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Positive Semi-Definiteness and Sum-of-Squares Property

of Fourth Order Four Dimensional Hankel Tensors

Yannan Chen∗ Liqun Qi† Qun Wang ‡

February 18, 2016

Abstract

A symmetric positive semi-definite (PSD) tensor, which is not sum-of-squares (SOS),
is called a PSD non-SOS (PNS) tensor. Is there a fourth order four dimensional

PNS Hankel tensor? The answer for this question has both theoretical and practical
significance. Under the assumptions that the generating vector v of a Hankel tensor
A is symmetric and the fifth element v4 of v is fixed at 1, we show that there are
two surfaces M0 and N0 with the elements v2, v6, v1, v3, v5 of v as variables, such that
M0 ≥ N0, A is SOS if and only if v0 ≥ M0, and A is PSD if and only if v0 ≥ N0,
where v0 is the first element of v. If M0 = N0 for a point P = (v2, v6, v1, v3, v5)>, there
are no fourth order four dimensional PNS Hankel tensors with symmetric generating
vectors for such v2, v6, v1, v3, v5. Then, we call such P a PNS-free point. We prove
that a 45-degree planar closed convex cone, a segment, a ray and an additional point
are PNS-free. Numerical tests check various grid points and report that they are all
PNS-free.
Key words: Hankel tensor, generating vector, sum of squares, positive semi-definiteness,
PNS-free.
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1 Introduction

In 1888, young Hilbert [10] proved that for homogeneous polynomials, only in the fol-

lowing three cases, a positive semi-definite (PSD) form definitely is a sum-of-squares (SOS)

polynomial: 1) m = 2; 2) n = 2; 3) m = 4 and n = 3, where m is the degree of the

polynomial and n is the number of variables. Hilbert proved that in all the other possible

combinations of n and even m, there are PSD non-SOS (PNS) homogeneous polynomials.

The most well-known PNS homogeneous polynomial is the Motzkin function [21] with m = 6

and n = 3. Other examples of PNS homogeneous polynomials was found in [1, 5, 6, 27].

A homogeneous polynomial is uniquely corresponding to a symmetric tensor [25]. For a

symmetric tensor, m is its order and n is its dimension. One important class of symmetric

tensors is the Hankel tensor. Hankel tensors have important applications in signal processing

[2, 3, 4], automatic control [28], and geophysics [22, 30]. For example, Papy et al. [23, 24]

proposed a novel Hankel tensor model to to analyze time-domain signals in nuclear magnetic

resonance spectroscopy, which is used for brain tumour detection [31]. A fast computational

framework for products of a Hankel tensor and vectors is addressed in Ding et al. [7]. In

geophysics, Trickett et al. [30] established a new multidimensional seismic trace interpolator

by using Hankel tensors.

In mathematical science, Luque and Thibon [20] studied the Hankel hyperdeterminants.

Xu [32] studied the spectra of Hankel tensors and gave some upper bounds and lower bounds

for the smallest and the largest eigenvalues. In [26], two classes of PSD Hankel tensors were

identified. They are even order strong Hankel tensors and even order complete Hankel

tensors. It was proved in [16] that complete Hankel tensors are strong Hankel tensors,

and even order strong Hankel tensors are SOS tensors. It was also shown there that there

are SOS Hankel tensors and PSD Hankel tensors, which are not strong Hankel tensors.

Thus, a question was raised in [16]: Are all PSD Hankel tensors SOS tensors? If there are

no PSD non-SOS Hankel tensors, the problem for determining a given even order Hankel

tensor is PSD or not can be answered by solving a semi-definite linear programming problem

[16, 13, 14].

We may call the problem raised by the above question as the Hilbert-Hankel problem. In

a certain sense, it is the Hilbert problem with a Hankel constraint. According to Hilbert [10,

27], one case with low values of m and n, in which there are PNS homogeneous polynomials,

is that m = 6 and n = 3. In [15], the Hilbert-Hankel problem with order six and dimension

three was studied. Four special cases were analyzed. Thousands of random examples were

checked. No PNS Hankel tensors of order six and dimension three were found in [15].

Theoretically, it is still an open problem whether there are PNS Hankel tensors of order six

and dimension three or not.
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According to Hilbert [10, 27], another case with low values of m and n, in which there are

PNS homogeneous polynomials, is that m = n = 4. In this paper, we consider this special

case in a Hankel context. Let v = (v0, v1, . . . , v12)
> ∈ <13. A fourth order four dimensional

Hankel tensor A = (ai1i2i3i4) is defined by

ai1i2i3i4 = vi1+i2+i3+i4−4,

for i1, i2, i3, i4 = 1, 2, 3, 4. The corresponding vector v that defines the Hankel tensor A is

called the generating vector of A. For x = (x1, x2, x3, x4)
> ∈ <4, a Hankel tensor A

uniquely defines a Hankel polynomial

f(x) ≡ Ax⊗4 =
4∑

i1,i2,i3,i4=1

ai1i2i3i4xi1xi2xi3xi4 =
4∑

i1,i2,i3,i4=1

vi1+i2+i3+i4−4xi1xi2xi3xi4 . (1)

If f(x) ≥ 0 for all x ∈ <4, the Hankel tensor A is called positive semi-definite (PSD).

If f(x) can be represented as a sum of squares of quadratic homogeneous polynomials, the

Hankel tensor A is called sum-of-squares (SOS). Clearly, A is PSD if it is SOS.

In the next section, we present some necessary conditions for the positive semi-definiteness

of fourth order four dimensional Hankel tensors.

We may see that the role of vj is symmetric in f(x). In Section 3, we assume that

vj = v12−j (2)

for j = 0, . . . , 5. Under this assumption, by the results of Section 2, if A is PSD, we have

v0 = v12 ≥ 0 and v4 = v8 ≥ 0. Moreover, if v4 = v8 = 0 and A is PSD, A is SOS. Thus, we

may only consider the case that v4 = v8 > 0. Since A is PSD or SOS or PNS if and only if

αA is PSD or SOS or PNS respectively, where α is an arbitrary positive number, we may

simply assume that

v4 = v8 = 1. (3)

Next, we show that there is a function η(v5, v6) such that η(v5, v6) ≤ 1 if A is PSD. We

propose that there are two functions M0(v2, v6, v1, v3, v5) ≥ N0(v2, v6, v1, v3, v5), defined for

η(v5, v6) < 1, such that A is SOS if and only if v0 ≥ M0, and A is PSD if and only

if v0 ≥ N0. If M0 = N0 for some v2, v6, v1, v3, v5, then there are no fourth order four

dimensional PNS Hankel tensors for such v2, v6, v1, v3, v5 under the symmetric assumption

(2). We call such a point P = (v2, v6, v1, v3, v5)
> ∈ <5 a PNS-free point of fourth order

four dimensional Hankel tensors, or simply a PNS-free point. We call the set of points in

<5, satisfying η(v5, v6) < 1, the effective domain of fourth order four dimensional Hankel

tensors, or simply the effective domain, and denote it by S. We show that if all the points

in S are PNS-free, then there are no fourth order four dimensional PNS Hankel tensors with

symmetric generating vectors.
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Figure 1: The segment L, the planar closed convex cone C, the ray R and the point A.

In Section 4, we show that a point P in S is PNS-free if there is a value M , such

that when v0 = M , f0(x) ≡ f(x) has an SOS decomposition, and f0(x̄) = 0 for x̄ =

(x̄1, x̄2, x̄3, x̄4)
> ∈ <4 with x̄2

1 + x̄2
4 6= 0. We call such a value M , such an SOS decomposi-

tion of f0(x), and such a vector x̄ the critical value, the critical SOS decomposition

and the critical minimizer of A at P , respectively. Then, we show that the segment

L = {(v2, v6, v1, v3, v5)
> = (1, 1, t, t, t)> : t ∈ [−1, 1]} is PNS-free. We conjecture that this

segment is the minimizer set of both M0 and N0. Then, we show that the 45-degree pla-

nar closed convex cone C = {(v2, v6, v1, v3, v5)
> = (a, b, 0, 0, 0)> : a ≥ b ≥ 1}, the ray

R = {(v2, v6, v1, v3, v5)
> = (a, 0, 0, 0, 0)> : a ≤ 0} and the point A = (1, 0, 0, 0, 0)> are also

PNS-free. We illustrate L, C, R and A in Figure 1.

In Section 5, numerical tests check various grid points, and find that M0 = N0 there.

Thus, they are also PNS-free. Therefore, numerical tests indicate that there are no fourth

order four dimensional PNS Hankel tensors with symmetric generating vectors.

Some final remarks are made in Section 6.

2 Fourth Order Four Dimensional Hankel Tensors
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We write out (1) explicitly in terms of the coordinates of its generating vector v:

f(x) = v0x
4
1 + 4v1x

3
1x2 + v2(4x

3
1x3 + 6x2

1x
2
2) + v3(4x1x

3
2 + 4x3

1x4 + 12x2
1x2x3)

+ v4(x
4
2 + 6x2

1x
2
3 + 12x1x

2
2x3 + 12x2

1x2x4) + v5(4x
3
2x3 + 12x1x2x

2
3 + 12x1x

2
2x4 + 12x2

1x3x4)

+ v6(4x1x
3
3 + 4x3

2x4 + 6x2
1x

2
4 + 6x2

2x
2
3 + 24x1x2x3x4) (4)

+ v7(4x2x
3
3 + 12x2

2x3x4 + 12x1x
2
3x4 + 12x1x2x

2
4) + v8(x

4
3 + 6x2

2x
2
4 + 12x2x

2
3x4 + 12x1x3x

2
4)

+ v9(4x
3
3x4 + 4x1x

3
4 + 12x2x3x

2
4) + v10(4x2x

3
4 + 6x2

3x
2
4) + 4v11x3x

3
4 + v12x

4
4.

The following theorem gives some necessary conditions for fourth order four dimensional

Hankel tensors being PSD. Particularly, we note that four key elements of its generating

vector v0, v4, v8, v12 must be nonnegative.

Theorem 1 Suppose that A = (ai1i2i3i4) is a Hankel tensor generated by its generating

vector v = (v0, v1, . . . , v12)
> ∈ <13. If A is a PSD (or positive definite, or SOS, or strong)

Hankel tensor, then we have

vi ≥ 0, (5)

for i = 0, 4, 8, 12,

vi + 6vi+2 + vi+4 ≥ 4|vi+1 + vi+3|, (6)

for i = 0, 4, 8,

vi + 6vi+4 + vi+8 ≥ 4|vi+2 + vi+6|, (7)

for i = 0, 4, and

v0 + 6v6 + v12 ≥ 4|v3 + v9|. (8)

Proof Let ek be the kth column of a 4-by-4 identity matrix, for k = 1, 2, 3, 4. Substituting

x = ek to (4) for k = 1, 2, 3, 4, by f(ek) ≥ 0, we have (5) for i = 0, 4, 8, 12.

Substituting x = ek + ek+1 to (4) for k = 1, 2, 3, by f(ek + ek+1) ≥ 0, we have

vi + 4vi+1 + 6vi+2 + 4vi+3 + vi+4 ≥ 0,

for i = 0, 4, 8. Substituting x = ek−ek+1 to (4) for k = 1, 2, 3, by f(ek−ek+1) ≥ 0, we have

vi − 4vi+1 + 6vi+2 − 4vi+3 + vi+4 ≥ 0,

for i = 0, 4, 8. Combining these two inequalities, we have (6) for i = 0, 4, 8.

Similarly, by f(ek + ek+2) ≥ 0 and f(ek− ek+2) ≥ 0 for k = 1, 2, we have (7) for i = 0, 4.

By f(e1 + e4) ≥ 0 and f(e1 − e4) ≥ 0, we have (8). The theorem is proved. 2

Whereafter, we say that a PSD Henkel tensor is SOS if there is a key element of its

generating vector v0, v4, v8, v12 vanishes. Before we show this, the following lemma is useful.
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Lemma 1 If a polynomial in one variable is always nonnegative:

p(t) = a0t
2k+1 + a1t

2k + · · ·+ a2k+1 ≥ 0, ∀ t ∈ <.

Then a0 = 0.

Proof If a0 > 0, we let t → −∞ and get p(t) → −∞, which contradicts that p(t) is

nonnegative.

If a0 < 0, we let t → +∞ and get p(t) → −∞, which also contradicts that p(t) is

nonnegative.

Hence, there must be a0 = 0. 2

Theorem 2 Suppose the fourth order four dimensional Hankel tensor A is PSD and its

generating vector is v. If v0v12 = 0, then vj = 0, for j = 1, . . . , 11, and A is SOS.

Proof Without loss of generality, we assume that v0 = 0.

To prove v1 = 0, we take x1 = (t, 1, 0, 0)>. Then, the homogeneous polynomial (4)

reduces to

f(x1) = 4v1t
3 + 6v2t

2 + 4v3t + v4.

From Lemma 1, we have v1 = 0 since f(x1) is nonnegative. Similarly, we can prove v2 =

v3 = 0 if we take x2 = (t, 0, 1, 0)> and x3 = (t, 0, 0, 1)> respectively.

From Theorem 1, we know v4 ≥ 0. When we take x4 = (t2, t,− 1√
6
, 0)>, the homogeneous

polynomial (4) reduces to

f(x4) = −(2
√

6− 2)v4t
4 +O(t3).

Let t → ∞. Since f(x4) is always nonnegative, we have v4 ≤ 0. Hence, there must be

v4 = 0.

If we take x5 = (t3, 0, t, 1)>, the homogeneous polynomial (4) is

f(x5) = 12v5t
7 +O(t6).

From Lemma 1, we have v5 = 0 since f(x5) is nonnegative.

We take x6 = (t, 0, 1, 0)>. Then, the homogeneous polynomial (4) is

f(x6) = 4v6t + v8.

From Lemma 1, we have v6 = 0 since f(x6) is nonnegative. Similarly, we can prove v7 = 0

when we take x7 = (0, t, 1, 0)>.

We take x8 = (t4, 0, t, 1)>. Then we have

f(x8) = 12v8t
5 +O(t4).
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From Lemma 1, we have v8 = 0 since the polynomial f(x8) is nonnegative.

We could prove v9 = 0, v10 = 0 and v11 = 0 if we takes x9 = (t, 0, 0, 1)>, x10 = (0, t, 0, 1)>

and x11 = (0, 0, t, 1)>, respectively.

Finally, since v0 = v1 = · · · = v11 = 0, we have

f(x) = v12x
4
4.

By Theorem 1, we get v12 ≥ 0. Hence, the Hankel tensor A is obviously SOS. 2

Theorem 3 Suppose the fourth order four dimensional Hankel tensor A is PSD and its

generating vector is v. If v4v8 = 0, then vj = 0 for j = 1, 2, . . . , 11, and A is SOS.

Proof By symmetry, we only need to prove this theorem under the condition v4 = 0.

If we take x1 = (1, t, 0, 0)>, the homogeneous polynomial (4) reduces to

f(x1) = 4v3t
3 + 6v2t

2 + 4v1t + v0.

From Lemma 1, we have v3 = 0 since f(x1) is nonnegative. Similarly, we can prove v5 =

v6 = 0 if we take x2 = (0, t, 1, 0)> and x3 = (0, t, 0, 1)> respectively.

To prove v7 = 0, we take x4 = (0, t2, t, 1)>. Then, the homogeneous polynomial (4)

reduces to

f(x4) = 16v7t
5 +O(t4).

From Lemma 1, we have v7 = 0 since f(x4) is nonnegative.

From Theorem 1, we know v8 ≥ 0. When we take x5 = (0,−t2, t, 1)>, the homogeneous

polynomial (4) reduces to

f(x5) = −5v8t
4 +O(t3).

Let t → ∞. Since f(x5) is always nonnegative, we have v8 ≤ 0. Hence, there must be

v8 = 0.

If we take x6 = (0, 0, t, 1)>, the homogeneous polynomial (4) is

f(x6) = 4v9t
3 +O(t2).

From Lemma 1, we have v9 = 0 since f(x6) is nonnegative. Similarly, we could prove v10 = 0

and v11 = 0 if we takes x7 = (0, t, 0, 1)> and x8 = (0, 0, t, 1)>, respectively.

The prove of v1 = 0 and v2 = 0 could be similarly obtained if we take x9 = (1, t, 0, 0)>

and x10 = (1, 0, t, 0)> respectively.

Finally, since vj = 0 for j = 1, . . . , 11, we have

f(x) = v0x
4
1 + v12x

4
4.

By Theorem 1, we get v0 ≥ 0 and v12 ≥ 0. Hence, the Hankel tensor A is obviously SOS. 2

7



3 Symmetric Generating Vectors

Now, we make assumptions (2) and (3). At the beginning, we consider a mini problem

which is the Hankel polynomial with x1 = x4 = 0. This problem helps us to analyze the

effective domain of two important surfaces M0 and N0.

3.1 Function η

We consider a two variable quartic polynomial

g(y1, y2) = αy4
1 + 4βy3

1y2 + 6γy2
1y

2
2 + 4βy1y

3
2 + αy4

2.

Its PSD property is completely characterized by the following theorem.

Theorem 4 The quartic polynomial g(y1, y2) is PSD if and only if

α ≥ η(β, γ) :=





4|β| − 3γ if γ ≤ |β|,
3γ −

√
9γ2 − 8β2

2
if γ > |β|.

Proof First, if g(y1, y2) is PSD, from g(1,−1) ≥ 0 and g(1, 1) ≥ 0, we have α ≥ 4|β| − 3γ.

Thus, in any case, η(β, γ) ≥ 4|β| − 3γ.

Second, suppose that α ≥ 4|β| − 3γ. If γ ≤ 0, we get

g(y1, y2) = (α− 4|β|+ 3γ)(y4
1 + y4

2) + 4|β|(y1 + y2)
2(y2

1 − y1y2 + y2
2)− 3γ(y2

1 − y2
2)

2 ≥ 0.

If 0 < γ ≤ |β|, we rewrite g(y1, y2) as follows

g(y1, y2) = (α− 4|β|+ 3γ)(y4
1 + y4

2) + (y1 + y2)
2
[
(4|β| − 3γ)(y2

1 + y2
2)− (4|β| − 6γ)y1y2

]
.

Since (4|β| − 6γ)2 − 4(4|β| − 3γ)2 = −48|β|(|β| − γ) ≤ 0, it yields that g(y1, y2) ≥ 0.

Finally, we consider the case γ > |β|. Let ᾱ =
3γ−
√

9γ2−8β2

2
> 0. Then, we have

g(y1, y2) = (α− ᾱ)(y4
1 + y4

2) + ᾱ

(
y2

1 +
2β

ᾱ
y1y2 + y2

2

)2

.

Obviously, if α ≥ ᾱ, g(y1, y2) is SOS and PSD.

Next, we show that y2
1 + 2β

ᾱ
y1y2 + y2

2 = 0 has nonzero real roots. For the convenience, we

denote t = y1

y2
and prove that t2 + 2β

ᾱ
t + 1 = 0 has real roots. It is easy to see that t = 0 is

not its root. Since γ > |β|, we have

|β|
ᾱ

=
2|β|

3γ −
√

9γ2 − 8β2
=

2|β|(3γ +
√

9γ2 − 8β2)

8β2
≥ 8|β|γ

8β2
≥ 1.
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Hence, |β| ≥ ᾱ. The discriminant of the quadratic in t is

(
2β

ᾱ

)2

− 4 = 4
β2 − ᾱ2

ᾱ2
≥ 0.

Therefore, there are nonzero (y1, y2) such that g(y1, y2) = (α − ᾱ)(y4
1 + y4

2). Obviously, if

g(y1, y2) is PSD, we have α ≥ ᾱ. Thus, we say η(β, γ) = ᾱ if γ > |β|. 2

Then we have another necessary condition for a fourth order four dimensional Hankel

tensor A to be PSD under assumptions (2) and (3).

Corollary 1 Under assumptions (2) and (3), if A is PSD, then η(v5, v6) ≤ 1.

Proof Let x1 = x4 = 0, x2 = y1 and x3 = y2. By Theorem 4, we have the conclusion. 2

3.2 Surfaces M0 and N0

We now introduce the key idea of this paper, to establish two surface M0 and N0, in the

following theorem.

Theorem 5 Suppose that assumptions (2) and (3) hold. Then, there are two functions

M0(v2, v6, v1, v3, v5) ≥ N0(v2, v6, v1, v3, v5) > 0 defined for

η(v5, v6) < 1, (9)

such that A is SOS if and only if v0 ≥ M0(v2, v6, v1, v3, v5), and A is PSD if and only if

v0 ≥ N0(v2, v6, v1, v3, v5). If for all v5 and v6 satisfying (9), we have M0(v2, v6, v1, v3, v5) =

N0(v2, v6, v1, v3, v5), then there are no fourth order four dimensional PNS Hankel tensors

under assumption (2).

Proof Using assumptions (2) and (3), we rewrite (4) as

f(x) = v0(x
4
1 + x4

4) + v̄4(x
4
2 + x4

3) + f1(x) + f2(x),

where

f1(x) = η(v5, v6)(x
4
2 + x4

3) + 4v5(x
3
2x2 + x2x

3
3) + 6v6x

2
2x

2
3

and

v̄4 = 1− η(v5, v6).

Then v̄4 > 0 by (9). By Theorem 4, f1(x) is PSD. Since f1(x) has only two variables, it is

also SOS by Hilbert [10, 27].

We now consider terms in f2(x). Each monomial in f2(x) has at least one factor as a

power of x1 or x4. We may order the monomials of f2(x). For example, consider 12v5x1x2x
2
3.

9



Assume that it is ordered as the kth monomial of f2(x). Then by the arithmetic-geometric

inequality, we may see that

−12v5x1x2x
2
3 ≤ 3|v5|

(
1

ε3
k

x4
1 + εkx

4
2 + 2εkx

4
3

)
,

where εk is a small positive number. We may let εk be small enough such that the sum of

the coefficients for x4
2 on the right hand side of the above inequality for all possible k is less

than v̄4. By symmetry, the sum of the coefficients for x4
3 on the right hand side of the above

inequality for all possible k is less than v̄4. We see that

12v5x1x2x
2
3 + 3|v5|

(
1

ε3
k

x4
1 + εkx

4
2 + 2εkx

4
3

)

is a PSD diagonal minus tail form. By [8], it is SOS. Thus, as long as v0 is big enough, when

(9) is satisfied, f(x) is SOS. From this, we see that M0 and N0 exist, such that they are

defined as long as (9) is satisfied, M0 ≥ N0, A is SOS if and only if v0 ≥ M0, and A is PSD

if and only if v0 ≥ N0.

By Theorem 4, we now only need to consider the case that η(v5, v6) = 1. Suppose that

for all v5 and v6 satisfying (9), we have M0(v2, v6, v1, v3, v5) = N0(v2, v6, v1, v3, v5). Since the

sets for PSD Hankel tensors and SOS Hankel tensors are closed [16], this implies that for all

v5 and v6 satisfying η(v5, v6) = 1, we also have M0(v2, v6, v1, v3, v5) = N0(v2, v6, v1, v3, v5), as

long as N0 is defined there. Thus, in this case, by Theorem 3, there are no fourth order four

dimensional PNS Hankel tensors under assumption (2). 2

For the variables of M0 and N0, we put v2 and v6 before v1, v3 and v5, as v2, v6 play a

more important role in the PSD and SOS properties of A, comparing with v1, v3 and v5.

We now regard P = (v2, v6, v1, v3, v5)
> as a point in <5. If M0(P ) = N0(P ), P is called

a PNS-free point. We call

S = {(v2, v6, v1, v3, v5)
> ∈ <5 : η(v5, v6) < 1}

the effective domain. Theorem 5 says that if all the points in the effective domain are PNS-

free, then there are no fourth order four dimensional PNS Hankel tensors with symmetric

generating vectors. In the next sections, we will study more on PNS-free points.

4 Theoretical Proofs of Some PNS-Free Regions

4.1 Critical SOS Decomposition

10



For the convenience, we present formally three ingredients used in theoretical proofs of

this section. If a point belongs to the effective domain and enjoys these ingredients, it is

PNS-free.

Definition 1 Suppose that assumptions (2) and (3) hold and P = (v2, v6, v1, v3, v5)
> ∈

S. Suppose that there is a number M such that A is SOS if v0 = M , and a point x̄ =

(x̄1, x̄2, x̄3, x̄4)
> ∈ <4 such that x̄2

1 + x̄2
4 > 0 and f0(x̄) = 0, where f0(x) ≡ f(x) with v0 = M .

Then we call M the critical value of A at P , the SOS decomposition f0(x) the critical

SOS decomposition of A at P , and x̄ the critical minimizer of A at P .

Theorem 6 Let P ∈ S. Then P is PNS-free if A has a critical value M , a critical SOS

decomposition f0(x) and a critical minimizer x̄ at P .

Proof Suppose that A has a critical value M , a critical SOS decomposition f0(x) and a

critical minimizer x̄ at P . Then we have M ≥ M0(P ) by the definition of M0. If v0 < M ,

then

f(x̄) = (v0 −M)(x̄4
1 + x̄4

4) + f0(x̄) < 0.

This implies that N0(P ) ≥ M by the definition of N0. But N0(P ) ≤ M0(P ). Thus,

M0(P ) = N0(P ) = M , i.e., P is PNS-free. 2

We believe that all the effective domain S is PNS-free. In the next four subsections, we

theoretically prove that some regions of S are PNS-free.

4.2 A PNS-Free Segment

Professor Man Kam Kwong pointed out that N0(1, 1, 0, 0, 0) = 1, N0(2, 1, 0, 0, 0) = 8

and N0(4, 0, 0, 0, 0) = 441, are integers. See also Table 1 in Section 6. He suggested us to

considered these three points more carefully. Stimulated by Prof. Kwong’s comments, we

derive the results of Subsections 4.2 and 4.3.

We have the following theorem.

Theorem 7 Suppose that P = (v2, v6, v1, v3, v5)
> = (1, 1, t, t, t)>, where t ∈ [−1, 1]. Then,

P is PNS-free, with the critical value 1 and the critical minimizer (1, 0,−1, 0)>.

Proof For P = (v2, v6, v1, v3, v5)
> = (1, 1, t, t, t)>, where t ∈ [−1, 1], and M = 1, we have

f0(x) =
1 + t

2
(x1 + x2 + x3 + x4)

4 +
1− t

2
(x1 − x2 + x3 − x4)

4

is SOS, and

f0(1, 0,−1, 0) = 0.

Hence, P is PNS-free. 2

By numerical experiments, we have the following conjecture.

11



Conjecture 1 The segment L = {(v2, v6, v1, v3, v5)
> = (1, 1, t, t, t)> : t ∈ [−1, 1]}, is the

minimizer set of both M0 and N0.

4.3 A PNS-free Planar Cone

Theorem 8 Suppose that P = (v2, v6, v1, v3, v5)
> = (v2, v6, 0, 0, 0)> with v2 ≥ v6 ≥ 1. Then,

P is PNS-free.

If we parameterize v6 = b and v2 = (θ+3b−1)(θ2 +(3b−2)θ−3b+4). Then, the critical

value at P is

M = (θ + 3b− 1)2(3θ2 + (10b− 6)θ + 3b2 − 10b + 9)

and the critical minimizer is x̄ = (1, 0,−(θ + 3b− 1), 0)>.

Proof Note that for v2 ≥ v6 ≥ 1, we may let v6 = b and v2 = (θ+3b−1)(θ2+(3b−2)θ−3b+4),

where the parameter

θ ≥ θ̄ = (b− 1)
1
3 (b + 1)

2
3 + (b− 1)

2
3 (b + 1)

1
3 − 2b + 1.

In fact, θ̄ is the largest real root of the cubic equation v2 − v6 = 0.

With the critical value as M = (θ +3b− 1)2(3θ2 +(10b− 6)θ +3b2− 10b+9), the critical

SOS decomposition at P is as follows

f0(x) =
1

v0

(v0x
2
1 + 2v2x1x3 + α1x

2
3)

2 +
1

v0

(v0x
2
4 + 2v2x2x4 + α1x

2
2)

2

+ α2((θ + 3b− 1)x1x3 + x2
3)

2 + α2((θ + 3b− 1)x2x4 + x2
2)

2

+
6

b
(x1x2 + x3x4 + bx2x3 + bx1x4)

2 +
6(b2 − 1)

b
(x1x2 + x3x4)

2

+ 6(v2 − b)[x2
1x

2
2 + x2

3x
2
4],

where the involved parameters are as follows:

α1 = −(θ2 + (4b− 2)θ + 3b2 − 4b + 1),

α2 =
2(θ2 + (4b− 2)θ + b2 − 4b + 4)

3θ2 + (10b− 6)θ + 3b2 − 10b + 9
.

Since f0(1, 0,−(θ+3b−1), 0) = 0, the corresponding critical minimizer is x̄ = (1, 0,−(θ+

3b− 1), 0)>. Hence, P = (v2, v6, 0, 0, 0)> with v2 ≥ v6 ≥ 1 is PNS-free. 2

The cone C = {(v2, v6, v1, v3, v5)
> = (a, b, 0, 0, 0)> : a ≥ b ≥ 1} is a 45-degree planar

closed convex cone. Its end point is just the mid point of the segment L = {(v2, v6, v1, v3, v5)
> =

(1, 1, t, t, t)> : t ∈ [−1, 1]}, discussed in the last subsection.
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4.4 A PNS-Free Ray

In this subsection, we show that the ray R = {(v2, v6, v1, v3, v5)
> = (a, 0, 0, 0, 0)> : a ≤

0} is PNS-free. Let a = −ρ, where ρ ≥ 0 is a constant. We report that, at a point

P = (−ρ, 0, 0, 0, 0)>, A has the critical value

M = 3
3

√
θ1 + 32

√
θ2 +

θ3

3 3
√

θ1 + 32
√

θ2

+ 6ρ2 + 138ρ + 609,

where

θ1 := −ρ6 + 272ρ5 + 12608ρ4 + 204032ρ3 + 1558528ρ2 + 5750784ρ + 8290304,

θ2 := −(ρ + 6)2(ρ + 4)3(ρ2 + 4ρ− 16)3,

θ3 := 9(ρ + 8)(ρ3 + 152ρ2 + 1728ρ + 5120).

The function f0(x) enjoys a critical SOS decomposition:

f0(x) =
5∑

k=1

q2
k(x),

where

q1(x) = x2
3 + 6x2x4 + α1x

2
1 + α2x

2
4,

q2(x) = x2
2 + 6x1x3 + α2x

2
1 + α1x

2
4,

q3(x) = α3x2x4 + α4x
2
1 + α5x

2
4,

q4(x) = α3x1x3 + α5x
2
1 + α4x

2
4,

q5(x) = α6x
2
1 − α6x

2
4.

The involved parameters are listed as follows:

α1 = −(ρ + 23)M1(−ρ)− 9ρ3 − 21ρ2 + 105ρ + 9

M1(−ρ) + 3ρ2 + 6ρ− 33
,

α2 = −3ρ,

α3 =
√
−30− 2α15,

α4 =
6(1− α15)

α33

,

α5 =
16ρ

α33

,

α6 =

√
−6ρα15 −

192ρ(α15 − 1)

α2
33

.
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Theorem 9 Suppose that assumptions (2) and (3) hold. Then, for any constant ρ ≥ 0,

P = (−ρ, 0, 0, 0, 0)> is PNS-free.

Proof We only need to prove that there is a critical minimizer. Let

x̄ = (α33, α35 + α36,−α35 − α36,−α33)
>.

Then, we get q3(x̄) = q4(x̄) = q5(x̄) = 0 immediately. Moreover, we have

q1(x̄) = q2(x̄) = (α35 + α36)
2 − 6(α35 + α36)α33 + α15α

2
33 − 3ρα2

33 = 0.

We check the validation of the last equality by a mathematical software Maple. Hence,

f0(x̄) = 0 and x̄ is a critical minimizer at P . Hence, we get the conclusion by Theorem 6.

2

4.5 A PNS-Free Point

We now show that the point A = (1, 0, 0, 0, 0)> is PNS-free. In fact, the critical value at

A is

M = 477 + 3
3

√
3906351 + 9120

√
57 +

74403
3
√

3906351 + 9120
√

57
.

The critical SOS decomposition of f0(x) is as follows

f0(x) =
7∑

k=1

qk(x)2,

where

q1(x) = x2
3 + 6x2x4 − 21x2

1 + α1x
2
4,

q2(x) = x2
2 + 6x1x3 − 21x2

4 + α1x
2
1,

q3(x) = 2
√

3x2x4 + α2x
2
1 + α3x

2
4,

q4(x) = 2
√

3x1x3 + α2x
2
4 + α3x

2
1,

q5(x) = α4x
2
1 − α4x

2
4,

q6(x) = β1x1x2 + β2x1x4,

q7(x) = β1x3x4 + β2x1x4.
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Some involved parameters are listed as follows:

β1 =

√
−6(M2 − 36)(3M2 − 4336)√

M2
2 − 1302M2 + 25056

,

β2 =
β1(3β

2
1 + 116)

β2
1 + 12

,

α1 = 3− 1

2
β2

1 ,

α2 = 22
√

3−
√

3

6
β1β2,

α3 = −8
√

3

3
+

√
3

2
β2

1 ,

α4 =
√
−42α1 + 2α2α3 + β2

2 .

Theorem 10 Suppose that assumptions (2) and (3) hold. Then, A = (1, 0, 0, 0, 0)> is PNS-

free.

Proof Using the mathematical software Maple, we calculate

f(x)−
7∑

k=1

q2
k(x) =

−β6
1 − 120β4

1 + (4v0 − 4944)β2
1 + 48v0 − 69376

4(β2
1 + 12)

(x4
1 + x4

4).

Substituting the value of v0 = M and β1, we get f0(x)−∑7
k=1 q2

k(x) = 0.

Let x̄ = (β1, β2,−β2,−β1)
>. Obviously, we obtain q5(x̄) = q6(x̄) = q7(x̄) = 0. We find

that q3(x̄) and q4(x̄) vanishes if we rewrite all the parameters using β1. Using the value of

each parameter, we find that q1(x̄) = q2(x̄) = 0. Since x̄1 = β1 ≈ 1.73, x̄ is the critical

minimizer. Therefore, this theorem is valid according to Theorem 6. 2

5 Numerical Experiments

We have proved in Section 4 that some regions are PNS-free. What about the other

cases? We try to answer this problem by a numerical approach. We use the YALMIP

software with an SOS module [17, 18] to compute M0(v2, v6, v1, v3, v5), which is the smallest

value of v0 such that the fourth order four dimensional Hankel tensor A with the generating

vector (v0, v1, v2, v3, 1, v5, v6, v5, 1, v3, v2, v1, v0)
> is SOS. Gloptipoly [9] and SeDuMi [29] are

employed to compute N0(v2, v6, v1, v3, v5), which is the smallest value of v0 such that the

Hankel tensor A is PSD.
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v2 \ v6 −.2 −.1 0 .5 1 1.5 2 4

-4.0 3.54e4 8.74e3 3.76e3 4.78e2 3.12e2 3.92e2 6.23e2 6.37e3

-2.0 2.98e4 6.77e3 2.73e3 2.75e2 1.25e2 1.70e2 3.57e2 6.11e3

-1.0 2.72e4 5.85e3 2.26e3 1.91e2 6.15e1 9.26e1 2.73e2 6.06e3

-0.5 2.59e4 5.42e3 2.04e3 1.53e2 3.78e1 6.41e1 2.48e2 6.06e3

0.0 2.46e4 4.99e3 1.82e3 1.20e2 1.96e1 4.50e1 2.39e2 6.07e3

0.5 2.34e4 4.57e3 1.62e3 8.90e1 7.058 4.18e1 2.45e2 6.09e3

1.0 2.21e4 4.17e3 1.42e3 6.21e1 1.000 4.93e1 2.56e2 6.11e3

1.5 2.09e4 3.78e3 1.23e3 3.90e1 4.191 5.69e1 2.67e2 6.14e3

2.0 1.98e4 3.41e3 1.06e3 2.02e1 8.00e0 6.46e1 2.78e2 6.16e3

3.0 1.75e4 2.70e3 7.28e2 7.16e0 1.66e1 8.01e1 3.01e2 6.21e3

4.0 1.53e4 2.04e3 4.41e2 1.23e1 2.60e1 9.60e1 3.23e2 6.25e3

Table 1: The values of M0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0) on some grid points.

5.1 M0(v2, v6, 0, 0, 0) and N0(v2, v6, 0, 0, 0)

First, we focus on two elements v2 and v6 of generating vectors and set v1 = v3 = v5 =

0. By Theorem 4, owing to the effective domain, we have b > −1
3
. We choose v2 =

−4,−2,−1,−0.5, 0, 0.5, 1, 1.5, 2, 3, 4 and v6 = −0.2,−0.1, 0, 0.5, 1, 1.5, 2, 4 and compute M0

and N0 in these grid points respectively. By our experiments, we found that these two

functions are equivalent on all of the grid points. Thus, no PNS tensors are detected here.

The detailed value of M0 and N0 are reported in Table 1.

A more intuitional profile of M0 = N0 is illustrated in Figure 2. It is easy to see that

(v2, v6) = (1, 1) is the minimizer of both M0 and N0 when we set v1 = v3 = v5 = 0.

5.2 Nonzero Odd Elements of the Generating Vectors

We consider the case that the generating vector of a fourth order four dimensional Hankel

tensor has nonzero odd elements. According to Theorem 5, we say that v5 and v6 must

satisfy η(v5, v6) < 1. So we study them first and set v1 = v2 = v3 = 0. We compute a plenty

of grid points with different v5 and v6. The function M0(0, v6, 0, 0, v5) is still equivalent to

the function N0(0, v6, 0, 0, v5). That is to say, no PNS tensors are found.

The contour of M0(0, v6, 0, 0, v5) = M0(0, v6, 0, 0, v5) is shown in Figure 3. We could see

that the nonlinear contour of M0 = N0 = 500 looks like a fire balloon.

Finally, we consider all of the elements of symmetric generating vectors of fourth order

four dimensional Hankel tensors. The contours of M0(v2, v6, v1, v3, v5) and N0(v2, v6, v1, v3, v5)

for various combinations of v2, v6, v1, v3 and v5 are reported in Figure 4. In all of our tests,

values of the function M0(v2, v6, v1, v3, v5) in grid points are always equivalent to the corre-
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Figure 2: The contour profile of M0(v2, v6, 0, 0, 0) = N0(v2, v6, 0, 0, 0).

sponding values of the function N0(v2, v6, v1, v3, v5). So, no fourth order four dimensional

PNS Hankel tensors with symmetric generating vectors are detected.

From Figures 3 and 4, we could say that the second element v1 of the generating vector of

a Hankel tensor affect functions M0(v2, v6, v1, v3, v5) and N0(v2, v6, v1, v3, v5) slightly. When

we fix v4 = 1, the middle element v6 of the generating vector v plays a more important role

since it has direct impact on the effective domain.

6 Final Remarks

In this paper, we investigated the problem whether there exist fourth order four dimen-

sional PNS Hankel tensors with symmetric generating vectors. Theoretically, we proved

that such PNS Hankel tensors do not exist on the segment L = {(v2, v6, v1, v3, v5)
> =

(1, 1, t, t, t)> : t ∈ [−1, 1]}, the cone C = {(v2, v6, v1, v3, v5)
> = (a, b, 0, 0, 0)> : a ≥ b ≥ 1},

the ray R = {(v2, v6, v1, v3, v5)
> = (a, 0, 0, 0, 0)> : a ≤ 0} and the point A = (1, 0, 0, 0, 0)>.

The critical value on L is simply 1. It is interesting to note that the critical values on C are

a polynomial in an auxiliary parameter θ with degree four. However, the critical values on

R and A are irrational. This indicate that a complete proof that fourth order four dimen-

sional PNS Hankel tensors with symmetric generating vectors do not exist may not be easy.

However, numerical tests also indicate that such PNS Hankel tensors do not exist. Thus, we

believe that there are no fourth order four dimensional PNS Hankel tensors with symmetric

generating vectors.
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Figure 4: The contour profiles of M0(v2, v6, v1, v3, v5) which are equivalent to

N0(v2, v6, v1, v3, v5).

22


