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In this paper we study two solution methods for finding the largest
eigenvalue (singular value) of general square (rectangular) non-
negative tensors. For a positive tensor, one can find the largest
eigenvalue (singular value) based on the properties of the positive
tensor and the power-type method. While for a general nonneg-
ative tensor, we use a series of decreasing positive perturbations
of the original tensor and repeatedly recall power-type method for
finding the largest eigenvalue (singular value) of a positive tensor
with an inexact strategy. We prove the convergence of the method
for the general nonnegative tensor. Under a certain assumption,
the computing complexity of the method is established. Motivated
by the interior-point method for the convex optimization, we put
forward a one-step inner iteration power-type method, whose con-
vergence is also established under certain assumption. Additionally,
by using embedding technique, we show the relationship between
the singular values of the rectangular tensor and the eigenvalues
of related square tensor, which suggests another way for finding
the largest singular value of nonnegative rectangular tensor be-
sides direct power-type method for this problem. Finally, numerical
examples of our algorithms are reported, which demonstrate the
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convergence behaviors of our methods and show that the algo-
rithms presented are promising.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let R be the real field. A real order m dimension n tensor A consists of nm real entries:

ai1···im ∈ R,

where i j = 1, . . . ,n for j = 1, . . . ,m. A is called nonnegative if ai1···im � 0 and A is called symmetric
as its entries ai1···im are invariant under any permutation of their indices. Like the square matrix, this
class of tensors can be regarded as “square” tensors.

If there are a complex number λ and a nonzero complex vector x that are solutions of the follow-
ing homogeneous polynomial equations:

Axm−1 = λx[m−1],

then λ is called the eigenvalue of A and x the eigenvector of A associated with λ, where Axm−1 and
x[m−1] are vectors, whose ith components are

(
Axm−1)

i =
n∑

i2,...,im=1

aii2···im xi2 · · · xim ,

(
x[m−1])

i = xm−1
i ,

respectively. This definition was first introduced by Qi [21] where he assumed that A is an order m
dimension n symmetric tensor and m is even. If λ and x are restricted in the real field, then (λ, x)
is called H-eigenpair. Independently, Lim [15] gave such a definition but restricted x to be a real
vector and λ to be a real number. Here we follow the definition due to Chang et al., where they gave
the general definition as above [1]. However, we mention that the ideas of eigenvalues of tensors may
have been raised earlier. For example, the largest eigenvalue of a symmetric tensor is also a stationary
point of the best rank-one approximation in the sense of the Frobenius norm [5].

Unlike matrices, eigenvalue problems for high-order tensors are nonlinear. As far as we know,
applications of eigenvalues of high-order tensors include best rank-one approximation in data analy-
sis [8,22], higher-order Markov chains [19], pagerank [16], hypergraph [6,9,14] and positive definite-
ness of even-order multivariate forms in automatic control [18].

Recently, eigenvalue problems for high-order tensors have gained special attention in the realm
of numerical multilinear algebra. In particular, Chang, Person, Zhang [1] generalized the Perron–
Frobenius theorem (see [11,24]) from the nonnegative irreducible matrix to the nonnegative irre-
ducible tensor. Yang and Yang [26,27] generalized the weak Perron–Frobenius theorem to general
nonnegative tensors. Later, the singular values of a real rectangular tensor was systematically studied
by Chang, Qi and Zhou [3], who extended the Perron–Frobenius theorem to the nonnegative rectangu-
lar tensors. Yang and Yang [28] showed that the weak Perron–Frobenius theorem still keeps valid for
the nonnegative rectangular tensors. Ng, Qi, and Zhou [19] proposed an iterative method for finding
the largest eigenvalue of a nonnegative irreducible tensor, which is an extension of the Collatz method
for computing the spectral radius of an irreducible matrix. Their method was called the NQZ method.
Another method based on the NQZ method was proposed by Liu, Zhou and Ibrahim [17]. Pearson [20]
introduced the essentially positive tensors and she conjectured that the NQZ method would con-
verge if the tensor is essentially positive with even order. Chang, Pearson and Zhang [2] defined the
primitive tensors, which include the class of essentially positive tensors as the special case, and they
established the convergence of the NQZ method for primitive tensors. Zhang and Qi [33] established
the linear convergence of the NQZ method for essentially positive tensors. Hu, Huang and Qi [13]
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obtained the global R-linear convergence of the modified version of the NQZ method for weakly ir-
reducible nonnegative tensors which were introduced by Friedland, Gaubert and Han in [10]. On the
other hand, the method for finding the largest singular value was put forward in [3]. This method was
called the CQZ method. Zhou, Caccetta and Qi [31] established the convergence of a modified version
of the CQZ method for any irreducible nonnegative rectangular tensor. Yang and Yang [28] established
its convergence by introducing the notion of primitive rectangular tensors. Recently, Ragnarsson and
Van Loan [23] built the relationship between singular values of general tensors and eigenvalues of cor-
responding symmetric embedding tensors, which implies that one can solve the largest singular value
of a nonnegative rectangular tensor with the help of the method for finding the largest eigenvalue of
a nonnegative square tensor.

In this paper, we focus on finding the largest eigenvalue (singular value) of general nonnegative
tensors. The numerical results show neither the NQZ method nor the CQZ method works for some
nonnegative tensors. To the end, we propose the inexact power-type methods for finding the largest
eigenvalue or singular value by using a series of decreasing positive perturbations of the original non-
negative tensor. For each positive perturbed tensor, it is not necessary to get the exact spectral radius,
it only needs find the solution with certain precision, which can be realized in practice. The conver-
gence of the inexact power-type algorithm is established for general nonnegative square tensors. And
the computing complexity of the algorithm is given under certain assumption. Besides, we propose
another algorithm for finding the spectral radius of a nonnegative square tensor. As we have known,
some interior-point methods only execute one inner iteration. Motivated by this idea, we present the
one-step inner iteration power-type method, which is easier to perform. The convergence of this al-
gorithm is proven under weak positivity condition. Since it has been known that there are closed
connections between the singular values of a tensor and the eigenvalues of its symmetric embed-
ding tensor, for a rectangular or general tensor, we can transform the singular values problem to the
eigenvalues problem by constructing a new related square tensor. However, the NQZ method does
not work for the new constructed square tensor in many cases, while our inexact power-type method
does well. Moreover, the numerical results show that it is more efficient to find the largest singular
value in this way than to do it directly, such as done in [3].

This paper is organized as follows. We first review some preliminaries which are useful for further
analysis in Section 2. In Section 3, we recall some theorems and algorithms for finding the largest
eigenvalue and singular value and give the inexact power-type method in the case of square and
rectangular tensor. The one-step inner iteration power-type method is put forward in Section 4. In
Section 5, we illustrate that one can convert the singular value problem to the eigenvalue problem by
constructing a new related square tensor. In Section 6, some numerical results are reported.

We first add a comment on the notation that is used in the sequel. Vectors are written as low-
ercase letters (x, y, . . .), matrices correspond to italic capitals (A, B, . . .), and tensors are written
as calligraphic capitals (A,B, . . .). The entry with row index i and column index j in a matrix A,
i.e. (A)i j is symbolized by aij (also (A)i1···ip , j1··· jq = ai1···ip , j1··· jq ). The symbol | · | used on a matrix A
(or tensor A) means that (|A|)i j = |aij | (or (|A|)i1···ip , j1··· jq = |ai1···ip , j1··· jq |). Rn+ (Rn++) denotes the
cone {x ∈ Rn | xi � (>)0, i = 1, . . . ,n}. The symbol A � (>,�,<)B means that aij � (>,�,<)bij for
every i, j and it is the same for rectangular tensors.

2. Preliminaries

First let’s recall the notion of the rectangular tensor. Assume that p, q, m and n are positive inte-
gers, and m,n � 2. A real rectangular tensor A consists of mpnq real entries

ai1···ip j1··· jq ∈ R,

where ik = 1, . . . ,m, k = 1, . . . , p, and jk = 1, . . . ,n, k = 1, . . . ,q. We also call A a real (p,q)th order
m ×n dimensional rectangular tensor, or simply a real rectangular tensor. When p = q = 1, A reduces
to a real m × n rectangular matrix.

The definition of singular values of a real rectangular tensor can be seen in [3]. Let Axp−1 yq be
a vector in Rm such that
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(
Axp−1 yq)

i =
m∑

i2,...,ip=1

n∑
j1,..., jq=1

aii2···ip j1··· jq xi2 · · · xip y j1 · · · y jq ,

where i = 1, . . . ,m. Similarly, let Axp yq−1 be a vector in Rn such that

(
Axp yq−1)

j =
m∑

i1,...,ip=1

n∑
j2,..., jq=1

ai1···ip j j2··· jq xi1 · · · xip y j2 · · · y jq ,

where j = 1, . . . ,n. Denote M = p +q. If there are a number λ ∈ C , vectors x ∈ Cm \{0} and y ∈ Cn \{0}
such that{

Axp−1 yq = λx[M−1],
Axp yq−1 = λy[M−1],

then λ is called the singular value of A and (x, y) are the left and right eigenvectors of A, associated
with λ, respectively. If λ ∈ R , x ∈ Rm and y ∈ Rn , then we say that λ is an H-singular value of A, and
(x, y) are the left and right H-eigenvectors associated with λ. If a singular value is not an H-singular
value, we call it an N-singular value of A.

In the following analysis, the notions below may be used.

Definition 2.1. (See [27].) The spectral radius of tensor A is defined as

ρ(A) = max
{|λ|: λ is an eigenvalue of A

}
.

Since the tensor considered is nonnegative, Chang et al. [1] proved the existence of eigenvalue
and Yang and Yang [27] showed that ρ(A) is an eigenvalue. At this point, we see that Definition 2.1
is well defined. Similarly, one may define the largest singular value of the rectangular tensors. We
call rρ(A) = max{|λ|: λ is the singular value of A} the like-spectral radius of A. Yang and Yang [28]
proved the existence of singular value and showed that rρ(A) is a singular value when A is nonneg-
ative. At this point, this definition is well defined.

Definition 2.2. (See Definition 2.1 of [1].) A tensor C = (ci1···im ) of order m dimension n is called
reducible, if there exists a nonempty proper index subset I ⊂ {1, . . . ,n} such that

ci1···im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I.

If C is not reducible, then we call C irreducible.
The irreducibility of a rectangular tensor is defined as follow:

Definition 2.3. (See Definition 1 of [3].) A nonnegative rectangular tensor A is called irreducible if all
the square tensors A(·, f q

j ), j = 1, . . . ,n, and A(ep
i , ·), i = 1, . . . ,m, are irreducible in the sense of the

following definition.

Let P = {(x1, . . . , xn) | xi � 0} be a positive cone in Rn . For a nonnegative tensor A, we define its

associated nonlinear map TA : P → P by TA(x) = (Axm−1)[
1

m−1 ] .

Definition 2.4. (See Definition 2.6 of [2].) A nonnegative irreducible m-order n-dimensional tensor A
is called primitive if TA does not have a nontrivial invariant set S on ∂ P . ({0} is the trivial invariant
set.)

Definition 2.5. (See Definition 3.1 of [20].) A tensor C = (ci1···im ) of order m dimension n is called
essentially positive, if Cxm−1 > 0 for any nonzero x � 0.
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Fig. 1. Relationships of the three classes of nonnegative tensors.

For the essential positive tensor, we have the following proposition.

Proposition 2.1. (See Theorem 3.2 of [20].) A nonnegative m-order n-dimensional tensor A is essential positive
if and only if ai j··· j > 0 for any i, j ∈ {1,2, . . . ,n}.

The relationships between these three classes of nonnegative tensors can be summarized in Fig. 1.
For a more detailed discussion, one can refer to [13].

3. Inexact power-type algorithm and convergence analysis

In this section, we will give an inexact power-type method for finding the largest eigenvalue
(singular value), and then establish the convergence of the method for general nonnegative square
(rectangular) tensors. In addition, under certain assumption, we give the computing complexity of the
algorithm for the square case.

3.1. The square tensor case

In this subsection, our main contribution is to propose a convergent algorithm for a general non-
negative square tensor by using inexact techniques, which greatly expands the scope of application of
the NQZ method proposed in [19].

First we recall the power-type algorithm (the NQZ method) for an irreducible nonnegative square
tensor in [19].

Algorithm 3.1.

Step 1. Choose x(0) > 0, x(0) ∈ Rn . Let y(0) =A(x(0))m−1 and set k = 0.
Step 2. Compute

x(k+1) = (
yk)[ 1

m−1 ]/∥∥(
yk)[ 1

m−1 ]∥∥, y(k+1) = A
(
x(k+1)

)m−1
,

λk+1 = max
i

y(k+1)
i

(x(k+1)
i )m−1

, λk+1 = min
i

y(k+1)
i

(x(k+1)
i )m−1

.

Step 3. If λk+1 = λk+1, stop. Otherwise, replace k by k + 1 and go to Step 2.

If the iteration stops with some k, then we find the largest eigenvalue ρ(A) = λk = λk and the
associated eigenvector x∗ = x(k) . In fact,
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A
(
x∗)m−1 = A

(
x(k)

)m−1 = ρ(A)
(
x(k)

)[m−1] = ρ(A)
(
x∗)[m−1]

.

Otherwise, the following Lemma 3.1 proved the convergence of {λk} ({λk}, respectively) under the
condition that A is primitive.

Lemma 3.1. (See Propositions 5.1 and 5.2 of [2].) If A is primitive, then {λk} is monotonically decreasing
and {λk} is monotonically increasing and both of the sequences converge to ρ(A).

What’s more, the linear convergence could also be derived if the condition becomes stronger.

Lemma 3.2. (See [29,33].) If A is essentially positive, then both {λk} and {λk} converge linearly to ρ(A). In
detail, for k = 0,1, . . . ,

0 � λk − ρ(A) � λk+1 − λk+1 � α(λk − λk),

0 � ρ(A) − λk � λk+1 − λk+1 � α(λk − λk),

where α = 1 − β/R, β = mini, j∈{1,2,...,n} aij··· j , R = maxi
∑n

i2,...,im aii2···im .

It is well known that the algorithm for computing the largest eigenvalue of nonnegative square
tensor fails to converge for general situation. The nonnegative weak irreducibility or essential pos-
itivity of the tensor must be satisfied to guarantee the convergence or linear convergence of the
algorithm. It is natural to study the method for solving the largest eigenvalue (singular value) of
a general nonnegative tensor.

Let’s recall a proposition, which is the base of our following inexact algorithm.

Theorem 3.1. (See Theorem 2.3 of [27].) Suppose A � 0. Let {Ak} be a positive tensor sequence and it con-
verges to A, then ρ(Ak) → ρ(A).

In their preprint [34], Zhou et al. presented an algorithm based on this proposition to calculate
the largest eigenvalue of a nonnegative square tensor. However, there are unsuitable requirements
in their algorithm, i.e., they assumed that for every fixed Ak , ρ(Ak) must be exactly calculated. Of
course, it is impossible to get this exact solution in general within finite iterations and is also not
necessary actually, just like in many perturbation-class algorithms. For practical purpose, we propose
an inexact perturbation-type method and establish its convergence. In our method, the initial point
in every inner loop is specified as the terminal point in the former inner loop with some precision.

For any given tolerance ε > 0, it is easy to know from Lemma 3.2 that a required solution can be
obtained within �ln( ε

λ0−λ0
)/ lnα� + 1 steps.

Let E be the all-ones m-order n-dimensional tensor. Motivated by the inexact technique such as
in [12,30], we present an inexact power-type algorithm for finding the largest eigenvalue of A in the
following.

Algorithm 3.2.

Step 1. Take a positive sequence {εk} such that
∑∞

k=1 εk < ∞. Given a θ ∈ (0,1), set τ1 = θ , A1 =
A+ τ1E . Choose x(0) > 0, x(0) ∈ Rn . Let y(0) =A1(x(0))m−1. Let y(0)

1 = y(0) . l = 1.
Step 2. Compute

x(k)

l = (
y(k−1)

l

)[ 1
m−1 ]/∥∥(

y(k−1)

l

)[ 1
m−1 ]∥∥, y(k)

l = Al
(
x(k)

l

)m−1
,

λl
k = max

i

(y(k)

l )i

(x(k)

l )m−1
i

, λl
k = min

i

(y(k)

l )i

(x(k)

l )m−1
i

,
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for k = 1,2, . . . , until λl
k − λl

k < εl , denote this k as k(l) and

x(0)

l+1 = x(k(l))
l , λl = λl

k(l), λl = λl
k(l).

Step 3. l = l + 1, τl = θτl , Al =A+ τlE . Set y(0)

l =Al(x(0)

l )m−1. Go to Step 2.

We can see that Algorithm 3.2 can be complemented in practice as Lemma 3.3 shows.

Lemma 3.3. In Algorithm 3.2, the inner iteration in Step 2 terminates in a finite number of steps.

Proof. Since Al is a positive tensor, it is primitive. By Lemma 3.1, this proposition holds. �
The convergence of Algorithm 3.2 could also be ensured for any nonnegative tensor.

Theorem 3.2. Suppose A is an m-order n-dimensional nonnegative tensor. The two sequences generated by
Algorithm 3.2, {λl} and {λl}, converge to ρ(A) respectively.

Proof. Since Al+1 <Al , we have ρ(Al+1) � ρ(Al) due to Lemma 3.3 in [27]. So we get the following
by the algorithm

λl � ρ(Al) � ρ(Al+1) � λl+1 − εl+1,

from which one has

λl+1 � λl + εl+1.

Since both {λl} and {εl} are nonnegative sequences and
∑∞

k=1 εk < ∞, it follows that {λl} is conver-
gent. From Theorem 3.1 we get that

lim
l→∞

λl = lim
l→∞

ρ(Al) = ρ(A).

Similarly one has that liml→∞ λl = ρ(A). �
In order to give the complexity analysis of Algorithm 3.2, we need the following assumption which

holds when m = 2.

Assumption 3.1. Let A be an m-order n-dimensional nonnegative tensor, Ak =A+ τkE and |ρ(Ak) −
ρ(A)| � Cτk , where C is a positive constant.

In the next we give three examples which satisfy the assumption.

Example 3.1. Let A=O3×3×3 be a 3-order 3-dimensional zero tensor, then Ak = τkE . It is easy to see
that ρ(A) = 0, ρ(Ak) = 9τk . So∣∣ρ(Ak) − ρ(A)

∣∣ � 9τk.

Example 3.2. Let A be an m-order n-dimensional diagonal tensor such that ai···i = i, i = 1, . . . ,n and
others are zero. It is easy to see that ρ(A) = n, ρ(Ak) = n + nm−1τk . So∣∣ρ(Ak) − ρ(A)

∣∣ � nm−1τk.

Example 3.3. Let A = ε3×3×3 be a 3-order 3-dimensional all-ones tensor, then Ak = (1 + τk)E . It is
easy to see that ρ(A) = 9, ρ(Ak) = 9 + 9τk . So∣∣ρ(Ak) − ρ(A)

∣∣ � 9τk.
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From the examples above we see that a tensor which satisfies Assumption 3.1 may not be ir-
reducible or essentially positive. It deserves further discussion for sufficient conditions ensuring
Assumption 3.1.

Below we will establish the computing complexity of Algorithm 3.2 with a specific sequence {εk}
under Assumption 3.1.

Theorem 3.3. In Algorithm 3.2, set εk = cθk, where c > 0 is a constant. Then for any given ε > 0, one
may get a required approximate solution by using Algorithm 3.2 within K iteration steps, where K =
(�ln( ε

c+C )/ ln θ� + 1)�ln( cθ
c+(1−θ)ρ(E)

)/ ln d2�. In particular, if we choose c = ρ(E), then K = (�ln( ε
ρ(E)+C )/

ln θ� + 1)�ln( θ
2−θ

)/ ln d2�.

Proof. It has been known from Lemma 3.2 that for a fixed εl+1, one can get the approximate solution
with required precision within Kl+1 = �ln(

εl+1

λl+1
0 −λl+1

0

)/ lnαl+1� + 1 steps. Since εk = cθk ,

0 � λl
k(l) − λl

k(l) � εl = cθ l.

In Algorithm 3.2, we choose x(0)

l+1 = x(k(l))
l , and

λl+1
0 = max

i

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

, λl+1
0 = min

i

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

.

However,

Al = A+ τ1E, τl = θ l,

so

Al+1 = Al − θ l(1 − θ)E � Al.

It is obvious that x(k)

l is positive for any l, k since Al > 0 and x(0) > 0. So for any i ∈ {1,2, . . . ,n}, we
have

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

�
[Al(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

= [Al(x(k(l))
l )m−1]i

(x(k(l))
l )m−1

i

,

from which we can derive

λl+1
0 � λl

k(l), λl+1
0 � λl

k(l).

On the other hand,

λl+1
0 = min

i

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

� min
i

[Al(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

− max
i

θ l(1 − θ)[E(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

� λl
k(l) − θ l(1 − θ)ρ(E),

where ρ(E) is the spectral radius of tensor E . Thereby one obtains

λl+1
0 − λl+1

0 � λl
k(l) − λl

k(l) + θ l(1 − θ)ρ(E)

� cθ l + θ l(1 − θ)ρ(E).
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So

ln

(
εl+1

λl+1
0 − λl+1

0

)
� ln

(
cθ

c + (1 − θ)ρ(E)

)
.

In particular, if we choose c = ρ(E), then we have

ln

(
εl+1

λl+1
0 − λl+1

0

)
� ln

(
θ

2 − θ

)
.

By the definition of αl and the expression of Al we have that

αl = 1 − β + θ l

R + nm−1θ l
.

Denote

d1 = min

{
1 − β + θ

R + nm−1θ
,1 − β + θ L

R + nm−1θ L

}
,

d2 = max

{
1 − β + θ

R + nm−1θ
,1 − β + θ L

R + nm−1θ L

}
,

where L = �ln( ε
c+C )/ ln θ� + 1 is an upper bound of the outer iteration. Thereby one obtains

d1 � αl � d2 ⇒ 1

d2
� 1

αl
� 1

d1
.

Thus we arrive at Kl+1 � ln( cθ
c+(1−θ)ρ(E)

)/ ln d2, an upper bound of the iterations at the lth step.

Since we know the outer iterations does not exceed L = �ln( ε
c+C )/ ln θ� + 1, the total iterations are

bounded by

LKl+1 �
(⌈

ln

(
ε

c + C

)/
ln θ

⌉
+ 1

)⌈
ln

(
cθ

c + (1 − θ)ρ(E)

)/
ln d2

⌉
.

In particular, if we choose c = ρ(E), then the total iterations are bounded by (�ln( ε
ρ(E)+C )/ ln θ�+1)×

�ln( θ
2−θ

)/ ln d2�.
In the following we establish the upper bound of outer iterations. By the monotonicity of the

spectral radius and Assumption 3.1, we have that

0 � λl − ρ(A) � λl − ρ(Al) + Cτl � εl + Cτl.

So we can get a required approximate solution provided εl + Cτl < ε . Because εl = cθ l , τl = θ l , we
get from Lemma 3.2 that the outer iterations do not exceed L = �ln( ε

c+C )/ ln θ� + 1. �
Corollary 3.1. In Algorithm 3.2, set εk = ρ(E)θk. Then for any given ε > 0, one may get a required approximate
solution by using Algorithm 3.2 within (�ln( ε

ρ(E)+C )/ ln θ� + 1)�ln( θ
2−θ

)/ ln d2�mnm operations.

3.2. The rectangular tensor case

For real rectangular tensors, they arise from the strong ellipticity condition problem in solid me-
chanics [25] and the entanglement problem in quantum physics [7]. In [3], Chang et al. systematically
discussed properties of singular values of such rectangular tensors and proposed Algorithm 3.3 to
find the largest singular value of a nonnegative rectangular tensor. And the convergence of this al-
gorithm is established under primitivity assumption in [28]. However, many examples show that this
algorithm does not work for a general rectangular tensor, such as Example 6.8 and Example 6.9.
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In this subsection, our main contribution is to propose an always convergent algorithm for the
largest singular values for a general nonnegative rectangular tensor by using inexact techniques.

First, let’s recall the algorithm presented in [3,31]. Suppose that A is a real (p,q)th order m × n
dimensional rectangular tensor and M = p + q.

Algorithm 3.3.

Step 1. Given x(0) ∈ Rm++ , y(0) ∈ Rn++ , let ξ (0) = A(x(0))p−1(y(0))q , η(0) = A(x(0))p(y(0))q−1 and set
k = 0.

Step 2. Compute

x(k+1) = (
ξk)[ 1

M−1 ]/∥∥(
ξk, ηk)[ 1

M−1 ]∥∥, y(k+1) = (
ηk)[ 1

M−1 ]/∥∥(
ξk, ηk)[ 1

M−1 ]∥∥,

ξ (k+1) = A
(
x(k+1)

)p−1(
y(k+1)

)q
, η(k+1) = A

(
x(k+1)

)p(
y(k+1)

)q−1
.

Let

λk+1 = max
i, j

{
(ξ (k+1))i

(x(k+1))M−1
i

,
(η(k+1)) j

(y(k+1))M−1
j

}
,

λk+1 = min
i, j

{
(ξ (k+1))i

(x(k+1))M−1
i

,
(η(k+1)) j

(y(k+1))M−1
j

}
.

Step 3. If λk+1 = λk+1, stop. Otherwise, replace k by k + 1 and go to Step 2.

Before giving the rectangular version of power-type algorithm, we list two important properties of
the largest singular value rρ(A), which can be useful in further analysis. One can refer to [28].

Lemma 3.4. If A,B are two tensors with the same order and dimension, 0 � A � B. Then rρ(A) � rρ(B).
Furthermore, if A is irreducible and A �= B, then rρ(A) < rρ(B).

Lemma 3.5. Assume {Ak} is a positive tensor sequence with common order and dimension, and Ak → A as
k → ∞. Then limk→∞ rρ(Ak) = rρ(A).

Now, for a general nonnegative rectangular tensor, we can also present an inexact power-type
algorithm based on Algorithm 3.3 and Lemma 3.5.

Let δ be the all-ones (p,q)th order m × n dimensional rectangular tensor.

Algorithm 3.4.

Step 1. Take a positive sequence {εk} such that
∑∞

k=1 εk < ∞. Given a θ ∈ (0,1), set τ1 = θ , A1 =A+
τ1δ. Choose x(0) ∈ Rm++, y(0) ∈ Rn++ . Let ξ (0) = A1(x(0))p−1(y(0))q , η(0) = A1(x(0))p(y(0))q−1.

Let ξ
(0)
1 = ξ (0) , η

(0)
1 = η(0) . l = 1.

Step 2. Compute

x(k)

l = (
ξ

(k−1)

l

)[ 1
M−1 ]/∥∥(

ξ
(k−1)

l , η
(k−1)

l

)[ 1
M−1 ]∥∥,

x(k)

l = (
η

(k−1)

l

)[ 1
M−1 ]/∥∥(

ξ
(k−1)

l , η
(k−1)

l

)[ 1
M−1 ]∥∥,

ξ
(k)

l = Al
(
x(k)

l

)p−1(
y(k)

l

)q
, η

(k)

l = Al
(
x(k)

l

)p(
y(k)

l

)q−1
,

λl
k = max

i, j

{
(ξ

(k)

l )i

(x(k)
)M−1

,
(η

(k)

l ) j

(y(k)
)M−1

}
,

l i l j
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λl
k = min

i, j

{
(ξ

(k)

l )i

(x(k)

l )M−1
i

,
(η

(k)

l ) j

(y(k)

l )M−1
j

}
,

for k = 1,2, . . . , until λl
k − λl

k < εl , denote this k as k(l) and

x(0)

l+1 = x(k(l))
l , y(0)

l+1 = y(k(l))
l , λl = λl

k(l), λl = λl
k(l).

Step 3. l = l + 1, τl = θτl , Al = A + τlδ. Set ξ
(0)

l = Al(x(0)

l )p−1(y(0)

l )q , η
(0)

l = Al(x(0)

l )p(y(0)

l )q−1. Go to
Step 2.

Like the square case, Algorithm 3.4 can be complemented in practice as Lemma 3.6 shows.

Lemma 3.6. The inner iteration Step 2 in the algorithm will terminate in a finite number of steps.

Similarly, the convergence of Algorithm 3.4 could also be derived.

Theorem 3.4. The sequences λk and λk generated by Algorithm 3.4 converge to rρ(A), respectively.

Proof. Because Al+1 <Al , we have rρ(Al+1) < rρ(Al) due to the monotonicity of the spectral radius.
So we get the following by the algorithm

λl � rρ(Al) � rρ(Al+1) � λl+1 − εl+1,

from which one has

λl+1 � λl + εl+1.

Since both {λl} and {εl} are all nonnegative sequences and
∑∞

k=1 εk < ∞, it follows that {λl} is con-
vergent. From Lemma 3.5 we get that

lim
l→∞

λl = lim
l→∞

rρ(Al) = rρ(A).

Similarly one has that liml→∞ λl = rρ(A). �
Remark. Recently, Zhang [32] established the linear convergence of Algorithm 3.3 under reasonable
assumptions. So like the square case, we can also give the computing complexity of Algorithm 3.4.
We just omit it here.

4. One-step inner iteration power-type algorithm

In this section we present a one-step inner iteration power-type algorithm and establish its con-
vergence. In Algorithms 3.2 and 3.4, it may cost too much time to achieve the required precision in
every inner loop. Next, we offer an algorithm with only one-step inner loop.

We first state our algorithm as follows.

Algorithm 4.5.

Step 1. Given a θ ∈ (0,1), set τ1 = θ , A1 = A + τ1E . Set x(0) = e, y(0) = A1(x(0))m−1. Denote x(0)
1 =

x(0) , y(0)
1 = y(0) . l = 1.

Step 2. Compute

x(1)

l = (
y(0)

l

)[ 1
m−1 ]/∥∥(

y(0)

l

)[ 1
m−1 ]∥∥, y(1)

l = Al
(
x(1)

l

)m−1
,

λl
1 = max

i

(y(1)

l )i

(x(1)

l )m−1
i

, λl
1 = min

i

(y(1)

l )i

(x(1)

l )m−1
i

.

Step 3. l = l + 1, x(0)

l = x(1)

l , τl = θτl , Al =A+ τlE , y(0)

l =Al(x(0)

l )m−1. Go to Step 2.



3724 Z. Chen et al. / Linear Algebra and its Applications 439 (2013) 3713–3733
Remark. It is easy to see that in Algorithm 3.2 if the inner iteration is performed once without the
precision requirement, then the parameter τk is decreased, it reduces to Algorithm 4.5.

Theorem 4.5. If A is nonnegative, then Algorithm 4.5 produces the value of the spectral radius ρ(A), or
generates two convergent sequences {λl

1} and {λl
1}. Furthermore, let λ = liml→∞ λl

1 and λ = liml→∞ λl
1 .

Then λ and λ are an upper bound and a lower bound of ρ(A), respectively. If λ = λ, then λ = λ = ρ(A).

Proof. Similarly as in the proof of Theorem 3.3, we denote

λl+1
0 = max

i

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

, λl+1
0 = min

i

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

.

Then we have

λl+1
0 � λl

1, λl+1
0 � λl

1,

λl+1
0 � λl

1 − θ l(1 − θ)ρ(E).

Thanks to Lemma 3.1, {λl+1
k } is monotonically decreasing, and {λl+1

k } is monotonically increasing for
tensor Al+1. So

λl
1 � λl+1

0 � λl+1
1 � ρ(Al+1) � λl+1

1 � λl+1
0 � λl

1 − θ l(1 − θ)ρ(E).

It follows that {λl
1} is nonincreasing and {λl

1} is weak increasing. Since
∑∞

l=1 θ l(1 − θ)ρ(E) =
θρ(E) < ∞, {λl

1} and {λl
1} converge respectively. What’s more, if λ = λ, then λ = λ = ρ(A) holds

by Theorem 3.1. �
Moreover, if A is essential positive, we show that the two sequences {λl

1} and {λl
1} converge to

ρ(A), respectively.

Theorem 4.6. If A is essential positive, then Algorithm 4.5 produces the value of the spectral radius ρ(A), or
generates two sequences {λl

1} and {λl
1} which converge to ρ(A), respectively.

Proof. Similarly as in the proof of Theorem 3.3, we denote

λl+1
0 = max

i

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

, λl+1
0 = min

i

[Al+1(x(0)

l+1)
m−1]i

(x(0)

l+1)
m−1
i

.

Then we have

λl+1
0 � λl

1, λl+1
0 � λl

1,

λl+1
0 � λl

1 − θ l(1 − θ)ρ(E),

λl+1
0 � λl

1 − θ l(1 − θ)ρ(E).

Thanks to Lemma 3.2, {λl+1
k } and {λl+1

k } converge linearly to ρ(Al+1) for tensor Al+1. So

0 � λl+1
1 − ρ(Al+1) � λl+1

1 − λl+1
1 � αl+1

(
λl+1

0 − λl+1
0

)
, (4.1)

0 � ρ(Al+1) − λl+1
1 � λl+1

1 − λl+1
1 � αl+1

(
λl+1

0 − λl+1
0

)
. (4.2)

Denote

d = max

{
1 − β

,1 − β + θ

m−1

}
.

R R + n θ
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By Proposition 2.1, we have β = mini, j∈{1,2,...,n} aij··· j > 0 and 0 < d < 1, so

0 � λl+1
1 − λl+1

1 � αl+1
(
λl+1

0 − λl+1
0

)
� d

(
λl+1

0 − λl+1
0

)
� d

(
λl

1 − λl
1

) + dθ l(1 − θ)ρ(E)

· · ·
� dl(λ1

1 − λ1
1

) + (
dθ l + d2θ l−1 + · · · + dlθ

)
(1 − θ)ρ(E)

=
{

dl(λ1
1 − λ1

1) + lθ l+1(1 − θ)ρ(E) if d = θ,

dl(λ1
1 − λ1

1) + θ l−dl

θ−d dθ(1 − θ)ρ(E) if d �= θ.
(4.3)

From (4.3), we could derive that when l tends to ∞, λl+1
1 − λl+1

1 tends to zero. By Theorems 4.5
and 3.1, we have

lim
l→∞

λl
1 = lim

l→∞
λl

1 = ρ(A). �
As in the previous section, we may give the one-step inner iteration power-type algorithm for

the nonnegative rectangular tensor. Since it is similar to the square situation, we omit it here. Our
numerical experiments in Section 6 show that Algorithm 4.5 performs well for many nonnegative
square tensors which do not satisfy convergence assumption in Theorem 4.6. So we guess that this
algorithm converges under weaker conditions.

5. Singular values and reformulation

In this section, we consider the singular values for the rectangular tensors and the general tensors.
By using the symmetric embedding technique, we establish the connection between singular values of
the rectangular/general tensors and eigenvalues of related symmetric embedding tensors. Then we can
compute the largest singular value of nonnegative rectangular/general tensors by using the algorithms
for the largest eigenvalue of nonnegative square tensors.

5.1. Singular values of a rectangular tensor

In this subsection, we present a way to convert the singular value problem of a rectangular tensor
to an eigenvalue problem of a related square tensor. In [4], Chang and Zhang introduce the lifting
operator TA of a rectangular tensor A, and they establish the relation between the singular values
of original tensor and the eigenvalues of lifting square tensor. However, there is a minor mistake
in the definition of TA which is weakly symmetric. We here define another lifting operator CA of
a rectangular tensor A to correct the error in [4].

For a (p,q) order (m,n) dimensional tensor A, the lifting CA = (ck1,k2,...,kM ) as an M = p +q order
N = m + n dimensional tensor is defined by:

ck1,k2,...,kM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ak1,...,kp ,kp+1−m,...,kM−m if

{
1 � k1, . . . ,kp � m,

m + 1 � kp+1, . . . ,kM � N,

akq+1,...,kM ,k1−m,...,kq−m if

{
m + 1 � k1, . . . ,kq � N,

1 � kq+1, . . . ,kM � m,

0 otherwise.

When p = q = 1, A is a matrix. From the definition, we can see that CA = [0 A; AT 0].
Let

z =
(

x

y

)
∈ R N = Rm × Rn.
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Then by definition,

CAzM−1 =
(
Axp−1 yq

Axp yq−1

)
.

Note that CA may not be weakly symmetric (see [4]) since

CAzM = 2Axp yq.

Theorem 5.7. For a (p,q) order (m,n) dimensional tensor A, if σ is a singular value of A with the singular
vectors x, y, then z = (xT , yT ) is the eigenvector of CA associated with eigenvalue σ . Moreover, if z = (xT , yT )

is the eigenvector of CA associated with eigenvalue λ �= 0, then λ is A’s singular value with the singular
vectors x, y.

Proof. If σ is a singular value of A with the singular vectors x, y, then z = (xT , yT ) �= 0 and by
definition, we have

CAzM−1 =
(
Axp−1 yq

Axp yq−1

)
= σ

(
x[M−1]

y[M−1]

)
= σ z[M−1].

So the first part of the theorem holds.
On the other hand, if z = (xT , yT ) is the eigenvector of CA associated with eigenvalue λ �= 0, we

have (
Axp−1 yq

Axp yq−1

)
= CAzM−1 = λz[M−1] = λ

(
x[M−1]

y[M−1]

)
. (5.1)

Since λ �= 0, then neither x nor y can be zero. Suppose x = 0. Then y must be zero by (5.1), which
conflicts with that z is an eigenvector. So the second part of the theorem holds. �

Thus based on this result, one can calculate the singular values of a rectangular tensor A by
calculating the eigenvalues of its lifting square tensor CA . In particular, if A is nonnegative, then the
spectral radius of CA is the largest singular value of A.

5.2. Singular values of a general tensor

For a general tensor A ∈ Rn1×n2×···×nd (d � 2), ni �= n j (i �= j), i, j ∈ {1,2, . . . ,d}, Lim [15] defined
its singular values and singular vectors.

Definition 5.6. The scalar σ ∈ R is a singular value of a general tensor A ∈ Rn1×···×nd if there are
vectors uk ∈ Rnk \ {0} such that⎧⎪⎪⎨

⎪⎪⎩
Au2u3 · · · ud = σu[d−1]

1 ,

Au1u3 · · · ud = σu[d−1]
2 ,

· · ·
Au1u2 · · · ud−1 = σu[d−1]

d .

(5.2)

The vector uk is the mode-k singular vector associated with σ .

Remark. There is a little difference between this definition and the singular values of a matrix when
d = 2. The singular values in matrix are all positive while this definition does not have this restriction.

As known, there are some connections between the singular values of a matrix A and the eigen-
values of its symmetric embedding sym(A) = ([0 A; AT 0]). In particular, the set of all the positive
eigenvalues of sym(A) is the same as the set of all the singular values of A. The top and bottom
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halves of sym(A)’s eigenvectors are singular vectors for A. In the following, we draw into the sym-
metric embedding sym(A) for a general tensor A. And we give the relations between the singular
values of A and the eigenvalues of sym(A) in the following.

In [23], Ragnarsson and Van Loan put forward the concept of block tensors and symmetric em-
beddings, and they derive the relations between the singular values of a general tensor and the
eigenvalues of its symmetric embedding. But the singular values and eigenvalues defined in [23] are
called Z -singular values and Z -eigenvalues, which require that the vectors are unit with Euclidean
norm, and the powers of the eigenvectors at the right-hand side of Eqs. (5.2) are one. This def-
inition was first given by Lim and Qi in [15,21]. However, the singular values and eigenvalues in
our definition are called H-singular values and H-eigenvalues which require the equations are homo-
geneous. Our contribution here is to give the relations between the H-singular values of A and the
H-eigenvalues of sym(A). In this subsection, the singular value and eigenvalue mean H-singular value
and H-eigenvalue.

First we draw into the tensor transposition and symmetric embedding. For details, the readers are
referred to [23].

Definition 5.7. If A ∈ Rn1×···×nd and p = [p1, . . . , pd] is a permutation of [1, . . . ,d], then A〈p〉 ∈
Rnp1 ×···×npd denotes the p-transpose of A defined by

A〈p〉( jp1 , . . . , jpd ) = A( j1, . . . , jd),

where 1 � jk � nk for k = 1, . . . ,d.

Definition 5.8. If A ∈ Rn1×···×nd , then its symmetric embedding

C = sym(A) ∈ R N×···×N , N = n1 + · · · + nd,

is a block tensor defined by the partitioning [1, . . . , N] = [r1| · · · |rd] where

rk = [
(1 + n1 + · · · + nk−1), . . . , (n1 + · · · + nk)

]
, k = 1, . . . ,d.

The ith block of C is given by

Ci =
{

A〈i〉, if i is a permutation of [1, . . . ,d],
0, otherwise,

for all i that satisfy 1 � i � d.

Note that Ci is of form ni1 × ni2 · · · × nid and sym(A) is symmetric by Lemma 2.1 in [23]. However,
when d > 2, sym(A) could be reducible.

Theorem 5.8. For a general tensor A ∈ Rn1×···×nd (d > 2), C = sym(A) is reducible.

Proof. When d > 2, we can choose I = r1 ∪ r2. Then ∀i2, . . . , id ∈ IC , there must exist m,n ∈
{2,3, . . . ,d}, k ∈ {3,4, . . . ,d} such that im, in ∈ rk by the principle of drawer. So by the definition
of sym(A), ∀i1 ∈ I , i2, . . . , id ∈ IC , Ci1 i2···id = 0 which means C = sym(A) is reducible. �

Note that when d = 2, it is obvious that the symmetric embedding sym(A) = ([0 A; AT 0]) is
irreducible if A is positive. However, sym(A) is not primitive even if A is positive.

Example 5.4. Suppose A = [1 1] ∈ R1×2, then

sym(A) =
(0 1 1

1 0 0
1 0 0

)
,

which is irreducible but not primitive.
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Theorem 5.9. For a general tensor A ∈ Rn1×···×nd (d � 2), if σ is a singular value of A with the mode-k sin-
gular vector uk (k = 1, . . . ,d), then x = (uT

1 , . . . , uT
d ) is the eigenvector of sym(A) associated with eigenvalue

(d − 1)!σ . Moreover, if x = (uT
1 , . . . , uT

d ) is the eigenvector of sym(A) associated with eigenvalue λ �= 0, then
λ

(d−1)! is A’s singular value with the mode-k singular vector uk (k = 1, . . . ,d).

Proof. From the definition of sym(A), for any x = (uT
1 , . . . , uT

d ) we have

sym(A)xd =
N∑

i=1

C(i)x(i1) · · · x(id)

=
n∑

i=1

A〈i〉u1(i1) · · · ud(id)

= d!(Au1u2 · · · ud).

Since sym(A) is symmetric, it follows that

sym(A)xd−1 = (d − 1)!
⎛
⎜⎝

Au2u3 · · · ud
Au1u3 · · · ud

· · ·
Au1u2 · · · ud−1

⎞
⎟⎠ . (5.3)

If σ is a singular value of A with the mode-k singular vector uk (k = 1, . . . ,d), then x =
(uT

1 , . . . , uT
d ) �= 0 and it satisfies

sym(A)xd−1 = (d − 1)!
⎛
⎜⎝

Au2u3 · · · ud
Au1u3 · · · ud

· · ·
Au1u2 · · · ud−1

⎞
⎟⎠

= (d − 1)!σ

⎛
⎜⎜⎝

u[d−1]
1

u[d−1]
2· · ·

u[d−1]
d

⎞
⎟⎟⎠

= (d − 1)!σ x[d−1].

So the first part of the theorem holds.
On the other hand, if x = (uT

1 , . . . , uT
d ) is the eigenvector of sym(A) associated with eigenvalue

λ �= 0, then by (5.3), we can derive⎛
⎜⎝

Au2u3 · · · ud
Au1u3 · · · ud

· · ·
Au1u2 · · · ud−1

⎞
⎟⎠ = λ

(d − 1)! x[d−1] = λ

(d − 1)!

⎛
⎜⎜⎝

u[d−1]
1

u[d−1]
2· · ·

u[d−1]
d

⎞
⎟⎟⎠ . (5.4)

We will complete our proof as long as we show that for any k ∈ {1, . . . ,d}, uk �= 0. Suppose that there
is a k0 ∈ {1, . . . ,d} such that uk0 = 0. Then by (5.4) one can obtain for any k ∈ {1, . . . ,d}, uk = 0 since
λ �= 0. It conflicts with that x is an eigenvector. So the second part of the theorem holds. �
Corollary 5.2. Assume that A ∈ Rn1×···×nd (d � 2) is nonnegative and ρ(sym(A)) is the spectral radius of
sym(A). Then ρ(sym(A))

(d−1)! is the largest singular value of A.

Remark. As far as we know, few methods were proposed to find the singular values for a general ten-
sor. By Theorem 5.9, we get the relation between singular values of a general tensor and eigenvalues
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Table 1
Numerical results of Algorithm 3.2 for Examples 6.5–6.7.

Example iteout λ vol x

Example 6.5 10 0.3627 4.1234e−05 (0.5598,0.8286,0.0000)T

Example 6.6 9 0.9875 2.1977e−06 (0.0000,0.0000,0.0000,0.0000,1.0000)T

Example 6.7 10 0.4907 9.8460e−06 (0.0000,0.8163,0.0000,0.0001,0.0000,

0.0000,0.0000,0.0000,0.5777,0.0000)T

of its symmetric embedding, which suggests a new way to find singular values of a general tensor,
especially for the largest singular value. However, since sym(A) is not primitive by Theorem 5.8, the
convergence condition of Collatz’s power-type algorithm for computing the spectral radius of a square
tensor does not hold, which means that original power-type Algorithm 3.1 may not apply. Fortunately,
our Algorithms 3.2 and 4.5 would be efficient in this case. By Theorems 3.2 and 4.6, they converge to
the largest singular value for a general nonnegative tensor.

6. Numerical results

In this section, we present some preliminary results to test our methods proposed in Section 3
and Section 4 for finding the spectral radius (largest singular value) of the nonnegative tensors. Here,
we mainly focus on the examples which cannot be solved by the NQZ method proposed in [19]. All
codes were written by Matlab R2012b and all the numerical experiments were done on a laptop with
Intel Core i5-2430M CPU 2.4 GHz and 1.58 GB memory.

In the implementation of Algorithms 3.2 and 3.4, we set the parameters τk = 10−k and εk = 0.1 ×
0.3k−1. And the initial points are all-ones vectors. We use the following criterion:

‖λk−1 − λk‖
λk

� 10−4,

where λk denotes the largest eigenvalue obtained in the kth outer iteration.
First, we give three examples which cannot be solved by the NQZ method (Algorithm 3.1) within

3000 iterations.

Example 6.5. The 3-order 3-dimensional tensor A is given by a(2,1,1) = 0.7943, a(1,2,2) = 0.1656,
a(2,1,3) = 0.6542, and zero elsewhere.

Example 6.6. The 3-order 5-dimensional tensor B is given by b(5,3,1) = 0.1660, b(2,2,2) = 0.5583,
b(1,1,3) = 0.1668, b(5,5,4) = 0.7105, b(5,5,5) = 0.9875, and zero elsewhere.

Example 6.7. The 3-order 10-dimensional tensor C is given by c(6,8,1) = 0.9065, c(9,2,2) = 0.2458,
c(4,4,3) = 0.8551, c(8,7,4) = 0.5242, c(9,2,5) = 0.4325, c(2,2,6) = 0.4034, c(4,4,7) = 0.7353,
c(4,4,8) = 0.0458, c(2,9,9) = 0.9797, c(4,8,10) = 0.8819, and zero elsewhere.

It is worth mentioning that all the three examples are generated randomly with a certain level
of sparsity. The elements are randomly distributed in (0,1). From the viewpoint of numerical exper-
iment, we find that the NQZ method probably does not work when the sparsity of a tensor is near
to 1/nm−1, where m and n denote the order and dimension of a tensor, respectively. The numerical
results are listed in Table 1 and Fig. 2 shows the courses of λ and λ with the outer iteration for
Examples 6.5–6.7. In the table, iteout denotes the outer iteration number of Algorithm 3.2. λ and x
denote the largest eigenvalue and corresponding eigenvector at the final iteration, respectively. And
vol means the l∞ norm of the violation of the solution, i.e. vol = ‖Axm−1 − λx[m−1]‖∞ .

Second, as an application, we use our algorithms to find the largest H-eigenvalue for a class of
m-uniform hypergraph which can be divided into two connective parts. For simplicity, each connective
part is a chain with one point at the joint. For example, a 3-uniform hypergraph V = {1,2, . . . ,8} and
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Fig. 2. The courses of λ and λ for Examples 6.5–6.7.

E = {(1,2,3), (4,5,6), (6,7,8)}. The adjacency tensor AH of an m-uniform hypergraph H = (V , E)

is an mth order n-dimensional symmetric tensor, with AH = (ai1 i2···im ), where ai1 i2···im = 1
(m−1)! if

(i1, i2, . . . , im) ∈ E , and 0 otherwise [6].
For this kind of hypergraph, we use Algorithms 3.1 and 3.2 to find the largest H-eigenvalue of

its adjacency tensor. The results are listed in Table 2. The parameters (m,n1,n2) of the tested cases
are clear from the table. In the table, cpu(s) denotes the time cost when the algorithm stops. If the
algorithm could not stop within 3000 steps, we put a ‘–’ in the corresponding cross. ‘*’ means that
the problem setting is out of the memory of our PC.

Third, by Theorems 5.7 and 5.9, we use Algorithms 3.1 and 3.2 to find the largest singular values
of two rectangular tensors Examples 6.8–6.9 and two general tensors Examples 6.10–6.11. Note that
for the rectangular tensors, the CQZ method (Algorithm 3.3) could not stop within 3000 steps. The
results are listed in Table 3. In the table, σ means the largest singular value at the final iteration.

Example 6.8. The rectangular tensor D ∈ R2×2×3 is given by d(1,1,1) = 0.5815, d(2,2,2) = 0.5394,
d(1,2,3) = 0.8182, and zero elsewhere.



Z. Chen et al. / Linear Algebra and its Applications 439 (2013) 3713–3733 3731
Table 2
Numerical results for hypergraph with two connective parts.

m n1 n2 Algorithm 3.1 Algorithm 3.2

λ vol cpu(s) λ vol cpu(s)

3 3 3 1.0000 0.0000 0.0026 1.0000 6.0000e−09 0.0022
3 3 5 – – – 1.2598 2.2631e−05 0.0895
3 3 11 – – – 1.4808 2.7000e−06 0.0683
3 3 21 – – – 1.5511 4.7873e−07 0.0754
3 11 11 1.4808 1.2934e−08 0.0696 1.4808 3.6441e−07 0.0088
3 11 21 – – – 1.5511 7.5766e−07 0.5441
4 4 4 1.0000 6.9389e−18 0.0025 1.0000 2.2627e−07 0.0022
4 4 10 – – – 1.2720 3.2410e−07 0.1337
4 4 25 – – – 1.3792 1.2095e−07 0.1448
4 10 10 1.2720 2.1550e−09 0.0545 1.2720 9.7333e−08 0.0127
4 10 25 – – – 1.3792 1.2649e−07 0.6414
5 5 5 1.0000 1.7347e−18 0.0028 1.0000 1.0000e−07 0.0027
5 5 9 – – – 1.1487 9.6305e−08 0.3268
5 5 13 – – – 1.2123 1.8314e−08 0.3841
5 5 17 – – – 1.2457 3.0977e−08 0.6878
5 5 25 * * * * * *

Table 3
Numerical results for Examples 6.8–6.11.

Example Algorithm 3.1 Algorithm 3.2

σ vol cpu(s) σ vol cpu(s)

Example 6.8 – – – 0.5815 1.6169e−06 0.3148
Example 6.9 – – – 0.9006 7.1596e−11 0.1641
Example 6.10 – – – 1.1838 3.1149e−05 0.1178
Example 6.11 – – – 0.7961 3.5667e−06 0.1238

Example 6.9. The rectangular tensor E ∈ R3×3×4×4 is given by e(1,1,1,2) = 0.8875, e(1,1,4,4) =
0.9005, e(1,2,1,2) = 0.4480, e(3,1,2,3) = 0.2689, e(3,3,2,2) = 0.5538, and zero elsewhere.

Example 6.10. The general tensor F ∈ R2×3×4 is given by f (2,3,1) = 0.4666, f (2,1,2) = 0.1490,
f (2,3,3) = 0.9786, f (1,2,4) = 0.9894, and zero elsewhere.

Example 6.11. The general tensor G ∈ R3×4×5×6 is given by g(1,2,1,3) = 0.1159, g(1,2,2,4) =
0.3596, g(2,1,2,6) = 0.3061, g(2,2,4,2) = 0.3022, g(2,3,5,1) = 0.5614, g(3,4,3,5) = 0.7961, and
zero elsewhere.

Note that the largest singular values of D and E are equal to the largest eigenvalues of CD and CE
in Examples 6.8–6.9, while the largest singular value of F is half of the largest eigenvalue of sym(F)

in Example 6.9 and the largest singular value of G is one-sixth of the largest eigenvalue of sym(G) in
Example 6.10.

Moreover, by reformulation, we test Algorithm 3.2 on some random 3-order nonnegative tensors.
All elements are randomly distributed in (0,1). The numerical results are reported in Table 4. The
parameters (d1,d2,d3) denote the dimensions of the tested cases. For each case, we simulate 100
times to obtain the average of the largest singular value, the violation and the CPU time.

Finally, two comparisons between our algorithms are presented. One is the comparison between
Algorithm 3.2 and Algorithm 4.5 for Example 6.12. The other one is between Algorithm 3.2 and Algo-
rithm 3.4 for Example 6.8. The numerical results are listed in Tables 5 and 6. In Table 5, itetotal means
the total iterations when the algorithm stops.

Example 6.12. The 3-order 3-dimensional tensor H is given by h(1,1,1) = 0.3785, h(2,2,2) = 0.9328,
h(3,3,3) = 0.4293, h(1,2,1) = 0.3942, and zero elsewhere.
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Table 4
Numerical results for random 3-order tensors.

d1 d2 d3 Algorithm 3.2

σ vol cpu(s)

5 10 15 41.4081 3.0414e−05 0.0149
5 10 20 50.1316 2.2169e−05 0.0158
5 10 30 65.6525 4.6225e−06 0.0163
5 10 50 92.2702 6.1572e−06 0.0207
5 10 100 146.5652 1.0052e−05 0.0368

10 20 30 165.2803 5.9362e−05 0.0230
10 20 50 232.0583 7.7809e−06 0.0266
10 20 100 368.3402 1.1958e−05 0.0410
20 40 60 660.3639 1.1794e−04 0.0424
20 40 80 800.0576 1.0049e−04 0.0517
20 40 100 928.2820 1.5366e−05 0.0638
40 50 60 1.2163e+03 1.4998e−04 0.0522
40 50 80 1.4736e+03 1.6877e−04 0.0706
40 50 100 1.7099e+03 1.8670e−04 0.0967
50 60 80 1.9309e+03 1.8949e−04 0.0881
50 60 100 2.2405e+03 2.0799e−04 0.1211
60 80 100 3.0652e+03 2.3910e−04 0.1723

Table 5
The comparison of Algorithm 3.2 and Algorithm 4.5 for Example 6.12.

Algorithm 3.2 Algorithm 4.5

itetotal 202 482
cpu(s) 0.008569 0.040912
λ 0.9328 0.9328
x (0.5796,0.8149,0.0000)T (0.5796,0.8149,0.0000)T

Table 6
The comparison of Algorithm 3.2 and Algorithm 3.4 for Example 6.8.

Algorithm 3.2 for CE Algorithm 3.4 for E
iteout 11 11
cpu(s) 0.043224 0.103781
σ 0.5815 0.5815
x (0.7071,0.0000)T (0.7071,0.0000)T

y (0.7071,0.0000,0.0047)T (0.7071,0.0000,0.0047)T

From Tables 1–6, we have the following observations:

• From Table 1, we see that the inexact power-type algorithm can solve the case efficiently while
the NQZ method doesn’t work. From Table 2, we see that for a class of hypergraph, our method
can also perform well while the NQZ method works only for the case n1 = n2.

• From Table 3, we see that by reformulation, the inexact power-type algorithm works well for the
corresponding square tensors while the NQZ method cannot terminate within 3000 steps. And
Table 4 shows that our method could also perform well for random nonnegative general tensors.
We see that the vol is of magnitude 10−4 when the scale of the problem becomes large. That is
because the tolerance is 10−4.

• From Table 5, we see that the one-step inner iteration power-type algorithm costs more time
than the inexact power-type algorithm for finding the largest eigenvalue. In practice, the one-step
inner iteration power-type algorithm does not perform well in some cases.

• From Table 6, we see that for rectangular tensors, it may be more efficient to find the largest
singular value by reformulation technique than to solve the problem directly.
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