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Abstract Finding the maximum eigenvalue of a tensor is an important topic in tensor

computation and multilinear algebra. Recently, for a tensor with nonnegative entries

(which we refer it as a nonnegative tensor), efficient numerical schemes have been

proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type

theorem. In this paper, we consider a new class of tensors called essentially non-

negative tensors, which extends the concept of nonnegative tensors, and examine the

maximum eigenvalue of an essentially nonnegative tensor using the polynomial op-

timization techniques. We first establish that finding the maximum eigenvalue of an

essentially nonnegative symmetric tensor is equivalent to solving a sum of squares

of polynomials (SOS) optimization problem, which, in its turn, can be equivalently

rewritten as a semi-definite programming problem. Then, using this sum of squares

programming problem, we also provide upper and lower estimates for the maximum

eigenvalue of general symmetric tensors. These upper and lower estimates can be cal-

culated in terms of the entries of the tensor. Numerical examples are also presented

to illustrate the significance of the results.
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1 Introduction

The purpose of this article is to study the eigenvalues of a tensor using polynomial

optimization techniques. An mth-order n-dimensional tensor A is a multiway array

consists of nm entries of real numbers. We say a tensor A is symmetric if and only

if the value of its entry is invariant under any permutation of its index. Clearly, when

m = 2, a symmetric tensor is nothing but a symmetric matrix. A symmetric tensor

uniquely defines an mth-degree homogeneous polynomial function f with real co-

efficients. Recently, to study the stability of a homogeneous polynomial dynamical

system, Qi [1, 2] introduced the definition of eigenvalues of a symmetric tensor and

showed that the stability of this dynamical system is tied up with the negativity of the

maximum eigenvalue of the corresponding symmetric tensor. Independently, Lim [3]

also gave such a definition via a variational approach and established an interesting

Perron–Frobenius-type theorem. Recently, the maximum eigenvalue of a symmetric

tensor was shown to be ρth-order semismooth with an appropriate estimate on the

order ρ in [4], and numerical study on tensors also has attracted a lot of researchers

due to its wide applications in polynomial optimization [2], hypergraph theory [5, 6],

high-order Markov chains [7], signal processing [8], and image science [9]. In partic-

ular, various efficiently numerical schemes have been proposed to find the low-rank

approximations of a tensor and the eigenvalues/eigenvectors of a tensor (cf. [2, 9–

14]).

For a nonnegative tensor A, that is, a tensor with all nonnegative entries, various

efficient methods for calculating the largest eigenvalue have been proposed recently.

In particular, by using the important Perron–Frobenius theorem for nonnegative ten-

sors established in [15], Ng, Qi, and Zhou [14] proposed an iterative method for find-

ing the maximum eigenvalue of an irreducible nonnegative tensor. The NQZ method

in [14] is efficient, but it is not always convergent for irreducible nonnegative ten-

sors. Later on, Chang, Pearson, and Zhang [16] introduced primitive tensors, which

are a subclass of irreducible nonnegative tensors, and established the convergence

of the NQZ method for primitive tensors. Moreover, Liu, Zhou, and Ibrahim [17]

modified the NQZ method so that the modified algorithm is always convergent for

finding the largest eigenvalue of an irreducible nonnegative tensor. Recently, Zhang,

and Qi [18] established the linear convergence of the NQZ method for essentially

positive tensors. Zhang, Qi, and Xu [19] established the linear convergence of the

LZI method for weakly positive tensors. Yang and Yang [20, 21] generalized the

weak Perron–Frobenius theorem to general nonnegative tensors. Friedland, Gaubert,

and Han [22] pointed out that the Perron–Frobenius theorem for nonnegative tensors

has a very close link with the Perron–Frobenius theorem for homogeneous monotone

maps. They introduced weakly irreducible nonnegative tensors and established the

Perron–Frobenius theorem for such tensors. More recently, a numerical method is

also presented to calculate the maximum eigenvalue for nonnegative tensors without

the irreducible assumption by using a partition technique [23].
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In this paper, we consider a new class of tensors called essentially nonnegative ten-

sors, which extends the nonnegative tensors, and examine the maximum eigenvalue

of an essentially nonnegative tensor using the polynomial optimization techniques.

We establish that finding the maximum eigenvalue of an essentially nonnegative ten-

sor is equivalent to solving a sum of squares (SOS) polynomial optimization problem,

which, in turn, can be equivalently rewritten as a semi-definite programming problem.

Using this sum of squares programming problem, we also provide upper and lower

estimates of the maximum eigenvalue of general tensors. These upper and lower esti-

mates can be easily calculated in terms of the entries of the tensor. Numerical exam-

ples are also provided to illustrate the significance of the upper and lower estimates.

Our approach provides the link between the maximum eigenvalue of a symmetric es-

sentially nonnegative tensor and the sum of squares programming problem and leads

to easily verifiable upper and lower estimate for the maximum eigenvalue of general

tensors.

The organization of this paper is as follows. We first fix the notation and col-

lect some basic definitions in Sect. 2. In Sect. 3, we establish that finding the maxi-

mum eigenvalue of an essentially nonnegative tensor is equivalent to solving a sum

of squares (SOS) polynomial optimization problem, which, in turn, can be equiv-

alently rewritten as a semi-definite programming problem. In Sect. 4, we provide

upper and lower estimates of the maximum eigenvalue of general tensors using the

sum of squares (SOS) polynomial optimization techniques. Finally, we conclude our

paper and present some future research topics in Sect. 5.

2 Preliminaries

In this section, we fix the notation and collect some basic definitions and facts that

we will use later on.

We first recall some basic definitions and facts on tensors and their eigenvalues.

We use R
n to denote the n-dimensional Euclidean space and use N to denote the set

of all natural numbers. Let n ∈ N, and let m be an even number. By an mth-order

n-dimensional tensor we mean a multiarray A = (Ai1i2···im) where each Ai1i2···im ,
1 ≤ i1, i2, . . . , im ≤ n, is a real number. We say that a tensor A is symmetric if and

only if the value of its entry Ai1i2···im is invariant under any permutation of its index
(i1, i2, . . . , im). Consider

S := {A : A is an mth-order n-dimensional symmetric tensor}.

Clearly, S is a vector space under the addition and multiplication defined as follows:

for any t ∈ R, A = (Ai1,...,im)1≤i1,...,im≤n, and B = (Bi1,...,im)1≤i1,...,im≤n,

A + B = (Ai1,...,im + Bi1,...,im)1≤i1,...,im≤n and t A = (t Ai1,...,im)1≤i1,...,im≤n.

For A, B ∈ S, we define the inner product by

〈A, B〉S :=
n

∑

i1,...,im=1
Ai1,...,im Bi1,...,im .
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The corresponding norm is defined as

‖A‖S :=
(

〈A, A〉S
)1/2 =

(
n

∑

i1,...,im=1
A
2
i1,...,im

)1/2

.

The unit ball in S is denoted by BS . For a vector x ∈ R
n, we use xi to denote its ith

component. We use x[m−1] to denote the vector in R
n such that x

[m−1]
i = (xi)

m−1.
Moreover, for a vector x ∈ R

n, we use xm to denote the mth-order n-dimensional

symmetric rank one tensor induced by x, i.e.,

(

xm
)

i1...im
= xi1 . . . xim ∀i1, . . . , im ∈ {1, . . . , n}.

Let A ∈ S. By the tensor product (cf. [8]), Axm is the real number defined as

Axm :=
n

∑

i1,...,im=1
Ai1,...,imxi1 . . . xim =

〈

A, xm
〉

S
,

and Axm−1 is the vector in R
n whose ith component is

n
∑

i2···im=1
Aii2···imxi2 · · ·xim . (1)

Definition 2.1 Let A be an mth-order n-dimensional symmetric tensor. We say that

λ ∈ R is an H -eigenvalue of A and x ∈ R
n\{0} is an H -eigenvector corresponding

to λ if and only if (x,λ) satisfies

Axm−1 = λx[m−1].

To do this, we first formally define the maximum H -eigenvalue function. Since

any symmetric tensor with even order always has an H -eigenvalue and the number

ofH -eigenvalues is finite (cf [24]), it then makes sense to define the maximum eigen-

value function λ1 : S → R as follows:

λ1(A) := {λ ∈ R : λ is the largest H -eigenvalue of A}.

The following variational formula [4] for the maximum eigenvalue function plays an

important role in our later analysis. For the convenience of the reader, we provide the

proof.

Lemma 2.1 Let A be an mth-order n-dimensional symmetric tensor where m is even.

Then, we have

λ1(A) =max
x 6=0

Axm

‖x‖m
m

= max
‖x‖m=1

Axm,

where ‖x‖m = (
∑n

i=1 |xi |m)1/m.
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Proof Consider the following optimization problem (P ):

(P ) max
x∈Rn

Axm s.t. ‖x‖m
m = 1.

Let f (x) := Axm and g(x) := ‖x‖m
m. Since f is continuous and the feasible set {x :

g(x) = 1} is compact, a global maximizer of (P ) exists. Denote a maximizer of (P )

by x0. Clearly, x0 6= 0. Note that g is a homogeneous polynomial of degree m, and

so the Euler identity implies that ∇g(x)T x = mg(x). Thus, for any x with g(x) = 1,
∇g(x) 6= 0. So, the standard KKT theory implies that there exists λ0 ∈ R such that

mAxm−1
0 − mλ0x

[m−1]
0 = ∇f (x0) − λ0∇g(x0) = 0.

This implies that λ0 is an H -eigenvalue of A with an H -eigenvector x0, and so,

λ0 ≤ λ1(A). Note that λ0 = Axm
0 = v(P ), where v(P ) is the optimal value of (P ). It

follows that v(P ) ≤ λ1(A), that is,

max
‖x‖m=1

Axm ≤ λ1(A).

Finally, noting that, for any eigenvector u corresponding to λ1(A) with ‖u‖m = 1,

we have

Aum = uT
(

Aum−1) = λ1(A)uT u[m−1] = λ1(A)‖u‖m
m = λ1(A).

Thus, λ1(A) =max‖x‖m=1 Axm, and so, the conclusion follows as max‖x‖m=1 Axm =
maxx 6=0

Axm

‖x‖m
m
. ¤

Remark 2.1 (Convexity of the maximum eigenvalue function) From the proof of

Lemma 2.1 we see that

{

u : Aum = λ1(A), ‖u‖m = 1
}

=
{

u :
(

λ1(A), u
)

is a real eigenpair of A, ‖u‖m = 1
}

.

Since λ1(A) =max‖x‖m=1 Axm, we have λ1(A) =maxB∈T 〈B, A〉S where T = {xm :
‖x‖m = 1}. Note that B 7→ 〈B, A〉S is affine and the supremum of a series of affine
functions is convex. So λ1 is a finite-valued convex function on the symmetric tensor

space S.

Recall that a real polynomial f is called a sum of squares of polynomials iff there

exist r ∈ N and real polynomials fj , j = 1, . . . , r , such that f =
∑r

j=1 f 2j . The set of

all sum of squares of real polynomials is denoted byΣ2. Moreover, the set of all sums

of squares real polynomials with degree at most d is denoted by Σ2
d . An important

property of a sum of squares of polynomials is that checking whether a polynomial is

a sum of squares or not, is equivalent to solving a semi-definite linear programming

problem [25–27].
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3 Essentially Nonnegative Tensor

In this section, we show that finding the maximum eigenvalue of an essentially non-

negative tensor is equivalent to solving a sum of squares programming problem. To

do this, we first recall the definition of an essentially nonnegative tensor.

Definition 3.1 Let I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n}. We say that an mth-order

n-dimensional tensor A is nonnegative if and only if Ai1,...,im ≥ 0 for all 1≤ ij ≤ n,

j = 1, . . . ,m. Moreover, we say that an mth-order n-dimensional tensor A is essen-

tially nonnegative if and only if

Ai1,...,im ≥ 0 for all {i1, . . . , im} /∈ I.

The class of essentially nonnegative tensors was introduced in [28]. From the def-

inition, clearly any nonnegative tensor is essentially nonnegative, while the converse

may not be true in general. When the order m = 2, the definition collapses to the

classical definition of essentially nonnegative matrices.

Remark 3.1 As pointed out by one of the referees, one of the important characteri-

zations of the essentially nonnegative matrices is the following invariance property:

etA(Rn
+) ⊆ R

n
+ for all t ≥ 0 and all essentially nonnegative (n × n) matrices A. Al-

though some interesting log-convexity results were discussed in [28], it is not clear

whether the above interesting invariant property can be extended to the essentially

nonnegative tensors or not. One of the key difficulties is that it is not clear how to de-

fine an appropriate analog of matrix exponential for the tensor case. It seems that this

can be tackled by using the nonlinear operator TA from R
n to R

n, defined in [16]:

for an nonnegative tensor A,

TA(x) :=
(

Axm−1)[ 1
m−1 ].

Indeed, let λ = max1≤i≤n{|Ai,i,...,i |}, and I be the identity tensor, i.e., Ii1,...,im = 1
whenever (i1, . . . , im) ∈ {(i, . . . , i) : 1 ≤ i ≤ n} and Ii1,...,im = 0 otherwise. Then,

A + λI is a nonnegative tensor. Denote T k
A+λI

= TA+λI ◦ · · · ◦ TA+λI
︸ ︷︷ ︸

k times

. One could

define eA as the nonlinear operator from R
n to R

n by

eA(x) :=
(

I +
∞
∑

k=1

T k
A+λI

k!

)

(

e−λx
)

∀x ∈ R
n.

As it is not the main purpose of this paper, we would like to leave the study of invari-

ance property for essentially nonnegative tensors as a future research direction and

will investigate it further in a next paper.

To any essentially nonnegative tensor A, we associate the homogeneous polyno-

mial h defined by h(x) := −Axm for all x ∈ R
n. Below, we present a proposition

which shows that any such associated polynomial h(x) is nonnegative if and only if
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it is a sum of squares of polynomials. To do this, we first recall some definitions and

a useful lemma.

Consider a homogeneous polynomial f (x) =
∑

α fαxα of degree m (m is an

even number), where α = (α1, . . . , αn) ∈ (N ∪ {0})n, xα = x
α1
1 . . . x

αn
n , and |α| :=

∑n
i=1 αi = m. Let fm,i be the coefficient associated with xm

i , and let

Ωf =
{

α = (α1, . . . , αn) ∈
(

N ∪ {0}
)n : fα 6= 0 and α 6= mei, i = 1, . . . , n

}

, (2)

where ei is the vector whose ith component is one and all the other components are

zero. We note that

f (x) =
n

∑

i=1
fm,ix

m
i +

∑

α∈Ωf

fαxα.

Recall that 2N denotes the set consisting of all even numbers. Define

1f :=
{

α = (α1, . . . , αn) ∈ Ωf : fα < 0 or α /∈
(

2N ∪ {0}
)n}

. (3)

We associate to f the new homogeneous polynomial f̃ defined by

f̃ (x) :=
n

∑

i=1
fm,ix

m
i −

∑

α∈1f

|fα|xα.

We now recall the following useful lemma, which provides a convenient test for ver-

ifying whether f is a sum of squares of polynomials or not in terms of the nonnega-

tivity of a new homogeneous function f̃ .

Lemma 3.1 [29, Corollary 2.8] Let f be a homogeneous polynomial of degree m,

where m is an even number. If f̃ is a nonnegative polynomial, then f is a sum of

squares of polynomials.

Proposition 3.1 Let A be an mth-order n-dimensional symmetric essentially non-

negative tensor. Let h(x) = −Axm for all x ∈ R
n. Then h is a nonnegative polynomial

if and only if h is a sum of squares of polynomials.

Proof Note that any sum of squares of polynomials is nonnegative. We only need to

show the converse implication. Suppose that h is a nonnegative polynomial. Note that

h(x) = −
n

∑

i1,...,im=1
Ai1i2···imxi1 . . . xim

=
n

∑

i=1
(−Aii···i)x

m
i +

∑

(i1,...,im)/∈I

(−Ai1i2···im)xi1 . . . xim,

where I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n}. As A is essentially nonnegative,

Ai1i2···im ≥ 0 for all (i1, . . . , im) /∈ I . Now, let h(x) =
∑n

i=1 hm,ix
m
i +

∑

α∈Ωh
hαxα .
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Then, hm,i = −Aii···i and hα < 0 for all α ∈ Ωh, where

Ωh =
{

α = (α1, . . . , αn) ∈
(

N ∪ {0}
)n : hα 6= 0 and α 6= mei, i = 1, . . . , n

}

,

and ei is the vector where its ith component is one and all the other components are

zero. Recall that 1h = {α = (α1, . . . , αn) ∈ Ωh : hα < 0 or α /∈ (2N ∪ {0})n}. Note
that hα < 0 for all α ∈ Ωh, and so, 1h = Ωh. It follows that

h̃(x) :=
n

∑

i=1
hm,ix

m
i −

∑

α∈1h

|hα|xα

=
n

∑

i=1
hm,ix

m
i +

∑

α∈1h

hαxα

=
n

∑

i=1
hm,ix

m
i +

∑

α∈Ωh

hαxα = h(x).

So, h̃ is a nonnegative polynomial. Thus, the conclusion follows by Lemma 3.1. ¤

We now show that finding the maximum eigenvalue of an essentially nonnegative

tensor is equivalent to solving a sum of squares programming problem.

Theorem 3.1 (Finding the Maximum Eigenvalue of Essentially Nonnegative Ten-

sors) Let A be an mth-order n-dimensional symmetric essentially nonnegative tensor

where m is an even number. Let f (x) = Axm. Consider the following sum of squares

problem:

(P0) min
µ∈R,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

Then,

λ1(A) =min(P0) = min
µ∈R,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

Proof Consider the homogeneous polynomial optimization problem

(

P ′
0

)

maxf (x) s.t. ‖x‖m
m = 1.

Denote a global maximizer for (P ′
0) by x∗. Clearly, ‖x∗‖m = 1. Define µ0 := f (x∗).

By Lemma 2.1, µ0 = f (x∗) = λ1(A). It follows that for all x ∈ R
n\{0},

−f (x) + µ0‖x‖m
m = −f (x) + f

(

x∗)‖x‖m
m

= ‖x‖m
m

(

−f

(
x

‖x‖m

)

+ f
(

x∗)
)

≥ 0.

This shows that −f (x) + µ0‖x‖m
m is a nonnegative homogeneous polynomial. Let

C = A −µ0I , where I is the identity tensor, i.e., Ii1,...,im = 1 whenever (i1, . . . , im) ∈
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{(i, . . . , i) : 1≤ i ≤ n} and Ii1,...,im = 0 otherwise. Then, we have

−f (x) + µ0‖x‖m
m = −Cxm.

As A is an essentially nonnegative tensor, C is also an essentially nonnegative sym-

metric tensor. So, we see that −f (x) + µ0‖x‖m
m is a sum of squares of polynomials

by Proposition 3.1. Therefore,

f
(

x∗) − f (x) + µ0
(

‖x‖m
m − 1

)

= −f (x) + µ0‖x‖m
m

is a sum of square polynomial of degree m. This implies that the optimal value of

(P0) is less than or equal to f (x∗). Note that, for any r ∈ R and µ ∈ R which is

feasible for (P0), r − f (x) + µ(‖x‖m
m − 1) ∈ Σ2

m. So, we must have

r ≥ f (x) − µ
(

‖x‖m
m − 1

)

for all x ∈ R
n.

Letting x = x∗, we see that r ≥ f (x∗) − µ(‖x∗‖m
m − 1) = f (x∗). So, the optimal

value of (P0) is greater than f (x∗). Thus, in this case, we have

λ1(A) = f
(

x∗) = min
µ∈R,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

This completes the proof. ¤

Below, we present a numerical example showing how to find the maximum eigen-

value for an essentially nonnegative tensor via a sum of square programming.

Example 3.1 Consider a 4th-order three-dimensional symmetric tensor A, where

A1111 = A2222 = A3333 = −4, and A1333 = A3133 = A3313 = A3331 = 1.

Clearly, A is an essentially nonnegative tensor. Let f (x1, x2, x3) = Axm. Then, we

see that f (x1, x2, x3) = −4x41 − 4x42 − 4x43 + 4x1x
3
3 . The corresponding sums-of-

squares programming, in this case, can be written as

min
µ∈R,r∈R

{

r : r − f (x) + µ
(

‖x‖44 − 1
)

∈ Σ2
4

}

= min
s1,s2≥0,r∈R

{

r : r − f (x) + (s1 − s2)
(

‖x‖44 − 1
)

∈ Σ2
4

}

.

Solving this sum of squares programming problem via YALMIP (see [30, 31]) gives

us that λ1(A) = −1.7205.
On the other hand, direct calculation shows that, for any eigenvalue λ of A, there

exists (x1, x2, x3) satisfying











−4x31 + x33 = λx31 ,

−4x32 = λx32 ,

−4x33 + 3x1x23 = λx33 .

Solving this homogeneous polynomial equality system gives us that λ = −4 or λ =
−4± 4

√
27. So λ1(A) = −4+ 4

√
27≈ −1.7205.
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Remark 3.2 (Finding the maximum eigenvalue of an essentially nonnegative tensor

via semi-definite programmings) Note that testing whether a polynomial is a sum of

squares of polynomials or not is equivalent to solving a semi-definite programming

problem. Finding the maximum eigenvalue of an essentially nonnegative tensor can

be converted to a semi-definite programming problem. More explicitly, let k ∈ N. Let

Pk(R
n) be the space consisting of all real polynomials on R

n of degree less than or

equal to k, and let C(k,n) be the dimension of Pk(R
n). Write the basis of Pk(R

n) as

z(k) :=
[

1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
2 , . . . , x

2
n, . . . , xk

1 , . . . , x
k
n

]T
,

and let z
(k)
α be the α-th coordinate of z(k), 1 ≤ α ≤ C(k,n). Let f (x) = −Axm and

g(x) = ‖x‖m
m. As f and g are polynomials of degree m, we can write

f =
∑

1≤α≤C(m,n)

fαz(k)
α and g =

∑

1≤α≤C(m,n)

gαz(k)
α .

Let p = m
2
. Then, the feasibility problem of the sum of square optimization problem

min
µ∈R,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

is equivalent to finding a positive semi-definite symmetric matrixW ∈ R
C(p,n)×C(p,n)

and r,µ ∈ R such that

(r − µ) +
∑

1≤α≤C(m,n)

(−fα + µgα)z(m)
α = z(p)Wz(p),

which, in turn, is equivalent to finding a positive semi-definite matrix W ∈
R

C(p,n)×C(p,n) such that








(r − µ) − f1 + µg1 = W1,1,

−fα + µgα =
∑

1≤β,γ≤C(p,n),β+γ=α

Wβ,γ

(

2≤ α ≤ C(m,n)
)

.

Therefore, the sum of square optimization problem “minµ∈R,r∈R{r : r − f (x) +
µ(‖x‖m

m −1) ∈ Σ2
m}” is equivalent to the following semi-definite programming prob-

lem:

min
(µ,r)∈R×R,W∈S

C(p,n)
+

µ

s.t. (r − µ) − f1 + µg1 = W1,1

−fα + µgα =
∑

1≤β,γ≤C(p,n),β+γ=α

Wβ,γ

(

2≤ α ≤ C(m,n)
)

,

where S
C(p,n)
+ is the space of all positive semi-definite C(p,n) × C(p,n) matrices.

This shows that finding the maximum eigenvalue of an essentially nonnegative ten-

sor is equivalent to solving a semi-definite linear programming problem. Note that a
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semi-definite linear programming problem can be solved efficiently, and quite a few

mature softwares are available these days for solving semi-definite linear program-

ming problems. This provides a convenient way for finding the maximum eigenvalue

of an essentially nonnegative tensor. For other optimization problems, which can be

converted to solving a linear semi-definite programming problem, see [32–34, 37].

Remark 3.3 (Other approaches for finding the maximum eigenvalue of an essentially

nonnegative tensor) We can also develop an alternative approach to find the maxi-

mum eigenvalue of an essentially nonnegative tensor. Indeed, from the definition, if A

is an essentially nonnegative tensor, then A + λI is a nonnegative tensor, where λ =
max1≤i≤n{|Ai,i,...,i |}, and I is the identity tensor. Since λ1(A + λI) = λ1(A) + λ,

this suggests that one could develop power method as in [17, 18, 28] to find the max-

imum eigenvalue of an essentially nonnegative tensor, and establishing the conver-

gence of the power method whenever the tensor is further assumed to be irreducible.

On the other hand, our current approach shows that finding the maximum eigenvalue

of an essentially nonnegative tensor is equivalent to solving a semi-definite linear pro-

gramming problem and so, can be solved efficiently (for example, by interior point

method). Note that, as pointed out in [38], “most interior-point methods for linear

programming have been generalized to semi-definite programs. As in linear program-

ming, these methods have polynomial worst-case complexity and perform very well

in practice.” This shows that finding the maximum eigenvalue of an essentially non-

negative tensor using our approach here also has polynomial worst-case complexity.

Moreover, as we will see later in Sect. 4, our approach also leads to useful upper

estimates for a general tensor.

Recall that an n × n matrix is called a Z-matrix (see [32, 33]) if and only if

all its off-diagonal elements are nonpositive. Extending this, we shall say that an

mth-order n-dimensional tensor A is a Z-tensor if and only if Ai1,...,im ≤ 0 for all
{i1, . . . , im} /∈ I . Clearly, a tensor A is a Z-tensor if and only if −A is essentially

nonnegative. Below, we show that testing whether a Z-tensor is positive definite or

not can be reformulated as a sum of squares programming problem.

Corollary 3.1 (Testing Positive Definiteness for a Z-Tensor) Let A be an mth-order

n-dimensional symmetric Z-tensor where m is an even number. Let f (x) = Axm.

Consider the sum of squares problem

(P2) min
µ∈R,r∈R

{

r : r + f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

Then, A is positive definite (i.e., Axm > 0 for all x ∈ R
n\{0}) if and only if the

optimal value of problem (P2) is positive.

Proof Let B = −A. So, A is positive definite if and only if λ1(B) < 0. Note that a

tensor A is a Z-tensor if and only if −A is essentially nonnegative. We see that B is

essentially nonnegative. So, the conclusion follows from the preceding theorem. ¤

In Theorem 3.1, we show that finding the maximum eigenvalue of an essentially

nonnegative tensor is equivalent to solving a sum of squares programming problem.
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Next, we will show that testing the positivity of the maximum eigenvalue of an es-

sentially nonnegative tensor is equivalent to a simpler sum of squares programming

problem.

Theorem 3.2 (Testing Positivity of Maximum Eigenvalue of Essentially Nonnegative

Tensors) Let A be an mth-order n-dimensional symmetric essentially nonnegative

tensor where m is an even number. Let f (x) = Axm. Consider the sum of squares

problem

(P1) min
µ≥0,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

Then, λ1(A) > 0 if and only if the optimal value of problem (P1) is positive.Moreover,

if λ1(A) > 0, then

λ1(A) = min
µ≥0,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

Proof We first show that λ1(A) > 0 if and only if the optimal value of problem (P )

is positive.

[⇐] Suppose that λ1(A) ≤ 0. Then, by Lemma 2.1, f (x) ≤ 0 for all ‖x‖m = 1,

and so, f (x) ≤ 0 for all x ∈ R
n (as f is homogeneous). So, −f is a nonnegative

polynomial. By the preceding proposition we have that −f (x) := −Axm is a sum of

squares of polynomials of degree m. So, −f (x) = 0− f (x) + 0 · (‖x‖m
m − 1) ∈ Σ2

m,

and hence,

min
µ≥0,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

≤ 0.

[⇒] Suppose that λ1(A) > 0. Consider the homogeneous polynomial optimization

problem
(

P ′
1

)

maxf (x) s.t. ‖x‖m
m ≤ 1.

Denote a global maximizer for (P ′
1) by x∗. We now claim that ‖x∗‖m = 1. To

see this, we argue by contradiction that ‖x∗‖m < 1. Note that f (x∗) ≥ f (0) = 0.

If f (x∗) > 0, then, as for all small t > 0, (1+ t)x∗ is still feasible for (P0), we see

that f ((1 + t)x∗) = (1 + t)mf (x∗) > f (x∗), which is impossible. So, f (x∗) = 0.

This implies that f (x) ≤ f (x∗) = 0 for all ‖x‖m ≤ 1, and so, f (x) ≤ 0 for all x ∈ R
n

(as f is homogeneous). This implies that λ1(A) ≤ 0, which is again impossible. So,
‖x∗‖m = 1. This, together with Lemma 2.1, implies that the optimal value of (P ′

1)

equals λ1(A), i.e., f (x∗) = λ1(A) > 0.

Let µ0 = f (x∗) > 0. Then, it follows that for all x ∈ R
n\{0},

−f (x) + µ0‖x‖m
m = −f (x) + f

(

x∗)‖x‖m
m

= ‖x‖m
m

(

−f

(
x

‖x‖m

)

+ f
(

x∗)
)

≥ 0.

This shows that −f (x) + µ0‖x‖m
m is a nonnegative homogeneous polynomial. Let

C = A −µ0I , where I is the identity tensor, i.e., Ii1,...,im = 1 whenever (i1, . . . , im) ∈
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{(i, . . . , i) : 1≤ i ≤ n} and Ii1,...,im = 0 otherwise. Then,

−f (x) + µ0‖x‖m
m = −Cxm.

As A is essentially nonnegative and symmetric, we see that C is also an essentially

nonnegative symmetric tensor. So, −f (x) + µ0‖x‖m
m is a sum of squares of polyno-

mials by Proposition 3.1. Therefore,

f
(

x∗) − f (x) + µ0
(

‖x‖m
m − 1

)

= −f (x) + µ0‖x‖m
m

is a sum of square polynomial with degree m. This implies that the optimal value

of (P ′
1) is less than or equal to f (x∗). Note that, for any r ∈ R and µ ≥ 0, which is

feasible for (P ′
1), r − f (x) + µ(‖x‖m

m − 1) ∈ Σ2
m. So, we must have

r ≥ f (x) − µ
(

‖x‖m
m − 1

)

for all x ∈ R
n.

Letting x = x∗, we see that r ≥ f (x∗) − µ(‖x∗‖m
m − 1) = f (x∗). So, the optimal

value of (P ′
1) is greater than f (x∗). Thus, in this case, we have

λ1(A) = f
(

x∗) = min
µ≥0,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

. (4)

Finally, the second assertion for the formula calculating λ1(A) follows from (4). ¤

4 Estimates for the Maximum Eigenvalue of General Tensors

In this section, we provide upper and lower estimates of the maximum eigenvalue

of general symmetric tensors via sum of squares programming problems. To do this,

we need the following lemma, which provides us a convenient test for determining

whether a homogeneous polynomial with only one mixed term is a sum of squares of

polynomials or not.

Lemma 4.1 [29, Theorem 2.3] Let b1, . . . , bn ≥ 0 and d ∈ N. Let a1, . . . , an ∈ N be

such that
∑n

i=1 ai = 2d . Consider the homogeneous polynomial f defined by

f (x) := b1x
2d
1 + · · · + bnx

2d
n − µx

a1
1 . . . xan

n .

Define

µ0 := 2d
∏

ai 6=0,1≤i≤n

(
bi

ai

) ai
2d

.

Then, the following statements are equivalent:

(1) f is a nonnegative polynomial, i.e., f (x) ≥ 0 for all x ∈ R
n.

(2) either |µ| ≤ µ0 or µ < µ0 and all ai are even.

(3) f is a sum of squares of polynomials.
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Now, we provide the first upper estimate for the maximum eigenvalue of a

general symmetric tensor. To do this, for each homogeneous polynomial f with

f (x) =
∑

α fαxα , we first define a set of multiindices as follows:

Ef :=
{

α = (α1, . . . , αn) ∈ Ωf : fα > 0 or α /∈
(

2N ∪ {0}
)n}

, (5)

where Ωf is defined as in (2).

Proposition 4.1 (Upper Estimate for the Maximum Eigenvalue: Type I) Let A be an

mth-order n-dimensional symmetric tensor where m is an even number. Let f (x) =
Axm. Then, we have

λ1(A) ≤ max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

,

where Ef is defined as in (5).

Proof Consider the homogeneous polynomial optimization problem

(

P ′
0

)

maxf (x) s.t. ‖x‖m
m = 1.

Denote a global maximizer for (P ′
0) by x∗. By Lemma 2.1, f (x∗) = λ1(A). Note

that, for any r ∈ R and µ ∈ R that satisfy r − f (x) + µ(‖x‖m
m − 1) ∈ Σ2

m, we must

have

r ≥ f (x) − µ
(

‖x‖m
m − 1

)

for all x ∈ R
n.

Letting x = x∗, we see that r ≥ f (x∗) − µ(‖x∗‖m
m − 1) = f (x∗). So, we see that

λ1(A) ≤ min
µ∈R,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

Let

(µ, r) :=
(

max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

, max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

})

.

To finish the proof, it suffices to show that (µ, r) is feasible for the above mini-

mization problem minµ∈R,r∈R{r : r − f (x) + µ(‖x‖m
m − 1) ∈ Σ2

m}. This will follow
immediately if we show that

h(x) := r − f (x) + µ
(

‖x‖m
m − 1

)

= −f (x) + max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

‖x‖m
m (6)

is a sum of squares of polynomials. To see this, we first show that, for each α ∈ Ef

with |α| = m,

n
∑

i=1
|fα|

αi

m
xm
i − fαxα
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is a sum of squares of polynomials. Indeed, since

m
∏

αi 6=0,1≤i≤n

( |fα|αi

m

αi

) αi
m

= m
∏

αi 6=0,1≤i≤n

(
|fα|
m

) αi
m

= |fα|,

the preceding lemma (Lemma 4.1) implies that
∑n

i=1 |fα|αi

m
xm
i − fαxα is a sum of

squares of polynomials for each α ∈ Ef with |α| = m. This proves the claim. Adding

α through Ef , we see that

n
∑

i=1

∑

α∈Ef

|fα|
αi

m
xm
i −

∑

α∈Ef

fαxα

is also a sum of squares of polynomials. Let h(x) =
∑

α hαxα of degree m (m is an

even number), where α = (α1, . . . , αn) ∈ (N ∪ {0})n, and |α| =
∑n

i=1 αi = m. Let

hm,i be the coefficient of h associated with xm
i , and let

Ωh =
{

α = (α1, . . . , αn) ∈
(

N ∪ {0}
)n : hα 6= 0 and α 6= mei, i = 1, . . . , n

}

,

where ei be the vector where its ith component is one and all the other components

are zero. Define

1h :=
{

α = (α1, . . . , αn) ∈ Ωh : hα < 0 or α /∈
(

2N ∪ {0}
)n}

. (7)

From (6) it can be verified that 1h = Ef , hα = −fα for all α ∈ 1h and, for each

i = 1, . . . , n,

hm,i ≥
∑

α∈Ef

|fα|
αi

m
.

This implies that

h(x) =
n

∑

i=1
hm,ix

m
i +

∑

α∈Ωh

hαxα

=
n

∑

i=1
hm,ix

m
i +

∑

α∈1h

hαxα +
∑

α∈Ωh\1h

hαxα

=
n

∑

i=1

∑

α∈Ef

|fα|
αi

m
xm
i −

∑

α∈Ef

fαxα

+
n

∑

i=1

(

hm,i −
∑

α∈Ef

|fα|
αi

m

)

xm
i +

∑

α∈Ωh\1h

hαxα.

As
∑

α∈Ωh\1h
hαxα and

∑n
i=1(hm,i −

∑

α∈Ef
|fα|αi

m
)xm

i are sums of squares of poly-

nomials, it follows that h is also a sum of squares of polynomials. ¤
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Below, we provide a different-type upper estimate for the maximum eigenvalue of

a general symmetric tensor.

Proposition 4.2 (Upper Estimate for the maximum eigenvalue: Type II) Let A be an

mth-order n-dimensional symmetric tensor where m is an even number. Let f (x) =
Axm. Then, we have

λ1(A) ≤ max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}

,

where Ef is defined as in (5), and we use the convention that 00 = 1.

Proof As in the proof of the preceding proposition, we see that

λ1(A) ≤ min
µ∈R,r∈R

{

r : r − f (x) + µ
(

‖x‖m
m − 1

)

∈ Σ2
m

}

.

Let

(µ, r) :=
(

max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}

,

max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

})

.

To finish the proof, it suffices to show that (µ, r) is feasible for the above SOS min-

imization minµ∈R,r∈R{r : r − f (x) + µ(‖x‖m
m − 1) ∈ Σ2

m}. This is equivalent to the
fact that h is a sum of squares of polynomials, where h is defined by

h(x) := r − f (x) + µ
(

‖x‖m
m − 1

)

= −f (x) + max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}

‖x‖m
m. (8)

Let rα = 1
m

|fα|(αα1
1 . . . α

αn
n )

1
m for each α ∈ (N ∪ {0})n with |α| = m. We first show

that, for each α ∈ Ef ⊆ (N ∪ {0})n with |α| = m,

rα

n
∑

i=1
xm
i − fαxα

is a sum of squares of polynomials. Indeed, since

m
∏

αi 6=0,1≤i≤n

(
rα

αi

) αi
m

= m
rα

(α
α1
1 . . . α

αn
n )

1
m

= |fα|,

the preceding lemma (Lemma 4.1) implies that rα
∑n

i=1 xm
i − fαxα is a sum of

squares of polynomials for each α ∈ Ef with |α| = m. This proves the claim. Adding
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α through Ef , we see that

n
∑

i=1

∑

α∈Ef

rαxm
i −

∑

α∈Ef

fαxα

is also a sum of squares of polynomials. Let 1h be defined as in (7). From (8) it can

be verified that 1h = Ef , hα = −fα for all α ∈ 1h, and

hm,i ≥
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m =

∑

α∈Ef

rα.

This implies that

h(x) =
n

∑

i=1
hm,ix

m
i +

∑

α∈Ωh

hαxα

=
n

∑

i=1
hm,ix

m
i +

∑

α∈1h

hαxα +
∑

α∈Ωh\1h

hαxα

=
n

∑

i=1
hm,ix

m
i −

∑

α∈Ef

fαxα +
∑

α∈Ωh\1h

hαxα

=
n

∑

i=1

∑

α∈Ef

rαxm
i −

∑

α∈Ef

fαxα +
n

∑

i=1

(

hm,i −
∑

α∈Ef

rα

)

xm
i +

∑

α∈Ωh\1h

hαxα.

As
∑

α∈Ωh\1h
hαxα and

∑n
i=1(hm,i −

∑

α∈Ef
rα)xm

i are sums of squares of polyno-

mials, it follows that h is also a sum of squares of polynomials. ¤

Next, we provide two examples showing that the upper estimates for the maximum

eigenvalue provided in the above two propositions are, in general, not comparable.

Example 4.1 Consider a 4th-order three-dimensional symmetric tensor A, where

A1111 = A2222 = A3333 = 1 and A1333 = A3133 = A3313 = A3331 = −1.

Let f (x1, x2, x3) = Axm. Then, we see that

f (x1, x2, x3) = x41 + x42 + x43 − 4x1x33 and Ef =
{

(1,0,3)
}

.

Then, Proposition 4.1 implies that

λ1(A) ≤ max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

= 4.
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On the other hand, Proposition 4.2 shows that

λ1(A) ≤ max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}

= 1+ 4
√
27.

So, in this case, Proposition 4.2 gives a better estimate for λ1(A). In this case, we can

verify that λ1(A) = 1+ 4
√
27, and so, the upper estimate for λ1(A) in Proposition 4.2

is sharp. Indeed, for any eigenvalue λ of A, there exists (x1, x2, x3) satisfying











x31 − x33 = λx31 ,

x32 = λx32 ,

x33 − 3x1x23 = λx33 .

Solving this homogeneous polynomial equality system gives us that λ = 1 or λ =
1± 4

√
27. So λ1(A) = 1+ 4

√
27.

Example 4.2 Consider a 4th-order three-dimensional symmetric tensor A, where

A1111 = A2222 = A3333 = 1,

and

A1233 = A2133 = A2313 = A2331 = A1323 = A1332 = A3123

= A3213 = A3312 = A3321 = A3231 = A3132 = −
√
2

6
.

Let f (x1, x2, x3) = Axm. Then, we see that f (x1, x2, x3) = x41 + 4x42 + x43 −√
8x1x2x

2
3 and Ef = {(1,1,2)}. Then, Proposition 4.1 implies that

λ1(A) ≤ max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

= 4+
√
2

2
.

On the other hand, Proposition 4.2 shows that

λ1(A) ≤ max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}

= 5.

So, in this case, Proposition 4.1 gives a better estimate for λ1(A).

Theorem 4.1 (Upper/Lower Estimates for the Maximum Eigenvalue) Let A be an

mth-order n-dimensional symmetric tensor where m is an even number. Let f (x) =
Axm. Then, we have
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max
1≤i≤n

fm,i ≤ λ1(A) ≤min
{

max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

,

max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}}

.

Proof We first note that λ1(A) is the optimal value of

(

P ′
0

)

maxf (x) s.t. ‖x‖m
m = 1.

So, for each 1≤ i ≤ n, λ1(A) ≥ f (ei) = fm,i , where ei denotes the vector whose ith

component is one and all the other components are zero. Thus, max1≤i≤n fm,i ≤
λ1(A). Therefore, the conclusion now follows from the preceding two proposi-

tions. ¤

To end this section, we provide two examples. The first example shows that the

upper estimate we provided in Theorem 4.1 may not be sharp in general and has room

to improve. On the other hand, the second example shows that there do exist some

cases such that the upper estimate is indeed equal to the maximum eigenvalue of the

corresponding tensor.

Example 4.3 Let A be a 6th-order three-dimensional real symmetric tensor such that

f (x) = Ax6 = −x63 − x21x
4
2 − x41x

2
2 + 3x21x22x23 .

The polynomial −f is known as the homogeneous Motzkin polynomial (cf. [39]),

which is a polynomial with nonnegative values but is not a sum of squares of poly-

nomials (here we consider the negative of the homogeneous Motzkin polynomial as

calculating λ1(A) is a maximization problem instead of a minimization problem). It

can be easily verified that m = 6, n = 3, and the set Ef = {(2,2,2)}. Direct calcula-
tion gives us that

max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

= 1 and

max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}

= 1.

So, our preceding upper estimate gives that λ1(A) ≤ 1. On the other hand, it can be
verified that λ1(A) = 0. Therefore, our upper estimate is not sharp in this case.

Example 4.4 Let A be a 4th order four-dimensional real symmetric tensor such that

f (x) = Ax4 = x44 + x21x
2
2 + x21x

2
3 + x22x

2
3 − 4x1x2x3x4.

It can be easily verified that m = 4, n = 4, and

Ef =
{

(2,2,0,0); (2,0,2,0); (0,2,2,0); (1,1,1,1)
}

.
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Direct calculation gives us that

max
1≤i≤n

{

fm,i +
∑

α∈Ef

|fα|
αi

m

}

= 2 and

max
1≤i≤n

{

fm,i +
1

m

∑

α∈Ef

|fα|
(

α
α1
1 . . . ααn

n

) 1
m

}

= 3.5.

So, our preceding upper estimate gives that λ1(A) ≤ 2. On the other hand, it can be
verified that λ1(A) = 2. Therefore, our upper estimate is indeed equal to the maxi-
mum eigenvalue of the corresponding tensor in this case.

5 Conclusion and Remarks

In this paper, we showed how the polynomial global optimization techniques can be

used to find the largest eigenvalue of tensors with specific structures. More explicitly,

we examined a new class of tensors called essentially nonnegative tensors. We estab-

lished that finding the maximum eigenvalue of an essentially nonnegative tensor is

equivalent to solving a sum of squares of polynomials optimization problem, which,

in turn, can be equivalently rewritten as a linear semi-definite programming problem.

This result implies that, in particular, finding the maximum eigenvalue of an essen-

tially nonnegative tensor can be solved efficiently in polynomial time (for example,

by the interior point methods). Moreover, using this sum of squares programming

problem, we also provided upper and lower estimates of the largest eigenvalue of

general tensors. These upper and lower estimates can be easily calculated in terms

of the coefficients of the tensor. These results confirmed that the polynomial global

optimization techniques are useful for the area of tensor computation.

Our results are mainly concerned with finding the largest eigenvalue. It would be

interesting to investigate how to find the other eigenvalues of an essentially nonneg-

ative tensor besides the maximum eigenvalue and to study the invariance property

of essentially nonnegative tensors. Moreover, it would be also useful to see how one

can improve the upper and lower estimates for the maximum eigenvalue of a general

symmetric tensor. Moreover, it would be also interesting to investigate an error bound

for the corresponding optimization problem in evaluating the largest eigenvalue fol-

lowing the approach in [35, 36]. These will be our future research topics.
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