Structured Tensors

 

A.   Nonnegative Tensors

 

[1]      M. Ng, L. Qi and G. Zhou, "Finding the largest eigenvalue of a non-negative tensor'', SIAM Journal on Matrix Analysis and Applications 31 (2009) 1090-1099.

 

[2]      L. Zhang and L. Qi, "Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor'', Numerical Linear Algebra with Applications 19 (2012) 830-841.

 

[3]       L. Zhang, L. Qi and Y. Xu, "Linear convergence of the LZI algorithm for weakly positive tensors'', Journal of Computational Mathematics 30 (2012) 24-33.

 

[4]      G. Zhou, L. Caccetta and L. Qi, "Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor'', Linear Algebra and Its Applications 438 (2013) 959-968.

 

[5]      G. Zhou, L. Qi and S.Y. Wu, "Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor'', Frontiers of Mathematics in China 8 (2013) 155-168.

 

[6]      G. Zhou, L. Qi and S.Y. Wu, "On the largest eigenvalue of a symmetric nonnegative tensor'', Numerical Linear Algebra with Applications 20 (2013) 913-928.

 

[7]       S. Hu, Z.H. Huang and L. Qi, "Strictly nonnegative tensors and nonnegative tensor partition'', Science China Mathematics 57 (2014) 181-195.

 

[8]      K.C. Chang, L. Qi and T. Zhang, "A survey on the spectral theory of nonnegative tensors'', Numerical Linear Algebra with Applications 20 (2013) 891-912.

 

[9]       Z. Chen, L. Qi, Q. Yang and Y. Yang, "The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis'', Linear Algebra and Its Applications 439 (2013) 3713-3733.

 

[10]    Q. Ni and L. Qi, "A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map'', Journal of Global Optimization, 61 (2015) 627-641.

 

B.    Essentially Nonnegative Tensors

 

[11]     L. Zhang, L. Qi, Z. Luo and Y. Xu, "The dominant eigenvalue of an essentially nonnegative tensor'', Numerical Linear Algebra with Applications 20 (2013) 929-941.

 

[12]     S. Hu, G. Li, L. Qi and Y. Song, "Finding the maximum eigenvalue of essentially nonnegative symmetric tensors via sum of squares programming'',  Journal of Optimization Theory and Applications 158 (2013) 717-738.

 

C.   Copositive Tensors

 

[13]     L. Qi, "Symmetric nonnegative tensors and copositive tensors'', Linear Algebra and Its Applications 439 (2013) 228-238.

 

[14]     Y. Song and L. Qi, "Necessary and sufficient conditions for copositive tensors'', Linear and Multilinear Algebra 63 (2015) 120-131.

 

D.    Z-Tensors and M-Tensors

 

[15]     L. Zhang, L. Qi and G. Zhou, "M-tensors and and some applications", SIAM Journal on Matrix Analysis and Applications 35 (2014) 437-452.

 

[16]     W. Ding, L. Qi and Y. Wei, "M-tensors and nonsingular M-tensors'', Linear Algebra and Its Applications 439 (2013) 3264-3278.

 

[17]    H. Chen and L. Qi, "Some spectral properties of odd-bipartite Z-tensors and their absolute tensors", to appear in: Frontiers of Mathematics in China.

 

E.   Completely Positive Tensors

 

[18]     L. Qi, C. Xu and Y. Xu, "Nonnegative tensor factorization, completely positive tensors and an Hierarchically elimination algorithm''SIAM Journal on Matrix Analysis and Applications 35 (2014) 1227-1241.

 

F.   Hankel Tensors

 

[19]    L. Qi, "Hankel tensors: Associated Hankel matrices and Vandermonde decomposition'', Communications in Mathematical Sciences 13 (2015) 113-125.

 

[20]    W. Ding, L. Qi and Y. Wei, "Fast Hankel tensor-vector products and application to exponential data fitting",  Numerical Linear Algebra with Applications 22 (2015) 814-832.

 

[21]    G. Li, L. Qi and Y. Xu, "SOS Hankel Tensors: Theory and Application'', October 2014,  arXiv:1410.6989.

 

[22]   G. Li, L. Qi and Q. Wang, "Are there sixth order three dimensional Hankel tensors?'', November 2014.   arXiv:1411.2368.

 

[23]   G. Li, L. Qi and Q. Wang, "Positive semi-definiteness of generalized anti-circular tensors'', to appear in: Communications in Mathematical Sciences. 

 

[24]   Y. Chen, L. Qi and Q. Wang, "Computing extreme eigenvalues of large scale Hankel tensors", Journal of Scientific Computing, DOI:10.1007/s10915-015-0155-8 (2016)

 

[25]   Y. Chen, L. Qi and Q. Wang, ^Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors ̄, Journal of Computational and Applied Mathematics,  doi:10.1016/ j.cam.2016.02.019 (2016).

 

G.   Cauchy Tensors and HilbertTensors

 

[26]    Y. Song and L. Qi, "Infinite and finite dimensional Hilbert Tensors", Linear Algebra and Its Applications 451 (2014) 1-14.

 

[27]    H. Chen and L. Qi, "Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors'',  Journal of Industrial and Management Optimization 11 (2015) 1263-1274.

 

[28]   H. Chen, G. Li and L. Qi, "Further results on Cauchy tensors and Hankel tensors'', Applied Mathematics and Computation 275 (2016) 50-62.

 

H.   Toeplitz Tensors

 

[29]   Z. Chen and  L. Qi, "Circulant Tensors with Applications to Spectral Hypergraph Theory and Stochastic Process'', Journal of Industrial and Management Optimization 12 (2016) 1227-1247.

 

[30]    L. Qi, Q. Wang and Y. Chen, "Three dimensional strongly symmetric circulant tensors'', Linear Algebra and Its Applications 482 (2015) 207-220.

 

I.   P, Q and B Tensors

 

[31]    Y. Song and L. Qi, "Properties of some classes of structured tensors'', to appear in: Journal of Optimization: Theory and Applications,  arXiv:1403.1118

 

[32]    L. Qi and Y. Song, "An even order symmetric B tensor is positive definite", Linear Algebra and Its Applications 457 (2014) 303-312.

 

[33]    C. Li, L. Qi and Y. Li, "MB-tensors and MB_0-tensors'', Linear Algebra and Its Applications 484  (2015) 141-153.

 

[34]    Y. Song and L. Qi, "Property of tensor complementarity problem and some classes of structured tensors'', November 2014.  arXiv:1412.0113.

 

J.  Centrosymmetric and Skew Centrosymmetric Tensors

 

[35]     H. Chen, Z. Chen and L. Qi, "Centrosymmetric, skew centrosymmetric and centrosymmetric Cauchy Tensors'', June 2014.   arXiv:1406.7409.

 

K.  Positive Semi-Definite Tensors and SOS Tensors

 

[36]    S. Hu, G. Li and L. Qi, "A tensor analogy of Yuan's alternative theorem and polynomial optimization with sign structure'', Journal of Optimization Theory and Applications, 168 (2016) 446-474.

 

[37]   Z. Luo, L. Qi and Y. Ye, "Linear operators and positive semidefiniteness of symmetric tensor spaces'', Science China Mathematics, 58 (2015) 197-212.

 

[38]  H. Chen, G. Li and L. Qi, "SOS Tensor Decomposition: Theory and Applications", to appear in: Communications in Mathematical Sciences.

 

L.  Mode-Symmetric Tensors

 

[39]   M. Che, L. Qi and Y. Wei, "Perturbation bounds for tensor eigenvalues and singular values problems'', to appear in: Linear and Multilinear Algebra.