we shall study the existence of solutions with boundary-layer pro�le to (1.3).

The strategy is to reduce the system (1.3) into a more tractable scalar nonlocal semi-linear

elliptic problem with Dirichlet boundary condition as described below. Note the �rst equation

of (1.3) can be written as∇ · (v∇(logv − u)) = 0.Thenmultiplying both sides of this equation

by logv − u and using the zero-�ux boundary condition, we �nd that any solution of (1.3) ver-

i�es the equation
∫
Ω v|∇(logv − u)|2dx = 0, which gives v = λeu for some positive constant

λ. Since m =
∫
Ω v(x)dx, we get λ = m∫

Ωeudx
. Therefore the problem (1.3) is equivalent to the

following nonlocal semilinear elliptic Dirichlet problem





ε2∆u =

m∫
Ω
eudx

ueu inΩ,

u = ū on ∂Ω,
(1.4)

with

v =
m∫

Ω
eudx

eu, (1.5)

where for convenience we have assumed D = ε2 for ε > 0.

The purpose of this paper is threefold: (i) prove the existence and uniqueness of classi-

cal solutions of (1.4) for any ε > 0; (ii) justify that the unique solution obtained in (i) has a

boundary-layer pro�le as ε→ 0; (iii) �nd the re�ned asymptotic structure of boundary-layer

pro�le near the boundary and explore how the (boundary) curvature affects the boundary-

layer pro�le like the steepness and thickness. The result (i) con�rms that the problem (1.4)

has a unique non-constant pattern solution, and result (ii) shows that the pattern solution is

of a boundary-layer pro�le as ε→ 0 which roughly provides a theoretical explanation of the

accumulation boundary-layer at the water-air interface observed in the experiment of [31]. The

result (iii) further elucidates why the boundary layer thickness varies at the air–water interface

of water drop with different curvatures observed in the experiment of [31].

The major dif�culty in exploring the above three questions lies in the non-local term in

(1.4). To prove the result (i), we �rst show that the existence of solutions to the nonlocal

problem (1.4) can be provided by an auxiliary (local) problem for which we use the mono-

tone iteration scheme along with elliptic regularity theory to get the existence, and then show
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the uniqueness of (1.4) directly. The boundary-layer pro�le as ε→ 0 in a general domainΩ as

described in (ii) is justi�ed by the Fermi coordinates (see [5] for more background of Fermi

coordinates) and the barrier method. The non-locality in (1.4) does not trouble the �rst two

results, but brings considerable dif�culties to our third question (iii) concerning the effect of

boundary curvature on the boundary-layer pro�le. In order to explore the question (iii), we have

to get a good understanding of the asymptotic structure of the non-local coef�cient
∫
Ω
euεdx

which, however, depends on the asymptotic pro�le of u itself. Moreover, we have to make the

asymptotic expansion as precise as possible so that the role of curvature can be explicitly

observed. This makes the problem very tricky and challenging. With this non-locality, we

are unable to gain the necessary understanding of the solution-dependent nonlocal coef�cient∫
Ω eudx in a general domainΩ. Fortunately when the domain is a ball, we manage to derive the

required estimates on this nonlocal term and �nd the re�ned asymptotic pro�le of boundary-

layer solutions as ε→ 0 involving the (boundary) curvature whose role on the boundary-layer

steepness and thickness can be explicitly revealed.

Finally, we mention some other results comparable to the current work. When the non-

linear term ueu is replaced by the double well type function, including the Allen–Cahn type

nonlinearity, the boundary expansion (up to the 2nd order) of the Neumann derivative for the

case without the non-local term was obtained by Shibata in [24, 25]. Recently the following

stationary problem corresponding to (1.6) with D = 1

∆u = σueu inΩ, ∂νu = (γ − u(x))g(x) on ∂Ω

was considered in [1] and the existence of non-constant classical solutions was established,

where σ > 0 is a constant, γ > 0 denotes the maximal saturation of oxygen in the �uid and

g(x) is the absorption rate of the gaseous oxygen into the �uid. Clearly the nonlocal ellip-

tic problem (1.4) is very different from the problems mentioned above, and more impor-

tantly we focus on the question whether the nonlocal problem (1.4) admits boundary-layer

solutions relevant to the experiment in [31]. Consider the time-dependent equations related

to (1.3)
{
vt = ∆v −∇ · (v∇u) inΩ,

ut = D∆u− uv inΩ,
(1.6)

which has been studied when the Neumman boundary conditions ∂νv|∂Ω = ∂νu|∂Ω = 0 are

prescribed.We refer to [7, 26, 27] for the global existence and large-time behavior of solutions

to (1.6) and [28, 30] for some foraging models which have similar consumption terms as in

(1.6). When the second equation of (1.6) is replaced by an elliptic equation ǫ∆u+ v = 0, the

radially symmetric boundary-layersolution as ǫ→ 0 has been studied in [3]. If the �rst equation

of (1.6) is replaced by the vt = ∆v −∇ · (v∇ log u), namely the chemotactic sensitivity is

logarithmic, and the Dirichlet boundary condition for v and Robin boundary condition for u

are prescribed, the boundary-layer solution of time-dependent problem has been studied in

a series works [11–13] where the boundary-layer appears in the gradient of u other than u

itself.

The rest of paper is organized as follows. In section 2, we shall state the main results on

the existence of non-constant classical solutions of (1.4) (see theorem 2.1), the existence of

boundary layer solution as ε→ 0 (see theorem 2.2) and re�ned asymptotic pro�le of boundary

layer solutions as ε is small (see theorem 2.4). In section 3, we prove theorem 2.1. In section 4,

we prove theorem 2.2. Finally, theorem 2.4 is proved in section 5.
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2. Statement of the main results

We shall �rst prove the existence of a unique solution to (1.4) and then pass the results to

the original steady state problem (1.3). Furthermore, we can show the solution of (1.3) is

non-degenerate, i.e., the associated linearized problem only admits a trivial (zero) solution.

The results are stated in the following theorem

Theorem 2.1. Let Ω be a bounded smooth domain in R
N(N > 1) with smooth boundary,

and let m and ū be given positive constants independent of ε. Then, for ε > 0, equation (1.4)

admits an unique classical solution uε ∈ C1(Ω) ∩ C∞(Ω), and hence the elliptic system (1.3)

admits a unique solution which is non-degenerate.

Our second result on the problem (1.4) is the explicit behavior of u near the boundary ∂Ω
when ε is small. Before stating the results, we introduce the following notations. Let Ωδ be

de�ned by

Ωδ = {p ∈ Ω | dist(p, ∂Ω) > δ}

as illustrated in �gure 1. For example, when n = 1 and Ω = (−1, 1), then Ωδ = (−1+ δ,
1− δ).When n = 2, and Ω = BR(0), then Ωδ = BR−δ(0).

In the following, we shall give some description on the solution of (1.4) in general domain

as ε→ 0. Without loss of generality, we may assume 0 ∈ Ω throughout the paper and set

Ω
ε
= {y|εy ∈ Ω} .

To �nd the leading order term for the solution of (1.4), we de�ne Uε(y) to be the solution of

the following equation





∆yUε =

m

|Ω|Uεe
Uε inΩε,

Uε = ū on∂Ωε.
(2.1)

The second result of this paper is as follows

Theorem 2.2. Let Ω be a bounded domain with smooth boundary. Then there is some non-

negative constant δ(ε) satisfying

δ(ε)→ 0 and ε/δ(ε)→ 0 as ε→ 0,

and the unique solution uε obtained in theorem 2.1 has the following property:

lim
ε→0

‖uε‖L∞(
Ωδ(ε)

) = 0, (2.2)

and

‖uε(x)− Uε(x/ε)‖L∞(Ω) = O(ε). (2.3)

In the next result we shall derive that the boundary-layer thickness is of order ε. Speci�cally,
we have

Corollary 2.3. Let uε(x) be the solution of (1.4) and xin be any interior point such that the

distance from xin to the boundary is of order ℓε, namely dist(xin, ∂Ω) ∼ ℓε. Under the same
hypothesis as in theorem 2.2, as 0 < ε≪ 1, we have:

(a) If limε→0
ℓε
ε
= 0, then limε→0uε(xin) = ū;
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Figure 1. An illustration of Ωδ in Ω.

(b) If limε→0
ℓε
ε
= L with L ∈ (0,∞), then limε→0uε(xin) ∈ (0, ū);

(c) If limε→0
ℓε
ε
= +∞, then limε→0uε(xin) = 0.

Finally we investigate the re�ned boundary-layer pro�le of (1.4) by �nding its asymptotic

expansion with respect to ε and exploiting how the boundary curvature affects the boundary

layer pro�le. This is challenging question in general due to the non-locality as discussed in

section 1, in this paper, we shall consider a simple case by assuming Ω = BR(0)—a ball cen-

tered at origin with radius curvature is given by 1
R
. We �nd that the �rst two terms (zeroth and

�rst order terms) of the (point-wise) asymptotic expansion of uε(x) with respect to ε is adequate
to help us �nd the role of the curvature on the boundary-layer structure (pro�le).

To state our last results, we introduce some notations. We denote by ωN the volume of

BR(0) ⊂ R
N and α(N) = π

N
2

Γ( N
2
+1)

the volume of unit ball in R
N , where ωN = α(N)RN. For

convenience, we de�ne

f (s) := ses and F(s) :=

∫ s

0

f (τ )dτ = (s− 1)es + 1 > 0, for s > 0. (2.4)

Then by the uniqueness (see theorem 2.1) and the classical moving plane method [9], uε(x) =

ψε(|x|) = ψε(r) is radially symmetric in BR(0), where ψε uniquely solves

ε2
(
ψ′′
ε +

N − 1

r
ψ′
ε

)
= ρε f (ψε), r ∈ (0,R), (2.5)

ρε := ρε(ψε) =
m

Nα(N)

(∫ R

0

eψε(s)sN−1ds

)−1

, (2.6)

ψ′
ε(0) = 0, ψε(R) = ū, (2.7)

where we remark that Nα(N) is the surface area of the unit sphere ∂B1(0).

Next we shall investigate how the boundary curvature will in�uence the boundary layer

pro�le of (2.5)–(2.7) near the boundary from two different angles. The �rst one is to see how

the slope of boundary layer pro�le at the boundary r = R changes with respect to the boundary

curvature 1/R. The second one is for a given level set such that ψε(rε) = c, how the distance

from boundary to the point rε varies with respect to R. To be more precisely, for R > 0 and

c ∈ (0, ū), we de�ne

rε(R, c) :=ψε
−1(c) and Γε(R, c) := {r ∈ [0,R] : ψε(r) ∈ [c, ū]} = [rε(R, c),R] (2.8)
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as functions of R and c, where Γε(R, c) is a closed set with width R− rε(R, c) = O(ε). Denote

J(ū) = −
√
2F(ū)+

∫ ū

0

√
F(t)

2
dt. (2.9)

Let Ψ denote the unique positive solution of the ODE problem

{
−Ψ

′(ξ) =
√
2mF(Ψ(ξ)), ξ > 0,

Ψ(0) = ū > 0, Ψ(∞) = 0.
(2.10)

Then our results on the re�ned asymptotic boundary layer pro�le in ε are given in the

following theorem where we present a sharp pointwise asymptotic pro�le for ψε within the

boundary layer and for the slope of ψε at r = R up to the �rst-order term of expansion in ε, as
well as the monotone property of the boundary layer thickness with respect to the boundary

curvature.

Theorem 2.4. Let m and ū be given positive constants and let F and J(ū) be de�ned in (2.4)

and (2.9), respectively. Then for any ε > 0, the solutionψε of (2.5)–(2.7) is positive and strictly
increasing in [0,R]. Moreover, for any 0 < ε≪ 1, we have the following results concerning

the asymptotic expansion of ψε with respect to ε.

(a) Let rε := rε(d0) = R− d0ε ∈ (0,R] be a point with the distance d0ε to the boundary,
where the constant d0 > 0 is independent of ε. Then we have

ψε(rε(d0)) =Ψ
R(d0)−

ε

R

√
F(ΨR(d0))

2

×
(
d0NJ(ū)− RN/2

√
α(N)

m
(N − 1)J∗(ū,ΨR(d0))+ oε(1)

)
(2.11)

where ΨR(d0) = Ψ( d0√
α(N)RN/2

) and

J∗(ū,ΨR(d0)) =

∫ ū

ΨR(d0)

(
1

F(s)

∫ s

0

√
F(t)

F(s)
dt

)
ds. (2.12)

(b) The slope of the boundary layer pro�le at the boundary has the asymptotic expansion as

ψ′
ε(R) =

1

εRN/2

√
2mF(ū)

α(N)
+

1

R

(
N

√
F(ū)

2
J(ū)− (N − 1)

∫ ū

0

√
F(t)

F(ū)
dt

)
+ oε(1).

(2.13)

(c) Let rε(R, c) be de�ned in (2.8). Then for each c ∈ (0, ū), we have

R− rε(R, c) =
ε2

2
α(N)RN−1

[
− N√

m
Ψ

−1(c)J(ū)+
N − 1

m

∫ ū

c

(
1

F(s)

∫ s

0

√
F(t)

F(s)
dt

)
ds+ oε(1)

]

+
√
α(N)RN/2Ψ−1(c)ε.

(2.14)
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Figure 2. Schematic of the curvature effect on boundary layer pro�les: layer steepness
and thickness.

In particular, for any R0 > 0, there exists a positive constant δN,R0 ,c depending mainly
on N, R0 and c such that for each ε ∈ (0, δN,R0,c), R− rε(R, c) is strictly increasing with

respect to R in (0,R0].

Remark 1. The result of theorem 2.4 (i) implies that the slope of boundary layer pro�le near

the boundary increases with respect to the boundary curvature (i.e. decrease with respect to R).

The result of theorem 2.4 (ii) implies that the boundary-layer thickness decreases with respect

to the boundary curvature (i.e. increases with respect to R). An illustration of curvature effect

on the boundary layer pro�le is shown in �gure 2.

3. Proof of theorem 2.1

In this section, we shall prove theorem 2.1.

Proof of theorem 2.1 —existence of (1.4). We start the proof by considering the following

auxiliary problem

{
ε2∆uλ = λmuλe

uλ inΩ,

uλ = ū on ∂Ω,
(3.1)

where λ is an arbitrary positive constant. Since ū > 0, by maximal principle we have

ū > uλ > 0 inΩ.

Then it is not dif�cult to see that u ≡ ū is a super-solution of (3.1), while u ≡ 0 provides a

sub-solution. Therefore, following the standard monotone iteration scheme and the fact that

f(x) = xex is increasing for x positive, we immediately know that (3.1) has a unique classical
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solution uλ verifying

0 < uλ 6 ū.

Now we claim that there exists λm > 0 such that

λm

∫

Ω

euλmdx = 1. (3.2)

We postpone the proof of (3.2) in lemma 3.1. Using this claim we can easily see that u = uλm
is a solution of (1.4). �

In order to prove the claim (3.2), we give the following lemma.

Lemma 3.1. Let λ1 > λ2 > 0 and uλi , i = 1, 2 be the solutions of (3.1) with λ = λi, i =
1, 2 respectively. Then

0 6 uλ2 − uλ1 6

(
λ1
λ2

− 1

)(
1+

λ1
λ2

e
λ1
λ2
ū

)
ū. (3.3)

Moreover, there exists a constant λm such that

λm

∫

Ω

euλmdx = 1.

Proof. The left-hand side inequality follows from the standard comparison theorem directly.

We only prove the inequality for the right-hand side. Due to the fact λ1 > λ2 > 0 and uλ1 > 0,

one may check that

ε2∆

(
λ1
λ2
uλ1 − uλ2

)
6 λ2m

(
λ1
λ2
uλ1e

λ1
λ2
uλ1 − uλ2e

uλ2

)
+ λ1

(
λ1
λ2

− 1

)
muλ1e

λ1
λ2
uλ1

6 λ2mF(uλ1 , uλ2)

(
λ1
λ2
uλ1 − uλ2

)
+ λ1

(
λ1
λ2

− 1

)
mūe

λ1
λ2
ū
,

(3.4)

where

F(a, b) :=





aea − beb

a− b
, if a 6= b,

(a+ 1)ea, if a = b.

From the fact

0 < uλ1 6 uλ2 6 ū, (3.5)

we have

1 < F(uλ1 , uλ2) 6 (1+ ū)eū. (3.6)

As a consequence of (3.4) and (3.6), we have

λ1
λ2
uλ1 − uλ2 > −λ1

λ2

(
λ1
λ2

− 1

)
ūe

λ1
λ2
ū
.
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Along with (3.5), we get

uλ2 − uλ1 = uλ2 −
λ1
λ2
uλ1 +

(
λ1
λ2
uλ1 − uλ1

)
6 uλ2 −

λ1
λ2
uλ1 +

(
λ1
λ2

− 1

)
ū

6

(
λ1
λ2

− 1

)(
1+

λ1
λ2

e
λ1
λ2
ū

)
ū.

Thus, we prove the right-hand side of (3.3). It implies that the continuity of uλ with respect to

λ. On the other hand, we have

lim
λ→0+

λ

∫

Ω

euλdx = 0 and lim
λ→∞

λ

∫

Ω

euλdx = ∞.

Then we can �nd λm such that
∫
Ω
λme

uλm dx = 1 and it completes the proof of lemma 3.1. �

Proof of theorem 2.1—uniqueness of (1.4). Suppose the uniqueness is not true, then there are

two distinct solutions v1, v2. We shall prove v1 ≡ v2 by contradiction and divide our argument

into two steps.

Step 1.We prove that either v1 > v2 or v1 6 v2. Without loss of generality, we may assume∫
Ω
ev1dx >

∫
Ω
ev2dx. Under this assumption, we claim v1 > v2. Supposing this is false, then

there exists a point p ∈ Ω, such that

(v1 − v2)|p = min
Ω

(v1 − v2) < 0.

As a consequence, we have

(
v1e

v1
∫
Ω
ev1dx

− v2e
v2

∫
Ω
ev2dx

)∣∣∣∣
p

< 0.

Then
[
ε2∆(v1 − v2)− m

(
v1e

v1
∫
Ω
ev1dx

− v2e
v2

∫
Ω
ev2dx

)]∣∣∣∣
p

> 0.

Contradiction arises. Thus, the claim holds. As a result, we get that for any two solutions v1, v2,
either v1 > v2 or v1 6 v2.

Step 2. Next, we prove that if v1 > v2, then v1 = v2. We set w = v1 − v2, suppose w 6= 0

and

w(p0) = max
Ω

w > 0.

Then

ev1(p0)

ev2(p0)
>

ev1

ev2
in Ω.

It implies that

ev1(p0)

ev2(p0)
>

∫
Ω
ev1dx∫

Ω
ev2dx

,

and
(

v1e
v1

∫
Ω
ev1dx

− v2e
v2

∫
Ω
ev2dx

)∣∣∣∣
p0

> 0.
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Therefore,

ε2∆(v1 − v2)|p0 = m

(
v1e

v1
∫
Ω
ev1dx

− v2e
v2

∫
Ω
ev2dx

)∣∣∣∣
p0

> 0,

which contradicts to the choice of the point p0, thus v1(p0) = v2(p0) and v1 ≡ v2. �

Proof of theorem 2.1—existence and uniqueness of (1.3) with non-degeneracy. Since the

problem (1.3) is equivalent to (1.4) and (1.5), the existence and uniqueness of solutions to

(1.3) follow directly from the results for (1.4). Now it remains to show the solution is non-

degenerate. We denote the solution of (1.3) by (u, v) and consider the linearized problem of

(1.3) at (u, v):





∇ · (∇φ− v∇ψ −∇uφ) = 0, inΩ,

∆ψ − φu− ψv = 0, inΩ,

∂νφ− v∂νψ − ∂νuφ = 0, ψ = 0, on ∂Ω,∫

Ω

φdx = 0.

(3.7)

We shall prove that (3.7) only admits the trivial solution. We notice that the �rst equation in

(3.7) can be written as

∇ ·
(
v∇
(
φ

v
− ψ

))
= 0,

where we used the fact∇u = ∇v
v
. Testing the above equation by φ

v
− ψ, then an integration by

parts togetherwith the boundary condition shows that any solution of (3.7) veri�es the equation

∫

Ω

v

∣∣∣∣∇
(
φ

v
− ψ

)∣∣∣∣
2

dx = 0,

which implies that

φ = (ψ + E)v for some constantE. (3.8)

Since
∫
Ω φdx = 0, we get from (3.8) that if ψ is not a constant, then

max
Ω

ψ + E > 0 and min
Ω
ψ + E < 0. (3.9)

Substituting (3.8) into the second equation of (3.7), we have

{
∆ψ − vψ − uv(ψ + E) = 0 inΩ,

ψ = 0 on ∂Ω.
(3.10)

We claim that equation (3.10) only admits the trivial solution. Suppose that it is false, without

loss of generality, we can assume that ψ(p) = max
Ω

ψ > 0. As a consequence,

∆ψ(p)− vψ(p)− uv(ψ(p)+ E) < 0,

where we have used (3.9), and contradiction arises. Thus ψ ≡ 0, which further implies

that φ ≡ 0 from the second equation of (3.7). This means that any solution of (1.3) is

non-degenerate. �
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4. Proof of theorem 2.2 and corollary 2.3

In order to prove theorem 2.2, we consider the following equation

{
ε2∆V = d2V inΩ,

V = 1 on ∂Ω,
(4.1)

where d is a positive constant independent of ε. SetWε = −ε logV. Then by the arguments in

[10, lemma 2.1], we have





Wε(x) = d dist(x, ∂Ω)+ O(ε) inΩ,

∂Wε

∂ν
= −d + O(ε) on ∂Ω.

and

|V(x)| 6 Ce−d
dist(x,∂Ω)

ε in Ω. (4.2)

As a consequence of (4.2), we have for any compact subset K of Ω, there exists a positive

constant ε0 such that

max
K

|V| 6 C(K)e−
M(K)
ε for 0 < ε < ε0, (4.3)

where C(K) andM(K) are some generic constants depending on K only.

From (4.3), it is easy to see that for any �xed compact subset K of Ω, we could obtain that

V goes to 0 as ε tends to 0. To capture the behavior of V near ∂Ω, we introduce the Fermi

coordinates for any x ∈ Ω
c
δ, that is

X : (y, z) ∈ ∂Ω× R
+ 7−→ x = X(y, z) = y+ zν(y) ∈ Ω

c
δ ,

where ν is the unit normal vector on ∂Ω, and Ωc
δ denotes the following open set

Ω
c
δ = {x ∈ Ω|0 < dist(x, ∂Ω) < δ}. (4.4)

There is a number δ0 > 0 such that for any δ ∈ (0, δ0), the map X is from Ω
c
δ to a subset ofO,

where

O = {(y, z) ∈ ∂Ω× (0, 2δ)}.

It follows that X is actually a diffeomorphism onto its imageN = X(O). We refer the readers

to [5, remark 8.1] for the proof on the existence of δ0. For any �xed z, we set

Γz(y) = {p ∈ Ω|p = y+ zν(y)}.

It is not dif�cult to see that the distance between any point of Γz(y) and ∂Ω is |z|. Under the
Fermi coordinate, we have

∆ = ∂2z − HΓz(y)∂z +∆Γz(y), (4.5)

where HΓz(y) is the mean curvature at the point in Γz(y) and ∆Γz(y) stands for the Bel-

trami–Laplacian on Γz(y). We shall provide the proof of (4.5) in the appendix A, see lemma

6.1.
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By making use of (4.3), we can obtain the following result on the behavior of V near ∂Ω.

Lemma 4.1. Let Ω be a smooth domain in R
N(N > 1) and Vε ∈ C2,α(Ω) ∩ C0(Ω) be the

unique solution of (4.1). There exists a positive constant ε0 such that for any ε ∈ (0, ε0), it
holds that

b1e
−b2 dist(x,∂Ω)

ε 6 Vε(x) 6 b3e
−b4 dist(x,∂Ω)

ε in Ω
c
δ , (4.6)

where δ ∈ (0, min{ 1
2
, δ0}), and b1, b2, b3, b4 are some generic positive constants independent

of ε.

Proof. For conveniencewe set d = 1.When n = 1, without loss of generalitywe can assume

that Ω = [−1, 1] ⊂ R, it is easy to see that the solution admits the following representation

Vε(x) =
1

1+ e−
2
ε

(
e−

(x+1)
ε + e

(x−1)
ε

)
for x ∈ [−1, 1].

Hence, lemma 4.1 immediately follows. Particularly, in this case we can choose

b1 =
1

1+ e−
2
ε

, b2 = 1, b3 =
2

1+ e−
2
ε

, b4 = 1.

Now let us give the proof for n > 2. Without loss of generality, we may assume that Ω is a

simply connected domain for simplicity, the case formultiply-connecteddomain can be proved

similarly. SinceΩ is simply connected,∂Ω is a smooth connectedmanifold of dimension n− 1.

Let Ωc
2δ be de�ned in (4.4). We set uδ by

uδ(x) = (2δ − dist(x, ∂Ω))e−d1
dist(x,∂Ω)

ε

with d1 to be determined later. It is easy to see that

uδ(x) =

{
2δ on ∂Ω,

0 on ∂Ωc
2δ\∂Ω.

(4.7)

A straightforward computation with (4.5) gives

ε2∆uδ − uδ = (ε2∂2z − ε2HΓz(y)∂z + ε2∆Γz(y) − 1)(2δ − z)e−d1
z
ε

= (d21 + εHΓz(y)d1 − 1)uδ + (2εd1 + ε2HΓz(y))e
−d1 zε .

Choosing d1 > 1 and ε suf�ciently small, then we have

ε2∆uδ − uδ > 0 inΩc
2δ.

Taking δ suf�ciently small when necessary, together with (4.7) and the classical comparison

argument, we have

Vε > uδ(x) inΩc
2δ ,

which implies

Vε > δe−d1
dist(x,∂Ω)

ε inΩc
δ. (4.8)
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For the upper bound for Vε in Ω
c
δ , by (4.2), we have

Vε 6 Ce−
dist(x,∂Ω)

ε in Ω
c
δ. (4.9)

From (4.8) and (4.9), we get

δe−d1
dist(x,∂Ω)

ε 6 Vε(x) 6 Ce−
dist(x,∂Ω)

ε in Ω
c
δ.

This is equivalent to (4.6) with

b1 = δ, b2 = d1, b3 = C, b4 = 1.

Thus, we �nish the proof. �

Proof of theorem 2.2. For (1.4), by maximal principle, we have

0 < uε < ū.

Then it is easy to check that

0 <
1∫

Ω
eūdx

6
euε∫

Ω
euεdx

6
eū

|Ω| .

We set

L1 :=

(
1∫

Ω
eūdx

) 1
2

and L2 :=

(
eū

|Ω|

) 1
2

. (4.10)

Let uε,L1 and uε,L2 be the solution of (4.1) with the right-hand side replaced by L21V and L22V

respectively. Then following the comparison argument, we can get

uε,L2 6 uε 6 uε,L1 .

As a consequence of lemma 4.1, we can �nd four constants b5, b6, b7, b8 which are independent

of ε, such that

b5e
−b6 dist(x,∂Ω)

ε 6 uε(x) 6 b7e
−b8 dist(x,∂Ω)

ε in Ω
c
δ. (4.11)

While in Ωδ , by equation (4.3) we can �nd two positive constants C(Ωδ) andM(Ωδ) such that

max
Ωδ

uε(x) 6 C(Ωδ)e
−M(Ωδ )

ε in Ωδ. (4.12)

Then (2.2) follows by (4.11) and (4.12).

In the following, we shall prove (2.3). We �rst prove that

|Ω| <
∫

Ω

euεdx 6 |Ω|+ Cε, (4.13)

for some positive constant C. The left-hand side of (4.13) is obvious since uε > 0 in Ω. For the

right-hand side inequality, by uε < ū in Ω and Taylor expansion, we have

∫

Ω

euεdx =

∫

Ω

(
1+

∞∑

i=1

(uε)
i

i!

)
dx 6

∫

Ω

1dx +

∫

Ω

uε

∞∑

i=0

(ū)i

i!
dx

6

∫

Ω

1dx + eū
∫

Ω

uεdx 6

∫

Ω

1dx + C

∫

Ω

uεdx

(4.14)
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for some positive constant C. For the second term on the right-hand side of (4.14), we have

∫

Ω

uεdx =

∫

Ωc
δ

uεdx +

∫

Ωδ

uεdx 6

∫

Ωc
δ

uεdx + O(ε), (4.15)

where we used (4.12) to control the second term. While for the �rst one, we have

∫

Ωc
δ

uεdx 6 C

∫ δ

0

∫

Γz(y)

e−
z
ε dzdy 6 Cmax

z∈(0,δ)
|Γz(y)|

∫ δ

0

e−
z
ε dz

= Cεmax
z∈(0,δ)

|Γz(y)|
∫ δ

ε

0

e−sds 6 Cεmax
z
|Γz(y)|.

By choosing δ small, we have maxz∈(0,δ)|Γz(y)| = |∂Ω|+ oδ(1), where oδ(1)
δ→0−−−→ 0. Hence,

we have
∫

Ωc
δ

uεdx = O(ε),

which together with (4.15) gives (4.13). Using (4.13), it is not dif�cult to see that

1∫
Ω
euεdx

=
1

|Ω|+
∫
Ω
(euε − 1)dx

=
1

|Ω| − Cuε ,

where

0 < Cuε < C0ε.

for some constant C0. We decompose

uε(x) = Uε(x/ε)+ φε(x),

where Uε is the solution of (2.1) and





ε2∆φε = −mCuεuεeuε +

m

|Ω|
(
euεuε − eUεUε

)
inΩ,

φε = 0 on ∂Ω.
(4.16)

It is easy to see that Uε > 0 in Ω. We write the �rst equation in (4.16) as

ε2∆φε −
m

|Ω|
(
eUε+φε (Uε + φε)− eUεUε

)
= −mCuεuεeuε .

Concerning the above equation, by the fact that the function f(x) = xex is an increasing function

for x > 0 and the right-hand side is negative, we get

φε > 0 in Ω

by maximal principle. Assuming φε(p) = maxΩφε, by mean value theorem, we have

ε2∆φε −
m

|Ω|
(
eUε+θφε(Uε + θφε)+ eUε+θφε

)
φε = −mCuεuεeuε

for some θ ∈ (0, 1). Together with the fact that ε2∆φε(p) < 0, we directly obtain that

φε(p) = O(ε),
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which proves that ‖φε‖L∞(Ω) = O(ε) and it �nishes the proof. �

Proof of corollary 2.3. We shall present the proof for three cases in corollary 2.3 separately.

Case (1): limε→0
ℓε
ε = 0. Let vε(y) = uε(εy), then v

ε(y) satis�es

∆yv
ε(y) = m

vε(y)ev
ε(y)

∫
Ωεev

ε(y)dy
. (4.17)

Recall that, by maximal principle, we have

‖vε(y)‖L∞(Ωε) = ‖uε(x)‖L∞(Ω) 6 ū.

Following the standard elliptic estimate and the fact that the right-hand side of (4.17) is

uniformly bounded, we get

|vε(y)|L∞(Ωε) + |Dyv
ε(y)|L∞(Ωε) 6 C,

where C is a universal constant and independent of ε. It implies that

|Dxuε(x)| 6 Cε−1.

Let x0 be the boundary point such that

|x0 − xin| = dist(xin, ∂Ω).

We get that |x0 − xin| = o(ε) from limε→0
lε
ε
= 0, then

|uε(x0)− uε(xin)| 6 C|Dxuε‖xin − x0| 6 Cε−1|xin − x0| = oε(1),

which implies that limε→0uε(xin) = ū. This proves the conclusion of case (1) in corollary

2.3.

Case (2): limε→0
ℓε
ε
= L. In this case, we �rst show that limε→0uε(xin) > 0. Indeed, by (4.11)

and lim
ε→0

lε/l = L, we have

lim
ε→0

uε(xin) > b5e
−b6L > 0.

To show limε→0uε(xin) < ū, we claim that

uε(x) 6 ūe−b9
dist(x,∂Ω)

ε in Ω
c
δ (4.18)

for some suitable positive constant b9, where Ω
c
δ is de�ned in (4.4). Let L1 be de�ned in (4.10)

and uε,b be the solution of the following equation

{
ε2∆V = L21V inΩ,

V = ū on ∂Ω.

By maximum principle, we get that

uε 6 uε,b.

Same as (4.2), we have

|uε,b| 6 Ce−L1
dist(x,∂Ω)

ε in Ω.
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Now we prove that

uε,b(x) 6 ūe−b10
dist(x,∂Ω)

ε in Ω
c
δ

for some suitable positive constant b10. We de�ne vδ by

vδ = ūe−τ
dist(x,∂Ω)

ε

with τ to be determined. On ∂Ωc
δ\∂Ω, we choose τ < L1 small enough such that

ūe−τ
δ
ε > Ce−L1

δ
ε .

Therefore

uε,b 6 vδ on ∂Ωc
δ. (4.19)

By a direct computation, we have

ε2∆vδ − L21vδ = −(L21 − τ 2 − ετHΓz(y))vδ.

For suf�ciently small ε, we have

ε2∆vδ − L21vδ 6 0.

With (4.19) and the standard comparison argument, we get

uε 6 uε,b 6 vδ in Ω
c
δ.

Choosing b9 = b10 = τ , we derive the claim (4.18). As a result, we have

lim
ε→0

uε(xin) 6 ūe−b9L < ū.

Hence, we get the second conclusion.

Case (3): limε→0
ℓε
ε
= +∞. The conclusion for this case is a direct consequence of (4.11).

Thus, we complete the proof. �

5. Proof of theorem 2.4

In this section we consider the case Ω = BR(0). In this case, the problem (1.4) is reduced to

(2.5)–(2.7) (see section 2).

5.1. Refined estimates of ρε

We remark that (2.5)–(2.7) does not have a variational structure, and the nonlocal coef�cient

ρε depends on the unknown solution ψε. Hence, the variational approach and the standard

method of matched asymptotic expansions [8, 14] for singularly perturbed elliptic equations

cannot be applied directly to our problem. On the other hand, as ε goes to zero, ρε tends to a

positive constant m
ωN

. This enables us get the precise leading-order term ofψε near the boundary
which encapsulate many useful properties of ψε and hence motivates us to establish the precise

leading order term of ρε − m
ωN

for small ε > 0. Based on a technical analysis developed in [16,

theorem 4.1(III)] and [17, lemma 4.1] and Pohožaev-type identity for (2.5)–(2.7) (see lemma
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5.2), we gradually derive the zeroth and �rst order terms of ρε (see proposition 5.3) in the

following.

By the arguments in section 4, we obtain that there exist positive constants C1 and M1

independent of ε, such that

0 < uε(x) 6 C1e
−M1

ε dist(x,∂Ω) for x ∈ Ω, (5.1)

which of course implies

0 < ψε(r) 6 C1e
−M1

ε (R−r), r ∈ [0,R]. (5.2)

Then by the dominant convergence theorem, we have from (2.6) that

lim
ε→0

ρε =
m

ωN
=

m

α(N)RN
:= ρ0. (5.3)

With simple calculations, we �nd the equation (2.5) can be transformed into an integro-ODEs

ε2

2
ψ′ 2
ε (r)+ ε2

∫ r

R
2

N − 1

s
ψ′ 2
ε (s) ds = ρεF(ψε(r))+ Kε, r ∈ [0,R], (5.4)

where Kε is a constant depending on ε. The equation (5.4) plays a crucial role in studying the

asymptotic behavior of ψε near the boundary. To obtain the re�ned asymptotics of the nonlocal

coef�cient ρε, we �rst derive some asymptotic estimates on ψε(r).

Lemma 5.1. There exist positive constants C2 and M2 independent of ε such that, as 0 <
ε≪ 1,

|Kε| 6 C2e
−M2

ε R, (5.5)

0 <
( r
R

)N−1

ψ′
ε(r) 6

C2

ε
e−

M2
ε (R−r), r ∈ (0,R], (5.6)

where Kε is de�ned in (5.4). Moreover, there holds

lim
ε→0

sup
r∈[0,R]

∣∣∣∣∣
√
εψ′

ε(r)−
√

2ρ0
ε
F(ψε(r))

∣∣∣∣∣ <∞. (5.7)

Proof. Multiplying (2.5) by rN−1, we obtain ε2(rN−1ψε
′ (r))′ = ρεr

N−1f(ψε) > 0. Hence,

rN−1ψε
′ (r) is strictly increasing with respect to r due to the fact 0 < ψε(r) 6 ū. Since

ψε
′ (0) = 0, we immediately obtain ψε

′ (r) > 0 for r ∈ (0,R], which gives the left-hand side of

(5.6).

By (2.5) and (5.3), one may check that, as 0 < ε≪ 1,

ε2(rN−1ψ′
ε)

′′
= ρε

(
(N − 1)rN−2 f (ψε)+ rN−1 f ′(ψε)ψ

′
ε

)
> M̃2r

N−1ψ′
ε, r ∈ [0,R],

(5.8)

where M̃2 is a positive constant close to m. Here we have used the fact that ψε
′ > 0, f(ψε) > 0

and f ′(ψε) = (ψε + 1)eψε > 1 to obtain the last inequality of (5.8). Note also that ψε
′ (R) >

ψε
′ (0) = 0. Thus the standard comparison theorem applied to (5.8) shows

rN−1ψ′
ε(r) 6 RN−1ψ′

ε(R)e
−
√

M̃2
ε (R−r), r ∈ [0,R]. (5.9)
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Let us now estimate ψε
′ (R). By (5.4) and (5.9), we have

0 6 ρεF

(
ψε

(
R

2

))
+ Kε =

ε2

2
ψ′ 2
ε

(
R

2

)
6 ε222N−3ψ′ 2

ε (R)e−
√

M̃2
ε R, (5.10)

and for r ∈ [R
2
,R],

ε2
∫ r

R
2

N − 1

s
ψ′ 2
ε (s) 6

22N−1ε2

R
(N − 1)ψ′ 2

ε (R)

∫ R

R
2

e−
2

√
M̃2
ε (R−s) 6 C3ε

3ψ′ 2
ε (R), (5.11)

where C3 is a positive constant independent of ε. On the other hand, by (2.4) and (5.2), we �nd

0 6 F

(
ψε

(
R

2

))
6

(
max
r∈[0,R]

f (ψε(r))

)
ψε

(
R

2

)
6 C4e

−M1
2ε R, (5.12)

where C4 = ūeūC1. Hence, by (5.3), (5.10) and (5.12) we obtain

|Kε| 6 C5

(
e−

M1
2ε R + ε2ψ′ 2

ε (R)e−
√

M̃2
ε R

)
, (5.13)

where C5 is a positive constant independent of ε. As a consequence, by (5.4) and

(5.13), for suf�ciently small ε > 0, we arrive at ε2

2
ψ′ 2
ε (R) 6 ρεF(ψε(R))+ Kε 6 2ρ0F(ū)+

C5ε
2ψ′ 2

ε (R)e−
√

M̃2
ε R. Since e−

√
M̃2
ε R ≪ 1, we get

0 < ψ′
ε(R) 6

2

ε

√
ρ0F(ū) as 0 < ε≪ 1. (5.14)

Hence, (5.5) is obtained by (5.13) and (5.14). The right-hand inequality of (5.6) thus fol-

lows from (5.9) and (5.14), where we set C2 = max{C5, 2
√
ρ0F(ū), 4C5ρ0F(ū)} and M2 =

min{M1
2
,
√
M̃2}.

It remains to prove (5.7). Firstly, we give an estimate of ρε − ρ0 with respect to small ε > 0.

Since 0 < ψε 6 ū, together with (5.2) gives

∣∣∣∣
N

RN

∫ R

0

eψε(s)sN−1ds− 1

∣∣∣∣ =
∣∣∣∣
N

RN

∫ R

0

(
eψε(s) − 1

)
sN−1ds

∣∣∣∣

6
N(eū − 1)

Rū

∫ R

0

ψε(s) ds 6
N(eū − 1)C1

RūM1

ε.

Along with (2.6) and (5.3), one may check that

|ρε − ρ0| = ρ0

∣∣∣∣∣

(
N

RN

∫ R

0

eψε(s)sN−1ds

)−1

− 1

∣∣∣∣∣ 6
2ρ0N(e

ū − 1)C1

RūM1

ε, as 0 < ε≪ 1. (5.15)

Combining (5.15) with (5.4), (5.11) and (5.14), we arrive at, for r ∈ [R
2
,R],

∣∣∣∣εψ
′ 2
ε (r)− 2ρ0F(ψε(r))

ε

∣∣∣∣ 6 2ε

∫ r

R
2

N − 1

s
ψ′ 2
ε (s) ds+

2

ε
|ρε − ρ0|+

2

ε
|Kε| 6 C6,

(5.16)
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where C6 is a positive constant independent of ε. In particular, due to ψε
′ > 0 and F(ψε) > 0,

(5.16) implies

∣∣∣∣∣
√
εψ′

ε(r)−
√

2ρ0F(ψε(r))

ε

∣∣∣∣∣ 6
√
C6, for r ∈

[
R

2
,R

]
. (5.17)

On the other hand, by (5.2) and (5.6), it is easy to see that

√
εψ′

ε(r)−
√

2ρ0F(ψε(r))

ε

ε→0−−−→0 uniformly in

[
0,
R

2

]
. (5.18)

Therefore, (5.7) follows from (5.17) and (5.18) and the proof of lemma 5.1 is complete. �

Setting r = R in (5.7) and using ψε(R) = ū, we obtain

lim
ε→0

εψ′
ε(R) =

√
2ρ0F(ū) (5.19)

which gives the precise leading order term of ψε(R) as 0 < ε≪ 1. Note also from (5.15) that

ε−1(ρε − ρ0) is bounded for 0 < ε≪ 1. To further exploit ε−1(ρε − ρ0) so that we can get

its precise leading order term, let us introduce the following approximation which essentially

comes from the Pohožaev-type identity applied to (2.5)–(2.7). Moreover, this result gives a

relation between the second order term of ρε and asymptotics of ψε.

Lemma 5.2. As 0 < ε≪ 1, there holds

ρε − ρ0
ε

= −N

R

√
2ρ0F(ū)+ ε

∫ R

R
2

g(r)ψ′ 2
ε (r) dr + oε(1), (5.20)

where

g(r) =
N − 1

r
− N − 2

2RN
rN−1. (5.21)

Proof. Multiplying (5.4) by rN−1 and integrating the expression over the interval [0,R], we

then have

ε2

2

∫ R

0

ψ′ 2
ε (r)rN−1dr + ε2

∫ R

0

rN−1

∫ r

R
2

N − 1

s
ψ′ 2
ε (s) dsdr

︸ ︷︷ ︸
:= PI

= ρε

∫ R

0

F(ψε(r))r
N−1dr +

RN

N
Kε.

(5.22)

Using integration by parts,

∫ R

0

rN−1

∫ r

R
2

N − 1

s
ψ′ 2
ε (s) dsdr =

(N − 1)RN

N

∫ R

R
2

1

r
ψ′ 2
ε (r) dr − N − 1

N

∫ R

0

rN−1ψ′ 2
ε (r) dr,

one �nds that

∣∣∣∣∣PI − ε2
∫ R

R
2

1

r

(
N − 1

N
RN − N − 2

2N
rN
)
ψ′ 2
ε (r) dr

∣∣∣∣∣
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= ε2
∫ R

2

0

N − 2

2N
rN−1ψ′ 2

ε (r) dr 6
N − 2

2N
RN−1C2εe

−M2R

2ε

∫ R
2

0

ψ′
ε(r) dr

(5.23)

6 C7εe
−M2R

2ε .

Here we have used (5.6) to obtain rN−1ψ′ 2
ε (r) 6 C2

ε
RN−1e−

M2R

2ε ψ′
ε(r) for r ∈ [0, R

2
], which is

used to deal with the inequality in the second line of (5.23).

Next, we deal with the right-hand side of (5.22). By (2.4)–(2.6) and (5.19), one obtains

ρε

∫ R

0

F(ψε(r))r
N−1dr = ρε

∫ R

0

(
1− eψε + f (ψε(r))

)
rN−1dr

=
RN

N
(ρε − ρ0)+ ε2RN−1ψ′

ε(R) (5.24)

=
RN

N
(ρε − ρ0)+ ε

(
RN−1

√
2ρ0F(ū)+ oε(1)

)
.

Here we have used identities ρε f (ψε(r))r
N−1 = ε2

(
rN−1ψ′

ε

)′
and ρε

∫ R
0
eψεrN−1dr = m

Nα(N) =

RN

N
ρ0 to get the second line of (5.24). As a consequence, by (5.22) and (5.24), we have

PI = ε
(
RN−1

√
2ρ0F(ū)+ oε(1)

)
+
RN

N
(ρε − ρ0 + Kε) . (5.25)

By (5.13), (5.23) and (5.25), after making appropriate manipulations it yields

∣∣∣∣∣
ρε − ρ0
ε

+
N

R

√
2ρ0F(ū)− ε

∫ R

R
2

(
N − 1

r
− N − 2

2RN
rN−1

)
ψ′ 2
ε (r) dr

∣∣∣∣∣

6
|Kε|
ε

+
C7N

RN
e−

M2R

2ε + oε(1)→ 0,

(5.26)

as ε→ 0. Therefore, (5.26) implies (5.20) and the proof of lemma 5.2 is completed. �

We are now in a position to establish the precise leading order term of ρε − ρ0 for small

ε > 0.

Proposition 5.3 (Re�ned estimate of ρε). As 0 < ε≪ 1, the asymptotic expansion of ρε
with precise �rst two order terms involving the effect of curvature R−1 is described as follows:

ρε = ρ0 + ε
N

R

√
ρ0 (J(ū)+ oε(1)) as 0 < ε≪ 1, (5.27)

where J(ū) = −√
2F(ū)+

∫ ū
0

√
F(t)
2

dt de�ned in (2.9) depends mainly on the boundary value

ū and is independent of R. Moreover, J(ū) < 0 is a strictly decreasing function of ū ∈ (0,∞).

Proof. By lemma 5.2, it suf�ces to obtain the precise leading order term of

PII := ε

∫ R

R
2

(
N − 1

r
− N − 2

2RN
rN−1

)
ψ′ 2
ε (r) dr. (5.28)
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Thanks to (5.6), we shall consider the decomposition of (5.28) as

PII = ε

{∫ R−√
ε

R
2

+

∫ R

R−√
ε

}(
N − 1

r
− N − 2

2RN
rN−1

)
ψ′ 2
ε (r) dr. (5.29)

In particular, we have

ε

∣∣∣∣∣

∫ R−√
ε

R
2

(
N − 1

r
− N − 2

2RN
rN−1

)
ψ′ 2
ε (r) dr

∣∣∣∣∣

6
2ε(N − 1)

R

∫ R−√
ε

R
2

ψ′ 2
ε (r) dr 6

22(N−1)(N − 1)C2
2

M2R
e
− 2M2√

ε . (5.30)

To deal with the second integral of PII, let us set

ξε(r) =

(
N − 1

r
− N − 2

2RN
rN−1

)
− N

2R
, r ∈ [R−√

ε,R].

It is easy to get sup
r∈[R−√

ε,R]

|ξε(r)| 6 C8

√
ε. This along with (5.6) immediately gives

ε

∣∣∣∣
∫ R

R−√
ε

ξε(r)ψ
′ 2
ε (r) dr

∣∣∣∣ 6 C9

√
ε. (5.31)

Here C8 and C9 are positive constants independent of ε.
On the other hand, by (5.7) we have

εψ′
ε(r) =

√
2ρ0F(ψε(r))+

√
εγε(r) with lim

ε→0
sup
[0,R]

|γε(r)| <∞. (5.32)

Using (5.31) and (5.32), one may check that

ε

∫ R

R−√
ε

(
N − 1

r
− N − 2

2RN
rN−1

)
ψ′ 2
ε (r) dr

= ε
N

2R

∫ R

R−√
ε

ψ′ 2
ε (r) dr + ε

∫ R

R−√
ε

ξε(r)ψ
′ 2
ε (r) dr

=
N

2R

∫ R

R−√
ε

(√
2ρ0F(ψε(r))+

√
εγε(r)

)
ψ′
ε(r) dr + ε

∫ R

R−√
ε

ξε(r)ψ
′ 2
ε (r) dr (5.33)

=
N

2R

∫ ū

ψε(R−
√
ε)

√
2ρ0F(t) dt + oε(1)

=
N

2R

∫ ū

0

√
2ρ0F(t) dt + oε(1).

Here we stress that in the last two lines of (5.33), we have veri�ed

∣∣∣∣
∫ R

R−√
ε

√
εγε(r)ψ

′
ε(r) dr

∣∣∣∣ 6
√
ε sup
[R−√

ε,R]

|γε(r)|(ψε(R)− ψε(R−√
ε))→ 0
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and

∫ ψε(R−
√
ε)

0

√
2ρ0F(t) dt 6

√
2ρ0F(ū)ψε(R−√

ε)→ 0

as ε→ 0 (by (5.2)). As a consequence, by (5.29), (5.30) and (5.33), we obtain the precise

leading order term of PII,

PII =
N

2R

∫ ū

0

√
2ρ0F(t) dt + oε(1). (5.34)

Finally, by (5.20) and (5.21) and (5.34), we get

ρε − ρ0
ε

= −N

R

√
2ρ0F(ū)+ PII + oε(1) =

N

R

√
ρ0




∫ ū

0

√
F(t)

2
dt −

√
2F(ū)

︸ ︷︷ ︸
:= J(ū)

+ oε(1)


 .

This along with (5.3) gives (5.27).

It remains to prove

J(ū) < 0 and
dJ

dū
(ū) < 0 for ū > 0. (5.35)

Indeed, by a simple calculation we get J(0) = 0 and

dJ

dū
(ū) =

F(ū)− f (ū)√
2F(ū)

=
1− eū√
2F(ū)

< 0,

which implies (5.35). Therefore, we complete the proof of proposition 5.3. �

Remark 2. Proposition 5.3 also shows the effect of boundary value ū on ρε. Precisely
speaking, let R > 0 be �xed and ū ∈ [l1, l2], where 0 < l1 < l2 <∞. Regarding ρε as a func-
tion of ū, we �nd that as 0 < ε≪ R

|J(l1)|
√
ρ0, ρε is strictly decreasing to ū ∈ [l1, l2], where

J(l1) := −√
2F(l1)+

∫ l1
0

√
F(t)
2

dt.

5.2. Proof of theorem 2.4

We �rst establish the following result.

Lemma 5.4. Let J(ū) be as de�ned in (2.9). Then for each j > 0 independent of ε, we have

lim
ε→0

sup
rε∈[R− jε,R]

∣∣∣∣ψ
′
ε(rε)−

{√
2ρ0F(ψε(rε))

ε
(5.36)

+
1

R

(
NJ(ū)

√
F(ψε(rε))

2
− (N − 1)

∫ ψε(rε)

0

√
F(t)

F(ψε(rε))
dt

)}∣∣∣∣∣ = 0.

Proof. By corollary 2.3 (ii), we have

lim
ε→0

inf
rε∈[R− jε,R]

ψε(rε) > 0. (5.37)
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Setting r = rε in (5.4), using (5.27) and following the similar argument as in (5.29)–(5.33),

one may check that

ε2ψ′ 2
ε (rε) = 2

(
ρεF(ψε(rε))− ε2

∫ rε

R
2

N − 1

s
ψ′ 2
ε (s) ds+ Kε

)

= 2

(
m+ ε

√
ρ0

(
NJ(ū)

R
+ oε(1)

))
F(ψε(rε))

− 2ε

(
N − 1

R
+ oε(1)

)(∫ ψε(rε)

ψε(
R
2 )

√
2ρ0F(t)dt + oε(1)

)
+ 2Kε (5.38)

= 2ρ0F(ψε(rε))+
2ε
√
ρ0

R

(
NJ(ū)F(ψε(rε))− (N − 1)

∫ ψε(rε)

0

√
2F(t) dt + oε(1)

)

= 2ρ0F(ψε(rε))

{
1+

ε

R
√
ρ0

(
NJ(ū)− (N − 1)

∫ ψε(rε)

0

√
2F(t)

F(ψε(rε))
dt + oε(1)

)}
.

Due to (5.32) and (5.37), the asymptotic expansions in (5.38) is uniformly in [R− jε,R] as
0 < ε≪ 1. Since ψε

′ > 0, by (5.37) and (5.38) we have

ψ′
ε(rε) =

√
2ρ0F(ψε(rε))

ε

{
1+

ε

2R
√
ρ0

(
NJ(ū)− (N − 1)

∫ ψε(rε)

0

√
2F(t)

F(ψε(rε))
dt + oε(1)

)}

(5.39)

uniformly in [R− jε,R] as 0 < ε≪ 1. This gives (5.36) and completes the proof of lemma

5.4. �

By (5.17), (5.37) and (5.39), we have

∣∣∣∣
ψ′
ε(r)√

2ρ0F(ψε(r))
− 1

ε

∣∣∣∣ 6 C10( j,R), for r ∈ [R− jε,R], (5.40)

where C10(j,R) (depending mainly on j and R) is a positive constant independent of ε. In par-

ticular, for j > d0, let us integrate (5.40) over [rε(d0),R] with rε(d0) = R− d0ε, which results
in

∣∣∣∣
∫ ū

ψε(rε(d0))

dt√
2ρ0F(t)

− d0

∣∣∣∣ 6 C10( j,R)d0ε. (5.41)

Moreover, let Φ denote the unique positive solution of the equation

{
−Φ

′(t) =
√
2ρ0F(t), t > 0,

Φ(0) = ū, Φ(∞) = 0.
(5.42)

Then for d0 > 0, (5.42) directly implies

d0 =

∫ ū

Φ(d0)

dt√
2ρ0F(Φ(t))

. (5.43)
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This along with (5.41) immediately yields
∫ Φ(d0)

ψε(rε(d0))
dt√

2ρ0F(t)

ε→0−−−→0. Moreover, ψε(rε(d0))

ε→0−−−→ Φ(d0) since
1√

2ρ0F(t)
has a positive lower bound in t ∈ [Φ(d0), ū]. As a consequence,

ψε(rε(d0)) = Φ(d0)+ Lε(d0), lim
ε→0

Lε(d0) = 0. (5.44)

On the other hand, by (2.10), (5.3) and (5.42) and the uniqueness of Ψ and Φ, we have

Φ(t) = Ψ(
√

ρ0
m
t) with ρ0

m
= 1

α(N)RN
. Since Φ depends on R, for the convenience of our next

arguments, we shall denote

Φ(t) :=Ψ
R(t) = Ψ(

t√
α(N)RN/2

). (5.45)

Then we are able to claim the following result.

Lemma 5.5. As 0 < ε≪ 1,

Lε(d0)

ε
= −

√
2F(ΨR(d0))

2R

(
d0NJ(ū)−

N − 1√
ρ0

J∗(ū,ΨR(d0))+ oε(1)

)
.

(5.46)

Proof. We shall follow the similar argument as in the proof of [16, theorem 4.1(III)] and [17,

lemma 4.1]. Let j > d0 in (5.37). By (5.39) we have, as 0 < ε≪ 1,

ψ′
ε(rε)√

2ρ0F(ψε(rε))
=

1

ε
+

1

2R
√
ρ0

(
NJ(ū)− (N − 1)

∫ ψε(rε)

0

√
2F(t)

F(ψε(rε))
dt

)
+ oε(1)

(5.47)

uniformly in [R− jε,R]. Therefore, by integrating (5.47) over [rε(d0),R](⊂ [R− jε,R]), one
arrives at

∫ ū

ψε(rε(d0))

dt√
2ρ0F(t)

(5.48)

= d0 +
1

2R
√
ρ0

(
d0NJ(ū)ε− (N − 1)

∫ R

R−d0ε

∫ ψε(s)

0

√
2F(t)

F(ψε(s))
dtds

)
+ εoε(1).

With a simple calculation, we obtain

∫ ū

ψε(rε(d0))

dt√
2ρ0F(t)

=

{∫ ū

ΨR(d0)

+

∫ ΨR(d0)

ΨR(d0)+Lε(d0)

}
dt√

2ρ0F(t)
(5.49)

= d0 −
Lε(d0)√

2ρ0F(Ψ
R(d0))

(1+ oε(1)).

Here we have used (5.43)–(5.45) to get the �rst and the second terms in the last line.

On the other hand, by using (5.40) with j > d0, we can deal with the last integral of the

right-hand side of (5.48) as follows:
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∫ R

R−d0ε

∫ ψε(s)

0

√
2F(t)

F(ψε(s))
dt ds

=

∫ R

R−d0ε

(
εψ′

ε(s)√
2ρ0F(ψε(s))

+ oε(1)

)∫ ψε(s)

0

√
2F(t)

F(ψε(s))
dt ds (5.50)

=

∫ ū

ψε(R−d0ε)

ε√
2ρ0F(̃s)

∫ s̃

0

√
2F(t)

F(̃s)
dt d̃s+ εoε(1)

=

∫ ū

ΨR(d0)

ε√
2ρ0F(̃s)

∫ s̃

0

√
2F(t)

F(̃s)
dt d̃s+ εoε(1).

Here we have used (5.37) and (5.44) to verify that
∫ ψε(s)
0

√
2F(t)

F(ψε(s))
dt 6

√
2ψε(s)√
F(ψε(s))

is uniformly

bounded for s ∈ [R− d0ε,R], and

∫ ΨR(d0)+Lε(d0)

ΨR(d0)

ε√
2ρ0F(̃s)

∫ s̃

0

√
2F(t)

F(̃s)
dt d̃s = εoε(1).

Combining (5.48) and (5.49) with (5.50) yields

Lε(d0)√
2ρ0F(Ψ

R(d0))
= − ε

2R
√
ρ0

(
d0NJ(ū)−

N − 1√
ρ0

∫ ū

ΨR(d0)

1

F(̃s)

∫ s̃

0

√
F(t)

F(̃s)
dtd̃s+ oε(1)

)
.

This together with (2.12) implies (5.46). Therefore, the proof of lemma 5.5 is completed. �

Now we present an important result.

Proposition 5.6 (Asymptotics of ψε near boundary). Let m and ū be positive constants

independent of ε, and let rε := rε(d0) = R− d0ε ∈ (0,R] be a point with the distance d0ε to
the boundary, where d0 > 0 is independent of ε. Then (2.11) holds, and we have

ψ′
ε(rε(d0)) =

√
m

ωN

(√
2F(ΨR(d0))

ε
− d0N

2R
f (ΨR(d0))J(ū)

)
(5.51)

+
1

R



N

√
F(ΨR(d0))

2
J(ū)+ (N − 1)J∗∗(ū,ΨR(d0))



+ oε(1),

where J(ū) and J∗(ū,ΨR(d0)) are de�ned in (2.9) and (2.12), respectively, and

J∗∗(ū,ΨR(d0)) =
1

2
f (ΨR(d0))J

∗(ū,ΨR(d0))−
∫ ΨR(d0)

0

√
F(t)

F(ΨR(d0))
dt.

(5.52)

Proof. The combination of (5.44) and (5.46) yields (2.11). Next we want to prove (5.51).

Firstly, by (5.36) and (5.44) we get
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ψ′
ε(rε(d0)) =

1

ε

√
2ρ0F(Ψ

R(d0)+ Lε(d0)) (5.53)

+
1

R




√
F(ΨR(d0))

2
NJ(ū)− (N − 1)

∫ ΨR(d0)

0

√
F(t)

F(ΨR(d0))
dt + oε(1)



 .

Here we have used the approximation

F(ΨR(d0)+ Lε(d0)) = F(ΨR(d0))+ f (ΨR(d0))Lε(d0)(1+ oε(1)) = F(ΨR(d0))+ oε(1)

(5.54)

(by (5.44)) to obtain the second line of (5.53).

Furthermore, to establish a re�ned asymptotics of ψε
′ (rε(d0)) from (5.53), obtaining the

precise �rst two order terms of ε−1
√
2ρ0F(Ψ

R(d0)+ Lε(d0)) is required since its second order

term may be combined with the last term of (5.53). By (5.46) and (5.54), one may use the

approximation
√
1+ η ∼ 1+ η

2
(as |η| ≪ 1) to deal with this term as follows:

1

ε

√
2ρ0F(Ψ

R(d0)+ Lε(d0))

=
1

ε

√
2ρ0[F(Ψ

R(d0))+ f (ΨR(d0))Lε(d0)(1+ oε(1))] (5.55)

=

√
2ρ0F(Ψ

R(d0))

ε

(
1+

f (ΨR(d0))

2F(ΨR(d0))
Lε(d0)(1+ oε(1))

)

=

√
2ρ0F(Ψ

R(d0))

ε
− f (ΨR(d0))

2R

(√
ρ0d0NJ(ū)− (N − 1)J∗(ū,ΨR(d0))+ oε(1)

)
,

where J ∗(ū,ΨR(d0)) is de�ned in (2.12). Consequently, by (5.53) and (5.55), one may check

that

ψ′
ε(rε(d0)) =

√
2ρ0F(Ψ

R(d0))

ε
− f (ΨR(d0))

2R

(√
ρ0d0NJ(ū)− (N − 1)J∗(ū,ΨR(d0))

)

+
1

R




√
F(ΨR(d0))

2
NJ(ū)− (N − 1)

∫ ΨR(d0)

0

√
F(t)

F(ΨR(d0))
dt



+ oε(1)

=
√
ρ0

(√
2F(ΨR(d0))

ε
− f (ΨR(d0))

2R
d0NJ(ū)

)
+

1

R






√
F(ΨR(d0))

2
NJ(ū)

+ (N − 1)



f (ΨR(d0))

2
J∗(ū,ΨR(d0))−

∫ ΨR(d0)

0

√
F(t)

F(ΨR(d0))
dt

︸ ︷︷ ︸
:= J∗∗(ū,ΨR(d0)) (de�ned in (5.52))








+ oε(1).

This along with (5.3) gives (5.51). Thus the proof of proposition 5.6 is complete. �
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Since c ∈ (0, ū) is independent of ε, by (2.8), (5.42), (5.43) and (5.45) we know that

R− rε(R, c)

ε
= (ΨR)−1(c)+ d1,ε(c)

=
√
α(N)RN/2Ψ−1(c)+ d1,ε(c) with lim

ε→0
d1,ε(c) = 0.

Here we have used (5.45) to verify (ΨR)−1(c) =
√
α(N)RN/2Ψ−1(c). Furthermore, following

the same argument as in lemma 5.5, we can obtain the asymptotics of d1,ε(c) as follows:

Lemma 5.7. For R0 > 0, we have

lim
ε→0

sup
R∈(0,R0]

∣∣∣∣
d1,ε(c)

ε
− α(N)RN−1

2

(
− N√

m
Ψ

−1(c)J(ū)+
N − 1

m

×
∫ ū

c

(
1

F(s)

∫ s

0

√
F(t)

F(s)
dt

)
ds

)∣∣∣∣∣ = 0. (5.56)

Proof. For the simplicity of notations, in this proof we shall denote the inverse function of

Ψ
R (see (5.45)) by Φ−1.

Firstly, we let R > 0 be �xed. As 0 < ε≪ 1, we can set j = 2Φ−1(c) in (5.40) and integrate

(5.40) over the interval [R− ε
(
Φ

−1(c)+ d1,ε(c)
)
, R− εΦ−1(c)]. As a consequence,

d1,ε(c) = (1+ oε(1))

∫ R−εΦ−1(c)

R−ε(Φ−1(c)+d1,ε(c))

ψ′
ε(r)√

2ρ0F(ψε(r))

= (1+ oε(1))

∫ ψε(R−εΦ−1(c))

ψε(R−ε(Φ−1(c)+d1,ε(c)))

dt√
2ρ0F(t)

=− ε

R

√
F(c)

2

(
Φ

−1(c)NJ(ū)− N − 1√
ρ0

∫ ū

c

(
1

F(s)

∫ s

0

√
F(t)

F(s)
dt

)
ds+ oε(1)

)
(5.57)

×
(

1√
2ρ0F(c)

+ oε(1)

)
.

=
ε

2R

(
−Φ

−1(c)N√
ρ0

J(ū)+
N − 1

ρ0

∫ ū

c

(
1

F(s)

∫ s

0

√
F(t)

F(s)
dt

)
ds+ oε(1)

)

=
α(N)RN−1ε

2

(
− N√

m
Ψ

−1(c)J(ū)+
N − 1

m

∫ ū

c

(
1

F(s)

∫ s

0

√
F(t)

F(s)
dt

)
ds+ oε(1)

)
.

Here we have used ψε(R− ε
(
Φ

−1(c)+ d1,ε(c)
)
) = c and, by (2.11),

ψε(R− εΦ−1(c)) = c − ε

R

√

F(c)

2

(

Φ
−1(c)NJ(ū)− N − 1√

ρ0

∫ ū

c

(

1

F(s)

∫ s

0

√

F(t)

F(s)
dt

)

ds+ oε(1)

)

to obtain the third equality of (5.57), and the last equality of (5.57) is veri�ed due to (5.3) and

Φ
−1(c) = (ΨR)−1(c) =

√
α(N)RN/2Ψ−1(c) (cf. (5.45)).

We shall stress that (5.57) is obtained from (5.40), in which C10(j,R) with j = 2Φ−1(c) =

2
√
α(N)RN/2Ψ−1(c) depends on RN/2. Consequently, as ε→ 0, the convergence of (5.57) is
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uniformly in (0,R0] for any R0 > 0. Therefore, we obtain (5.56) and complete the proof of

lemma 5.7. �

Now we are in a position to prove theorem 2.4.

Proof of theorem 2.4. Theorem 2.4 (i) immediately follows from proposition 5.6. Next, let

d0 = 0 in (5.51), we get (2.13) and complete the proof of theorem 2.4 (ii).

It remains to prove theorem 2.4 (iii). First, we obtain (2.14) following from (5.3) and (5.56).

Since J(ū) < 0 and Ψ−1(c) > 0 are independent of ε and R, (2.14) implies

R− rε(R, c) = Ĉ1εR
N/2

+ Ĉ2ε
2(RN−1

+ oε(R)), (5.58)

where Ĉ1 =
√
α(N)Ψ−1(c) and

Ĉ2 =
α(N)

2

(
− N√

m
Ψ

−1(c)J(ū)+
N − 1

m

∫ ū

c

(
1

F(s)

∫ s

0

√
F(t)

F(s)
dt

)
ds

)

are positive constants independent of ε and R, and by lemma 5.7, oε(R) is continuously

differentiable with respect to R and satis�es

lim
ε→0

sup
R∈(0,R0]

|oε(R)| = 0

for any R0 > 0. Since both Ĉ1 and Ĉ2 are positive, we can choose ε suf�ciently small such that

the derivative of the right-hand side of (5.58) with respect to R is positive. As a consequence,

R− rε(R, c) is strictly increasing with respect to R ∈ (0,R0] for such ε. The proof of theorem
2.4 is thus completed. �
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Appendix A

In this appendix, we will follow the arguments in [23, lemma 10.5] to give the proof of (4.5).

Lemma 6.1. The Euclidean Laplacian ∆ can be computed by a formula in terms of the

coordinate (y, z) ∈ O as

∆x = ∂2z − HΓz(y)∂z +∆Γz , x = X(y, z), (y, z) ∈ O,

where Γz is the manifold

Γz = {y+ zν(y)|y ∈ ∂Ω} ,

and HΓz(y) is the mean curvature of Γz measured at y+ zν(y).

Proof. For simplicity we only show the above formula when z = 0. Let e1, . . . , en be an

orthonormal frame coordinate on ∂Ω and ν be the normal vector �eld.
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The Laplace–Beltrami operator onO is de�ned by

∆g =

n∑

i=1

(eiei − Deiei)+ νν − Dνν,

where D is the Levi–Civita connection on O. Let D∂Ω denote the Levi–Civita connection on

Ω, by construction, we have

Deiei = D∂Ω
ei
ei + g(Deiei, ν)ν.

Therefore

∆g =

n∑

i=1

(eiei − D∂Ω
ei
ei)+ g(ei,Deiν)ν + νν − Dνν.

By de�nition νν = ∂2z and ν = ∂z. Furthermore Dνν = 0 and

n∑

i=1

g(ei,Deiν) = −H∂Ω(y),

where H∂Ω is the mean curvature of ∂Ω. Hence we �nish the proof. �
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