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SUMMARY

This is a survey paper on the recent development of the spectral theory of nonnegative tensors and its
applications. After a brief review of the basic definitions on tensors, the H -eigenvalue problem and the
Z-eigenvalue problem for tensors are studied separately. To the H -eigenvalue problem for nonnegative
tensors, the whole Perron–Frobenius theory for nonnegative matrices is completely extended, while to the
Z-eigenvalue problem, there are many distinctions and are studied carefully in details. Numerical methods
are also discussed. Three kinds of applications are studied: higher order Markov chains, spectral theory of
hypergraphs, and the quantum entanglement. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 2005, independently, Lim [1] and Qi [2] introduced eigenvalues for higher order tensors. Since

then, spectral theory of tensors developed rapidly, find applications or links with automatical con-

trol [2], spectral hypergraph theory [3–13], higher order Markov chains [14–16], magnetic reso-

nance imaging [17, 18], algebraic geometry [19, 20], Finsler geometry [21], quantum entanglement

[22, 23], image authenticity verification [24], and so on.

However, it was discovered that for general higher order tensor eigenvalue problem, even the

order is low, say three or four, the problem is NP-hard [25]. This poses a big difficulty for the

development of spectral theory of tensors. On the hand, it was also found, for some special classes

of tensors, the eigenvalue problem is computable, and relative theory and algorithms for matrices

with such special structures can be generalized to higher order tensors without difficulty. Notably,

for nonnegative tensors, that is, tensors with nonnegative entries, the whole Perron–Frobenius theory

for nonnegative matrices can be extended. Eigenvalues of nonnegative tensors have also applications

in higher order Markov chains, spectral hypergraph theory, and the quantum entanglement. Thus,

this attracts researchers to study the theory, algorithms and applications of eigenvalues of nonnega-

tive tensors. Many papers appeared in this area. This paper aims to survey the progress in this area,

the theory, algorithms and applications of eigenvalues of nonnegative tensors.

The remainder of this paper is distributed as follows. In Section 2, we review the general spectral

theory of nonnegative tensors. We then review the H -spectral theory and the Z-spectral theory of

nonnegative tensors in Sections 3 and 4, respectively. In Sections 5–7, we review three applications

of eigenvalues of nonnegative tensors: higher order Markov chains, spectral hypergraph theory, and

the quantum entanglement.
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The spectral theory for nonnegative matrices has had a profound impact on both theoretical and

applicable mathematics. The centerpiece of this theory resides on the classical Perron–Frobenius

theorems as well as some of their important consequences. In this expository article, we intend to

give a brief survey to incorporate some of the most recent developments of the various spectral theo-

ries for nonnegative tensors along these lines. There is a large volume of published and unpublished

work in this field; we apologize in advance if we fail to cite the work of some of our peers as any

such oversight is unintentional.

2. SPECTRAL THEORY OF NONNEGATIVE MATRICES

A second-order n-dimensional real (or complex) tensor A is the n � n real (or complex) matrix

A D .aij /. It can also be viewed as a linear endomorphism on R
n (or C

n); hence, the eigenvalue

problem for A is a linear problem. In particular, the spectral radius r.A/ of A is defined to be

r.A/Dmaxfj�j j� is a real or complex eigenvalue ofAg.

According to Gelfand’s formula,

r.A/D lim
n!1

jjAnjj
1
n ,

where jj � jj denotes the operator norm. Thus, r.A/ is an intrinsic property of A as it is entirely

determined by A itself.

An m-order n-dimensional real tensor A consists of nm entries in R:

AD .ai1���im/, ai1���im 2R, 16 i1, : : : , im 6 n.

However, for m > 2, the resulting eigenvalue problem is no longer a linear problem due to the dif-

ferent algebraic structures of the associated eigenvalue problems induced by A as we will discuss

in the subsequent sections. We shall denote the set of all m-order n-dimensional tensors by R
Œm,n�

and the set of all nonnegative m-order n-dimensional tensors by R
Œm,n�
C henceforth.

For convenience, we recall the following fundamental theorems in the spectral theory of non-

negative matrices. One may find detailed treatment of these results in the standard textbooks

[26, 27].

The Perron–Frobenius theorem, which lays the foundation for the spectral theory of nonnegative

matrices, has the following two forms.

Theorem 2.1

(Perron–Frobenius theorem, Weak Form) If A is a nonnegative square matrix, then

1. r.A/, the spectral radius of A, is an eigenvalue.

2. There exists a nonnegative vector x0 ¤ 0 such that

Ax0 D r.A/x0.

Definition 2.2. A square matrix A is said to be reducible if it can be placed into block upper-

triangular form by simultaneous row/column permutations. A square matrix that is not reducible is

said to be irreducible.

Theorem 2.3

(Perron–Frobenius theorem, Strong Form) If A is an irreducible nonnegative square matrix, then

1. r.A/ > 0 is an eigenvalue.

2. There exists a positive vector x0 > 0, that is, all components of x0 are positive, such that

Ax0 D r.A/x0.

3. (Uniqueness) If � is an eigenvalue with a nonnegative eigenvector, then �D r.A/.
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4. r.A/ is a simple eigenvalue of A.

5. If � is an eigenvalue of A, then j�j6 r.A/.

Concerning the distribution of eigenvalues on the spectral circle

f� 2C j j�j D r.A/g,

we have the following.

Theorem 2.4

Let A be an irreducible nonnegative matrix. If A has k distinct eigenvalues of modulus r.A/, then

the eigenvalues are r.A/ei2�j=k , where j D 0, 1, � � � , k  1.

We call the number k the cyclic index of A.

The special subset of nonnegative irreducible matrices known as primitive matrices plays an

important role in the calculation of the spectral radius of A. We denote R
n
C D f.x1, : : : , xn/ 2

R
n j xi > 0, 16 i 6 ng, the positive cone in R

n and R
n
CC its interior. We recall:

Definition 2.5. An irreducible nonnegative matrix A is said to be primitive if the only nonempty

subset of the boundary of R
n
C, which is invariant under the action of A is f0g.

There are many equivalent characterizations of primitivity for matrices, one of which is the

following.

Theorem 2.6

A is a primitive matrix if and only if A has cyclic index 1.

There is also a minimax characterization of the spectral radius for irreducible nonnegative

matrices due to Collatz and Wielandt. Namely,

Theorem 2.7

(Collatz–Wielandt) Assume A is an irreducible nonnegative n� n matrix, then

min
x2R

n
CC

max
fi jxi >0g

.Ax/i

xi

D r.A/D max
x2R

n
CC

min
fi jxi >0g

.Ax/i

xi

.

This characterization of r.A/ can be numerically implemented via the power method:

Let A> 0 be an n� n irreducible matrix and let y0 2R
n
CC. Define

xr D kyr 1k 1yr 1, yr D Axr , r > 1.

Let

N�r D max
16i6n

yr
i

xr
i

and �r D min
16i6n

yr
i

xr
i

We then have

�0 6 �1 6 � � �6 r.A/6 � � �6 N�1 6 N�0.

Theorem 2.8

If A is primitive, then both the sequences .xr ,�r/ and .x
r , N�r/, produced by the power method,

converge to .x0, r.A//, where x0 is the positive eigenvector corresponding to the eigenvalue r.A/.
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3. THEH -SPECTRAL THEORY FOR NONNEGATIVE TENSORS

To those readers, who are not familiar with tensors, we recommend [28], in which the basic

definitions and properties of tensors are introduced.

In 2005, Qi [2] and Lim [1] independently introduced the notion of eigenvalue problems for ten-

sors. Here, we follow the definition given in [2, 29]: Let A D .ai1���im/ 2 R
Œm,n�. Given an n-vector

x D .x1, � � � , xn/, real or complex, we define the n-vector:

 

Axm 1
�

i
WD

0

@

n
X

i2,:::,imD1

ai i2���imxi2 � � � xim

1

A

16i6n

and the n-vector xŒm 1� WD
 

xm 1
1 , : : : , xm 1

n

�

.

Definition 3.1. A pair .�, x/ 2 C � .Cn n f0g/ is called an eigenvalue and an eigenvector of

A 2 R
Œm,n� if they satisfy Axm 1 D �xŒm 1�. Furthermore, we say � is an H -eigenvalue with the

correspondingH -eigenvector x (or .�, x/ is anH -eigenpair) of A if they are both real.

By definition, the eigenvalues only depends on the n homogeneous polynomials .Axm 1/i ,

i D 1, � � �n. Thus, without loss of generality, one may assume for any fixed i 2 f1, � � � ,ng, the

.m 1/-order n-dimensional tensor .ai ,i2,���im/ is symmetric.

In [2], Qi proved the following conclusions on the eigenvalues of an m-order n-dimensional

symmetric tensor A:

Theorem 3.2 (cf. Theorems 1 and 6 [2])

1. A number � 2C is an eigenvalue ofA if and only if it is a root of the characteristic polynomial

�.�/D det.A �I/, where I D .ıi1���im/ denotes the identity tensor, that is,

ıi1���im D

�

1 if i1 D i2 D � � � D im,

0 otherwise,

is the Kronnecker symbol.

2. The number of eigenvalues of A is d D n.m  1/n 1. Their product is equal to det.A/, the

resultant of Axm 1 D 0.

3. The sum of all the eigenvalues of A is

.m 1/n 1
tr.A/,

where tr.A/ denotes the sum of the diagonal elements of A.

4. If m is even, then A always has H -eigenvalues. A is positive definite (positive semidefinite)

if and only if all of itsH -eigenvalues are positive (nonnegative).

5. The eigenvalues of A lie in the following n disks:

j� ai ,i ,��� ,i j6
X

fjai ,i2,��� ,im j W 16 i2, � � � , im 6 n, fi2, � � � , img 6D fi , � � � , igg,

for i D 1, � � � ,n.

Remarks 1. The notion of symmetric tensor is referred to Definition 4.10 later. In fact, the sym-

metric assumption on A in [2] in this statement is superfluous. Corresponding to the n homoge-

nous polynomials .Axm 1/1, � � � , .Ax
m 1/n in n variables x D .x1, � � � , xn/, one defines the

determinant to be the resultant of these polynomials:

det.A/D Res
 

.Axm 1/1, � � � .Ax
m 1/n

�

,

then the characteristic polynomial becomes

�.�/D det.A �I/.
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All the conclusions of the earlier theorem continue to hold without changing the proofs.

In a more general framework, Canny [30] defined the generalized characteristic polynomial,

C.�/, of a system of homogeneous polynomials f1, : : : ,fn in the variables x1, : : : , xn to be the

resultant of
n

f1  �x
d1

1 , : : : ,fn  �x
dn
n

o

, where each fi has total homogeneous degree di .

A symmetric even m order tensor A D .ai1���im/ is called positive definite (or positive

semidefinite), if

˙n
i1,��� ,imD1ai1���imxi1 � � � xim > ˛†n

iD1x
m
i , ˛ > 0, .˛ > 0/ 8 x 2R

n.

Definition 3.3. Let A 2 R
Œm,n�. We call the set �.A/ D f� j� is an eigenvalue of Ag the spectrum

of A. The spectral radius �.A/ of A is defined to be

�.A/D supfj�j j� 2 �.A/g.

According to the remark following Theorem 3.2, for any A 2 R
Œm,n�, �.A/ ¤ ; is a finite set.

Hence, the supremum used in the definition of �.A/ can be replaced by the maximum.

It should be noted that, unlike the spectral radius r.A/ for a square matrix A, the spectral radius

�.A/ thus defined not only depends on the tensor A but also on the definition of the eigenvalue

(Definition 3.1) of A.

In contrast, the existence of H -eigenpairs for a general tensor A 2 R
Œm,n� is significantly more

challenging; we refer the interested readers to [31–33] for more detailed discussions on that front.

In [1], Lim first proposed to extend the Perron–Frobenius theorems to nonnegative tensors in this

setting. He also extended the notion of irreducibility to higher order tensors as follows.

Definition 3.4. A tensor A D .ai1���im/ 2 R
Œm,n� is called reducible, if there exists a nonempty

proper index subset I � f1, : : : ,ng such that

ai1���im D 0, 8i1 2 I , 8i2, : : : , im … I .

If A is not reducible, then we call A irreducible.

Due to the nonlinear nature of the eigenvalue problem (Definition 3.1) for a higher order tensor,

many standard methods used in linear algebra cannot be applied directly. Surprisingly, for the fam-

ily of nonnegative tensors, the main component of its spectral theory, for example, the generalized

Perron–Frobenius theorems and some related results, can be extended completely.

In 2008, Chang et al. gave the first complete proof of the following generalized Perron–Frobenius

theorems:

Theorem 3.5 (cf. Theorem 1.3 [32])

If A 2R
Œm,n�
C , then there exist �0 > 0 and a nonnegative vector x0 ¤ 0 such that

Axm 1
0 D �0x

Œm 1�
0 . (H)

The proof of Theorem 3.5 is based on Brouwer fixed point theorem. As a consequence, it directly

asserts the existence of a real eigenvalue of A 2 R
Œm,n�
C , bypassing the resultant theory over the

complex field.

Theorem 3.6 (cf. Theorem 1.4 [32])

If A 2R
Œm,n�
C is irreducible, then the pair .�0, x0/ in .H/ satisfies the following:

1. �0 > 0 is an eigenvalue.

2. x0 > 0, that is, all components of x0 are positive.

3. If � is an eigenvalue with nonnegative eigenvector, then � D �0. Moreover, the nonnegative

eigenvector is unique up to a multiplicative constant.

4. If � is an eigenvalue of A, then j�j6 �0.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:891–912
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The irreducibility condition not only implies the nonnegative eigenvector is unique but it must be

positive as well.

From Theorem 3.6, we see that if A 2 R
Œm,n�
C is irreducible, then �.A/ D �0 is an eigenvalue.

Based on Theorem 3.5, the spectral radius of a nonnegative tensor is defined in [34] (which of course

coincides with the more general definition ). By the simple approximation �.AC�E/> �.A/, where

E denotes the unit tensor whose entries are all equal to 1, it follows that �.AC�E/! �.A/ as �! 0.

Because AC �E is a positive tensor (hence irreducible), passing to the limit, Theorem 3.6 implies

that �.A/ is an eigenvalue even if A is reducible. Namely,

Proposition 3.7 (cf. Theorem 2.3 [34]). For any A 2 R
Œm,n�
C , the spectral radius �.A/ is an

eigenvalue of A.

Analogous to Theorem 2.4, Yang and Yang [34] also proved

Theorem 3.8 (cf. Theorem 3.1 [34])

LetA 2R
Œm,n�
C be irreducible. IfA has k distinct eigenvalues of modulus �.A/, then the eigenvalues

are �.A/ei2�j=k , where j D 0, 1, � � � , k  1.

We continue to call this number k the cyclic index of A.

Similar to the Collatz–Wielandt Theorem 2.7, Chang et al. extended the minimax characterization

of the spectral radius �.A/ in [32] as follows:

Theorem 3.9 (cf. Theorem 4.2 [32])

Assume A 2R
Œm,n�
C is irreducible, then

min
x2R

n
CC

max
fi jxi >0g

 

Axm 1
�

i

xm 1
i

D �.A/D max
x2R

n
CC

min
fi jxi >0g

 

Axm 1
�

i

xm 1
i

.

Inspired by Theorem 3.9, Ng et al. [35] proposed the following algorithm for calculating the

spectral radius:

1. Choose x0 2R
n
CC. Let y

0 DA
 

x.0/
�m 1

and set k WD 0.

2. Compute

x.kC1/ D

 

y.k/
�Œ 1

m 1 �

k
 

y.k/
�Œ 1

m 1 � k

,

y.kC1/ DA

�

x.kC1/
�m 1

,

�kC1 D min
16i6n

 

y.kC1/
�

i
�

x
.kC1/
i

�m 1
,

�kC1 D max
16i6n

 

y.kC1/
�

i
�

x
.kC1/
i

�m 1
.

The iteration stops whenever �k D �k , which yields the largest eigenvalue �0 and the associated

eigenvector.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:891–912
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If the iteration does not terminate in finite time, are the sequences
˚

�k , x
.k/
	

n

�k , x
.k/
o

con-

vergent? In order to give a complete and satisfactory answer to this question, one needs certain

condition resembles primitivity for matrices.

By defining the nonlinear map TA.x/ WD
 

Axm 1
�Œ 1

m 1 � on R
n
C associated with the tensor A,

Chang et al. [36] enabled the composition of the tensor A with itself and extended the definition of

primitivity to tensors.

Definition 3.10. An irreducible nonnegative tensor A is said to be primitive if the only nonempty

subset of the boundary of R
n
C, which is invariant under TA is f0g.

Based on the notion of primitive tensors, they proved

Theorem 3.11 (cf. Theorem 4.5 [36])

If A 2R
Œm,n�
C is primitive, then its cyclic index is 1.

Theorem 3.12 (cf. Theorems 2.7, 2.11 [36])

Let A 2R
Œm,n�
C , then the following statements are equivalent:

1. A is primitive.

2. 9 r 2N such that T r
A

 

R
n
Cnf0g

�

�R
n
CC, that is, T

r
A
is strongly positive.

3. 9 r 2N such that T r
A
is strictly increasing.

Theorem 3.13 (cf. Theorem 5.3 [36])

IfA 2R
Œm,n�
C is primitive, let

n

�k ,�kI x
.k/
o

be as defined in Theorem 3.9, then �k ,�k ! �.A/ and

x.k/ ! x�, that is, x.k/ converges to the eigenvector with respect to �.A/.

Moreover, Chang et al. proved

Theorem 3.14 (cf. Theorem 5.7 [36])

Let A 2 R
Œm,n�
C be irreducible. Both the sequences f�kg and

n

�k

o

, which are defined in Theorem

3.9, converge to �.A/ for an arbitrary initial value x0 2R
n
Cnf0g if and only if A is primitive.

From the definition, it is easily seen

Corollary 3.15 (cf. Corollary 3.8 [36]). LetA > 0 be irreducible. Then,AC˛I is primitive, where

I is the identity tensor and ˛ > 0.

Corollary 3.16 (cf. Corollary 3.7 [36]). IfA > 0 is essentially positive (i.e., TA is strongly positive),

then A is primitive.

Combining these results, the convergence results in Zhang and Qi [37] and Yang et al. [38] fol-

low readily. According to [38, 39], one may modify the algorithm proposed by Ng et al. to any

irreducible nonnegative tensorA by adding ˛I toA, then �.A/ can be obtained by subtracting ˛ in

the end.

Zhang et al. [40] proved the linear convergence of the earlier algorithm for calculating �.A/.

Comparing the earlier results for tensors to the classical Perron–Frobenius theorems for nonneg-

ative matrices, we note the similarities as well as the differences between the two settings: similar

to nonnegative matrices, the existence of a nonnegative eigenvector with nonnegative eigenvalue for

any nonnegative tensor has been established. Furthermore, under Lim’s irreducibility definition, the

eigenvalue is positive, unique among eigenvalues with nonnegative eigenvectors, and the largest in

modulus.

However, unlike matrices, such �0 may not be geometrically simple in general.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:891–912
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Definition 3.17 (cf. Definition 3.1 [32]). Let � be an eigenvalue of A. We say � has real geometric

multiplicity q, if the maximum number of linearly independent real eigenvectors corresponding to

� equals q. If q D 1, then � is called real geometrically simple.

The following example was given in [32].

Example 3.18. Let A D .aijk/ 2 R
Œ3,2�
C be such that a111 D a222 D 1, a122 D a211 D � for

0 < � < 1, and aijk D 0 for other .ijk/. Then, the eigenvalue problem becomes

(

x2
1 C �x

2
2 D �x

2
1

�x2
1 C x

2
2 D �x

2
2 .

We have �0 D 1C ", with eigenvectors u1 D .1, 1/ and u2 D .1, 1/. Hence, the real geometric

multiplicity of �0 D 1C " is 2.

With this in mind, we seek sufficient conditions on A 2R
Œm,n�
C to ensure the geometric simplicity

of �.A/.

Chang in [41] studied the generalized Perron–Frobenius theorem in Banach space and introduced

the notion of semistrong positivity for a positively 1-homogeneous, strictly increasing, compact, and

continuous operator. This will lead to the geometric simplicity for this kind of operators.

We now review some basic terminologies.

Definition 3.19. LetX be a real Banach space, which has a positive cone P with nonempty interior

int.P /. We write x > 0 if x 2 P ; x > 0 if x 2 int.P / A mapping T W X ! X is said to be

nonnegative if 0 6 x implies 0 6 T x; it is said to be strictly positive if 0 < x implies 0 < T x; it is

said to be strongly positive if 06 x and x ¤ 0 imply 0 < T x.

Definition 3.20. A mapping T W X ! X is said to be increasing if x 6 y implies T x 6 Ty; it is

said to be strictly increasing, if further, x < y implies T x < Ty; it is said to be strongly increasing

if x 6 y and x ¤ y imply T x < Ty.

Definition 3.21. Let P be a positive cone in a real Banach space X , and T W X ! X be a contin-

uous map T W P ! P . Assume int.P / ¤ ;. T is called semistrongly positive, if 8 x 2 PP n int.P /,

there exists x� 2 P � such that

hx�, T xi> 0D hx�, xi .

where PP D P nf0g, and h�, �i is the duality between X� and X .

The proof of the following theorem, which offers an alternative proof of Theorem 3.6 and yields

the geometric simplicity result, can be found in [41] Theorem 4.8:

Theorem 3.22

Let T be a semistrongly positive, increasing, 1-homogeneous, compact, and continuous mapping,

and

r�.T /D inf
x2 PP

supx�2P�.x/

hx�, T xi

hx�, xi
> 0,

where P �.x/D fx� 2 P � j hx�, xi > 0g. Then, �0 D r�.T / is the unique positive eigenvalue with

nonnegative eigenvector x0. In fact, the eigenvector x0 2 int.P /.

If � is a real eigenvalue of T , then j�j6 �0.

If further, 9 r 2 N , such that T r is strictly increasing, then the eigenvalue �0 is geometrically

simple.

Now, we return to eigenvalues for tensors.

The proof of Lemma 4.6 in [41] also leads to the following.

Lemma 3.23. A nonnegative tensor A is irreducible if and only if the operator TA is semistrongly

positive.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:891–912
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When m is even, the tensor A 2R
Œm,n�
C defines a nonlinear operator on R

n:

TA.x/D
 

Axm 1
�

1
m 1 ,

which maps R
n
C to R

n
C and is 1-homogeneous.

Concerning the geometric simplicity of �.A/, without loss of generality, we may assume that A

is primitive. In this case, TA WR
n !R

n, which maps R
n
C to R

n
C, is an increasing, 1-homogeneous,

semistrongly positive, compact, and continuous mapping. According to Theorem 3.12, 9 r 2 N,

such that T r
A
is strictly increasing.

Observing that when m is even, m 1 is odd, so

Axm 1 D �xm 1 , TA.x/D �
1

m 1 x, 8 x 2R
n.

Theorem 3.22 now implies

Theorem 3.24 (cf. Theorem 3.1 [42])

Let A 2R
Œm,n�
C . If A is irreducible and m is even, then �.A/ is real geometrically simple.

It is evident the results of Yang-Yang [42] and Pearson [43] (for essential positive tensors) on the

geometric simplicity of the largest eigenvalue can be derived from Theorem 3.24.

The notion of irreducibility for nonnegative n�n matrices AD .aij / has many equivalent forms.

Among which, two popular definitions are commonly adopted throughout the existing literature.

One of them is given by Definition 2.2. This definition of reducibility/irreducibility of a square

matrix A focuses on whether or not A has nontrivial invariant coordinate subspaces, which is a

combinatorially based. The other equivalent definition of irreducibility is given by the directed graph

G.A/ associated to A, (i.e., V D f1, 2 � � � ,ng and an directed edge .i , j / 2 E.A/ if aij > 0 ). A is

irreducible if and only if G.A/ is strongly connected, that is, for any ordered pair of nodes i and j ,

there exists a directed path connecting i to j .

When one extends the notion of irreducibility to nonnegative higher order tensors, these two

approaches may lead to different consequences. Following the first approach, we have the definition

of irreducibility as given in Definition 3.4.

In 2009, following the graph theory based approach, Friedland et al. [44] introduced the notion

of weakly irreducible tensors. It is defined as follows.

Given a nonnegative tensor A D .ai1���im/ 2 R
Œm,n�
C , it is associated to a directed graph

G.A/ D .V ,E.A//, where V D f1, 2, � � � ,ng and a directed edge .i , j / 2 E.A/ if there exists

indices fi2, � � � , img such that j 2 fi2, � � � , img and ai i2���im > 0, that is,

†j2fi2,��� ,imgai i2,���im > 0. (1)

Definition 3.25. A nonnegative tensor A 2 R
Œm,n�
C is called weakly irreducible if the associate

directed graph G.A/ is strongly connected.

It is equivalent to say (see Hu in [45]) that the matrixM.A/D .mij / is irreducible, where

mij D
X

j2fi2,��� ,img

ai i2,���im .

It is straightforward to show an irreducible nonnegative tensor is weakly irreducible, but the

following example is a weakly irreducible tensor, which is reducible according to Definition 3.4.

Example 3.26 (cf. [46]). Let A 2R
Œ4,3�
C be given by

a1111 D a1123 D a2223 D a3113 D 1 and aijkl D 0 elsewhere.

In [44], Friedland et al. discovered that a series of results obtained by Nussbaum [47, 48], Bur-

banks et al. [49], Gaubert and Gunawardena [50], and so on. on order preserving mappings as well as
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on positively 1-homogeneous monotone functions can be applied to the nonnegative tensors setting.

Applying these results, they reproved Theorem 3.6 under the weakly irreducible condition:

Theorem 3.27

Assume that A 2 R
Œm,n�
C is weakly irreducible. Then, there exists a unique positive H -eigenvector

with positive eigenvalue.

It is imperative to distinguish the results of Theorems 3.27 and 3.6 because the weak irreducibil-

ity assumption is weaker than irreducibility, Theorem 3.27 establishes the existence of a positive

H -eigenpair under a weaker assumption. However, Theorem 3.6 asserts the positiveH -eigenvector

is unique up to a nonnegative multiplier in R
n
C n {0}, and there are noH -eigenvectors on the bound-

ary of the positive cone. Whereas, Theorem 3.27 asserts that the positive H -eigenvector is unique

in R
n
CC but does not rule out the possibility of an H -eigenvector on the boundary of R

n
C. From a

topology point of view, there are two essentially different existence proofs for the classical Perron–

Frobenius theorem for nonnegative matrices and its generalizations to monotone operators in the

literature: one approach is based on Brouwer fixed point theorem. This idea can be traced back to

Alexandroff and Hopf in 1935. In 1940, Rutman continued in this vein to reprove Jentsch’s theorem

on integral equations, which is an infinite dimensional analog of the Perron–Frobenius theorem,

by using Schauder fixed point theorem. The other approach is to reduce the eigenvalue problem

to a contraction mapping by using the Hilbert projective metric. This idea can be traced back to

Samuelson in 1956, Birkhoff in 1957, Thompson in 1963 and Nussbaum [48]. The proof of Theorem

3.6 follows Brouwer fixed point theorem, and the proof of Theorem 3.27 follows the approach of

the contraction mapping.

Friedland et al. [44] also proved the convergence of the power algorithm proposed by Ng et al.

continues to hold for a weakly primitive nonnegative tensor (i.e., in the definition of a primitive

tensor, the irreducibility condition is replaced by weak irreducibility).

While many important properties of �.A/ are still enjoyed by the nonnegative weakly irreducible

tensors, some others may be lost nevertheless under this weaker notion. In a recent paper [46], Yang

and Yang showed using the Example 3.26,

x1 D . 0.410215, 0.231207, 0.33885/ and x2 D .5.03736, 2.83918, 4.16102/

are both approximated eigenvectors corresponding to �.A/ � 1.46557. So, �.A/ of a nonnega-

tive even order weakly irreducible is not necessarily real geometrically simple, contrasting to the

conclusion of Theorem 3.24.

In addition to the results mentioned earlier, there are various extensions on the positiveness of the

tensors, for example, Zhang and Qi [37] studied the weakly positive tensors; Hu et al. [51] studied

the strictly nonnegative tensors. Further developments can be found in [38–40, 52–56, 86, 87].

Extensions to rectangular nonnegative tensors, essentially nonnegative tensors, copositive tensors,

completely positive tensors, andM -tensors can be found in [52, 54, 57–64].

4. THE Z-SPECTRAL THEORY FOR NONNEGATIVE TENSORS

Parallel to the eigenvalue (resp. H -eigenvalue) problem of A 2 R
Œm,n�, there are other types of

eigenvalue problems ofA, for example, [1,2,29,31]. In particular, we will investigate the following:

Definition 4.1 (cf. [29]). Let A 2R
Œm,n�. A pair .�, x/ 2C � .Cn n {0}/ is called an E-eigenvalue

and E-eigenvector (or simply E-eigenpair) of A if they satisfy the equation
(

Axm 1 D �x,

x>x D 1.

We call .�, x/ a Z-eigenpair if they are both real.

Independently, Lim also defined eigenvalues for tensors in [1]. Lim defined eigenvalues for gen-

eral real tensors in the real field. The `2-eigenvalues of tensors defined by Lim are Z-eigenvalues
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of Qi [2], while the `m-eigenvalues of tensors defined by Lim areH -eigenvalues in Qi [2]. Notably,

Lim proposed a multilinear generalization of the Perron–Frobenius theorem based upon the notion

of `m-eigenvalues (H -eigenvalues) of tensors.

When m is even, the E-characteristic polynomial of A is defined to be the resultant

 A.�/D Resx

�

Axm 1  �
 

x>x
�

m 2
2 x

�

.

It is a polynomial of �.

When m is odd, it is defined in [29] to be the resultant:

 A.�/D Resx,x0

 

Axm 1  �xm 2
0 x, x>x  x2

0

�

.

We say that A is regular if the following system has no nonzero complex solutions:

�

Axm 1 D 0,

x>x D 0

For a regular tensor, for all m, the E-characteristic polynomial reads as

 A.�/D Resx,x0

 

Axm 1  �xm 2
0 x, x>x  x2

0

�

.

In [2], Qi also established the following conclusions on the E-eigenvalues of an m-order

n-dimensional symmetric tensor A:

Theorem 4.2 (cf. Theorems 1–4 [29]) 1. WhenA is regular, a complex number is anE-eigenvalue

of A if and only if it is a root of its E-characteristic polynomial.

2. The Z-eigenvalues always exist. An even order symmetric tensor is positive definite if and

only if all of its Z-eigenvalues are positive.

3. If A and B are orthogonally similar, then they have the same E-eigenvalues and Z-

eigenvalues.

4. If � is the Z-eigenvalue of A with the largest absolute value and x is a Z-eigenvector

associated with it, then �xm is the best rank-one approximation of A, that is,

kA �xmkF D

q

kAk2
F  �

2 DminfkA ˛umkF W ˛ 2R,u 2R
n, kuk2 D 1g,

where k � kF is the Frobenius norm.

Theorem 4.2 (4) indicates that Z-eigenvalues play an important role in the best rank-one approx-

imation. The best rank-one approximation of higher order tensors has extensive engineering and

statistical applications, such as Statistical Data Analysis [65–67].

Both of the eigenvalue problem and the E-eigenvalue problem for tensors are nonlinear in nature

with various new and important applications in numerical multilinear algebra, image processing,

higher order Markov chains, spectral hypergraph theory, the study of quantum entanglement, and

so on. However, their chief difference lies in that the eigenvalue problem is equivalent to finding

nontrivial solutions of a system of homogeneous multivariate polynomial equations of the same

degree, whereas the E-eigenvalue problem is equivalent to finding nontrivial solutions of a system

of inhomogeneous multivariate polynomial equations.

It was shown in a recent paper by Li et al. [20] that the E-characteristic polynomial of a given

tensor A 2R
Œm,n� (not necessarily symmetric) is in fact invariant under the action of the orthogonal

group.

As a consequence, all E=Z-eigenvalues of A are orthogonal invariants of A. The significance

of the orthogonal invariance of the E=Z-eigenvalues indicates many results on the Z-eigenvalues

of nonnegative tensors will remain valid for a broader class of tensors, which are not necessar-

ily nonnegative themselves but are orthogonally similar to nonnegative tensors. Unfortunately, the

H -eigenvalues are not orthogonally invariant.
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Ni et al. [68] showed that for even m > 2, the degree of the E-characteristic polynomial  A.�/

of a generic tensor A is

dE D
.m 1/n  1

m 2
D .m 1/n 1 C .m 1/n 2 C � � � C .m 1/C 1.

They conjectured that the assumption on m being even is not necessary. Later, Cartwright and

Sturmfels proved the conjecture in [19]. Furthermore, Cartwright and Sturmfels observed (cf. Propo-

sition 3.4 [19]) the following implications of the relationship between the E-eigenvalues and the

E-characteristic polynomial  A.�/ as follows:

1. The set of all E-eigenvalues of A consists of all complex numbers, which implies.

2. The set of all E-eigenvalues of A is infinite, which implies.

3. The E-characteristic polynomial  A.�/ vanishes identically.

In the E-eigenvalue problem, the regular assumption for a tensor is very important, this can be

seen in the following example [19]:

Example 4.3. Let AD .aijk/ 2C
Œ3,2�, where

a111 D a221 D 1, a112 D a222 D i , aijk D 0 otherwise.

We solve the system
�

x2
1 C ix1x2 D �x1,

x1x2 C ix
2
2 D �x2.

It is easily seen that all �¤ 0 are E-eigenvalues of A.

The striking difference between the eigenvalues of A and the E-eigenvalues of A is depicted by

the following result because of Cartwright and Sturmfels:

Theorem 4.4 (cf. Proposition 3.3 [19])

The set of E-eigenvalues of A is either a finite set or it consists of all complex numbers in the

complement of a finite set.

The following versions of the generalized Perron–Frobenius theorems for the Z-eigenvalues as

well as other types of eigenvalues of a nonnegative tensorAwere established in Chang et al. [32,69].

Theorem 4.5

If A 2 R
Œm,n�
C , then there exists a Z-eigenvalue �0 > 0 and a nonnegative Z-eigenvector x0 ¤ 0 of

A such that Axm 1
0 D �0x0.

Theorem 4.6

If A 2R
Œm,n�
C is irreducible, then the pair .�0, x0/ in Theorem 4.5 satisfy

1. The eigenvalue �0 is positive.

2. The eigenvector x0 is positive, that is, all components of x0 are positive.

However, unlike the H -eigenpairs for a nonnegative irreducible tensor A, neither the positive

Z-eigenvalue nor the associated positive Z-eigenvector ofA has to be unique in general, see Errata

[32] and Example 2.7 in [69].

Similar to the notion of spectrum set and spectral radius for a tensor A 2 R
Œm,n�, Chang et al. in

[69] introduced

Definition 4.7. Let A 2R
Œm,n�. We define the Z-spectrum of A to be

Z.A/D f� 2R j� is a Z-eigenvalues of Ag.
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Assume Z.A/¤ ;, %.A/ WD sup fj�j j � 2 Z.A/g is called the Z-spectral radius of A.

According to Theorem 4.5, for a nonnegative tensor A 2 R
Œm,n�
C , Z.A/ ¤ ;, so the Z-spectral

radius %.A/ is well defined. But, different from theH -spectral radius �.A/, %.A/ may not be itself

a positive Z-eigenvalue of A, see Example 3.3 in [69].

Based on the earlier observations, we introduce the following.

Definition 4.8 (cf. [69]). Let A 2R
Œm,n�
C . We define the nonnegative spectrum of A,

ƒ.A/D f�> 0 j 9 x 2R
n
C \ S

n 1 satisfying Axm 1 D �xg,

where Sn 1 is the standard unit sphere in R
n.

It is important to notice the setƒ.A/ is not necessarily a finite set in general as shown by Example

3.5 [69].

Proposition 4.9 (cf. Proposition 3.6 [69]). Let A 2R
Œm,n�
C . Then, ƒ.A/¤ ; is a compact subset.

For A 2R
Œm,n�
C , we define

�� Dmaxf� 2ƒ.A/g.

Besides the family of nonnegative tensors, the family of (weakly) symmetric tensors constitutes

another special yet important object to study. We recall the following from [2,31].

Definition 4.10. A 2R
Œm,n� is called symmetric if

ai1���im D a�.i1���im/ for all � 2Sm,

where Sm denotes the permutation group of m indices.

It was first called the ‘super-symmetric’ tensor but was suggested changing to be ‘symmetric ten-

sor’ by [70]. In that paper, it also demonstrates equivalence to the usual coordinate-free definition

of a symmetric tensor in algebra.

The notion of weakly symmetric tensors is introduced in [31].

Definition 4.11. A 2R
Œm,n� is called weakly symmetric if the associated homogeneous polynomial

Axm D fA.x/ WD

n
X

i1,i2,:::,imD1

ai1i2���imxi1xi2 � � � xim

satisfies rfA.x/DmAx
m 1.

It is also shown in [31] that a symmetric tensor is necessarily weakly symmetric, but the converse

is not true in general. Furthermore, if A 2R
Œm,n� is weakly symmetric, by homogeneity, we find

Axm D fA.x/D
1

m
hrfA.x/, xi D hAx

m 1, xi,

where h�, �i denotes the standard inner product on R
n. We define

N� WD max
x2Sn 1

fA.x/D max
x2Sn 1

Axm

and we have

Theorem 4.12 (cf. Theorem 3.11 [69])

Assume A 2R
Œm,n�
C is weakly symmetric. Then,

N�D �� D %.A/.
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Definition 4.13 (cf. [69]). Let A 2 R
Œm,n�
C . We say A is non-degenerate if for all x 2 R

n
C n {0},

 

Axm 1
�

i
and xi do not vanish simultaneously for all i 2 f1, � � � ,ng.

It is straightforward to show if A is irreducible, then A is non-degenerate, see Section 4 [69] for

detail. However, the converse is not true in general, for example, Example 4.7 [69].

Definition 4.14 (cf. [69]). LetA 2R
Œm,n�
C be non-degenerate. We define the following two functions

for all x 2R
n
C n {0}:

��.x/ WD min
16i6n

 

Axm 1
�

i

xi

and ��.x/ WD max
16i6n

 

Axm 1
�

i

xi

.

In the definition, it may happen ��.x/D1.

Definition 4.15 (cf. [69]). We define

%� WD supx2R
n
CC

\Sn 1 ��.x/ and %� WD inf
x2R

n
CC

\Sn 1
��.x/.

We then have a similar max–min characterization of %.A/:

Theorem 4.16 (cf. Theorem 4.5 [69])

Assume A 2R
Œm,n�
C is weakly symmetric and irreducible. Then,

1. ƒ.A/ is contained in the closed interval Œ%�, %��, that is, ƒ.A/� Œ%
�, %��.

2. %.A/D N�D �� D %�.

In order to compute %.A/, we adapt an iterative algorithm known as the shifted symmetric higher

order power method, proposed by Kolda and Mayo [71] when m is even. Although the algorithm

as well as its convergence analysis are given under the assumption A 2 R
Œm,n� being symmetric,

the entire process nonetheless continues to work successfully when we only assume A is weakly

symmetric. We refer the interested reader to [71] for a more in-depth discussion on this subject.

We now adapt the shifted symmetric higher order power method (cf. Algorithm 2 [71]) as follows.

Given a weakly symmetric tensor A 2R
Œm,n�
C .

Step 0. Choose x.0/ 2R
n
C n {0}, set �0 DAxm

.0/
, and choose the shift constant

˛ D

2

6

6

6

m

n
X

i1,��� ,imD1

ai1:::im

3

7

7

7

,

where de is the ceiling function, that is, it equals the smallest integer no less than  .

Set k WD 0.

Step 1. Set y.kC1/ WDAxm 1
.k/

C ˛x.k/.

Step 2. Compute

x.kC1/ WD
y.kC1/

ky.kC1/k

�kC1 WDAxm
.kC1/.

Because ˛ is large enough, the function fA.x/C˛kxk
m becomes convex on R

n. For evenm, the

convergence of the sequence �k is guaranteed.
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5. HIGHER ORDER MARKOV CHAINS

Eigenvalue theory for nonnegative matrices plays an important role in the study of finite Markov

chain. A finite Markov chain is a stochastic process X0,X1, � � � , with values in f1, ...,ng. Let

Prob.XtC1 D i jXt D j /D pij .

We call P D .pij / the transition probability matrix; clearly, pij > 0, and

n
X

iD1

pij D 1 8 j D 1, � � � ,n.

A nonnegative matrix satisfying the earlier conditions is called a stochastic matrix.

Let �t 2R
n be the distribution of Xt , that is,

.�t /i D Prob .Xt D i/ , and

n
X

iD1

.�t /i D 1,

then we have

�tC1 D P�t and

n
X

iD1

.�tC1/i D 1.

If � 2 R
n is the eigenvector of P , with � > 0 and

Pn
iD1 �i D 1, then P� D � . In this sense, �

corresponds to an invariant distribution of the Markov chain.

In case P is irreducible, according to the classical Perron–Frobenius theorem, � corresponds to

the largest eigenvalue 1, which is simple. One can show

�t ! � , as t !1.

In this sense, � is also called the equilibrium distribution.

Motivated by the demand of multirelational data mining, Ng et al. discovered intriguing new con-

nections of the Z-eigenvalue problem to the transition probability tensors of higher order Markov

chains in a series of their recent work [16, 72, 73]. They proposed a framework (HAR) that can be

used to compute hub, authority, and relevance scores in multirelational data query. The basic facts

of higher order Markov chains can be found in [74].

A higher order Markov chain is an extension of the finite Markov chain, in which the stochastic

process X0,X1, � � � with values in f1, 2, � � � ,ng has the transition probabilities:

06 pi1i2���im D Prob .Xt D i1 j Xt 1 D i2, : : : ,Xt mC1 D im/6 1 (2)

where

n
X

i1D1

pi1,i2,��� ,im D 1, 16 i2, ..., im 6 n. (3)

Thus, we have a tensor P 2R
Œm,n�
C consisting of nm entries in between 0 and 1:

P D
 

pi1i2...im

�

, 16 i1, i2, ..., im 6 n,

satisfying (3). We call it a transition probability tensor.

Let the probability distribution at time t be �.t/ 2�n, where

�n D

8

<

:

x D .x1, � � � , xn/ 2R
n
C W

n
X

jD1

xj D 1

9

=

;

.
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Then, we have

�.tCm/ D P�.tCm 1/ � � � �.t/ WD

0

@

n
X

i2���imD1

pi ,i2���im�
.tCm 1/
i2

� � � �
.t/
im

1

A

n

iD1

2�n (4)

for t D 1, 2, � � � .

Assume that

lim
t!1

�.t/ D ��. (5)

Then, we have �� 2 �n, and we may call �
� the stationary probability distribution of the higher

order Markov chain.

It follows that �� 2�n is an eigenvector of P with eigenvalue 1, that is,

P�m 1 D � . (6)

Although the eigenvalue problem (6) is different from the Z-eigenvalue problem for P ,
�

Pxm 1 D �x,

x>x D 1I

they share the same eigenvector (with a positive constant multiplier), but they may correspond to

different eigenvalues [14].

Consequently, if P is irreducible, then a positive solution of (6) exists. This is also proved by Li

and Ng [16]. Moreover, they gave sufficient conditions for the uniqueness of the fixed point problem

(6) inside the simplex �n. Under the same conditions (essentially to ensure P being a contraction

mapping on �n), Li and Ng [16] established linear convergence of the power method

y.kC1/ D P

�

y.k/
�m 1

. (7)

Although it has been noted in the previous section that for an arbitrary irreducible nonnegative

tensor the largest Z-eigenvalue may correspond to more than one positive Z-eigenvector (or equiv-

alently, the fixed points of P inside �n need not be unique for an arbitrary irreducible nonnegative

tensor), it was unclear whether every irreducible transition probability tensor has a unique fixed

point, until a counter example appeared in [14]:

Example 5.1. Let P 2R
Œ4,2�
C be the positive (hence irreducible) transition probability tensor defined

by

p1111 D 0.872, p1112 D
2.416

3
, p1121 D

2.416

3
, p1122 D

0.616

3
,

p1211 D
2.416

3
, p1212 D

0.616

3
, p1221 D

0616

3
, p1222 D 0.072I

p2111 D 0.128, p2112 D
0.584

3
, p2121 D

0.584

3
, p2122 D

2.384

3
,

p2211 D
0.584

3
, p2212 D

2.384

3
, p2221 D

2384

3
, p2222 D 0.928.

The fixed points of P (6) are solutions the following system:
8

ˆ

ˆ

<

ˆ

ˆ

:

.Px3/1 D 0.872x
3
1 C 2.416x

2
1x2 C 0.616x1x

2
2 C 0.072x

3
2 D x1,

.Px3/2 D 0.128x
3
1 C 0.584x

2
1x2 C 2.384x1x

2
2 C 0.928x

3
2 D x2,

x1 C x2 D 1, x1, x2 2 Œ0, 1�.

It is easy to verify that both

v1 D .0.2, 0.8/, v2 D .0.6, 0.4/

satisfy the system.
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Consequently, finding sufficient conditions to ensure the uniqueness of the fixed point for an irre-

ducible transition probability tensor becomes an important task to be carried out. In this direction,

we mention the works of Hu and Qi [15] and Chang and Zhang [14].

Another important problem in this aspect is the convergence of the probability distribution �.t/ as

time t !1, that is, (5).

For second-order Markov chain, under some additional conditions, Hu and Qi [15] established

the convergence of (5).

6. APPLICATIONS TO SPECTRAL HYPERGRAPH THEORY

Spectral graph theory is a well developed area of graph theory with applications to combinatorics,

computer science, neural networks, and social sciences, and so on. A graph can be encoded by its

adjacency matrixM . A main theme in spectral graph theory is to study the properties of the graph

and the eigenvalues or singular values ofM . Lim [1] pointed out that a potential application of the

largest eigenvalue of a nonnegative tensor is on hypergraphs. However, to extend the existing results

and methodology from spectral graph theory to spectral hypergraph theory, a more sophisticated

approach is required, namely via tensors.

We adopt the following standard definition of hypergraphs, for more details, we refer to

[5, 7–13,75–78].

Definition 6.1. A hypergraph H is a pair .V ,E/, where E � P.V /, the power set of V . The

elements of V D V.H/ are called vertices, and the elements of E D E.H/ are called edges. A

hypergraphH is said to be k-uniform for an integer k > 2 if, for all e 2E.H/, the cardinal number

of the subset, jej D k. The term k-graph is often used in place of k-uniform hypergraph.

By definition, a 2-graph is a graph.

Definition 6.2. The adjacency tensor AH for a uniform m-graph H D .V ,E/, denoted AH D

.ai1,��� ,im/ 2R
Œm,n�, where n is the number of the set V , is the symmetric tensor given by

ai1,��� ,im D
1

.m 1/Š

�

1, if i1, � � � im 2E

0, otherwise.

Characteristic polynomial plays an important role in the spectral graph theory. In the study of the

spectrum of hypergraphs, the characteristic polynomial �.�/D det.A �I/ for the tensorA is used

extensively. Because our subject is the spectral theory for nonnegative tensors, we shall focus on the

applications of results obtained in previous sections.

Definition 6.3. H is said to be m-regular if every v 2 V is adjacent to exactly m hyper-edges. A

hypergraphHD .V ,E/ is said to be k-partite or k-colorable if there exists a partition of the vertices

V D V1[ � � �[Vk such that for any k vertices i1, � � � , ik with ai1���ik ¤ 0, i1, � � � , ik must each lie in

a distinct Vi for 16 i 6 k.

Let �max be theH-eigenvalue (in the sense of Definition 3.1) of am-graphHwith largest modulus.

It follows from Theorem 3.6 that

Theorem 6.4 (cf. Theorem 3.7 [5])

For any nonempty m-graph H, �max can be chosen to be a positive real number. If H is connected,

then a corresponding eigenvector x can be chosen to be strictly positive.

This result is subsequently generalized by Pearson and Zhang to multigraphs using a different

approach.

Theorem 6.5 (cf. Theorem 1 [12])

LetH be a connected m-multigraph on n vertices, then
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1. There exists .�0, x0/ 2RCC �R
n
CC anH -eigenpair of AH, where

�0 D � .AH/D max
x2SC

AHx
m

is theH -spectral radius of AH, where SC D
˚

x 2R
n
C j

Pn
iD1 x

m
i D 1

	

.

2. The positive eigenvector x0 is unique (up to a positive multiplier) in R
n
CC,

see also [79].

Further discussions on the H as well as Z-eigenvalues/eigenvectors of the adjacency tensor can

be found in [5] and [12].

Recently, there has been rapid developments in the discovery of spectral properties of the

Laplacian and signless Laplacian of uniform hypergraphs. According to Qi et al. [8], we have the

following:

Definition 6.6. For a k-uniform hypergraph H D .V ,E/ on n vertices, let D be a k-th order n-

dimensional diagonal tensor with its diagonal element di ���i being di , the degree of vertex i , for all

i 2 Œn�. Then, L WD D  AH is the Laplacian tensor of the hypergraph H and Q WD DCAH is the

signless Laplacian tensor of the hypergraph H.

Both the Laplacian tensor and the signless Laplacian tensor of the hypergraph H have exhibited

promising spectral properties analogous to the Laplacian matrix for graphs. For a more in depth

exposition, we refer the interested readers to [8, 9, 78].

For a hypergraph H, a function f W V.H/! Œr� is a (weak) proper r-coloring of H if for every

edge e D fv1, v2, : : : , vkg, there exist i ¤ j such that f .vi / ¤ f .vj /. The (weak) chromatic num-

ber of H, denoted �.H/, is the minimum r such that H has a proper r-coloring. In the same paper,

Cooper and Dutle showed

Theorem 6.7 (cf. Theorem 3.9 [5])

For any k-graphH , �.H/6 �maxC 1.

Given an undirected graph G and a positive integer k 6 !.G/, the clique number, that is, the

maximum size of a clique (a subset of mutually adjacent vertices in V) in G, one can build a hyper-

graph H , which is called the k-clique .k C 1/-graph of G having k-cliques of G as vertices and

.kC 1/-cliques of G as edges.

By using the spectral radius of the hypergraphH , Bulo and Pelillo [3,4] obtained new upper and

lower bounds for !.G/:

Theorem 6.8 (cf. Theorem 5 [3])

Let G be an undirected graph with clique number !.G/ and H be a k-clique .k C 1/-graph of G

with spectral radius r.H/. Then,

!.G/6
r.H/

kŠ
C k.

Theorem 6.9 (cf. Theorem 6 [3])

Let G be an undirected graph with clique number !.G/ andH a k-clique .kC 1/-graph of G with

spectral radius r.H/ and Perron eigenvector x0 . Then,

!.G/>   1

 

r.H/

kŠkx0k
kC1
k

!

,

where

 k.x/D .x  k/
 

C n
k

�
1
k .
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Although the Laplace matrix, which plays an important role in spectral graph theory, is not a non-

negative matrix, after modifications, it can be reduced to a nonnegative matrix. The Laplace matrix

for an undirected graph G is symmetric and semipositive definite, the smallest eigenvalue �1.G/

is 0, and the multiplicity of 0 is the number of connected components of G. Moreover, the second

smallest Laplace eigenvalue �2.G/ is called the algebraic connectivity of the graph G, one has

�2.G/ > 0 if and only if G is connected. The earlier notions and results are extended to k-uniform

hypergraphs in [7, 77], where the Z-eigenvalues for tensors are used.

7. APPLICATIONS TO QUANTUM ENTANGLEMENT

The quantum entanglement problem is a central problem in quantum information [80]. In 2003, Wei

and Goldbart [81] introduced geometrical measure for quantum entanglement. Wei and Goldbart

[81] conjectured that the nearest separable state for a symmetric state can be chosen to be sym-

metric. Hayashi et al. [82] proved the conjecture for symmetric states with nonnegative amplitudes.

Hübener et al. [83] proved the conjecture in general. Also see Orús et al. [84]. The computation of

the symmetric pure states with nonnegative amplitudes was carried out by Wei and Goldbart [81]

for some ground states, and systematically for symmetric pure multipartite qubit states by Chen

et al. [85]. Very recently, Hu et al. [22] established the link between the geometric measure of

entanglement of pure states with nonnegative amplitudes and the spectral theory of nonnegative

tensors.

An m-partite pure state j‰i of a composite quantum system is an element in a Hilbert tensor

product spaceHD
Nm

kD1 Hk , with h‰j‰i D 1, where the dimension ofHk is dk for k D 1, : : : ,m.

A separable (Hartree) m-partite state jˆi 2 H has the form jˆi D
Nm

kD1 j�
.k/i with j�.k/i 2 Hk

and kj�.k/ik D 1 for k D 1, : : : ,m. A state is called entangled if it is not separable.

For a given m-partite pure state j‰i 2 H, its nearest separable state jˆi D
Nm

kD1 j�
.k/i can be

described by the maximal overlap:

G.‰/D max
jˆiD

Nm
kD1 j�

.k/i
jh‰jˆij. (8)

The geometric measure is defined as [81]

EG.j‰i/D 1 G.‰/
2.

It was shown that the maximal overlap in (8) is equal to the largest entanglement eigenvalue �

[23, 81]:

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

D

‰j
�

N

j¤k j�
.j /
E�

D �h�.k/j,

�

N

j¤k

˝

�.j /j
�

‰
E

D �j�.k/i,

kj�.k/ik D 1, k D 1, : : : ,m.

(9)

A state j‰i 2 H D
Nm

kD1 Hk is called nonnegative if there exist orthonormal bases fje
.k/
i ig

dk

iD1

for Hk such that ai1:::im WD h‰j
�

je
.1/
i1
i � � � je

.m/
im
i
�

> 0 for all ij D 1, : : : , dj and j D 1, : : : ,m.

The d1 � � � � � dm tensor consisting of ai1:::im is denoted by A‰ . When H1 D � � � D Hm, A‰ is

symmetric if and only if j‰i is symmetric in the sense of quantum information.

When j‰i is symmetric, (8) reduces to [83]

G.‰/D max
jˆiDj�i˝m

jh‰jˆij. (10)

The following theorem in [22] established the link between the geometric measure of entan-

glement of pure states with nonnegative amplitudes and the largest Z-eigenvalues of nonnegative

tensors.
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Theorem 7.1

If j‰i 2H is symmetric and nonnegative, then

G.‰/D %.A‰/.

Hu et al. [22] further showed that for the geometric measure of entanglement for pure states with

nonnegative amplitudes, the nonsymmetric ones can be converted to the symmetric ones, via sym-

metric embedding [86]. Based on these, the results on Z-eigenvalues of nonnegative tensors can

be applied to the computation of the geometric measure of entanglement of any pure states with

nonnegative amplitudes.
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