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Abstract Consider the problem of computing the largest eigenvalue for
nonnegative tensors. In this paper, we establish the Q-linear convergence of
a power type algorithm for this problem under a weak irreducibility condition.
Moreover, we present a convergent algorithm for calculating the largest
eigenvalue for any nonnegative tensors.
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1 Introduction

Let R be the real field. In this paper, we consider an m-order n-dimensional
tensor A consisting of nm entries in R :

A = (ai1i2···im), ai1i2···im ∈ R, 1 � i1, i2, ..., im � n. (1.1)

A is called nonnegative (resp. positive) if ai1i2···im � 0 (resp. ai1i2···im > 0).
When m = 2, A is a matrix. When m � 3, A is called a higher-order tensor.
Tensors play an important role in physics, engineering, and mathematics.
Applications of tensors include data analysis and mining, information science,
signal and image processing, and computational biology, etc. See [24] and
references therein.

To an n-dimensional column vector x = [x1, x2, ..., xn]T ∈ R
n, real or

complex, we define an n-dimensional column vector:

A xm−1 :=
( n∑

i2,...,im=1

ai i2···imxi2 · · · xim

)
1�i�n

. (1.2)
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Definition 1.1 Let A be an m-order n-dimensional tensor and C be the set
of all complex numbers. Assume that A xm−1 is not identical to zero. We say
(λ, x) ∈ C × (Cn\{0}) is an eigenvalue-eigenvector of A if

A xm−1 = λx[m−1]. (1.3)

Here,
x[α] = [xα

1 , xα
2 , ..., xα

n ]T.

This definition was introduced in [3,16,23]. Unlike matrices, eigenvalue
problems for higher-order tensors are nonlinear. Applications of eigenvalues
of higher-order tensors include medical resonance imaging [1,26], higher-order
Markov chains [20], positive definiteness of even-order multivariate forms in
automatical control [21], and best-rank one approximation in data analysis
[8,14,15,25,27], etc.

Recently, eigenvalue problems for higher-order tensors have gained special
attention in the realm of numerical multilinear algebra. In particular, the
Perron-Frobenius theorem for eigenvalues of nonnegative tensors have been
established in [3,4,6]. Friedland et al. [10] established the Perron-Frobenius
theorem for homogeneous monotone maps. The Perron-Frobenius Theorem
for nonnegative tensors is related to measuring higher order connectivity in
linked objects [17] and hyper-graphs [2,9]. Subsequently, based on the minimax
theorem for nonnegative tensors in [3], Ng et al. [20] proposed a power type
method for computing the largest eigenvalue and the corresponding eigenvector
of an irreducible nonnegative tensor. This method is an extension of a method
of Collatz [7,28,29] for calculating the spectral radius of an irreducible
nonnegative matrix. In [5], the convergence of this method for primitive
nonnegative tensors has been established. For the definition of a primitive
nonnegative tensor, we will give it in the next section. A primitive nonnegative
tensor A is irreducible, but the converse is false; see [5]. In [18,32], the authors
proposed an updated version of the Ng-Qi-Zhou method [20] and it has been
proved that this algorithm is always convergent for any irreducible nonnegative
tensors. Furthermore, Zhang and Qi [31], Zhang et al. [32] established the linear
convergence of the Ng-Qi-Zhou method and its updated version for essentially
positive tensors and weakly positive tensors, respectively. A weakly positive
tensor is irreducible, but the converse is false; see [32].

In this paper, we establish, in Section 3, the Q-linear convergence of power
algorithm [18,32] under the weak irreducibility condition; see Theorem 3.2 for
details. In addition, based on [30, Theorem 2.3], we present a convergent
algorithm for calculating the largest eigenvalue and a corresponding non-
negative eigenvector for any nonnegative tensors. Recently, A power algorithm
for polynomial eigenvalue problems has been introduced in [10] and the R-linear
convergence of the power algorithm has been established under the weak
primitivity condition. Furthermore, global linear convergence of this algorithm
has been studied in [13].
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Throughout this paper, we use R
n (resp. C

n) to denote the n-dimensional
real (resp. complex) space. Let

Pn = {x ∈ R
n : xi � 0, 1 � i � n}

and
int(Pn) = {x ∈ R

n : xi > 0, 1 � i � n}.
Matrices are denoted by italic capitals (A,B, ...) and higher-order tensors are
written as calligraphic capitals (A ,B, ...).

2 Preliminaries

In this section, we will give some definitions and results about nonnegative
matrices and nonnegative tensors, which will be used in the next section.

2.1 Nonnegative matrices

Let M be an n × n nonnegative matrix. The graph associated to M (see [28,
Chap. 2]), G (M), is the directed graph with vertices 1, 2, ..., n and an edge from
i to j if and only if Mij �= 0. A directed graph is said to be strongly connected
if there is a directed path between any two distinct vertices. The matrix M
is called irreducible if the graph G (M) is strongly connected. We say that M
is primitive if the graph G (M) is strongly connected and the greatest common
divisor (gcd) of the lengths of its circuits is equal to one. An irreducible matrix
with a nonzero main diagonal is primitive ([19, Corollary 3.2]). Let σ(M)
denote the spectrum of M, the set of all eigenvalues of M. The spectral radius
of M, denoted by ρ(M), is the maximum distance of an eigenvalue from the
origin, i.e.,

ρ(M) = max{|λ| : λ ∈ σ(M)}.
The classical Perron-Frobenius theorem for nonnegative matrices may be stated
as follows (see [28, Chap. 2]).

Theorem 2.1 If M is an irreducible nonnegative matrix, then M has an
eigenvector u ∈ int(Pn), unique up to a scale multiple, whose associated eigen-
value is the spectral radius of M, ρ(M). Moreover, ρ(M) is a simple root of
the characteristic equation of M. Furthermore, if the nonnegative matrix M is
primitive, then

ρ(M) > |λ|, ∀ λ ∈ σ(M)\{ρ(M)}.
If A is an n × n matrix, then the spectral norm [28] is defined as

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ .

Here, ‖ · ‖ denotes a vector norm on the vector space R
n. The relationships

between the spectral radius of A and the spectral norm of A are as follows.
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Proposition 2.1 [11,12] The spectral radius of an n × n matrix A is
characterized by the equality

ρ(A) = inf
‖·‖∈N

‖A‖,

where N denotes the set of all possible spectral norms of A. For any ε > 0,
there exists a spectral norm ‖ · ‖ε ∈ N such that

‖A‖ε � ρ(A) + ε.

2.2 Nonnegative tensors

Let A be an m-order n-dimensional nonnegative tensor. The spectral radius
of A is defined as

ρ(A ) = max{|λ| : λ is an eigenvalue of A }.

Definition 2.2 [3] An m-order n-dimensional tensor A is called reducible if
there exists a nonempty proper index subset I ⊂ {1, 2, ..., n} such that

ai1i2···im = 0, ∀ i1 ∈ I, ∀ i2, ..., im /∈ I.

If A is not reducible, then we call A irreducible.

Let A be an m-order n-dimensional nonnegative tensor. The graph
associated to A , G (A ), is the directed graph with vertices 1, 2, ..., n and an
edge from i to j if and only if ai i2···im �= 0 for some il = j, l = 2, 3, ...,m.

Definition 2.3 [10] An m-order n-dimensional tensor A is called weakly
irreducible if G (A ) is strongly connected. If G (A ) is strongly connected and
the greatest common divisor (gcd) of the lengths of its circuits is equal to one,
then A is called weakly primitive.

We have the following proposition.

Proposition 2.2 [10] If nonnegative tensor A is irreducible, then A is weakly
irreducible. For m = 2, A is irreducible if and only if A is weakly irreducible.

Let I be the m-order n-dimensional unit tensor whose entries are

Ii1i2···im =

{
1, i1 = i2 = · · · = im,

0, otherwise.
(2.1)

Proposition 2.3 [13] If nonnegative tensor A is weakly irreducible, then A +
I is weakly primitive.

In [3], the Perron-Frobenius theorem and the well-known Collatz [7]
minimax theorem for irreducible nonnegative matrices have been extended to
irreducible nonnegative tensors. In the following, we state these results for
reference.
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Theorem 2.2 [3] If A is an irreducible nonnegative tensor of order m and
dimension n, then there exist λ0 > 0 and x0 > 0, x0 ∈ Rn such that

A xm−1
0 = λ0x

[m−1]
0 . (2.2)

Moreover, if λ is an eigenvalue with nonnegative eigenvector, then λ = λ0. If λ
is an eigenvalue of A , then |λ| � λ0.

Theorem 2.3 [3] Assume that A is an irreducible nonnegative tensor of order
m and dimension n. Then

min
x∈int(P )

max
xi>0

(A xm−1)i
xm−1

i

= λ0 = max
x∈int(P )

min
xi>0

(A xm−1)i
xm−1

i

, (2.3)

where λ0 is the unique positive eigenvalue corresponding to the positive
eigenvector.

Let A be a nonnegative tensor. For any vector x ∈ Pn, we define the
following sequence {A (k)x} :

A (1)x = A (x)m−1, z(1) = (A (1)x)[
1

m−1
],

A (2)x = A (z(1))m−1, z(2) = (A (2)x)[
1

m−1
],

. . . ,

A (k)x = A (z(k−1))m−1, z(k) = (A (k)x)[
1

m−1
], k � 2.

Definition 2.4 [5] A nonnegative tensor A is primitive if there exists a
positive integer k such that A (k)x ∈ int(Pn) for any nonzero x ∈ Pn.

Clearly, positive tensors and essentially positive tensors [5,22] are primitive.
A primitive nonnegative tensor A is irreducible, but the converse is false [5].
We have the following result.

Theorem 2.4 [5,18] Suppose that A is an irreducible nonnegative tensor. Let
B = A + I . Then, we have

(i) B is primitive;
(ii) if λ is the largest eigenvalue of B and u is a positive eigenvector of B

associated with λ, then λ − 1 is the largest eigenvalue of A and u is a positive
eigenvector of A associated with λ − 1.

3 A power algorithm

In this section, we state a power type algorithm for calculating the largest
eigenvalue of a nonnegative tensor A by applying the algorithm proposed in
[20] to tensor B = A +I , and establish the Q-linear convergence of this power
algorithm under a weak irreducibility condition.
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For any nonnegative column vector x ∈ R
n, we define φ : Pn → P1 by

φ(x) =
n∑

i=1

xi. (3.1)

Algorithm 3.1
Step 0 Choose x(1) ∈ int(Pn). Let B = A + I , and set k := 1.
Step 1 Compute

y(k) = B(x(k))m−1,

λk = min
x
(k)
i >0

(y(k))i
(x(k)

i )m−1
,

λk = max
x
(k)
i >0

(y(k))i
(x(k)

i )m−1
.

Step 2 If λk = λk, then let λ = λk and stop. Otherwise, compute

x(k+1) =
(y(k))[

1
m−1

]

φ((y(k))[
1

m−1
])

,

replace k by k + 1 and go to Step 1.

Theorem 3.1 Suppose that nonnegative tensor A is weakly irreducible. Let
B = A +I and assume that λ is the largest eigenvalue of B. Then, Algorithm
3.1 produces a value of λ and a corresponding eigenvector u in a finite number
of steps, or generates three convergent sequences {λk}, {λk}, and {x(k)} such
that

lim
k→∞

λk = lim
k→∞

λk = λ, lim
k→∞

x(k) = u.

Furthermore, λ−1 is the largest eigenvalue of A associated with the eigenvector
u.

Proof By Proposition 2.3, B is weakly primitive. Hence, from [10, Corollary
5.1] and the result (ii) of Theorem 2.4, this theorem holds. �

Let

F (x) = Bxm−1, G(x) = F (x)[
1

m−1
], H(x) =

G(x)
φ(G(x))

. (3.2)

Clearly, the sequence {x(k)} in Theorem 3.1 is generated by

x(k+1) = H(x(k)), k = 1, 2, ..., (3.3)

and φ(x(k)) = 1 for all k = 1, 2, . . . .
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Theorem 3.2 Let A , B, and {x(k)} be as in Theorem 3.1. Then, the
convergence rate of the sequence {x(k)} is Q-linear, i.e., there exists a vector
norm ‖ · ‖ such that

lim sup
k→∞

‖x(k+1) − u‖
‖x(k) − u‖ < 1.

Theorem 3.2 can be proved in a similar argument as [10, Corollary 5.2]. In
the following, we will use an alternative way to prove Theorem 3.2. To do this,
we need the following two lemmas.

Lemma 3.1 Let A and B be as in Theorem 3.1. For any x ∈ int(Pn), F ′(x),
the Jacobian of F at x, is a primitive matrix.

Proof Let x ∈ int(Pn) and M = F ′(x). Clearly, for any i, j = 1, 2, ..., n,
Mij > 0 if and only if bi i2···im �= 0 for some il = j, l = 2, 3, ...,m. Hence,
G (M) = G (B). By Theorem 2.4, B is primitive, so it is irreducible. Therefore,
by Definition 2.3 and Proposition 2.2, G (B) (= G (M)) is strongly connected.
Therefore, M is irreducible. Since bi i···i �= 0 for i = 1, 2, ..., n, we have Mii �= 0,
i = 1, 2, ..., n. By [19, Corollary 3.2], M is primitive. �
Lemma 3.2 Let A , B, λ, and u be as in Theorem 3.1, and let H ′(u) be the
Jacobian of the function H at u. Then,

ρ(H ′(u)) < 1.

Proof For λ and u in Theorem 3.1, we have

F (u) = λu[m−1], φ(u) = 1.

Hence,
G(u) = (F (u))[

1
m−1

] = λ
1

m−1 u.

Let
λ1 = λ

1
m−1 , V = F ′(u),

the Jacobian of the function F at u. By simple computation, the Jacobian of
G at u is

G′(u) = diag
( 1

m − 1
(F (u))[

2−m
m−1

]
)
F ′(u) =

1
m − 1

diag((λ1u)[2−m])V.

Since u is a positive vector, we have

G (G′(u)) = G (V ).

Hence, by Lemma 3.1, G′(u) is a primitive matrix.
Since G′(u) is primitive, by Theorem 2.1, the eigenvalues v1, v2, ..., vn of

G′(u) can be ordered in such a way that

v1 = ρ(G′(u)) > |v2| � |v3| � · · · � |vn|.
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For all t > 1, we have

tλ1u = G(tu)
= G(u) + (t − 1)G′(u)u + o(t − 1)
= λ1u + (t − 1)G′(u)u + o(t − 1).

Hence,
(t − 1)λ1u = (t − 1)G′(u)u + o(t − 1),

which implies
G′(u)u = λ1u.

By Theorem 2.1, λ1 = v1 and u is an eigenvector of G′(u) associated with the
eigenvalue v1.

Since
φ(G(u)) = φ(λ1u) = λ1,

by simple computation, we have

H ′(u) =
G′(u)

λ1
− G(u)eG′(u)

λ2
1

=
G′(u) − ueG′(u)

λ1
,

where e is the n-dimensional row vector of all ones. Let

M = G′(u), Q = M − ueM.

In the following, we will prove that the spectral radius of Q is equal to |v2|. To
this end, we only need to show that the spectrum of Q is

σ(Q) = {0, v2, v3, ..., vn}.
Since

φ(u) = eu = 1,

we have

QTeT = (M − ueM)TeT = MTeT − MTeTuTeT = MTeT − MTeT = 0.

Hence, eT is an eigenvector of QT associated with the eigenvalue 0. We consider
two cases for MT.

Case 1 MT = G′(u)T is diagonalizable, i.e., MT is semi-simple.
We may assume that for i = 2, 3, ..., n, wi is an eigenvector of MT associated

with the eigenvalue vi, and the set {wi : i = 2, ..., n} is linearly independent.
For i = 2, 3, ..., n, since

viu
Twi = uTMTwi = λ1u

Twi,

we obtain uTwi = 0. Hence,

QTwi = (M − ueM)Twi = MTwi − MTeTuTwi = MTwi = viw
i.



Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor 163

This means that wi is an eigenvector of QT associated with the eigenvalue vi, i =
2, 3, ..., n. Now, we prove the set {eT, wi, i = 2, ..., n} is linearly independent.
Suppose

α1e
T + α2w

2 + · · · + αnwn = 0, (3.4)

and

vi

{
�= 0, i = 2, 3, ..., p,

= 0, i = p + 1, ..., n.

Then, we have

α1Q
TeT + α2Q

Tw2 + · · · + αnQTwn = α2v2w
2 + · · · + αpvpw

p = 0.

Since set {wi : i = 2, ..., n} is linearly independent, we obtain

α2 = α3 = · · · = αp = 0.

Hence, by (3.4), we have

α1e
T + αp+1w

p+1 + · · · + αnwn = 0. (3.5)

Then,
α1M

TeT + αp+1M
Twp+1 + · · · + αnMTwn

= α1M
TeT + αp+1vp+1w

p+1 + · · · + αnvnwn

= α1M
TeT

= 0.

It follows from MTeT > 0 that α1 = 0. Hence, by (3.5), we have

αp+1w
p+1 + · · · + αnwn = 0.

Since set {wi : i = p + 1, ..., n} is linearly independent, we obtain

αp+1 = · · · = αn = 0.

Therefore,
α1 = · · · = αn = 0,

which implies that the set {eT, wi, i = 2, ..., n} is linearly independent. Thus,
the spectrum of Q is

σ(Q) = σ(QT) = {0, v2, v3, ..., vn}.
Case 2 MT is defective.

In this case, we may assume that MT has distinct eigenvalues v1 (= λ1), v2,
..., vq, q < n, and these eigenvalues can be ordered in such a way that

v1 (= λ1) > |v2| � |v3| � · · · � |vq|.
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Then, MT has the form
MT = XJX−1,

where
J = diag{J1, J2, ..., Jq}

is in Jordan canonical form (see, e.g., [12]). The Jordan blocks Ji, i = 1, 2, .., q,
are square matrices of various sizes, each having the form

Ji =

⎡
⎢⎢⎢⎢⎢⎣

vi 1
vi 1

. . . . . .
. . . 1

vi

⎤
⎥⎥⎥⎥⎥⎦ ,

where vi is an eigenvalue of MT. We suppose that J1 = [λ1] and Xi is the i-th
column vector of X, i = 1, 2, ..., n. For each Jordan block Ji, i = 2, 3, ..., q, we
assume that the size of Ji is li. Since MT = XJX−1, we have

MTX2 = v2X2,

MTX3 = v2X3 + X2,

MTX4 = v2X4 + X3,

. . . ,

MTXl2+1 = v2Xl2+1 + Xl2 ,

MTXl2+2 = v3Xl2+2,

MTXl2+3 = v3Xl2+2 + Xl2+1,

. . . .

Similarly, as in Case 1, we have

uTX2 = 0, QTX2 = v2X2.

Then,
v2u

TX3 = uTMTX3 − uTX2 = λ1u
TX3,

and we obtain uTX3 = 0. Hence,

QTX3 = (M − ueM)TX3 = MTX3 − MTeTuTX3 = v2X3 + X2.

Similarly, we have
QTX4 = v2X4 + X3,

. . . ,

QTXl2+1 = v2Xl2+1 + Xl2 ,

QTXl2+2 = v3Xl2+2,

QTXl2+3 = v3Xl2+2 + Xl2+1,

. . . .
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Similarly, as in Case 1, we can prove the set {eT, Xi, i = 2, ..., n} is linearly
independent. Let Y = [eT, Xi, i = 2, ..., n]. Then we have

QTY = Y diag{[0], J2, ..., Jq}.
Therefore, the spectrum of Q is

σ(Q) = σ(QT) = {0, v2, v3, ..., vq}.
In summary, we have the spectral radius of Q,

ρ(Q) = |v2|(< λ1).

Therefore,

ρ(H ′(u)) = ρ
( Q

λ1

)
=

|v2|
λ1

< 1. �

Now, we give the proof of Theorem 3.2 as follows.

Proof of Theorem 3.2 From Proposition 2.1 and Lemma 3.2, there exist an
ε > 0 and a spectral norm ‖ · ‖ε ∈ N such that

‖H ′(u)‖ε � ρ(H ′(u)) + ε < 1.

It follows from (3.3) that

x(k+1) − u = H(x(k)) − H(u) = H ′(u)(x(k) − u) + o(‖x(k) − u‖ε).

Since ‖x(k) − u‖ε tends to 0 as k goes to infinity, we obtain

lim sup
k→∞

‖x(k+1) − u‖ε

‖x(k) − u‖ε
� ‖H ′(u)‖ε � ρ(H ′(u)) + ε < 1,

which means that the convergence rate of the sequence {x(k)} is linear. �
In Theorem 3.2, we have established the Q-linear convergence of Algorithm

3.1 for weakly irreducible nonnegative tensors. Numerical results reported in
[18,20,32] show that Algorithm 3.1 performs well for irreducible nonnegative
tensors. However, for some reducible nonnegative tensors, Algorithm 3.1 may
not produce the largest eigenvalue. Consider the following three examples.

Example 3.1 The order-3 3-dimensional tensor D is given by

d111 = d333 = 1, d222 = 2,

dijk = 0, elsewhere.

Example 3.2 The order-3 3-dimensional tensor F given by

f111 = f333 = f121 = f231 = 1, f222 = 2,

fijk = 0, elsewhere.
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Example 3.3 The order-3 3-dimensional tensor M given by

m111 = m333 = m121 = 1, m222 = 2,

mijk = 0, elsewhere.

By Proposition 2.2, D , F , and M are reducible tensors because G (D),
G (F ), and G (M ) are not strongly connected, respectively. We choose x(1) =
[10, 10, 10]T . By Algorithm 3.1, we cannot obtain the largest eigenvalue for these
tensors within 1000 iterations.

For a nonnegative tensor, a weak Perron-Frobenius theorem has been given
in [30], which we state as follows.

Theorem 3.3 [30] If A is a nonnegative tensor of order m and dimension
n, then ρ(A ) is an eigenvalue of A associated with a nonnegative eigenvector
y ∈ R

n, y �= 0.

4 An algorithm for spectral radius of any nonnegative tensors

In this section, based on Theorem 3.3, we present a convergent algorithm for
computing the spectral radius for any nonnegative tensor A .

Let E denote the order-m n-dimensional tensor with every entry being
one. For any nonnegative tensor A and any τ > 0, A + τE is an irreducible
nonnegative tensor.

Algorithm 4.1 Let tol > 0 be given. Choose a sequence

τ1 > τ2 > · · · > τk > · · · > 0

satisfying limk→∞ τk = 0. Compute the largest eigenvalue λ of A and
corresponding eigenvector u by using Algorithm 3.1. If Algorithm 3.1 can
produce λ and u successfully, then stop. Otherwise, go to next step.
For k = 1, 2, . . . , let A k = A + τkE and do

1. Compute the largest eigenvalue λk of A k and corresponding eigenvector
uk by using Algorithm 3.1.

2. If k � 2 and ‖λk − λk−1‖ � tol then output uk and λk, and terminate the
algorithm.

End

Theorem 4.1 Suppose that A is a nonnegative tensor and ρ(A ) is the
spectral radius of A . Then, Algorithm 4.1 produces the spectral radius ρ(A )
and a corresponding eigenvector u, or generates two convergent sequences {λk}
and {uk} such that

lim
k→∞

λk = ρ(A ), lim
k→∞

uk = u,

respectively.
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Proof See the proof of [30, Theorem 2.3]. �
In order to show the viability of Algorithm 4.1, we used Matlab to test it

on Examples 3.1–3.3. Throughout the computational experiments, we choose

tol = 10−6, τk = 0.001 × 10−k, k = 1, 2, . . . .

Our numerical results are reported in Table 1, which show that Algorithm 4.1
is able to produce the largest eigenvalue for reducible nonnegative tensors. In
Table 1, k denotes the number of iterations, λk and uk denote the largest eigen-
value of A k and corresponding eigenvector at the final iteration, respectively.

Table 1 Numerical results of Algorithm 4.1 for Examples 3.1–3.3

Example k λk uk

3.1 4 2.0000 (0.0003, 1.0000, 0.0003)T

3.2 11 2.0000 (0.7071, 0.7071, 0.0000)T

3.3 5 2.0000 (0.7071, 0.7071, 0.0001)T

To conclude this section and the whole paper, we remark that ill-poses
problem may happen when the parameter τk in Algorithm 4.1 is small enough.
Thus, we need a stable procedure to control the sequence {τk}, which is one of
our future research topics.
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